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Abstract

Under a unit-level bivariate linear mixed model, this paper introduces small area pre-
dictors of expenditure means and ratios, and derives approximations and estimators of the
corresponding mean squared errors. For the considered model, the REML estimation method
is implemented. Several simulation experiments, designed to analyze the behavior of the in-
troduced fitting algorithm, predictors and mean squared error estimators, are carried out.
An application to real data from the Spanish household budget survey illustrates the behav-
ior of the proposed statistical methodology. The target is the estimation of means of food
and non-food household annual expenditures and of ratios of food household expenditures
by Spanish provinces.
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1 Introduction

It seems unnecessary to justify the relevance acquired by consumption in the 21st century, at
a time when economically developed countries are enrolled in the consumer society, a social
model in which a very important part of well-being and quality of life is associated with the
acquisition of goods and services. The speed and diversity of the transformations experienced
in recent years in the patterns, objects, shapes and places where consumption takes place are
the basis for interest in the analysis of consumption from different perspectives. Make a good
estimate of consumer spending is important in the economy of a country, since this spending
represents, for example, approximately 60% of gross domestic product for Spain. However, global
political measures are not often satisfactory for regional authorities, which can also develop their
own economic strategies. They need some tools to determine, with precision, reliability and
acceptable punctuality, the main variables and consume indicators in order to implement their
strategies.
Among the main consume indicators we can cite the local means of food and non-food annual
expenses of households and the ratios of annual food household expenses. The last indicator is

∗Supported by the Instituto Galego de Estat́ıstica, by the grants MTM2017-82724-R and PGC2018-096840-
B-I00 of the MINECO and by the Xunta de Galicia (Grupos de Referencia Competitiva ED431C-2016-015 and
Centro Singular de Investigación de Galicia ED431G/01), all of them through the ERDF.

1

“This is an Accepted Manuscript of an article published by Taylor 
& Francis in Journal of Applied Statistics on 05 Aug 2020, available 
at: https://doi.org/10.1080/02664763.2020.1803809 



defined as the quotient between the average annual expenditure on food of the households from
a given territory and the corresponding average annual expenditure on all items of expenditure.

The estimation of ratios in finite populations is usually done by estimating separately the numer-
ator and the denominator with direct estimators. A direct estimator of the total or the average
of a target variable in a domain uses only the data of that domain, it is basically unbiased with
respect to the distribution of the sample design and its variance decreases when the sample size
increases. The ratio estimators inherit part of these properties, so that both their biases and
their variances also decrease as the sample size increases. However, domain sample sizes are
typically small in the small area estimation (SAE) setup.

SAE deals with the estimation of domain indicators when the sample sizes are small for con-
structing precise direct estimators. One way to make up for the lack of sample size is to fit a
model to the entire sample. Thus, when estimating the population indicators of a domain, data
from other domains and the relationships between the different available variables are also taken
into account. This is the so called model-based approach to SAE. The monograph of Rao and
Molina (2015) gives a general description of SAE methods.

If there are several target variables, multivariate area-level or unit-level mixed models can take
into account their correlations. These correlations give an important additional information for
the estimation of domain parameters. Fay (1987) and Datta et al. (1991) showed that small
area estimators obtained from multivariate models have, in general, better precision than the
ones obtained from univariate models for each response variable. These estimator might be, for
example, the hierarchical and empirical Bayes predictors introduced by Datta et al. (1991) or
the empirical best linear unbiased predictors derived by González-Manteiga et al. (2008b) or
Benavent et al. (2016) under multivariate linear mixed models.

There is an extensive literature on the use of statistical models for the estimation of small
area socioeconomic indicators. Without being exhaustive, we quote some works that apply
procedures based on area-level models. Molina et al. (2007), López-Vizcáıno et al. (2013, 2015)
and Esteban et al. (2020) treated the problem of estimating labor force indicators. Morales et
al. (2015), Porter et al. (2015), Boubeta et al. (2016, 2017) or Arima et al. (2017) presented
applications to the estimation of poverty proportions or gaps. More recently, Marchetti and
Secondi (2017) studied the household consumption expenditure at provincial level in Italy by
using Fay-Herriot models and Ubaidillah et al. (2019) estimated food and non-food expenditures
by small areas under a bivariate Fay-Herriot model.

On the other hand, unit-level models give also high flexibility for modeling micro data. Datta
et al. (1999) studied the empirical Bayes prediction of small area mean vectors. Molina (2009)
predicted exponentials of mixed effects under a multivariate nested-error regression model with
logarithmic transformation. Tzavidis et al. (2008), Chambers et al. (2016) introduced predictors
based on M-quantile regression models. Chandra at al. (2012) applied geographically weighted
mixed effects models to the Australian agricultural and grazing industries survey. Hobza et
al. (2016, 2018) derived predictors of small area poverty proportions based on unit-level logit
mixed models, Hobza and Morales (2013) and Morales and Santamaŕıa (2019) estimated domain
means of household normalized net annual incomes under random regression coefficient models
and temporal linear mixed models, respectively. Ngaruye (2017) derived empirical best linear
predictors of domain means under a multivariate linear model for repeated measures data. Ito
and Kubosawa (2018) employed a multivariate nested error regression model in the statistical
analysis of posted land price data along the Keikyu train line from 1998 to 2001.

