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Abstract 

Propose of review. To summarize the evidence that suggests that osteoarthritis (OA) is 

a mitochondrial disease. 

Recent findings. Mitochondrial dysfunction together with mtDNA damage could 

contribute to cartilage degradation via several processes such as: (1) increased 

apoptosis; (2) decreased autophagy; (3) enhanced inflammatory response; (4) telomere 

shortening and increased senescence chondrocytes; (5) decreased mitochondrial 

biogenesis and mitophagy; (6) increased cartilage catabolism; (7) increased 

mitochondrial fusion leading to further reactive oxygen species production; and (8) 

impaired metabolic flexibility 

Summary. Mitochondria play an important role in some events involved in the 

pathogenesis of OA, such as energy production, the generation of reactive oxygen and 

nitrogen species, apoptosis, authophagy, senescence and inflammation. The regulation 

of these processes in the cartilage is at least partially controlled by retrograde regulation 

from mitochondria and mitochondrial genetic variation. Retrograde regulation through 

mitochondrial haplogroups exerts a signaling control over the nuclear epigenome, which 

leads to the modulation of nuclear genes, cellular functions and development of OA. All 

these data suggest that OA could be considered a mitochondrial disease as well as other 

complex chronic disease as cancer, cardiovascular and neurologic diseases. 

 

Keywords 

Apoptosis, cartilage, mitochondria, mtDNA, osteoarthritis 



INTRODUCTION 

Articular cartilage has traditionally been classified as highly glycolytic tissue that 

derives its energy from anaerobic glucose metabolism, for this reason, the role of 

mitochondria in the pathogenesis of osteoarthritis (OA) has not been studied in 

detail until last decade [1]. OA has been recently defined as a chronic progres- 

sive disorder that involves movable joints and is characterized by cell stress and 

extracellular matrix degradation initiated by micro- and macro-injuries, that 

activate maladaptive repair responses, including proinflammatory pathways of 

innate immunity. The disease is first manifested as a molecular derangement 

(abnormal tissue metabolism) followed by anatomic and/or physiologic 

derangements (characterized by cartilage degradation, bone remodeling, 

osteophyte formation, joint inflammation, and loss of normal joint function) [2]. 

According to this definition, mitocondria could be involved in the OA pathogenesis 

because mitochondrial Oxidative Phosphorylation System (OXPHOS) account 

for up to 25% of total ATP production in articular cartilage, and an even higher 

percentage in situations that there are high tissue energy demands [3,4*,5]. In 

addition, OA chondrocytes show defective glycolysis, which makes them further 

reliant on OXPHOS. Furthermore, mitochondria are involved in other important 

multiple cell functions described in articular chondrocytes, such as heat 

regulation, calcium homeostasis, biogenesis and assembly of iron-sulfur proteins, 

control of apoptosis, reactive oxygen species (ROS) production, cell survival and 

proliferation, production of metabolites and coordination of metabolic pathway. 

This implies that mitochondrial dysfunction can have many and various 



deleterious effects on chondrocytes function associated with cartilage 

degradation. In this review, we have summarized the evidence that suggests that 

mitochondria play a role in the pathogenesis of OA [6,7]. 

IN VITRO STUDIES CONFIRM MITOCHONDRIAL DYSFUNCTION IN 

OSTEOARTHRITIS 

Disordered mitochondrial function contributes to the pathogenesis of complex 

diseases not classically considered to involve mitochondria, including cancer [8–

10], cardiovascular disease [11–13] and neuro-degenerative diseases [14–16]. 

There is over-whelming evidence that defective mitochondrial function is also a 

contributing element to rheumatic diseases including the OA [3,6,17**,18]. 

Analyses of mitochondrial function in human OA chondrocytes have revealed 

decreased activity of the mitochondrial respiratory complexes II and III, as well 

as increased mitochondrial mass, compared with that in human healthy 

chondrocytes [19]. In addition, the apoptotic mitochondrial pathway has been 

implicated in the apoptosis of OA chondrocytes [20,21]. The inhibition of 

complexes III and V has been shown to increase the OA chondrocyte 

inflammatory response, including the production of pro-inflammatory cytokines 

and metalloproteinases, mediated by enhanced production of ROS [22–24]. 

