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Abstract—Bipolar (+/-1) sequences with no zero state suit
particularly well for safeguarding the switched feeding network
efficiency when applied to time-modulated arrays (TMAs). Dur-
ing the zero state of a conventional time-modulating sequence,
if a given array element is switched off, a certain amount of
energy of the transmitted/received signal is wasted. We propose
a novel single sideband time-modulated phased array (TMPA)
architecture governed by realistic bipolar squared sequences in
which the rise/fall time of the switches is considered. By using
single-pole dual-throw switches and non-reconfigurable passive
devices, the TMPA exploits, exclusively, the first positive har-
monic pattern while exhibiting an excellent performance in terms
of efficiency and control level of the undesired harmonics without
using synthesis optimization algorithms (software simplicity).

Index Terms—Antenna arrays, time-modulated arrays, beam-
steering.

I. INTRODUCTION

PHASED array architectures are based, in general, on
variable phase shifters (VPSs). Unfortunately, such de-

vices still exhibit a number of inconveniences such as cost,
insertion losses, or phase resolution [1], [2]. The application
of switched time-modulated arrays (TMAs) to beam-steering
(BS) is attractive in terms of cost and simplicity. However,
their efficiency and flexibility must be improved and, partic-
ularly, the following concerns are identified in the literature:
1) The lack of efficiency in the distribution of the spectral
energy among the working harmonics of rectangular pulses
for multiple BS [3]. 2) The overlooking of the presence of
mirror-frequency diagrams at the negative harmonics [3]–[5].
3) The proportionality between the phases of harmonics limits
the multiple BS flexibility [6]. 4) The fundamental mode beam
has no scanning ability [3], [5], unless supplementary delay
lines are included [7]. 5) Defining the overall time-modulation
efficiency as η = ηTMA · ηs, then ηTMA = P TM

U /P TM
R (P TM

U

and P TM
R are the useful and total mean power values radiated

by the TMA, respectively) accounts for the ability of the
TMA to filter out and radiate only the useful harmonics and
ηs = P TM

R /P ST
R (P ST

R is the total mean power radiated by
a uniform static array with N elements) accounts for the
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reduction of the total mean power radiated by a uniform
static array caused by the insertion of the TMA switched
feeding network. In this respect, the most common is either
the switched feeding network efficiency ηs is contemplated
but without providing the TMA efficiency ηTMA [4], or vice
versa [8]. Hence, the efficiency analyses available in the
literature are either incomplete or misleading.

Given these shortcomings, in this work we focus our efforts
on the design of a switched time-modulated phased array
(TMPA) performing BS over a single harmonic.

The main contributions of this work are: 1) The modeling of
a single sideband (SSB) switched TMPA architecture governed
by bipolar sequences generated by means of single-pole dual-
throw (SPDT) switches to efficiently perform BS. 2) The
analysis of the impact of the rise/fall time of the SPDT
switches on both efficiency factors (ηTMA and ηs) and on the
control level of the undesired harmonics.

II. DESIGN OF THE SSB TMPA

Any arbitrary periodic waveform (e.g., a square wave)
can be expressed, through the trigonometric Fourier series
expansion, as an infinite sum (or linear combination) of simple
sine and cosine waves. In this letter, however, our aim is to
approximate —with a finite sum, see (4) in the forthcoming
analysis— a sine wave using a linear combination of non-
sinusoidal bipolar square waves1. In this way, the global
idea of this letter is to employ simple time-delayed sine
waves (more precisely, good approximations of sine waves) to
modulate each antenna array excitation to perform BS. Notice
that each sine wave will be synthesized as a linear combination
of bipolar square waves which are easily generated by means
of SPDT switches.

First, let us study (see Fig. 1) the basic periodic (T0)
bipolar pulse u(t) considered in this work. This pulse models
a realistic bipolar ±1 square periodic pulse, where ∆ is the
rise/fall time of the switches used to implement such a pulse
(hence, from a pure mathematical point of view, they are
properly trapezoidal if ∆ 6= 0). Its trigonometric Fourier
coefficients are:

Uq =
4

T0

∫ T0/2

0

u(t) sin(qω0t)dt =

{
4 sinc(qω0∆)

πq q odd
0 q even,

(1)
1We consider non-ideal bipolar waves, which are properly trapezoidal, to

model a realistic behavior of the physical switches employed to generate
such square waves. The impact of pulse shaping on the sideband radiation of
switched TMAs was addressed for the first time in [9] and next in [8].
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Fig. 1. Periodic bipolar odd pulse. ∆ is the rise/fall time of the switches.