The above non complete lists of papers on SAE applications of area-level and unit-level multivari-
ate statistical models show the benefits of taking into account the correlation structure of target
variables. In fact, Ubaidillah et al. (2019) considered multivariate FH model and showed the
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strength of correlation between response variables plays a major role by proving more efficient
estimators by use of correlation between response variables than univariate models. However, in
the SAE literature, we have not found ratio estimators based on models that take into account
the dependency of the involved target variables. Ratio estimators are, in general, constructed
from independent estimators of the numerator and denominator. This can be done by fitting
to each dependent variable a nested error regression (NER) model, which is the basic unit-level
linear mixed model in SAE. However, selecting separate and independent models for each target
variable does not take into account their correlation. This fact reduces the predictive capacity
of the modeling and does not allow to properly estimate the mean square errors (MSEs) of the
ratio predictors.
Although bivariate response variables can be modelled jointly using joint modelling approach
through a shared parameter to handle the association between variables of interest, this paper
follows a fully multivariate approach. The proposed solution to the problem of estimating
ratios is introducing empirical best linear unbiased predictors (EBLUPs) of means and plug-in
predictors of ratios, based on a unit-level bivariate linear mixed model. This approach improves
the prediction of domain parameters with respect to separate modeling. The article develops
predictors and offers approximations to their MSEs. It empirically studies the efficiency of the
new proposal versus the usual predictor constructed from univariate and independent models,
showing the weaknesses and strengths of both procedures. Finally, the paper illustrates the
introduced methodology with an application to data from the 2016 Spanish family budget survey,
estimating the means and ratios of food expenditure in Spanish households at the province level.
The rest of the paper is organized as follows. Section 2 describes the survey data and the esti-
mation problem of interest. Section 3 introduces a bivariate nested error regression model and
derives the EBLUP of means and the plug-in predictors of ratios. Section 4 approximates the
MSEs of the introduced predictors. Section 5 carries out simulation experiments to investigate
the behavior of the residual maximum likelihood (REML) fitting algorithm, the predictors of
domain means and ratios and the MSE estimators. Section 6 gives an application to real data
where the target is the small area estimation of averages and ratios of household annual expen-
ditures in Spanish provinces. Sections 7 summarizes some conclusions. The paper contains two
appendices. Appendix A gives a Fisher-scoring algorithm for calculating the REML estimators
of the model parameters. Appendix B outlines some mathematical derivations for obtaining an
approximation to the MSE of the EBLUP of a domain mean.

2 The data and the problem of interest

The Spanish household budget survey (SHBS) is annually carried out by the “Instituto Nacional
de Estad́ıstica” (INE), with the objective of obtaining information on the nature and destination
of the consumption expenses, as well as on various characteristics related to the conditions of
household life. We deal with data from the SHBS of 2016. The SHBS collects expenditure
and demographic information by personal interview from private dwellings across Spain. The
dwellings are selected through a two-stage stratified random sampling in the primary sampling
units. The primary sampling units are census sections and the secondary sampling units are
dwellings. Our analysis is based on the household level file which contains almost 21.000 house-
holds in total. The target domains are the 52 Spanish provinces. The sample sizes of the SHBS
are set to calculate precise estimator at the Autonomous Community (NUTS 2) level and does
not produce official estimates at the province (NUTS 3) level. In this situation, estimating
domain-level consume indicators is a SAE problem.
The response variables are ydj1 and ydj2, the food and non-food annual expenses of household
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j from domain d. Food includes both food and nonalcoholic beverages and non-food represents
the remaining expenditures. The target parameters are the domain means of food and non-food

household annual expenses and the domain ratios of food household annual expenses, i.e.

Y d1 =
1

Nd

Nd∑

j=1

ydj1, Y d2 =
1

Nd

Nd∑

j=1

ydj2, Rd =
Y d1

Y d1 + Y d2

, d = 1, . . . ,D.

The Hájeck-type direct estimator of the domain mean Y dk, k = 1, 2 is

Ŷ
dir

dk =
1

N̂dir
d

∑

j∈sd

wdj ydjk, N̂dir
d =

∑

j∈sd

wdj , k = 1, 2, (2.1)

where sd is the domain sample and the wdj ’s are the elevation factors. The design-based covari-
ances of these estimators can be approximated by

ĉovπ(Ŷ
dir

d1 , Ŷ
dir

d2 ) =
(
N̂dir

d

)−2
∑

j∈sd

wdj(wdj − 1)(ydj1 − Ŷ
dir

dk1)(ydj2 − Ŷ
dir

d2 ). (2.2)

The last formulas are obtained from Särndal et al. (1992), pp. 43, 185 and 391, with the
simplifications wdj = 1/πdj , πdj,dj = πdj and πdi,dj = πdiπdj , i 6= j, in the second order inclusion
probabilities. The direct estimator of the domain ratio Rd is

R̂dir
d =

Ŷ
dir

d1

Ŷ
dir

d1 + Ŷ
dir

d2

, d = 1, . . . ,D. (2.3)

Section 6 shows that direct estimators (2.1) and (2.3) are not precise at the province level. This is
why we look for alternative model-based estimation methods that borrow strength from auxiliary
variables and that might produce more precise estimates of the domain target parameters. The
available explanatory variables are

- Income. Total net annual household income (in euros).
- Family composition (FC). FC1: Single person or adult couple with at least one of the
members being 65 years of age or older, FC2: Other compositions with a single person or
a couple without children, FC3: Couple with children under 16 years old or adult with
children less than or equal to 16 years old, FC4: Other households.