Mitochondrial dysfunction has also been associated with a significant 

downregulation of superoxide dismutase 2 (SOD2) [25], one of the major 

mitochondrial antioxidant proteins, whose levels are also diminished in the 

superficial layers of end-stage OA cartilage [26,27]. 

  



As mitochondrial metabolism is an important source of ROS, the production of 

excessive amounts of these reactive molecules, attributed to mitochondrial 

dysfunction, has been implicated in the development of ageing-related OA [28], 

in compromising chondrocyte function [29,30] and in causing mtDNA damage 

and reducing the capacity for mtDNA repair [31]. Mitochondrial dysfunction and 

mtDNA damage have also the capacity to promote abnormalities in human 

articular chondrocytes that contribute to cartilage degradation in OA. Among 

these abnormalities, impaired anabolic and growth responses of human 

chondrocytes, excessive apoptosis, defect in autophagy, reduced telomere 

length, enhanced cellular senescence and inflammatory responses are 

particularly important [22,29,32]. 

More recently mitochondrial dynamics, including fission, fusion, mitophagy, 

turnover and plasticity, facilitate a metabolic shift either into a glycolytic 

phenotype or into an OXPHOS phenotype, depending on the cellular demand, 

have been implicated in OA [33,34**]. Mitophagy consists of the elimination of 

depolarized and damaged mitochondria and the activation of this process 

protects against mitochondrial dysfunction, prevents ROS production and 

improves chondrocyte survival under pathological conditions [35,36]. 

Mitochondrial biogenesis is deficient in human OA chondrocytes, leading the 

chondrocyte to adopt procatabolic responses [37]. 

Metabolic flexibility is also associated with mitochondria dysfunction due to their 

role in the last steps of both glucose and fatty acid (FA) metabolism [38,39]. OA 

is associated with a high accumulation of lipids in cartilage [40,41] and ectopic 

FA accumulation likely leads to lipotoxicity and contributes to the cellular 



dysfunction [42]. In transmitochondrial cybrids, OA mitochondria showed less 

flexibility than OA-free mitochondria [43*]. 

Collectively, these abnormal processes have tremendous deleterious effects on 

cartilage biology and chondrocytes function. Mitochondrial dysfunction together 

with mtDNA damage could contribute to cartilage degradation via several 

processes such as: 1) increased apoptosis; 2) decreased autophagy; 3) 

enhanced inflammatory response; 4) telomere shortening and increased 

senescence chondrocytes; 5) decreased mitochondrial biogenesis and 

mitophagy; 6) increased cartilage catabolism; 7) increased mitochondrial fusion 

leading to further ROS production; and 8) impaired metabolic flexibility. When 

these changes cannot be managed by the repair and the antioxidant systems, 

the homeostatic system fails, and mitochondrial dysfunction is perpetuated, 

leading to progressive cartilage destruction and, eventually, to joint malfunction 

(Table 1) [21,36,44– 49,50**,51*]. 

CLINICAL DATA ASSOCIATES MITOCHONDRIAL GENETIC VARIATIONS 

WITH OSTEOARTHRITIS 

Mitochondria contain their own genetic material (mtDNA) enclosed in a single 

circular chromosome. MtDNA codes for 13 essential genes that are critical for 

mitochondrial energy metabolism. Evolutionary changes in mtDNA coincided with 

the major human geographical transitions to facilitate human adaptation to 

different regional environments. These variants are called mtDNA haplogroups 

and they are defined by the presence of a particular set of single nucleotide 

polymorphisms in the mtDNA sequence in coding and noncoding regions that 

  



were shaped by natural selection as humans migrated into colder climates 

[52,53]. Among individuals of Caucasian ancestry, 95% of the population belongs 

to one of the following haplogroups: H, I, J, T, U, K, V, HV , W or X. There is data 

that showed the relation between mtDNA haplogroups and the energy 

production, showing differences in their OXPHOS coupling efficiency [52,54,55]. 

