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Abstract 

Three-dimensional printing (3DP) is a transformative technology that is advancing 

pharmaceutical research by producing personalized drug products. However, advances made 

via 3DP have been slow due to the lengthy trial-and-error approach in optimization. Artificial 

intelligence (AI) is a technology that could revolutionize pharmaceutical 3DP through 

analyzing large datasets. Herein, literature-mined data for developing AI machine learning 

(ML) models was used to predict key aspects of the 3DP formulation pipeline and in vitro

dissolution properties. A total of 968 formulations were mined and assessed from 114 

articles.  The ML techniques explored were able to learn and provide accuracies as high as 93% 

for values in the filament hot melt extrusion process. In addition, ML algorithms were able to 

use data from the composition of the formulations with additional input features to predict the 

drug release of 3D printed formulations. The best prediction was obtained by an artificial neural 

network that was able to predict drug release times of a formulation with a mean error of ±24.29 

minutes. In addition, the most important variables were revealed, which could be leveraged in 

formulation development. Thus, it was concluded that ML proved to be a suitable approach to 

modelling the 3D printing workflow. 

Keywords: additive manufacturing and continuous manufacturing, personalized and precision 

pharmaceuticals, machine learning and predictive analysis, digital health and digital 

technologies, fused filament fabrication, drug delivery 
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1 Introduction 
Three-dimensional printing (3DP), or additive manufacturing, is a cutting-edge fabrication 

technology that involves the layer-by-layer fabrication of a 3D object based on a computer-

aided design (CAD) model [1-6]. Since the approval of the first 3D printed medicine, 

Spritam®, 3DP has been touted as the next disruptor of the pharmaceutical manufacturing 

industry [7, 8]. Promising bespoke medicines with precise dosing, pharmaceutical 3DP may 

contribute to the clinical goal of precision medicines, allowing every individual to be able to 

receive the right dose at the right time [9-14]. The growing interest in this field has led to an 

ever-expanding number of 3DP technologies deemed suitable for fabricating tailored 

medicines. These can be grouped based on the technique; (1) Material Extrusion, which 

includes Fused Filament Fabrication (better known as Fused Deposition Modelling (FDM™)) 

[15-20], Semi-solid Extrusion (SSE) [21-25], and Direct Powder Extrusion (DPE) [26, 27];  (2) 

Powder Bed Fusion, which includes Selective Laser Sintering (SLS) [28-32]; (3) VAT 

Photopolymerization, which includes Stereolithography (SLA) [33-36]; and (4) Material 

Jetting, which includes Inkjet Printing (IJP) [37-41]. Each of these technologies possess unique 

features and advantages; for example, IJP is capable of printing unique patterns such as QR 

codes that can help in the international war against counterfeit medicines [42, 43]. Amongst 

these, FDM is the most actively explored 3DP technology in pharmaceutics [7, 44-46].  

FDM is a thermal material extrusion technology whose popularity is mainly attributed to 

its affordability, versatility and compact size [7, 17, 47]. It involves processing raw 

pharmaceutical material through hot melt extrusion (HME) to obtain long strands of filament, 

which are subsequently fed into an FDM 3D printer [48]. The printer melts the filament and it 

is deposited layer-by-layer onto a build plate to create a 3D object. The size and shape of the 

object can be easily modified using software. This technology has been used within the 

pharmaceutical arena to produce an array of drug products, ranging from printlets (3D printed 

tablets) [49] and capsules [13], to transdermal microneedles [50], subcutaneous implants [51], 

and other innovative drug delivery devices [52-55]. Yet, developments in pharmaceutical FDM 

3DP has been hampered by the empirical process of formulation development. Numerous 

parameters within this two-step process can influence the performance of the final product. 

These include, but are not limited to, pre-HME variables (e.g. proportion of materials, object 

design), HME variables (e.g. extrusion temperature, torque, extrusion speed), and FDM 3DP 

variables (e.g. printing speed, printing temperature, platform temperature) [56, 57]. 

Consequently, in order to produce the desired product, researchers must undergo a process of 
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trial-and-error, slowly adjusting each parameter one at a time and evaluating the performance 

of each prototype. Not only is this time-consuming and inefficient, it also necessitates large 

amounts of material waste and monetary costs.  

Therefore, to have a means of predicting the optimal parameters that will produce the 3D 

printed object with the best performance would be desirable. Machine Learning (ML) may hold 

the key to optimising this process [58, 59]. ML is an Artificial Intelligence (AI)-based, state-

of-the-art technology that enables pattern recognition from complex datasets [60-63]. Recent 

years have seen AI receive immense and well-deserved media coverage, owing to its successes 

in affording unparalleled insights and enhanced efficiency in numerous disciplines. For 

instance, Google DeepMind’s AI program (AlphaFold) determines the 3D shapes of proteins 

from its amino-acid sequence, potentially saving computational biologists time and resources 

compared to existing lab techniques such as X-ray crystallography [64]. Successful 

applications of AI in other sectors have prompted the pharmaceutical industry to re-evaluate 

the traditional costly and time-consuming process of bringing drugs into market [65-69]. 

Indeed, AI is a versatile and revolutionary technology that warrants consideration for 

accelerating and transforming pharmaceutical 3DP [70].  

We have previously reported an AI-based web application, named M3DISEEN 

(http://m3diseen.com), that employs five ML techniques to enhance the efficiency of FDM 

formulation development [71]. This software was successful at predicting four key process 

parameters: extrusion temperature, filament mechanical characteristics, printing temperature 

and printability. The dataset comprised a total of 614 drug-loaded formulations evaluated by 

expert HME and FDM operators from University College London – School of Pharmacy and 

the company FabRx, using 145 excipients and drugs. An advantage of ML is its ability to 

improve its predictive performance as the sample size increases. Expanding the M3DISEEN 

dataset could be achieved by conducting further experiments in-house, however, this approach 

is time-consuming. Alternatively, a potentially more efficient strategy would be to data mine 

FDM formulations from published studies. This strategy would also present the opportunity to 

gather data generated by other research groups, thus minimising potential bias. In addition, 

more information could be extracted from the literature e.g., drug dissolution results from 

formulations.  

As more intricate 3D designs are fabricated via FDM 3D printing, it may become more 

difficult to gauge the drug release profile a priori. Thus, the ideal prediction model should 

include this feature. Dissolution testing is a fundamental analysis in formulation development, 

used to conclude the suitability of a drug product and for further development. As a product is 

http://m3diseen.com/predictions/
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formulated, it is important to ensure that the drug release occurs in an appropriate manner. The 

dissolution process may be time-consuming, particularly if the experiments are conducted over 

weeks or months, which cannot be avoided. Due to its necessity, researchers have investigated 

modelling techniques to predict dissolution behaviour, particularly for controlled release 

systems [72, 73]. A mathematical description of the release profile is rather difficult, given the 

numerous factors that will need to be considered. This is particularly true for FDM, since it 

affords researchers the ability to produce different and intricate designs [48]. ML on the other 

hand can utilise existing data, which is made possible by the abundance of dissolution data 

published, to predict dissolution results of new formulations.  