- Number of consumption units (multiplied by 10). NCU = 10
{
1 + 0.5(N1 − 1) + 0.3N2

}
,

where N1 is the number of people in the household aged 14 or older and N2 is the number
of people in the household under 14 years old.

- Rural. R1: Sparsely populated area, R0: Other areas.

We first analyze the potential predictive power of theses auxiliary variables through an explana-
tory data analysis. Figure 2.1 plots the observed food and non food expenditures versus the
income. We observe that, despite the large variability observed in both plots, the two expen-
diture variables seem to increase linearly with the income. The estimated Pearson correlation
coefficient between food expenditures and income is of 0.36 and between non-food expenditures
and income is of 0.65. Further, the corresponding 95% confidence intervals are (0.36,0.37,) and
(0.64,0.66), respectively. Therefore, income seems to have a good explanatory power for the
target variables.
Figure 2.2 plots the food and non food expenditures for each family composition category. Both
response variables have different means and variances across the family composition categories.
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Figure 2.1: Income versus expenditures.
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Figure 2.2: Family composition versus expenditures.

Therefore, FC is a candidate to enter as an auxiliary variable in models that explain the behavior
of the expenditure variables.
Figure 2.3 plots the food and non food expenditures versus the consumption unities. As the ex-
penditure variables increase with the consumption unities, NCU seems to be a good explanatory
variable of the the expenditure variables.
Figure 2.4 plots the food and non food expenditures versus the degree of urbanization. The
food expenditure does not show remarkable differences between the categories R0 and R1 of the
variable rural. However, the other expenditures seems to be greater in the non rural areas and,
therefore, it could be considered as a plausible auxiliary variable.
Therefore, the variables income, FC, NCU and rural could probably be good covariates for mod-
elling the food and non-food expenditures. After fitting separate and independent nested error
regression models, the tests of significance for the regression parameters confirm the explanatory
power of these auxiliary variables. However, the problem of separate or joint modelling the food
and non-food expenditures still remains. To analyze this issue, we calculate the Pearson corre-
lation coefficients, P and Pd, and the corresponding p-values of the expense variables between
and within domains. This is to say, for the sets of values

{(
Ŷ

dir

d1 , Ŷ
dir

d2

)
: d = 1, . . . ,D

}
,
{
(ydj1, ydj2) : j = 1, . . . , nd

}
, d = 1, . . . ,D.
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Figure 2.3: Number of consumption units versus expenditures.
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Figure 2.4: Degree of urbanization versus expenditures.

The between-domains correlation coefficient is P = 0.560 with p-value 0.12× 10−4. The within-
domains correlation coefficients {P1, . . . , PD} are all positive with quartiles q0 = 0.188, q1 =
0.351, q2 = 0.398, q3 = 0.440, q4 = 0.539 and the corresponding p-values are all lower than
0.05. This fact motivates the need to make a joint modeling of the expenditure variables and, in
accordance, the introduction of a bivariate NER model. Section 3 describes the basic properties
of the new model and proposes predictors of domain means and ratios.

3 The bivariate nested error regression model

3.1 The population model

Let U be a population of size N partitioned into D domains or areas U1, . . . , UD of sizes
N1, . . . , ND respectively. Let N =

∑D
j=1Nd be the global population size. Let ydj = (ydj1, ydj2)

′

be a vector of continuous variables measured on the sample unit j of domain d, d = 1, . . . ,D,
j = 1, . . . , Nd. For k = 1, 2, let xdjk = (xdjk1, . . . , xdjkpk) be a row vector containing pk explana-
tory variables and let Xdj = diag (xdj1, xdj2)2×p with p = p1 + p2. Let βk be a column vector

of size pk containing regression parameters and let β = (β′
1, β

′
2)

′

p×1. The population bivariate
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nested error regression (BNER) model is

ydj = Xdjβ + ud + edj , d = 1, . . . ,D, j = 1, . . . , Nd, (3.1)

where the vectors of random effects ud = (ud1, ud2)
′ and the vectors of random errors edj =

(edj1, edj2)
′ are all mutually independent with multivariate normal distributions

ud ∼ N2(0, Vud), edj ∼ N2(0, Vedj), d = 1, . . . ,D, j = 1, . . . , Nd.

The 2 × 2 covariance matrices Vud depend on 3 unknown parameters, θ1 = σ2
u1, θ2 = σ2

u2 and
θ3 = ρu, i.e.

Vud =

(
σ2
u1 ρuσu1σu2

ρuσu1σu2 σ2
u2

)
.

The 2 × 2 covariance matrices Vedj depend on 3 unknown parameters, θ4 = σ2
e1, θ5 = σ2

e2 and
θ6 = ρe, i.e.

Vedj =

(
σ2
e1 ρeσe1σe2

ρeσe1σe2 σ2
e2

)
.