An increasing number of studies showed associations between some of the 

mtDNA haplogroups and human longevity as well as with some multifactorial 

diseases such as Alzheimer Disease, type 2 Diabetes Mellitus, Obesity 

[56,57*,58,59] and also with OA. In terms of radiographic OA prevalence, 

European mtDNA haplogroup J and cluster JT have been significantly correlated 

with a decreased risk in a Spanish cohort [60,61]. The mtDNA haplogroup T has 

been associated with a lower risk of knee OA in a population from the United 

Kingdom [62]. Asian mtDNA haplogroup B has also seemed to be a protective 

factor against knee OA in a population from China and Korea [63,64,65*]. In 

contrast, the arcOGEN consortium did not find associations between mtDNA 

variants and the symptomatic knee OA prevalence [66]. Some points must be 

clarified to explain this discordant result; control samples used in arcOGEN study 

are population-based controls with only symptomatic information and without 

radiographic data. It is important highlight that up to 50% of patients without joint 

symptoms may have radiographic changes related to OA [67], therefore the 

selection of adequate healthy controls is crucial to draw consistent conclusions 

in case-control studies; this point could be one of the causes by which one study 

performed by the arcOGEN consortium also failed to replicate previous 

associations such as GDF5, or MCF2L [68] gene polymorphisms.  



In addition to the prevalence, the progression and incidence of radiographic knee 

OA have been also associated with mtDNA haplogroups. A meta-analysis 

including data from three independent cohorts Prospective Cohort of 

Osteoarthritis from A Coruña (PROCOAC), Osteoarthritis Initiative (OAI), and 

Cohort Hip and Cohort Knee (CHECK) confirmed the association of the 

haplogroup T and the mtDNA cluster JT with a lower risk of radiographic knee 

OA progression over time [69]. A replication study and meta-analysis of 3217 

subjects showed that the mtDNA haplogroup J is significantly associated with a 

lower rate of incident knee OA over an eight-year period [70] (Table 2). 

OA-protective haplogroup J has been significantly associated with lower serum 

levels of catabolic type II collagen biomarkers, stromelysin-1 (MMP-3) and 

collagenase 3 (MMP-13) and nitric oxide, in contrast to haplogroup H carriers, 

which showed significantly higher levels [30,49,61,74–76]. In terms of imaging 

biomarkers, a longitudinal study including 255 participants from the OAI cohort 

that developed incident knee OA at 48 months revealed that patients with mtDNA 

haplogroup J were less likely to develop large bone marrow lesions (BMLs) in the 

tibiofemoral compartment of the knee than those with mtDNA haplogroup H [77]. 

Based on these findings, haplogroups J/T and H could represent two different OA 

phenotypes, leading to the consideration of these mtDNA haplogroups as 

complementary genetic biomarkers of the disease [76]. 

  



POTENTIAL MECHANISMS TO EXPLAIN THE ASSOCIATION OF MtDNA 

HAPLOGROUPS AND OSTEOARTHRITIS 

As reflected in the two previous sections, mitochondrial dysfunction but also 

mitochondrial genetic polymorphisms, specifically the MtDNA haplogroups, have 

been shown to have influence on the prevalence, severity, incidence, and 

progression of the disease. To understand potential mechanism to explain this 

association it is important to keep in mind that a bi-directional communication 

exists between the nucleus and mitochondria with the aim of maintaining cellular 

homeostasis and regulating adaptation to a broad range of stressors [78,79]. 

Mitochondria are controlled by the nucleus by means of an ‘anterograde 

regulation’, and mitochondria (mtDNA variation) maintain partial regulatory 

signaling control over the nucleus through a ‘retrograde regulation’, which leads 

to the modification of cellular metabolism and function by activating the 

expression of nuclear genes with the aim of protecting against mitochondrial 

dysfunction [80– 82] (Fig. 1). 

In this context, DNA methylation is involved in the phenotypic modulation that 

articular chondrocytes undergo during the OA process [83– 85]. Cartilages 

harboring haplogroups H and J show a differential methylation pattern, regardless 

of diagnosis and demonstrates that apoptosis is enhanced in haplogroup H 

cartilage samples, together with an enrichment of overexpressed genes related 

to cell death. On the contrary, apoptosis appeared more repressed in haplogroup 

J cartilages. In addition, compared with H cartilages, samples with haplogroup J 

also showed a significant enrichment of hypomethylated CpGs of genes related 

to developmental process, including those belonging to the homeobox family of 



transcription factors, whereas haplogroup H cartilages showed an enrichment of 

genes related to metabolic processes [86*]. 