The present study reports the ML pipeline developed, using formulations mined from 

previously published studies, to predict key HME and FDM 3D printing conditions and drug 

dissolution properties. The key parameters predicted are extrusion temperature, filament 

mechanical characteristics, printing temperature and printability. The work especially focussed 

on the prediction of the drug dissolution performance of the 3D printed formulations and the 

features that affected dissolution. This study will provide a critical analysis of the performance 

of ML techniques for the prediction of different parameter of 3D printed formulations from 

data obtained from the literature and the requirements of the collected data.  

2 Materials and methods 

2.1 Data mining from literature 
PubMed, Google Scholar, and Web of Science were used to search for articles published in 

English using the terms “hot melt extrusion”, or “fused deposition modelling”, or “fused 

filament fabrication”, and “drug”, or “tablet”, or “capsule”, or “printlet”, or “drug device”, or 

“printability” between Jan 1, 2013, and November 30, 2020. 

2.2 Data collection 
The data collection from the literature were arranged as shown in Table 1.  

2.2.1 Identification of the Formulation 

The formulations extracted from literature were identified by the article’s DOI, author ID, 

formulation ID in the manuscript and year of publication. 
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2.2.2 Composition 

The components and their respective weight ratio for each formulation was recorded. Any 

formulations where the accumulative ratio did not sum to 1 (i.e. 100 w/w%) were removed 

from the analysis.  
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Table 1. The variables used within this study
Identification of 
the formulation 

Article DOI DOI_1 DOI_2 … DOI_n 

Author Author_1 Author_2 Author_n 

Formulation ID ID_1 ID_2 … ID_n 

Composition Material 1 0.2 0.5 … … 

Material 2 
… 

0.3 
… 

0 
… 

… 
… 

… 
… 

Material 410 0.1 0.1 … … 

Hot Melt 

Extrusion 

Extruder (brand type) HAAKE_MiniCTW Noztek_Pro … … 

Extrusion Speed (RPM) 22.5 135 … … 

Extrusion temperature (ºC) 145 169 … … 

Extrusion torque (N.cm) 15 15 … … 

Filament aspect Good Good … … 

3D printing Printer (brand type) Makerbot_Replicator_2X Makerbot_Replicator_2X … … 

Nozzle diameter (mm) 0.4 0.4 … … 

Printing Speed (mm/s) 90 10 … … 

Printing temperature (ºC) 210 200 … … 

Platform temperature (ºC) 30 80 … … 

Printability Yes Yes … … 

3D printed 

formulation 

Object Tablet Film … … 

Shape Cylinder Square … … 

Type of shell 1 1 … … 

Length (mm) 10 20 … … 

Width, Diameter (mm) 10 20 … … 

Depth, Thickness (mm) 3.2 0.2 … … 

Volume (mm3) 258.97 80 … … 

Surface area (mm2) 257.61 816 … … 

Surface area/volume 0.995 10.2 … … 

Weight (mg) 181.02 112.8 … … 

Layer thickness (mm) 0.2 0.05 … … 

Shell (top/bottom) (mm) 0.2 0.4 … … 

Shell (lateral) (mm) 0.2 0.4 … … 

Infill (%) 0 60 … … 

Infill type Rectilinear Hexagonal … … 

3D printed product aspect Good Good 

Dissolution test Dissolution T20 (min) 20 y … … 

Dissolution T50 (min) 80 y … … 

Dissolution T80 (min) 230 y … … 

pH of the dissolution media (pH) Acid Mixed … … 

Volume of dissolution media (ml) 900 50 … … 

Dissolution apparatus USP_II bottle … … 

Dissolution speed (RPM) 50 50 … … 

Drug solubility Drug Solubility (mg/L) 0.1 0.007 

*”y” was used to represent information that could not be found 
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2.2.3 Hot Melt Extrusion 

The HME process parameters recorded were extruder type, extrusion speed, extrusion 

temperature (as per the temperature reported in the respective manuscripts; this may refer to 

the nozzle temperature or maximum barrel temperature), extrusion torque, and filament 

mechanical characteristics (good, brittle or flexible).  

2.2.4 3D Printing 

The FDM printing process parameters recorded were printer brand and type (e.g. direct drive), 

nozzle diameter, printing speed, printing temperature, platform temperature, and if the 

formulation was printable or not. 

2.2.5 3D Printed Formulations 

This part included the information about the object printed, shape of the object, dimensions of 

the object (Length x Width x Height), weight, layer thickness, the type of shell, thickness of 

the shell, and percentage infill. The printed products were classed by a feature called ‘object’ 

that refers to the type of delivery system, either a tablet, film, device or other. Since 3D printing 

can produce complex shapes, a feature called ‘shape’ was created to detail the shape of the 

delivery system. This feature helped to elaborate whether a film was cylindrical or square; or 

whether a tablet was a cylinder or in the shape of a unique structure, such as a radiator [74]. 

Examples of objects and shape can be found in Figure 1. 



9 

Film – Cylinder Tablet - Cylinder Tablet – 
Discorectangular 

Cylinder 

Tablet - Caplet 

Tablet – Radiator Tablet – Cuboid Device - Ring Device - Torus 

Device – Y-Shaped Device – Helix Other – Sphere 

with hole 

Other – Cylinder 

with Cone Tip 

Figure 1. Examples of some 3D designs of objects and shapes found in the literature (object – 
shape) 

Any 3D printed object consists of an external structure called shell that provides the 

shape to the object, and the internal structure called infill (Figure 2). The information about the 

percentage of infill of the 3D printed object was also recorded. The information related to the 

type of shell were represented through 3 options: “0” - no shell, “1” represented an object with 

lateral or top/bottom shell, and “2” represented an object with lateral and top/bottom shells. 

Cylindrical objects that were printed with 100% infill were consistently regarded as having 

both lateral and top/bottom shells, i.e. shell type 2. The formulations that contain multiple drugs 

or structures with different composition for the shell and the infill (e.g. 3D printed enteric 

coating) were not taken into account for the prediction of the dissolution profiles. 
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Figure 2. Schematic representation of (A) cylinder with different infill percentage (from 0% 

left to 100% right) and of (B) different shell type “0” represented “with no shell”, “1” 

represented “with lateral or top/bottom shell”, and “2” represented “with lateral and top/bottom 

shells”. The composition of the shell and the infill is the same in all the analysed formulation, 

the different colour is for visualization purposes. 