Let Im be the m × m identity matrix. We define the 2Nd × 1 vectors yd and ed, the 2Nd × p
matrix Xd and the 2Nd × 2 matrix Zd, i.e.

yd = col
1≤j≤Nd

(ydj), ed = col
1≤j≤Nd

(edj), Xd = col
1≤j≤Nd

(Xdj), Zd = col
1≤j≤Nd

(I2).

Model (3.1) can be written in the domain-level form

yd = Xdβ + Zdud + ed, d = 1, . . . ,D, (3.2)

where ud ∼ N2(0, Vud), ed ∼ N2Nd
(0, Ved) are independent and Ved = diag

1≤j≤Nd

(Vedj). The vectors

yd are independent with yd ∼ N2Nd
(µd, Vd), µd = Xdβ and Vd = ZdVudZ

′
d + Ved.

We define the 2N × 1 vectors y and e, the 2D× 1 vector u, the 2N × p matrix X and 2N × 2D
matrix Z, i.e.

y = col
1≤d≤D

(yd), e = col
1≤d≤D

(ed), u = col
1≤d≤D

(ud), X = col
1≤d≤D

(Xd), Z = diag
1≤d≤D

(Zd).

Model (3.1) can be written in the linear mixed model form

y = Xβ + Zu+ e. (3.3)

where u ∼ N2D(0, Vu), e ∼ N2N (0, Ved) are independent, Vu = diag
1≤d≤D

(Vud) and Ve = diag
1≤d≤D

(Ved).

It holds that y ∼ N2N (µ, V ), µ = Xβ and V = ZVuZ
′ + Ve.

3.2 The sample model

In practice, inference is carried out based on a sample s = ∪D
d=1sd of size n =

∑D
d=1 nd drawn

from the finite population U . We write U = s ∪ r and Ud = sd ∪ rd to denote the sampled and
non-sampled parts of the population. Let ys and yds be the sub-vectors of y and yd corresponding
to sample elements and yr and ydr the sub-vectors of y and yd corresponding to the out-of-sample
elements. Without lack of generality, we can sort the components of vectors y and yd to write
y = (y′s, y

′
r)

′ and yd = (y′ds, y
′
dr)

′. Define also the corresponding decompositions of X, Z, Ve,
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V and Xd, Zd, Ved, Vd by using the subscripts s and r. This paper assumes the prediction
approach to inference in finite populations that is described, for example, in Valliant et al.
(2000). Therefore, we assume that sample indexes are fixed, so that the sample sub-vector ys
follows the model derived from the population model (3.3). This is to say, the sample BNER
model is

ys = Xsβ + Zsu+ es, (3.4)

where u ∼ N2D(0, Vu), es ∼ N2n(0, Ves) are independent, Vu = diag
1≤d≤D

(Vud), Ves = diag
1≤d≤D

(Veds)

and Veds = diag
1≤j≤nd

(Vedj). It holds that ys ∼ N2n(µs, Vs), µs = Xsβ and Vs = ZsVuZ
′
s + Ves.

Similarly, the sample subvectors yds follow the models derived from (3.2), i.e.

yds = Xdsβ + Zdsud + eds, d = 1, . . . ,D, (3.5)

where ud ∼ N2(0, Vud), eds ∼ N2nd
(0, Veds) are independent. The vectors yds are independent

with yds ∼ N2nd
(µds, Vds), µds = Xdsβ and Vds = ZdsVudZ

′
ds + Veds.

Under model (3.4), the best linear unbiased estimator (BLUE) of β, and the best linear unbiased
predictors (BLUP) of u are

β̂B = (X ′
sV

−1
s Xs)

−1X ′
sV

−1
s ys, ûB = VuZ

′
sV

−1
s (ys −Xsβ̂B). (3.6)

Instead of doing a direct inversion of the 2nd × 2nd matrix Vds = Veds + ZdsVudZ
′
ds when

calculating the BLUE of β, it is computationally more efficient to apply the formula

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1, (3.7)

with A = Veds, B = Zds, C = Vud and D = Z ′
ds. As Z ′

dsV
−1
edsZds =

∑nd

j=1 V
−1
edj = ndV

−1
edj . We

obtain

V −1
ds = V −1

eds −V −1
edsZds

(
V −1
ud +Z ′

dsV
−1
edsZds

)−1
Z ′
dsV

−1
eds = V −1

eds −V −1
edsZds

(
V −1
ud +ndV

−1
edj

)−1
Z ′
dsV

−1
eds .

where V −1
eds = diag

1≤j≤nd

(V −1
edj ). The new formula reduces the computational burden, as it only

requires running inversion algorithms for 2× 2 matrices.

In practice, BLUPs and BLUEs are not calculable as the vector θ of model parameters is
unknown. Appendix A gives a Fisher-scoring algorithm for calculating the REML estimator of
θ. Let θ̂ be an estimator of θ. By plugging θ̂ in Vu and Ves, we get V̂u = Vu(θ̂), V̂es = Ves(θ̂) and
V̂s = ZsV̂uZ

′
s+ V̂es. By substituting V̂s and V̂u in (3.6), we obtain the empirical BLUE (EBLUE)

of β and the empirical BLUP (EBLUP) of u, i.e.