Transmitochondrial cybrids is a cell model with a defined and uniform nuclear 

background containing mitochondria from different sources. Using this cell model, 

functional experiments showed the existence of differences between 

haplogroups H and J. Cybrids harboring the haplogroup J showed higher 

mitochondrial respiration rate and glycolytic capacity, which is reflected in an 

decreased ATP generation, lower amounts of peroxynitrite and mitochondrial 

superoxide anion together with a lower rate of apoptosis under stress conditions 

as well as an increased ability to cope with oxidative stress. These J cybrids not 

only have a significantly lower rate of apoptosis under stress conditions, but also 

a lower expression of the pro-apoptotic gene BBC3, which induces apoptosis 

through mitochon- drial dysfunction [70]. 

Senescent chondrocytes accumulate in OA cartilage and are associated with a 

loss of tissue function. Replicative senescence at the cellular level is triggered 

when telomeres are excessively shortened. [21]. OA chondrocytes show shorter 

telomeres than those from healthy individuals which may be related to 

accelerated articular senescence and could contribute to the incidence and 

progression of OA [10]. Interestingly, individuals carrying the mtDNA haplogroup 

J exhibit a Peripherical Blood Leucocytes (PBL) telomere length longer than 

those non-J carriers [49]. In addition, the slower telomere decay in PBL is 

associated with a lower risk of incidence of knee OA over time. This slow telomere 

shortening is more significant in nonincident OA subjects carrying mtDNA cluster 

JT than those with cluster HV [50**]. An increased telomere loss rate in PBL may 



reflect a systemic accelerated senescence phenotype which could be potentiated 

by the mitochondrial function, increasing the susceptibility of developing OA. 

Some of these results described in human have been confirmed comparing the 

conplastic mice model (BL/6NZB) (mice with a constant nuclear background but 

different mtDNA genomes) with the original strain (BL/6C57). The level of 

divergence between the two strains is equivalent to that between human African 

and Eurasian mtDNAs. Comparative analysis of both mice strain showed 

profound differences in health longevity, behavior in terms of mitochondrial 

proteostasis, reactive oxygen generation, obesity, and insulin signaling as well as 

in cell-senescence-related parameters such as telomere shortening and 

mitochondrial dysfunction [87]. Most of the altered processes described are also 

associated with some chronic human diseases as OA. In agreement with this, 

analyses of the articular cartilage from the knee during the aging of these mice, 

revealed significant differences between them in terms of the expression of the 

autophagy-related protein microtubule-associated protein 1 light chain 3 (LC3) 

and extracellular matrix-degrading protein metallo-proteinase-13 (MMP-13) and 

beta-galactosidase, as well as significant differences in the Mankin score [88**]. 

Even more interesting were the results obtained in the surgical DMM OA model 

induced in both strains. The joints of BL/6NZB mice that underwent surgery 

presented more cellularity together with a reduced OARSI histopathology score, 

subchondral bone, menisci and synovitis score compared to those of BL/6C57 

mice. This was accompanied with higher autophagy and a lower apoptosis in the 

cartilage of BL/6NZB mice that were operated. Therefore, this study demonstrates 

the functional impact of nonpathological variants of mtDNA on OA process using 



a surgically induced OA model. Conplastic (BL/6NZB) mice develop less severe 

OA compared to the BL/6C57 original strain [88**]. These findings support that the 

replacement of mtDNA reduces joint damage during aging and in OA surgery 

animal model. 

CONCLUSION 

Mitochondria play an important role in some events involved in the pathogenesis 

of OA, such as energy production, the generation of reactive oxygen and nitrogen 

species, apoptosis, autophagy, senescence and inflammation. The regulation of 

these processes in the cartilage is at least partially, controlled by retrograde 

regulation from mitochondria and mitochondrial genetic variation. Retrograde 

regulation through mitochondrial haplogroups exerts a signaling control over the 

nuclear epigenome, which leads to the modulation of nuclear genes, cellular 

functions and development of OA. All these data suggest that OA could be 

considered a mitochondrial disease as well as other complex chronic disease as 

cancer, cardiovascular and neurologic disease. 