Shell thickness was extracted from the information from the articles or calculated by 

multiplying the thickness of the FDM extrudate by the number of shells for the lateral shell 

thickness; and multiplying the layer height by the number of shells for either the top or bottom 

shell thickness.  

The volume and surface area were calculated using the dimensions of the object, as 

reported in the respective articles, and basic geometric formulas. However, for objects with 

complicated structures, image processing techniques in MATLAB (version R2020a, 

MathWorks, USA) were used to estimate their volume and surface area. Briefly, the images 

were first binarized according to their colour, which allowed the image of the drug product to 

be separated from the background. By calculating the area of the segmented image, it was 

possible to determine the surface area, volume and surface area to volume.  

(A) 

(B) 

Type 0 

(no shell) 

0% infill             100% infill               

Type 2 

(lateral and top/bottom shell) 

Type 1 

(lateral or top/bottom shell) 
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2.2.6 Drug Solubility 

Drug solubility values in water were obtained from the relevant supplier datasheets or from 

reported literature. The parameter called weighted drug solubility was calculated using the drug 

solubility of the drug multiplied by the percentage of drug in each formulation.  

2.2.7 Dissolution Test 

The dissolution profiles reported in previous studies varied in scale, whereby different studies 

measured the drug release to different time points. Instead, the time taken to reach 20% (T20), 

50% (T50) and 80% (T80) drug release were recorded to ensure a consistent and complete 

feature was created. As most articles reported results from drug release studies in the form of 

graphs, an online software named Digitizer (version 4.3, Ankit Rohatgi, USA) was used to 

determine the time at the relevant percentage drug release. Each dissolution figure was 

uploaded to the software, which was able to determine the time points by defining the axes. 

For sustained release formulations where the dissolution test did not reach a specific percentage 

the time was omitted from the dataset. Other dissolution features included; volume and pH of 

the dissolution media, type of dissolution apparatus and its speed. The pH of the dissolution 

media was recorded in the dataset as “acid” for tests conducted in stomach pH-simulating 

media (taken as media less than pH 4.5) and “basic” intestinal pH-simulating media (taken as 

media more than pH 4.5). The rationale for choosing pH 4.5 as the threshold between the two 

types of media is based on gastric pH typically ranging from 1.5 to 4.5. The dissolution studies 

performed partially in acid media and then in basic media were recorded as “mixed” pH.  

2.2.8 General considerations 

Information fields that were relevant but were not reported in the article were represented using 

“y”. Examples of such information include extrusion torque if the filament was extrudable, and 

dissolution time if the 3D object was printable but not evaluated in dissolution tests. The 

notation “x” was used to represent information when downstream processes were not 

applicable, e.g. printing speed and temperature were marked “x” when the filament was not 

extrudable. 

2.3 Predicted target variables 
The key parameters that the study aimed to predict were the extrusion temperature, filament 

mechanical characteristics, printing temperature, printability, and T20, T50 and T80 (Table 2). 

These are referred to as targeted variables.  
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Table 2. Summary of the predicted targeted variables 

Targeted variables Values Analysis Type 
Extrusion temperature HME temperature (ºC) Regression 
Filament mechanical 
characteristics 

Unextrudable, Flexible, 
Good or Brittle Multi-classification 

Printing temperature Printing temperature (ºC) Regression 
Printability Yes or No Binary Classification 
Dissolution time (T20, T50 
and T80) 

Time (min) Regression 

Regression analyses were used to predict the HME temperature, FDM printing 

temperature and dissolution time, since these target variables were continuous numerical 

values. Classification analyses were performed to predict the filament mechanical 

characteristics and printability [71], since these target variables are categorical. The labels used 

for filament mechanical behaviour were either ‘Good’, ‘Brittle’, ‘Flexible’ or ‘Unextrudable’ 

based on the comments found in the reported studies. The definition of ‘Good’, ‘Flexible’, 

‘Brittle’ and ‘Unextrudable’ can be found in a previous publication [71]. Printability was 

classified as either ‘Yes’ or ‘No’ to indicate whether the filament was printable via FDM, given 

the selected printing parameters. The drug release results reported in the studies varied in scale 

because different studies measured the drug release at different time points. For dissolution 

prediction, the time in minutes taken to reach 20% (T20), 50% (T50) and 80% (T80) drug 

release were recorded to ensure the feature was consistent.  

2.4 Feature set selection and creation 
Five feature sets used herein were material, material name, material type, physical properties 

and physical properties per material type. The feature sets were created similarly to those 

previously reported [71]. Briefly, material refers to the individual excipient or drug, respective 

of supplier, and uses the weight fraction of the material as input. Material name is the same as 

material, but materials from different suppliers were grouped together (Figure 3). The feature 

set material type groups materials by their chemical structure, whereas physical properties uses 

the weighted glass transition temperature, melting temperature and molecular weight as inputs. 

The final feature set is a combination of physical properties and material type, where the 

materials are grouped by their chemical structures and the input is the weighted physical 

properties. Schematics illustrating the creation of the feature sets are presented in Figure 3. 
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Figure 3. Schematic illustrating how materials from the formulations were classified in the 

different feature sets: material, material name, material type, physical properties and physical 

properties per material type. 

2.5 Data analysis - Machine learning (ML) techniques 
A standard PC (running on Operative system: Debian 5.4.19-1 x86_64) was used for the data 

analysis and the development of the algorithms described below (Processor: Intel® Xeon® 

CPU E5620 (2.40 GHz), RAM Memory: 32 GB). 

Five different ML techniques were used in this study for classification tasks, which were 

support vector machines (SVM), random forests (RF), artificial neural networks (ANN), K-

nearest neighbors (KNN) and logistic regression (LR). Different ML techniques were used 

since each ML technique has its own learning characteristics. Three different ML techniques 

were used for regression task, which were SVM, RF and ANN. Multi-linear regression and 

KNN were unable to result in meaningful predictions, and hence the results are not included in 

this study for regression analyses. Brief explanations of each ML technique can be found in a 

Formulation 
composition Feature sets Data sets 
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previous study [71]. The ML techniques were developed using python 3.7 (Python Software 

Foundation), using the Scikit-Learn package (scikit-learn package, v0.21.3). A 75:25 split was 

used for training and testing the ML techniques.  

For developing models to predict the dissolution time the original five feature sets 

(Figure 3) were used, however additional features were taken into account (Table 1, sections 

3D printed formulation, Dissolution test, Drug solubility). These features (e.g. surface area, 

weight, infill, pH of the media) were included since they could affect the drug dissolution 

results and could be considered dissolution-related data. 