β̂ = (X ′
sV̂

−1
s Xs)

−1X ′
sV̂

−1
s ys, û = V̂uZ

′
sV̂

−1
s (ys −Xsβ̂). (3.8)

Alternative formulas are

β̂ =
( D∑

d=1

X ′
dsV̂

−1
ds Xds

)−1
D∑

d=1

X ′
dsV̂

−1
ds yds, û = col

1≤d≤D
(ûd), ûd = V̂udZ

′
dsV̂

−1
ds

(
yds −Xdsβ̂

)
.
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3.3 Predictors of domain means and ratios

Under the BNER model (3.3), this section derives the EBLUPs of the 2× 1 mean vectors Y d =
1
Nd

∑Nd

j=1 ydj and introduces the plug-in predictors of the domain ratios Rd = Y d1/(Y d1 + Y d2),
d = 1, . . . ,D. Assuming that sample indexes are fixed, the non-sampled sub-vectors ydr follow
the models derived from (3.2), i.e.

ydr = Xdrβ + Zdrud + edr, d = 1, . . . ,D,

where ud ∼ N2(0, Vud), edr ∼ N2(Nd−nd)(0, Vedr) are independent and Vedr = diag
nd+1≤j≤Nd

(Vedj).

The vectors ydr are independent with ydr ∼ N2(Nd−nd)(µdr, Vdr), µdr = Xdrβ, Vdr = ZdrVudZ
′
dr+

Vedr. Further, the covariance matrix between ydr and yds is

Vdrs = cov(ydr, yds) = cov(Xdrβ+Zdrud+edr,Xdsβ+Zdsud+eds) = Zdrvar(ud)Z
′
ds = ZdrVudZ

′
ds.

The conditional mean of ydr, given the sample data ys, is the 2(Nd − nd)× 1 vector

E[ydr|ys] = E[ydr|yds] = µdr + VdrsV
−1
ds (yds − µds) = Xdrβ + ZdrVudZ

′
dsV

−1
ds (yds −Xdsβ)

= Xdrβ + ZdrVudZ
′
ds

{
V −1
eds − V −1

edsZds

(
V −1
ud + ndV

−1
edj

)−1
Z ′
dsV

−1
eds

}
(yds −Xdsβ).

For the following calculations, we note that

Z ′
dsV

−1
eds (yds −Xdsβ) =

nd∑

j=1

V −1
edj (ydj −Xdjβ).

If nd > 0 and j ∈ rd, j > nd, then the conditional 2× 1 mean vector is

E[ydj |yds] = Xdjβ + VudZ
′
ds

{
V −1
eds − V −1

edsZds

(
V −1
ud + ndV

−1
edj

)−1
Z ′
dsV

−1
eds

}
(yds −Xdsβ)

= Xdjβ + Vud

{
I2 − ndV

−1
edj

(
V −1
ud + ndV

−1
edj

)−1
} nd∑

j=1

V −1
edj (ydj −Xdjβ).

We have
ŷebds = yds, ŷebdr = Ê[ydr|yds] = Xdrβ̂ + ZdrV̂udZ

′
dsV̂

−1
ds (yds −Xdsβ̂),

or equivalently, ŷebdj = ydj if j ∈ sd and ŷebdj = Ê[ydj|yds] if j ∈ rd, where

Ê[ydj |yds] = Xdj β̂ + V̂ud

{
I2 − ndV̂

−1
edj

(
V̂ −1
ud + ndV̂

−1
edj

)−1
} nd∑

j=1

V̂ −1
edj (ydj −Xdj β̂).

The EBLUP of Y d is

Ŷ
eb

d =
(
Ŷ

eb

d1, Ŷ
eb

d2

)′
=

1

Nd

Nd∑

j=1

ŷebdj =
1

Nd

nd∑

j=1

ydj +
1

Nd

Nd∑

j=nd+1

{Xdj β̂ + ûd}

= fdŶ d +
1

Nd

Nd∑

j=1

{Xdj β̂ + ûd} − fd
1

nd

nd∑

j=1

{Xdj β̂ + ûd}

= (1− fd)
[
Xdβ̂ + ûd

]
+ fd

[
Ŷ d + (Xd − X̂d)β̂

]
. (3.9)
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where Ŷ d = 1
nd

∑nd

j=1 ydj , X̂d = 1
nd

∑nd

j=1Xdj , fd = nd

Nd
. The plug-in predictor of the ratio

Rd = Y d1/(Y d1 + Y d2) is

R̂in
d =

Ŷ
eb

d1

Ŷ
eb

d1 + Ŷ
eb

d2

. (3.10)

If nd = 0 and j ∈ rd, then rd = Ud and the conditional 2 × 1 mean vector is E[ydj |ys] = Xdjβ.

In this case, the EBLUP of Y d is the synthetic estimator Y
syn
d = Xdβ̂, with Xd = 1

Nd

∑Nd

j=1 xdj .