with ω0 = 2π/T0 and, thus, we can write u(t) as

u(t) =
4

π

∞∑
q=1,3,5,...

sinc(qω0∆)

q
sin(qω0t). (2)

If we consider a signal v(t) with exactly the same character-
istics of u(t) but with triple fundamental frequency, we can
express

v(t) =
4

π

∞∑
q=1,3,5,...

sinc(q(3ω0)∆)

q
sin(q(3ω0)t), (3)

and we can approximate our simple sine function with funda-
mental frequency ω0 by means of the linear combination of
bipolar periodic signals, i.e.,

w(t) = u(t)− 1/3v(t) =
4

π

∑
q∈Υ

sinc(qω0∆)

q
sin(qω0t), (4)

with Υ = {q ∈ N∗/q odd; q 6= 3̊} = {1, 5, 7, 11, . . . }, hence
removing the frequencies that are multiple of 3. Additionally,
to steer the exploited harmonic pattern of the TMA, we must
consider a time-shifted version of w(t), wn(t) = w(t−Dn),
with Dn being the corresponding time-delay variable, hence

wn(t) =
4

π

∑
q∈Υ

sinc(qω0∆)

q
sin(qω0(t−Dn)). (5)

Let us now consider a linear TMPA with N isotropic
elements with unitary static excitations In = 1, n ∈
{0, 1, . . . , N − 1} whose n-th element feeding scheme is
shown in Fig. 2. Such a feeding network has a two-branch
structure according to the time-modulating waveform (wn(t)
or wn(t− τ)) —with τ being a previously fixed time delay—
followed by a π/2 fixed phase shifting. According to Fig. 2,
the time-varying array factor is given by

F (θ, t) =
N−1∑
n=0

[
wn(t)√

2
+ j

wn(t− τ)√
2

]
ejkzn cos θ, (6)

where zn represents the n-th array element position on the z
axis, θ is the angle with respect to such a main axis, and k =
2π/λ represents the wavenumber for a carrier wavelength λ =
2πc/ωc. We begin the analysis of (6) by evaluating the term
wn(t)+jwn(t−τ). For the sake of simplicity, we will analyze

Fig. 2. Scheme of the feeding for the n-th antenna element of the proposed
SSB TMPA. Notice that gω0

n (t) and g3ω0
n (t) are the corresponding unipolar

versions of un(t) and vn(t), which are bipolar.

the Fourier Transform (FT) of such a term, i.e., FT[wn(t)] +
jFT[wn(t− τ)] where, by virtue of (5),

FT[wn(t)] =
4

j

∑
q∈Υ

sinc(qω0∆)

q

[
e−jqω0Dnδ(ω − qω0)−

−ejqω0Dnδ(ω + qω0)
]
, and

FT[wn(t− τ)] = e−jωτFT[wn(t)] =

=
4

j

∑
q∈Υ

sinc(qω0∆)

q

[
e−jqω0τe−jqω0Dnδ(ω − qω0)−

−ejqω0τejqω0Dnδ(ω + qω0)
]
. (7)

If we select a delay τ verifying that ω0τ = π/2, then
e−jqω0τ = (−j)q and ejqω0τ = jq , and hence we have that

FT[wn(t)] + jFT[wn(t− τ)] =

=
4

j

∑
q∈Υ

sinc(qω0∆)

q

[
(1− (−j)q+1)e−jqω0Dnδ(ω − qω0)+

+ (−1− jq+1)ejqω0Dnδ(ω + qω0)
]
. (8)

Considering the sets of indexes Υ1 = {q = 4k − 3; k ∈
N∗; q 6= 3̊} = {1, 5, 13, 17, . . . } and Υ2 = {q = 4k − 1; k ∈
N∗; q 6= 3̊} = {7, 11, 19, 23 . . . }, such that Υ = Υ1∪Υ2, then

1− (−j)q+1 =

{
2 q ∈ Υ1

0 q ∈ Υ2,
; −1− jq+1 =

{
−2 q ∈ Υ2

0 q ∈ Υ1.