Predicting the dissolution profile was more demanding than, for example, predicting 

printability or printing temperature. This was because not every literature mined 3D printed 

formulation contained dissolution data, and hence the results had to be discarded prior to 

performing ML. Additionally some articles may report some features (e.g. weight of the 

formulation) but not others (e.g. infill or shell thickness), whereas ML techniques need to be 

fed with complete dataset, without missing values. The more data fed into the ML algorithms 

the greater their performance would be, but due to the missing values in some features, feeding 

the algorithms with all the dissolution related features would reduce the number of rows 

(formulations). For example, if weight, shape, pH and dissolution speed were included and 

then any row containing any null values were removed, which resulted in a 351 formulations 

dataset; if infill, weight and dissolution speed were selected, then this resulted in 336 

formulations. Generally, it was observed that including more features resulted in a higher 

percentage of missing data, and hence the smaller the size of the data set and the number of 

formulations included (Figure 4). To avoid this situation, different combinations of input 

features were tested and compared in terms of the ML algorithms prediction performance. 
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Figure 4. Diagram representing the dataset, used to illustrate the missingness of the data for 

each of the 968 formulations. Green indicates information was available in the literature, 

whereas white areas indicates the data was missing. 

In this study each possible combination of the 12 features that can affect drug dissolution 

were computed (shape, type of shell, surface area/volume, weight (mg), infill (%), infill type, 

pH of the dissolution media (pH), volume of dissolution media (ml), dissolution apparatus, 

dissolution speed (RPM), drug solubility (mg/L), weighted solubility). This led to a to 2 to the 

power of 12 (212 = 4096) combinations of features that were merged with the 5 feature sets that 

take in to account the composition of the formulations (Figure 3). We disregarded those 

datasets that lost more than the 40% of the original formulations and used the rest for training 

a ML model for each algorithm (RF, SVM and ANN). This led us to consider a total of (212) × 

5 × 3 different ML experiments. Additionally, each experiment was tested in 50-fold random-

split cross validation to avoid the negative impact of outliers (Figure S1). The dissolution data 

is spread on a considerably large scale (e.g. T20 could be either 5 min or 2000 min), where the 

effect of randomly splitting the data into training and testing had a pronounced effect on the 

results and an undesirable impact in the metrics. The ML pipeline for predicting the dissolution 

times is detailed and illustrated in the supplementary document (Figure S1). Categorical values 

(e.g. print shape) were label encoded, and numerical values (e.g. surface area, dissolution time) 
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with large ranges were quantile transformed. Label encoding is one means of vectorising 

categorical data. Using shape features as an example, cylinder, caplets and capsules were 

represented as 0, 1 and 2, respectively.  

2.6 Data evaluation 
Different metrics were used for scoring the accuracy of the ML techniques, as no single metric 

conveys a complete picture of a model’s performance. A brief explanation of each metric can 

be found in our previous study [71]. For classification analyses, five classification metrics were 

used; accuracy, Cohen’s kappa, precision, recall, and F1. For the processing temperature and 

dissolution time predictions, two regression metrics were used: the mean absolute error 

(MAE), and the coefficient of determination (R2).  

An additional metric that we called RADOC (Real Area Difference Of Curves) was 

developed for predicting the dissolution times. The metric is used to compare two "curves", in 

a two-dimensional space, formed by the two series of points (the experimental and the 

predicted points) respectively connected by straight lines. RADOC computes the area 

corresponding to the absolute difference between those two curves (Figure S2 (A)). The smaller 

this difference area, the more similar the shape of the two curves will be, leading to a more 

fine-grained measure of the dissolution dynamics. That difference area is then relativized 

against the area under the real curve (Figure S2 (B) and (C)) (leading to a [0%, ∞%] error 

range), which helped us to also address the scale problem. 

3 Results and Discussion 

3.1 Exploratory data analysis 
A total of 968 formulations were literature mined from 114 articles, and only formulations 

incorporating drugs were added to the database. Information relating to the starting materials, 

HME process, 3DP and drug dissolution was obtained, which were identified as having a 

potential effect on the fabrication workflow and drug release profile. Figure 4 illustrates the 

distribution of the data collected. During the data collection stage, it was clear that there was a 

lack of data in some of the selected parameters, which could be a potential problem for the 

machine learning (ML) algorithms. It is worth mentioning that only 57.02% of FDM articles 

reported the drug dissolution profile of their printed product. 



17 

In total, 411 excipients and drugs were recorded from 121 different suppliers. Grouping 

similar materials together, irrespective of supplier, resulted in a total of 254 materials, 

presented as packed bubble diagrams in Figure 5, where it is evident that a large number of 

excipients had been used. Figure 5 (B) presents the materials when grouped by similar chemical 

structure. From both analyses, it appears that materials were used evenly, displaying equal 

distribution. The most widely used excipient type was acrylics, which was used slightly more 

used than HPMC and PVA. Similarly, the most used drug was theophylline, which was 

marginally more used than paracetamol.  

Figure 5. Packed bubble diagrams to illustrate the distribution of (A) individual materials used 

and (B) material types. 

Four different physical properties pertaining to each material were recorded in the 

present study. The glass transition temperatures (Tg) of the individual materials ranged from -

107.65 to 1201.85ºC, with the majority possessing a Tg below 200 ºC (Figure 6 (A)). The 

melting temperatures (Tm) of the materials ranged from -76 ºC to 1,974 ºC, with the majority 

of materials possessing Tm values below 400 ºC (Figure 6 (B)). The small number of outliers 

with high Tm and Tg values correspond to inorganic fillers, such as titanium dioxide and barium 

sulphate. The molecular weight of materials ranged from 58.4 to 7,000,000 g/mol (Figure 

6(C)). Drug solubility is also a determinant of the dissolution behaviour, and the value for each 

formulation was recorded, ranging from 0.0004 to 2,450 mg/L (Figure 6 (D)).   
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Figure 6. Box plot-histogram depicting the distribution of (A) glass transition temperature, (B) 

melting temperature, (C) molecular weight and (D) drug solubility of the formulation.

Exploratory data analysis of the outcome of HME revealed that 84.6% of the filaments 

reported in the literature were identified as ‘Good’ with respect to filament characteristics 

(Figure 7). These values are likely to be positively skewed, due to bias reporting wherein 

researchers are incentivised to only publish positive results. As illustrated by the Sankey 

diagram in Figure 7, the majority of ‘Good’ filaments were printable. Conversely, filaments 

exhibiting either ‘Flexible’ or ‘Brittle’ characteristics were found to mainly yield unprintable 

formulations. Nevertheless, the majority of the 968 formulations reported in the literature were 

printable (85.74%), which highlight again that most of the articles only report positive results. 
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Figure 7. Sankey diagram depicting the flow of literature-mined formulations across three 

different features. 