4 Estimation of MSEs

Prasad and Rao (1990) gave an approximation to the MSE of the EBLUP of Xdβ+Zdud under
the univariate NER model when the variance component parameters are estimated by using
the Henderson’s method 3. Datta and Lahiri (2000) extended the results of Prasad and Rao
(1990) to the case of the general longitudinal model. They further considered ML and REML
estimators of the variance components. For the general linear mixed model, Das et al. (2004)
derived the MSE of the EBLUP when the REML or the maximum likelihood fitting methods
are employed. Their proof contains the general longitudinal model considered by Datta and
Lahiri (2000) as a special case. However, none of the three papers study the approximation to
the matrix of mean squared crossed errors of the EBLUP of the mean vector defined in (3.9).
Although, the BNER model (3.3) can be written in the form of the general linear mixed model
considered by Das et al. (2004), the approximation to the matrix of mean squared crossed errors
is not covered by that paper. This is why Appendix B presents the mathematical derivations

for approximating and estimating the MSEs of Ŷ
eb

d and R̂in
d . The obtained MSE estimators are

presented below.

4.1 MSE of the EBLUP of a domain mean

Let us define Tds = Vud − VudZ
′
dsV

−1
ds ZdsVud, Qs = (X ′

sV
−1
s Xs)

−1 and

X̂ds =

nd∑

j=1

V −1
edj Xdj , Xdr = diag

(
Xd1r,Xd2r

)
, Xdkr =

1

Nd − nd

Nd∑

j=nd+1

xdjk, k = 1, 2.

When predicting Y d with Ŷ
eb

d , we use the MSE matrix estimator

mse(Ŷ
eb

d ) =

(
mse(Ŷ

eb

d1) mse(Ŷ
eb

d1, Ŷ
eb

d2)

mse(Ŷ
eb

d1, Ŷ
eb

d2) mse(Ŷ
eb

d2)

)
= g1(θ̂) + g2(θ̂) + 2g3(θ̂) + g4(θ̂), (4.1)

where

g1(θ) = (1− fd)
2
{
Vud − ndVudV

−1
edj Vud + n2

dVudV
−1
edj TdsV

−1
edj Vud

}
,

g2(θ) = (1− fd)
2
[
Xdr − TdsX̂ds

]
Qs

[
Xdr − TdsX̂ds

]′
.

g3(θ) =
(
tr
{
(∇b′k1)Vs(∇b′k2)

′E
[
(θ̂ − θ)(θ̂ − θ)′

]})
k1,k2=1,2

, (∇b′k) = col
1≤ℓ≤6

(∂b′i
∂θℓ

)
6×2n

.

g4(θ) =
1− fd
Nd

Vedj .
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where the 6 × 6 matrix E
[
(θ̂ − θ)(θ̂ − θ)′

]
can be approximated by the output F−1(θ̂) of the

REML Fisher scoring algorithm described in Appendix A and the derivatives of b′ are

∂b′

∂θℓ
=

(
∂b′

1

∂θℓ
∂b′

2

∂θℓ

)
= (1− fd)

{
VudℓZ

′
dsV

−1
ds − VudZ

′
dsV

−1
ds ZdsVudℓZ

′
dsV

−1
ds

}
, ℓ = 1, 2, 3,

and
∂b′

∂θℓ
=

(
∂b′

1

∂θℓ
∂b′

2

∂θℓ

)
= −(1− fd)VudZ

′
dsV

−1
ds diag

1≤j≤nd

(Vedjℓ)V
−1
ds , ℓ = 4, 5, 6.

The diagonal elements of matrix (4.1), mse(Ŷ
eb

d1) and mse(Ŷ
eb

d2), are the estimator of MSE(Ŷ
eb

d1)

and MSE(Ŷ
eb

d2) respectively.

4.2 MSE of the plug-in predictor of a domain ratio

The plug-in predictor of the ratio Rd = Y d1/(Y d1 + Y d2) is

R̂in
d =

Ŷ
eb

d1

Ŷ
eb

d1 + Ŷ
eb

d2

= f
(
Ŷ

eb

d1, Ŷ
eb

d2

)
, f(y1, y2) =

y1
y1 + y2

.

An approximation to the MSE of R̂in
d can be obtained by Taylor linearization. The first partial

derivatives of f are
∂f

∂y1
=

y2
(y1 + y2)2

,
∂f

∂y2
=

−y1
(y1 + y2)2

,

The first order Taylor expansion of f
(
Ŷ

eb

d1, Ŷ
eb

d2

)
around

(
Y d1, Y d2

)
is

R̂in
d = f

(
Ŷ

eb

d1, Ŷ
eb

d2

)
≈ f

(
Y d1, Y d2

)
+

∂f
(
Y d1, Y d2

)

∂y1

(
Ŷ

eb

d1 − Y d1

)
+

∂f
(
Y d1, Y d2

)

∂y2

(
Ŷ

eb

d2 − Y d2

)

= Rd +
Y d2

(Y d1 + Y d2)2
(Ŷ

eb

d1 − Y d1)−
Y d1

(Y d1 + Y d2)2
(Ŷ

eb

d2 − Y d2).