(9)

Hence, we can rewrite (8) as

FT[wn(t)] + jFT[wn(t− τ)] =

=
8

j

∑
q∈Υ1

sinc(qω0∆)

q
e−jqω0Dnδ(ω − qω0)+

+
(−8)

j

∑
q∈Υ2

sinc(qω0∆)

q
ejqω0Dnδ(ω + qω0), (10)
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Fig. 3. Representation of the difference between the peak levels of the 1st and
5th harmonics diagrams (P 5th

L ) as a function of ∆̄ (16). The plot reveals that
the peak of the most meaningful undesired harmonic in the proposed TMPA
is very sensitive to ∆̄.

and we realize that the harmonics with orders
−1,−5, 7, 11, . . . are removed. By applying the inverse
FT to (10), we have

wn(t) + jwn(t− τ) =
∑
q∈Υ1

4 sinc(qω0∆)

jπq
e−jqω0Dnejqω0t+

+
∑
q∈Υ2

−4 sinc(qω0∆)

jπq
ejqω0Dne−jqω0t, (11)

and (6) can be rewritten as

F (θ, t) =
1√
2

N−1∑
n=0

∑
q∈Υ1

4 sinc(qω0∆)

jπq
e−jqω0Dnejqω0t+

+
∑
q∈Υ2

−4 sinc(qω0∆)

jπq
ejqω0Dne−jqω0t

 ejkzn cos θ. (12)

We now define

F1(θ, t)q = ejqω0t
N−1∑
n=0

Inqe
jkzn cos θ, and

F2(θ, t)q = e−jqω0t
N−1∑
n=0

I
′

nqe
jkzn cos θ, (13)

to finally obtain

F (θ, t) =
∑
q∈Υ1

F1(θ, t)q +
∑
q∈Υ2

F2(θ, t)q, (14)

where the dynamic excitations Inq and I
′

nq are given by

Inq =
4 sinc(qω0∆)

jπ
√

2q
e−jqω0Dn , q ∈ Υ1, and

I
′

nq =
−4 sinc(qω0∆)

jπ
√

2q
ejqω0Dn , q ∈ Υ2, (15)

III. IMPACT OF ∆ ON THE TMPA PERFORMANCE

In this section, we analyze 1) the effects produced by ∆
on the peak level of the power radiated pattern at the most
meaningful undesired harmonic (i.e., |F1(θ, t)5|2) with respect
to the peak level at the exploited harmonic (|F1(θ, t)1|2); and

Fig. 4. Efficiencies of the TMPA as a function of the normalized rise/fall
time of the SPDT switches ∆̄.

2) the impact of ∆ on the efficiency of the time modulation
operation applied to the TMPA. Regarding the first aim,
according to (15), and by considering the normalized rise/fall
time of the switches ∆̄ = ∆/T0, we define the figure of merit

P 5th

L (dB) = 20 log10

∣∣∣∣In5

In1

∣∣∣∣ = 20 log10

∣∣∣∣ sinc(10π∆̄)

5 sinc(2π∆̄)

∣∣∣∣ , (16)

which quantifies the difference, in dB, between the peak levels
of the 1st and 5th harmonics diagrams. The representation of
P 5th

L as a function of ∆̄ —according to (16)— is shown in
Fig. 3, which illustrates that it is possible to keep P 5th

L below
a predetermined threshold by selecting an appropriate value of
∆̄. Hence, ∆̄ manifests itself as a crucial design parameter.

However, ∆̄ also impacts on the efficiency of the time
modulation operation in the TMPA. As described in the
introduction, such an efficiency depends on two factors: ηTMA
and ηs. Hence, the selection of ∆̄ impacts not only on ηTMA
(as described in [8] using other kind of pulses and hardware),
but also (and this constitutes a key contribution of this work)
on ηs and, consequently, on the overall efficiency η.

We next accurately characterize the variation of both terms
of η with ∆. To simplify the analysis, but without any relevant
loss of generality, we consider a uniform linear array with
inter-element distance of λ/2 transmitting a single carrier
with normalized power. We start by quantifying P TM

R , the
total mean radiated power by the TMPA, which is given
by the expression P TM