The extrusion temperatures used in HME ranged from 22 to 210 ºC, with a mean of 132 

ºC (Figure 8 (A)). Twenty-four extruder brands were used to prepare filaments, with the 

Thermo Scientific Process 11 filament extruder and the HAAKE MiniCTW found to be the 

most used. Extrusion speeds ranged from 5 to 200 rpm. Values of torque during extrusion were 

reported in some articles but, due to low levels of reporting, this feature was not further 

analysed. The printing temperatures used in FDM 3DP ranged from 53 to 240 ºC, with a mean 

of 174 ºC (Figure 8 (B)). As evidenced by the box-plot, there are a notably larger number of 

outliers in the printing temperature compared to the HME temperatures. Outliers due to 

incorrect information can negatively impact modelling performance since the ML techniques 

will be making predictions based on incorrect relationships. However, these outliers, although 

statistically determined as outliers by the box-plot, were in fact correct values. These outliers 

reflect that, despite being a relatively high-temperature fabrication process (> 100 °C), a small 

number of studies have investigated whether certain formulations can be printed at lower 

temperature. Keeping the outliers in the dataset provides the potential to develop a modelling 

technique for low-temperature FDM processing, which will benefit researchers investigating 

thermally labile drugs.  

The platform temperature is also an important feature because it can affect the 

adherence of the formulations to the build plate while printing. These values ranged from 16 

to 115 ºC, with a mean of 41 ºC, although in 47% studies the temperature was not controlled, 

and hence the value was room temperature. A total of thirty different types of printer brands 

were used in the studies, with Makerbot Replicator 2X and Prusa i3 3D desktop printer being 
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the most commonly used, and with nozzle diameters ranging from 0.2 to 0.5 mm (mode 0.4 

mm). Values of Printing Speed ranged from 0.5 to 500 mm/s, with a mode of 90 mm/s. 

Figure 8. Box plot-histogram plots depicting the distribution of (A) extrusion and (B) printing 

temperatures recorded in the dataset. 

Regarding the 3D printed objects, FDM 3DP can be used to fabricate a range of items, 

however the majority of objects printed were oral formulations that were encoded as “tablets”, 

with a comparatively smaller proportion of “films” and “devices” printed (Figure 9 (A)). 

Although 3DP can print complex geometries, most of the literature has focused on developing 

cylinders, capsules and caplets (Figure 9 (B)). Overall, a total of 38 different shapes were 

recorded, with the most common shape printed being a cylinder (48.03%), followed by caplets 

(6.98%) and elliptical cylinder (4.65%).  
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Figure 9. Pie charts, box plot-histograms and bar charts illustrating the proportion of (A) 

objects and (B) shapes printed, (C) surface area, (D) surface area to volume ratio, (E) weight, 

(F) type of shell, (G) infill and (H) infill type.

Other physical characteristics of the 3D printed objects that could be relevant due to 

their potential effect on the drug release from the formulation were collected and analysed 

(Figure 9). The dimension of the objects (length, width, diameter, depth) were collected and 

were used to derive features like volume (ranged from 10.6 mm3 to 1658.8 mm3, with a mean 

of 332.8 mm3), surface area (ranged from 26.6 to 4350.4 mm2, with a mean of 384.8 mm2), and 

surface area to volume ratio (ranged from 0.5 to 10.4, with a mean of 1.5) (Figure 9).   

The weight of the printed object ranged from 30 to 3200 mg, with a mean of 308.5 mg 

and the layer thickness ranged from 0.05 to 0.5 mm, with a mean of 0.18 mm. Most of these 

objects (65.2 %) were printed with including lateral and top/bottom shells (Figure 9). Only 

12.5 % of the objects did not include any external shell. The thickness of top/bottom shells 

ranged from 0.05 to 2.4 mm with a mean of 0.4 mm, and thickness of the lateral shells ranged 

from 0.1 to 2.4 mm, with a mean of 0.7 mm. A wide range of infill percentages were used 

(from 0 to 100 %) with a mode of 100 %. Fourteen types of infills were used in the mined 

studies, with rectilinear and hexagonal infills being the most used. Due to the missing data, the 

feature infill type was not used for further analysis.  

Data mining the literature allowed the extraction of the dissolution behaviour of 3D 

printed formulations. The results revealed that 48.04% of the printable formulations were 

analysed for their drug releasing characteristics. The distribution of times taken for the 

formulation to reach 20%, 50% and 80% drug release are presented in Figure 10. The times 

spanned several orders of magnitude, ranging from 0.4 min to 46,123 min (32 days). This 

reflects the ability of FDM to be applied in a range of drug delivery systems capable of both 

immediate and extended-drug release. However, the data is positively skewed, highlighting 

that the majority of studies focused on release in the order of hours. Skewed data is known to 

negatively impact ML techniques, and hence the data will need to be transformed prior to 

modelling. Skewed data will result in ML techniques being trained on a disproportionately 

higher number of shorter dissolution times, and will be less likely to accurately predict times 

for larger dissolution times. Addressing this issue usually involves collecting more data to 

balance the distribution, which is not feasible since all the published results have already been 

collected. Alternatively, the majority class can be minimised to balance the distribution, but 
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this will come at the expense of a smaller dataset. Hence, in this instance, it is better to 

transform the data. The log transformed data highlights that when the data is transformed it 

results in a near-normally distributed data across several orders of magnitude (Figure 10 (B)). 

Figure 10. Histogram and boxplot depicting (A) the distribution of time taken to reach 20%, 

50% and 80% drug release and (B) the log transformed data. The log transformation clearly 

illustrates the distribution of dissolution times were recorded across several orders of 

magnitude. 

The values of other dissolution test parameters that could affect the drug dissolution 

rate were also collected and analysed. 45.2% of the formulations were tested in simulating 

intestinal pH condition using a “basic” dissolution media (pH media higher than pH 4.5), 

36.5% of tests were conducted in stomach pH-simulating conditions (pH media lower than pH 

4.5) and some studies (14.3%) evaluated the formulations first in acid and then in basic pH 

media, simulating the transit through the GI tract (Figure S3). Some studies (3.9%), especially 

for formulations made with materials that are pH dependent, e.g. enteric polymers, evaluated 

the drug release of the same formulations using acid and basic pH media. The volume of 

dissolution media ranged from 1 to 1000 mL, with a mode of 900 mL. The main type of 

dissolution apparatus used in those studies was USP type II, and the dissolution speeds ranged 

from 10 to 200 rpm, with a mode of 50 rpm (Figure S3). 
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3.2 Predictability evaluation 

3.2.1 Predicting Filament Mechanical Characteristics 

ML techniques were used to predict the filament characteristics using the literature dataset. 