Therefore, we obtain the approximation

MSE(R̂in
d ) = E

[
(R̂in

d −Rd)
2
]
≈ Y

2
d2

(Y d1 + Y d2)4
E
[(
Ŷ

eb

d1 − Y d1

)2]

+
Y

2
d1

(Y d1 + Y d2)4
E
[(
Ŷ

eb

d2 − Y d2

)2]− 2
Y d1Y d2

(Y d1 + Y d2)4
E
[(
Ŷ

eb

d1 − Y d1

)(
Ŷ

eb

d2 − Y d2

)]

=
Y

2
d2

(Y d1 + Y d2)4
MSE

(
Ŷ

eb

d1

)
+

Y
2
d1

(Y d1 + Y d2)4
MSE

(
Ŷ

eb

d2

)

− 2
Y d1Y d2

(Y d1 + Y d2)4
MSE

(
Ŷ

eb

d1, Ŷ
eb

d2

)
, (4.2)

where MSE
(
Ŷ

eb

d1, Ŷ
eb

d2

)
are the non-diagonal elements of the matrix.

When predicting Rd with R̂in
d , we use the MSE estimator mse(R̂in

d ) obtained as a plug-in esti-
mator of the approximation (4.2). This is to say, we substitute each MSE by the corresponding

component of the matrix mse(Ŷ
eb

d ) given in (4.1). Similarly, Appendix C gives an estimator of

the MSE of the plug-in predictor Q̂in
d = Ŷ

eb

d1/Ŷ
eb

d2 of the quotient Qd = Y d1/Y d2.
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5 Simulations

5.1 Simulation 1

The target of Simulation 1 is to check the behavior of the REML algorithm for fitting the BNER
model (3.5). We take p1 = p2 = 2, p = 4, β1 = (β11, β12)

′ = (1, 1)′, β2 = (β21, β22)
′ = (1, 1)′,

For d = 1, . . . ,D, j = 1, . . . , nd, generate Xdj = diag(xdj1, xdj2)2×4, where xdj1 = (xdj11, xdj12),
xdj2 = (xdj21, xdj22), xdj11 = xdj21 = 1, xdj12 ∼ U(2, 4) and xdj22 ∼ U(2, 5). We take θ1 = 0.75,
θ2 = 1.00, θ4 = 0.50, θ5 = 0.75 and θ3 = −0.8, θ6 = 0.8. For d = 1, . . . ,D, simulate ud ∼
N2(0, Vud) and edj ∼ N2(0, Vedj), where

Vud =

(
θ1 θ3

√
θ1
√
θ2

θ3
√
θ1
√
θ2 θ2

)
, Ved =

(
θ4 θ6

√
θ4
√
θ5

θ6
√
θ4
√
θ5 θ5

)
,

The steps of Simulation 1 are

1. Generate xdjk, d = 1, . . . ,D, j = 1, . . . , nd, k = 1, 2.

2. Repeat I = 103 times (i = 1, . . . , 103)

2.1. Generate u
(i)
d ∼ N2(0, Vud), e

(i)
d ∼ N2nd

(0, Ved), y
(i)
d = Xdβ+Zdu

(i)
d +e

(i)
d , d = 1, . . . ,D.

2.2. For every η ∈ {β11, β12, β21, β22, θ1, . . . , θ6}, calculate the REML estimator η̂(i) ∈
{β̂(i)

11 , β̂
(i)
12 , β̂

(i)
21 , β̂

(i)
22 , θ̂

(i)
1 , . . . , θ̂

(i)
6 }.

3. Output:

RMSE(η̂) =

(
1

I

I∑

i=1

(η̂(i) − η)2
)1/2

, BIAS(η̂) =
1

I

I∑

i=1

(η̂(i) − η),

Tables 5.1.1-5.1.2 present the simulation results. The column labeled by η contains the values of
the true model parameters. Simulation 1 shows that the REML Fisher scoring algorithm works
properly because BIAS and RMSE decrease as nd or D increase.

η D = 25 D = 50 D = 100 D = 200 D = 25 D = 50 D = 100 D = 200

β11 1 -0.0164 0.0145 0.0101 0.0036 0.2269 0.1585 0.1129 0.0795
β12 1 -0.0015 0.0006 -0.0002 -0.0002 0.0486 0.0319 0.0221 0.0171
β21 1 0.0330 -0.0042 -0.0106 -0.0006 0.2283 0.1744 0.1204 0.0886
β22 1 0.0003 -0.0017 0.0011 -0.0007 0.0386 0.0290 0.0198 0.0137

θ1 0.75 -0.0027 0.0161 -0.0123 0.0026 0.1965 0.1720 0.1062 0.0818
θ2 1 -0.0289 0.0034 -0.0197 -0.0066 0.2935 0.2143 0.1345 0.1094
θ4 0.5 -0.0008 -0.0019 -0.0009 -0.0013 0.0428 0.0339 0.0233 0.0153
θ5 0.75 0.0031 0.0018 -0.0004 -0.0009 0.0670 0.0534 0.0341 0.0263

θ3 -0.8 0.0075 0.0045 -0.0002 0.0030 0.0937 0.0770 0.0498 0.0308
θ6 0.8 -0.0019 -0.0004 0.0000 0.0000 0.0254 0.0179 0.0124 0.0084

Table 5.1.1. BIAS(η̂) (left) and RMSE(η̂) (right) with nd = 10.
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η nd = 10 nd = 25 nd = 50 nd = 100 nd = 10 nd = 25 nd = 50 nd = 100