R =
∑
q∈Υ1

(p1)q +
∑
q∈Υ2

(p2)q ,
see [3, (16)], being (p1)q and (p2)q the total mean radiated
power values at the frequencies ωc + qω0 with q ∈ Υ1

and ωc − qω0 with q ∈ Υ2, respectively. As (p1)q =

4π
∑N−1
n=0 |Inq|2 and (p2)q = 4π

∑N−1
n=0 |I

′

nq|2, see [3], and
|Inq|2 = |I ′

nq|2 = 8 sinc2(qω0∆)/(π2q2) from (15), we
arrive at P TM

R = 32N
π

∑
q∈Υ

sinc2(qω0∆)
q2 . Notice that the useful

mean radiated power is P TM
U = (p1)1 = 4π

∑N−1
n=0 |In1|2 =

32N sinc2(ω0∆)/π. On the other hand, the total mean power
radiated by a uniform static array with N elements, PSTR ,
is calculated as the total mean transmitted power over the
array factor F ST(θ) =

∑N−1
n=0 ejkzn cos θ and, hence, P ST

R =
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Fig. 5. Relative power radiated patterns of the proposed TMPA with N = 16 for different normalized rise/fall time of the SPDT switches ∆̄ and time delays
Dn. The scenarios (a) to (d) are explained in Section IV.

∫ 2π

0

∫ π
0
|F ST(θ)|2 sin(θ)dθdϕ = 4πN . Therefore:

ηTMA(∆̄) =
P TM
U

P TM
R

=
sinc2(2π∆̄)∑
q∈Υ

sinc2(2πq∆̄)
q2

, and (17)

ηs(∆̄) =
P TM
R

P ST
R

=
8

π2

∑
q∈Υ

sinc2(2πq∆̄)

q2
, (18)

and consequently,

η(∆̄) = ηTMA(∆̄) · ηs(∆̄) =
8

π2
sinc2(2π∆̄). (19)

Fig. 4 illustrates the different TMPA efficiencies as a
function of ∆̄. From Figs. 3 and 4 we observe that the better
the P 5th

L , the better the ηTMA, as expected. We also appreciate
the opposite slopes of both factors of the efficiency. Finally,
we highlight the existence of a trade-off between P 5th

L and η
when ∆̄ changes. Such a factor should be accurately taken
into account by the antenna designer.

IV. NUMERICAL SIMULATIONS

In this section, we show the behavior of the proposed TMPA
by means of several numerical examples. In line with Figs. 3
and 4, Fig. 5a shows that when ∆̄ = 0 (ideal squared pulses),
P 5th

L (−14 dB) and ηTMA (91%) exhibit their worst values while
ηs (89%) and η (81%) achieve their best values, and the
directivity GD = 11.64 dBi. Notice that the time-delays Dn

are set to zero, and hence the scanning angle of all patterns
(see (12)) will be θscan = 90◦.

In Fig. 5b, without varying θscan, ∆̄ is raised to 0.08 and
we observe that GD = 12.03 dBi and both P 5th

L (−26 dB) and
ηTMA are sensibly improved (87.7% and 9.35%, respectively)

at the expense of a worse ηs (decreased to 16.0%), and leading
also to a worse η (a reduction of 8.14%).

Figs. 5c and 5d show both the scanning ability of the TMPA
and the trade off between η and P 5th

L when different values
of ∆̄ are selected. More specifically, the P 5th

L threshold in
Fig. 5c is fixed at −17 dB and, according to (16) and Fig. 3,
∆̄ = 0.047, thus achieving an η that is only 2.9% below its
maximum value while GD = 11.94 dBi. In this case, Dn are
selected to accomplish a θscan = 110◦ by simply assigning
progressive phases to the array elements, i.e., considering
Dn/T0 = n cos(θscan). In Fig. 5d, the P 5th

L threshold is fixed
at a more stringent level, −22 dB, which leads to ∆̄ = 0.069,
thus achieving an η which is 6.1% below its maximum value.
In this case, Dn are selected to accomplish a θscan = 70◦ while
GD = 12.01 dBi. Notice that, since all the excitations of the
patterns are uniform, the sideband-lobe level (SLL) and the
half-power beam-width (HPBW) only depend on N .

V. CONCLUSIONS

We proposed a novel TMPA scheme based on time modula-
tion with non-ideal bipolar squared periodic sequences. When
the rise/fall time of the pulses changes, we have accurately
analyzed the trade off between the two components of the
time modulation efficiency, as well as the trade off between
such an efficiency and the peak level of the most meaningful
undesired harmonic. Accordingly, the structure presents the
advantage that the designer can select an adequate rise/fall time
of the bipolar pulses (and therefore, a particular SPDT switch)
in order to guarantee a certain threshold for the undesired
harmonics while the efficiency of the time modulation remains
above the value dictated by the required performance level.
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