ANN obtained the highest accuracy of 91%, with the feature set Material Name (Figure 11 

(A)). Similarly, this feature obtained the highest kappa value of 0.49.  

For imbalanced datasets, using the accuracy as a metric to compare different datasets 

can be misleading, particularly if one dataset has a greater imbalance. For example, the 

literature-mined dataset contained 84.6% labelled as ‘Good’ for printability. If as prediction 

criterion, one blindly assigned all formulations as ‘Good’, then one would trivially obtain an 

accuracy of 84.6%. This high accuracy value may incorrectly seem a good result while, in 

reality, the trivial ML “algorithm” would not be learning any patterns as it would just be 

predicting the majority class for all formulations. Thus, despite the simplicity for calculating 

the accuracy, it is more informative to use a metric that factors in a baseline value, such as the 

kappa value. The kappa value factors in the probability of a chance agreement (i.e. random 

guessing), and measures the predictive performance of an ML technique compared to random 

guessing. Kappa values can be negative, indicating the ML technique performed worse than 

random guessing; 0, indicating a performance comparable to random guessing; or a positive 

value, indicating the performance was better than random guessing. From the results presented 

in Figure 11, it can be concluded that ML techniques are able to perform better than random 

guessing. There were some exception, primarily with using the Physical Properties feature set 

as input, where the kappa value was 0 for ANN, SVM and LR. Nevertheless, from a practical 

sense, and using the Material name feature set, ML will provide researchers with an enhanced 

accuracy in predicting the filament characteristics compared to random guessing. The precision 

and recall metrics are equally informative for 3DP researchers from a practical perspective. 

These metrics reveal how well a model is able to predict the positive class (‘Good’, in the 

current study).  
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Figure 11. Radar plot with the metrics result for the (A) filament mechanical characteristics 

and (B) printability. RF - random forests, SVM - support vector machines, LR - logistic 

regression, KNN - K-nearest neighbors, ANN - artificial neural networks. Please see Table S1 

& S2 for the specific values.

3.2.2  Predicting printability 

The printability metrics for the literature are presented in Figure 11 (B). The feature set 

Material was found to produce the highest metrics, which were obtained using RF. The 

accuracy and kappa values were 93% and 0.56, respectively. The positive label was set to ‘Yes’ 

for precision and recall, since there is more interest in knowing if a filament will be printable. 

The precision and recall values were 82% and 83%, respectively. In a practical sense, the recall 

value suggests that for every ten formulations, there will be 1.7 formulations that are printable 

but incorrectly predicted as unprintable by RF.   

As previously mentioned, overall, the classification analyses revealed that the Material 

features set produced the highest metrics. This feature set possessed the largest number of 

features, a total of 411, and hence provided comparatively the most comprehensive information 

pertaining to the materials. Equally, the Physical Properties feature set comprised of only three 

features, which could explain why the lowest predictive accuracies were obtained with it. It 

should also be noted that more effective models could be developed if the dataset was more 
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balanced. However, the imbalance reflects the current state of academic publishing, which is 

to publish mainly the positive results.  

3.2.3  Predicting extrusion temperature 

The extrusion temperature is a parameter difficult to anticipate, especially without prior 

knowledge. The values are continuous, ranging from 20 to 220 °C, and thus a regression task 

was performed to predict the individual temperature values for each formulation. The metrics 

used were the coefficient of determination (R2) and the mean absolute error (MAE). R2 

measures the variance in the data between the actual temperature and the predicted temperature, 

with a perfect prediction resulted in an R2 of 1.00. For more practical usage, the MAE measures 

the absolute errors between the actual and predicted temperatures. The lower the error the more 

accurate the prediction, with a perfect prediction producing an MAE of 0 °C. MAE is more 

practical because a value, e.g. of 5 °C indicates that on average, the predicted temperature will 

deviate by ± 5 °C.  

The optimal MAE and R2 were achieved with ANN; 5.18 °C and 0.90, respectively, 

again using the Material feature set (Figure 12 (A)). These results were an improvement over 

previous work, that used a smaller dataset [71], wherein the MAE and R2 were 10.8 °C and 

0.56, respectively. This was despite the present work possessing a wider temperature range, 

where a larger error would have been expected to account for the wider range. The increase in 

R2 clearly highlights the significant improvement in the predictive performance of the present 

study, suggesting that collecting data from the literature could be a suitable approach for 

predictions, and is even better than generating the data in house.  
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Figure 12. The R2 and MAE for the (A) extrusion and (B) printing temperatures for the 

different ML algorithms. RF - random forests, SVM - support vector machines, ANN - 

artificial neural networks 

3.2.4  Predicting printing temperature 

The printing temperature is an important variable that affects the printability of a formulation 

but predicting its value is a time-consuming approach without prior knowledge. Similar to 

HME, the incorrect temperature can result in nozzle blockage if the temperature is too low, or 

blockage caused by degradation of the polymer and the drug if the temperature is too high. To 

date, there is no rule-of-thumb or an established model for pre-determining the printing 

temperature, other than the assumption that the printing temperature should be higher than the 

extrusion temperature in the HME. The optimal MAE and R2 were obtained by RF, which were 

6.87 °C and 0.86, respectively, using the Physical Properties per Material Type feature set 

(Figure 12 (B)). The MAE and the R2 values were better than the values in the previous study 

(8.3 ºC and 0.83, respectively) [71], where all the data was obtained using the same FDM 3D 

printer brand and generated in-house. These new results were remarkable, indicating that 
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printing temperature data obtained from the literature, published by many different research 

groups using many different FDM printer models, were comparable or even better at predicting 

printing temperature. Nevertheless, the MAE infers that using the literature-mined data can 

yield an accuracy of ± 6.87 °C, which is a narrow range considering that the printing 

temperatures attempted to date vary from 40 to 260 ºC. 

3.2.5 Predicting Dissolution Behaviour 

The drug dissolution behaviour of the formulations is affected by more than just the material 

components of the delivery system. The drug dissolution is influenced by design parameters of 

the formulation, such as weight and surface area-to-volume ratio [8, 48], drug solubility [75]; 

and the dissolution conditions, such as media pH and volume. The physical characteristics of 

the 3D printed object, the conditions of the dissolution test and the solubility of the drug were 

therefore used as inputs for each one of the feature configurations. Hence, developing a 

predictive model requires additional inputs to those used for modelling printability. The 

complete list of input variables that could affect drug dissolution profiles are detailed in Table 

1. 