  



KEY POINTS 

• There are evidence that defective mitochondrial function is also a contributing 

element to OA. 

• Different mtDNA haplogroups have been associated with radiographic prevalence, 

incidence, and progression of OA in various prospective cohorts world- wide. 

• Data from cellular experiments, animal models and clinical studies suggest that 

carrying mtDNA cluster J/T might confer some level of protection against OA 

compared to carrying mtDNA haplogroup H. 

• These findings demonstrate that mitochondria and mtDNA could be OA 

biomarkers and critical targets for potential novel therapeutic approaches to treat 

OA.  
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Table 1. Abnormal mitochondrial processes with deleterious effects on cartilage biology and chondrocyte function 

Mitochondrial dysfunction contributes to cartilage degradation via several processes  References 

  

Increased apoptosis  [21,44,45] 

Decreased autophagy  [35,46,47] 

Enhanced inflammatory response  [48] 

Telomere shortening and increased senescence chondrocytes [49,50**] 

Decreased mitochondrial biogenesis and mitophagy  [36,37] 

Increased cartilage catabolism  [39,51*] 

Increased mitochondrial fusion leading to further ROS production  [36] 

Impaired metabolic flexibility  [38,39,43*] 

  

 

ROS, reactive oxygen species. 



Table 2. Published associations of mtDNA variants with specific radiographic OA-related features 

Study cohort  Population  Haplogroup  
OR (95% CI) P-value/ 

effect on the biomarker 
Reference 

     

OA prevalence     

Spanish  457 OA cases, 262 controls  J  OR=0.460 (0.282–0.748) P=0.002  [60] 

  JT  OR=0.564 (0.384–0.828) P=0.005  

Spanish  550 OA cases, 505 controls  J  OR=0.519 (0.271–0.994) P=0.048  [61] 

UK  453 OA cases, 280 controls  T  OR=0.574 (0.350–0.939) P=0.027  [62] 

UK  7846 OA cases, 5402 controls  J  OR=1.190 (0.720–1.950) nsb  [66] 

Meta-analysis  2557 OA cases, 1339 controls  J  OR=0.570 (0.460–0.710) P<0.0001  [71] 

 2478 OA cases, 1173 controls  JT  OR=0.700 (0.580–0.840) P=0.0002  

Chinese  187 OA cases, 420 controls  G  OR=3.834 (1.139–12.908) P=0.003  [64] 

  B  OR=0.503 (0.283–0.893) P=0.019  

OA progression     

OAI  891 knee OA cases  T  HR=0.499 (0.261–0.819) P<0.05  [72] 

Spanish  281 knee OA cases  JTa  HR=0.584 (0.354–0.964) P=0.036  [73] 

CHECK  431 knee OA cases  T  HR=0.645 (0.419–0.978) P<0.05  [69] 

  JT  HR=0.707 (0.501–0.965) P<0.05  

Meta-analysis  1603 knee OA cases  T  HR=0.612 (0.454–0.824) P=0.001  [69] 

  JT  HR=0.765 (0.624–0.938) P=0.009  

OA incidence     

OAI  2579 subjects  J  HR=0.680 (0.470–0.968) P<0.05  [70] 

CHECK 635 subjects  J  HR=0.728 (0.469–0.998) P<0.05  [70] 

Meta-analysis  3214 subjects  J  HR=0.702 (0.541–0.912) P=0.008  [70] 

Korean  438 subjects  B  RR=2.389 (1.315–4.342) P=0.004  [65*] 

     

 

CHECK, Cohort Hip and Cohort Knee; HR, hazard ratio; mtDNA, mitochondrial DNA; ns, nonsignificant; OA, osteoarthritis; 

OAI, Osteoarthritis Initiative; OR, odds ratio; RR, risk ratio; UK, United Kingdom. 

aWhen compared with mtDNA cluster KU. 

bDiagnosis of symptomatic OA. 
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