The analysis began by incorporating the new added features and finding the best 

configuration of features to obtain the highest predictive performance. The best configurations 

were selected based on a new metric used herein, which is referred to as RADOC, due to the 

shortcomings of the other metrics. The pragmatism of MAE is useful since the units for this 

metric are the same as the data under analysis. The MAE is a scale-dependent metric that 

requires the data, including during the training-test partition, to be on the same scale. However, 

this was not the case for predicting the dissolution time, where some partitioning exhibited 

longer dissolution times. Due to the scale difference between T20, T50 and T80, relative 

metrics such as R2 or the mean absolute percentage error (MAPE) are more suitable for this 

task. However, although a high score in those metrics would normally mean the evolution of 

both profiles is also similar, this is not the case when having only three points (T20, T50 and 

T80). To address this problem, when selecting the best model, the RADOC metric was used. 

RADOC is both scale-free and capable of capturing the evolution of the graphs, and hence is 

suitable for predicting the dissolution times (Figure S2). RADOC compares the relative 

difference between the area under the curve for both the actual and predicted curves, where the 

smaller the value the smaller the deviation between the two curves. This helped to determine 

which configuration provided the best predictive performance. The training-test split 
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partitioning was performed 50 times using different random splits. This was due to the 

incompleteness of data, whereby certain formulations would be missing values for particular 

features (Figure 4). As a result, the same random split could not be achieved for each 

configuration, which made it difficult to determine the true optimal configuration. Performing 

the analysis 50 times with varying random splits provided a more holistic determination of the 

optimal configuration. Again, the RADOC metric proved to be useful when comparing the 

optimal configuration due to the variability in random splitting. 

The features that were the most occurring in the best 100 analyses, in terms of 

producing the lowest RADOC value, are presented in Figure 13. The main features used in the 

best analyses were, in descending order, Surface area-to-volume ratio, pH, infill, shape, 

weighted drug solubility, shell type, drug solubility and weight. The mean RADOC for the best 

100 analyses was 48.01 and a standard deviation of 12.37. 

Figure 13. Histogram depicting the feature importance. The count number indicates the number 

of times a feature was used in the best 100 analysis.  

The feature surface area-to-volume ratio was identified as the most important feature 

and was used in more than 80 of the best predictions. The feature was already identified as a 

relevant parameter to control dissolution of 3D printed formulations in one of the first studies 
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in 2015 [48]. This feature is also related to the shape of the 3D printed object that was also 

identified as a relevant feature, used in more than 60 on the best 100 predictions. 

The pH of the media is the second most relevant parameter that needs to be controlled 

when performing the dissolution test. The pH is not a characteristic of the 3DP formulation but 

the dissolution media. The pH is included in more than 65 of the best 100 predictions. It is 

important because some materials used to prepare 3D printer medicines show different 

properties or solubility in different pH. The best example of this is the enteric polymers that do 

not dissolve at pH acid (lower than 4.5) but disintegrate/dissolve when the pH is close to 5. 

Dissolution studies performed in acidic media are typically for immediate release formulations, 

so the selection of the pH of the media is partially linked to the type of formulations that are 

evaluated in the dissolution test too. 

The infill percentage of the formulations is the third most important feature and was 

also identified as a relevant in previous studies [76, 77]. Higher infill percentage is associated 

with longer dissolution times. Other important features are solubility and weighted solubility 

of the drug used in 45 and 35 of the 100 best predictions, respectively. Higher solubility of the 

drug leads to faster dissolution. The shell type is a feature that affect the dissolution and it is 

related to the surface area-to-volume ratio feature; formulations without external shells tend to 

release the drug faster due to easier penetration of dissolution media to the inner part of the 

formulations. Moreover, the weight of the formulations also affects the dissolution process, 

and in some cases higher weight leads to longer dissolution times. 

The incorporation of the additional feature inputs resulted in a good predictive 

performance. The results from the 50-fold random split, for each feature set and algorithms are 

presented in Figure 14. It was evident that the selected random split and configuration can 

affect the predictive performance of the MLTs. For example, if the test split contained higher 

dissolution times, then this was found to increase the error rate. The best prediction was 

obtained by an ANN algorithm that used the material feature set combined with the surface 

area-to-volume ratio, volume dissolution media, weighted solubility shape and pH of the media 

as additional input features. Although each of the inputs gathered in (Table 1) were considered 

important variables by the authors of this study prior to the ML analyses, they were not all used 

by the ML algorithms. The ANN algorithm achieved an MAE of 24.29 minutes and a R2 of 

0.86 in the test set, which means that on average it is able to predict the dissolution times (T20, 

T50 and T80) of a formulation with an error of ± 24.29 minutes. This is remarkable considering 

that some of the dissolution tests run for days.  
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Figure 14. R2 and mean absolute error results of the 50-fold random split for each of the MLTs, 

and across the different feature sets for predicting drug dissolution profiles. The results 

demonstrate that the random split can affect the results of the MLTs, due to the wide range in 

dissolution times. RF - random forests, SVM - support vector machines, ANN - artificial neural 

networks. 

Figure 15 illustrate the prediction vs actual results from the best performing model. The 

MAE is an average of the absolute errors and thus influenced by large errors which, as 

expected, were obtained from sustained release data. This was evidenced when examining both 

the scatter plot and residual plot (Figure 15(A & B)). The residual plot (Figure 15 (B)) revealed 

a common trend, whereby an increase in residuals is observed as the actual dissolution time 

increases, with the exception of a few anomalies. Figure 15 (C-E) presents examples of three 
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different release studies, illustrating that ML techniques were able to produce accurate 

simulations of the released drug, thereby confirming the models suitability for both immediate 

and sustained release. Figure 15 (C-E) also demonstrated that the ML techniques were able to 

learn the trajectory of the dissolution profile insofar as learning that the concentration of drug 

release increases over time. A benefit of ML is that multiple predictions can be made from the 

same data point (i.e. formulation). This was leveraged in the present study by investigating 

whether the three time points could be predicted simultaneously, rather than developing 

separate models for each time point, which is a faster approach to model development. This 

feature was not coded into the ML techniques, and hence all three ML techniques were able to 

independently learn the graph trajectory.  

Figure 15. (A) Scatter plot illustrating the actual vs. predicted scatter plots, and (B) the 

corresponding residual plot of the best performing ML technique. (C-E) Are three 

representative actual vs predicted dissolution profiles, across three different time scales (8, 60 

and 850 min). 
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The predictive performance of the ML strategy applied herein were considered 

satisfactory. Considering that dissolution studies are performed from days to weeks, an MAE 

in the order of minutes will indeed prove to be an asset to researchers. Previous work using 

ML to predict the dissolution profile of 3D printed products has demonstrated that high 

accuracies can be attained using ML [78, 79]. However, a current limitation of the previous 

work for predicting dissolution profiles was that the formulations were developed in-house and 

limited to one drug. In contrast, the model developed herein offers prediction to a larger 

material pool. Moreover, the information was gathered from different researchers, making it 

less susceptible to bias and thus providing greater generalisability for making new predictions. 

3.2.6 General consideration 

This study integrated data from articles published by researchers all over the world, with 

different materials, methodologies and objectives, which produced ML models that were 

successfully able to generalize for predicting the targeted variables (extrusion temperature, 

filament mechanical characteristics, printing temperature, printability and drug dissolution 

performance). Even though the same MLTs were used as in the previous study, higher 

predictive performances were obtained in this study, particularly with the HME and FDM 

temperatures [71]. This was expected as the current study consisted of more formulations. It is 

also worth acknowledging that in the previous study it took six years to achieve an in-house 

dataset of 614 formulations, whereas in the same time period 968 formulations were published 

– an increase of 58% in data – highlighting the fast data generation nature of literature mining.

While the data used in the previous study was very straightforward to use, it was somewhat 

limited, since the data was obtained from the same laboratory and using the same equipment, 

work methodology and objectives.  

Although the findings of the present study provided additional benefits to the previous 

study in modelling key aspects of the 3DP workflow [71], the integration of the literature-

mined data presented several challenges. One salient disadvantage is that the data is not 

structured and hence it is not machine-learning compatible, requiring an exhaustive and time-

consuming pre-processing step to collect and structure the data. For example, for unifying 

dissolution time in different scales (immediate release, long-term release, etc), the authors had 

to collect the data as “time to reach a certain percentage of release” rather than “percentage of 

drug released after a certain time”.  
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The literature data is biased towards positive results which may have reduced the 

learning performance of the ML techniques in predicting printability. Most researchers only 

publish the good results in their studies. Even though there are some unsuccessful formulations 

in the articles, the information is limited. As a result, most information about the filament 

aspect and printability is positive, which causes a deficiency of negative examples and this is 

not ideal for training ML algorithms, as they tend to learn the majority class. In addition, part 

of the data in this study was estimated by using relevant software. Although estimation is a 

common data generation technique, it may have contributed and additional error in some of the 

data, and consequently may have reduced the accuracy of the prediction.  

Finally, different articles missed different features when presenting data. For the ML 

algorithms to work, rows containing null values (i.e. missing) must be removed from both 

training and test sets, which is known to negatively impact the accuracy of ML algorithms due 

to fewer learning instances. In addition, removing these null values forced additional pre-

processing workload to the ML pipeline. If the literature data was more complete then a simpler 

pre-processing methodology could have been used, and potentially better results could be 

achieved for drug dissolution prediction. To assist in developing more effective ML models, 

the authors of this study encourage other authors in the field to publish complete data including 

both positive and negative results. All the articles should provide the sufficient information 

even if the data may not be relevant for the specific aim of the study. Ideally, standards on 

which data and how it should be reported would avoid some of the problems encountered in 

this study regarding missing information. The minimum parameters that we consider should 

be published are included in Table 1, although additional data could be useful for future studies. 

The features selected herein are known determinants of the target variables. The research in 

3DP of pharmaceuticals remains nascent, and as the research develops more information will 

come to light. This could potentially lead to an improved feature selection, enabling ML 

techniques to attain a higher accuracy. 

Current ML algorithms have the potential to overcome some of the challenges that the 

field of 3DP of pharmaceuticals faces, including the optimization of the fabrication parameters, 

reducing the inefficient empirical trial approach, and the requirements of expert knowledge. 

The performance of the AI tools is expected to drastically improve in the following years, 

however, one of the main needs of these algorithms to exploit its full potential is Big Data, 

which means having data with several orders of magnitude of cardinality bigger than the data 

set used for this study. While in other fields ML is applied to massive amounts of automatically 
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generated historical data, the application of ML to 3DP of medicines is based on experimental 

data. This data requires big investment in time and resources as well as human intervention to 

be generated and reviewed. The optimal amount of data will only be achieved via an open 

sharing and collaboration-based program. Even if one institution or company were capable of 

reaching a good amount of data alone, data from different sources would be preferable since it 

would produce less biased or unbalanced datasets, which subsequently will be more 

appropriate for training ML models. 

Considering the future trajectory of 3DP medicines, the ultimate goal will be to digitally 

simulate the entire 3DP workflow in an effort to move towards sustainable research, where 

both costs and material waste are minimised, as well as the time needed to realise the research 

hypothesis. In essence, the ML models developed could expedite developments in the field of 

3DP pharmaceuticals. In addition, digital simulations can offer insight that otherwise would be 

difficult to experimentally determine. The present study demonstrates that ML could be an 

effective component of such digital simulation by offering high predictive performance and in 

rapid time. Moreover, the low computational demands of ML mean that it can be deployed as 

a web-based software, or seamlessly integrated into other modelling tools similar to the 

M3DISEEN web-based service. The aim with ML will be to produce an end-to-end model that 

can simulate the entire 3DP workflow. 3DP and ML (and other AI tools) offer a unique 

opportunity to move the pharmaceutical development to the next level, and this will indeed 

depend on the availability of data and the quality thereof.  

4 Conclusion 
The study investigated the use of literature-mined data for developing artificial intelligence 

(AI) machine learning (ML) techniques models to predict key aspects of the 3D printing 

formulation pipeline. The analysis of the literature mined data revealed that positive results are 

overwhelmingly published, which consequently resulted in an imbalanced dataset for filament 

aspect and printability. Nevertheless, the ML techniques explored herein were able to learn and 

provide high predictive accuracies for the values of the filament hot melt extrusion processing 

temperature, filament aspect, printing temperature and printability. ML algorithms using data 

based on the composition of the formulations and additional input features that could influence 

drug release (e.g. surface area/volume, weight, infill percentage, pH and volume of dissolution 

media, drug solubility) were used to predict the drug release profile of FDM printed 

formulations. The best prediction was obtained by an ANN algorithm, which was able to 
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predict the dissolution times (T20, T50 and T80) of a formulation with an error of ±24.29 

minutes. Thus, it was concluded that data mined from the literature was an efficient approach 

to modelling 3D printing workflow. It was also concluded that a structured repository for 3DP 

data will greatly facilitate the creation of new knowledge via ML. 
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