β11 1 -0.0164 0.0051 -0.0266 0.0097 0.2269 0.1882 0.1887 0.1755
β12 1 -0.0015 -0.0007 0.0018 -0.0012 0.0486 0.0294 0.0191 0.0141
β21 1 0.0330 0.0108 0.0303 0.0030 0.2283 0.2351 0.2133 0.1987
β22 1 0.0003 -0.0006 -0.0008 -0.0010 0.0386 0.0249 0.0175 0.0119

θ1 0.75 -0.0027 0.0047 -0.0048 0.0305 0.1965 0.2267 0.2235 0.2172
θ2 1 -0.0289 0.0269 0.0058 0.0276 0.2935 0.3193 0.2797 0.2774
θ4 0.5 -0.0008 -0.0003 -0.0012 -0.0010 0.0428 0.0291 0.0195 0.0136
θ5 0.75 0.0031 -0.0020 -0.0006 0.0001 0.0670 0.0422 0.0293 0.0214

θ3 -0.8 0.0075 0.0063 -0.0060 -0.0023 0.0937 0.0899 0.0816 0.0876
θ6 0.8 -0.0019 -0.0005 -0.0002 0.0002 0.0254 0.0149 0.0108 0.0066

Table 5.1.2. BIAS(η̂) (left) and RMSE(η̂) (right) with D = 25.

If the domain sample sizes are all equal to 10 and the number of domains increases from 25 to
200, Table 5.1.1 shows that the RMSEs of all estimators decrease. If the number of domains is
D = 25, a very small value in practice, Table 5.1.2 shows that increasing nd helps to estimate
the parameters of the variance components of the vectors ed of random errors, but not the
corresponding parameters of the vectors ud of random effects.

5.2 Simulation 2

The target of Simulation 2 is to investigate the behavior of the domain predictors under the
BNER model (3.2). For generating the population, we take Nd = 200, d = 1, . . . ,D, so that
N = 200D. The set of all units (population) and selected units (sample) are

U = {udj : d = 1, . . . ,D, j = 1, . . . , Nd}, s = {udj : d = 1, . . . ,D, j = 1, . . . , nd} ⊂ U.

For each udj ∈ U , we generate the auxiliary variables in the same way as in Simulation 1. The
steps of Simulation 2 are

1. Generate xdjk, d = 1, . . . ,D, j = 1, . . . , Nd, k = 1, 2. Construct the population matrices
Xd and Zd of dimensions 2Nd × p and 2Nd × 2 respectively.

2. Repeat I = 104 times (i = 1, . . . , 104)

2.1. Generate the populations random vectors u
(i)
d ∼ N2(0, Vud), e

(i)
dj ∼ N2(0, Vedj) and

y
(i)
dj = Xdjβ + u

(i)
d + e

(i)
dj , d = 1, . . . ,D j = 1, . . . , Nd.

2.2. Calculate the domain means and ratios, i.e.

η
(i)
dk = Y

(i)
dk =

1

Nd

Nd∑

j=1

y
(i)
djk, η

(i)
d3 = R

(i)
d =

Y
(i)
d1

Y
(i)
d1 + Y

(i)
d2

, d = 1, . . . ,D, k = 1, 2.

2.3. Extract the sample (ydj ,Xdj), d = 1, . . . ,D, j = 1, . . . , nd.

2.4. Calculate the REML estimators β̂
(i)
11 , β̂

(i)
12 , β̂

(i)
21 , β̂

(i)
22 , θ̂

(i)
1 , . . . , θ̂

(i)
6 .

2.5. Calculate the EBLUPs of Y
(i)
dk and the plug-in ratio predictor of R

(i)
d , i.e.

η̂
(i)
dk = Ŷ

eb(i)

dk , η̂
(i)
d3 = R̂

in(i)
d , d = 1, . . . ,D, k = 1, 2.
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3. For d = 1, . . . ,D and k = 1, 2, 3, calculate the absolute performance measures

REdk =
(1
I

I∑

i=1

(η̂
(i)
dk − η

(i)
dk )

2
)1/2

, Bdk =
1

I

I∑

i=1

(η̂
(i)
dk − η

(i)
dk ), Mdk =

1

I

I∑

i=1

η̂
(i)
dk ,

4. For d = 1, . . . ,D, k = 1, 2, 3, calculate the relative performance measures

RREdk =
REdk

Mdk
100, RBdk =

Bdk

Mdk
100, RREk =

1

D

D∑

d=1

RREdk, ARBk =
1

D

D∑

d=1

|RBdk|.

Table 5.2.1 presents the simulation results for Ŷ
eb

d1 (k = 1), Ŷ
eb

d2 (k = 2) and R̂in
d (k = 3). As

expected, the performance measures decrease as the sample size nd increases. However, if the
sample size remains fixed and the number of domains D increases then the reduction of bias
and MSE is small. This is due to the fact that the number of domain parameters (means and
ratios) also increase when D increases.

Figures 5.2.1 and 5.2.2 presents the boxplots of biases Bdk and root-MSEs Edk respectively. The
figures shows that the three predictors are basically unbiased and that root-MSEs decrease if
sample sizes increase. Further, the variance (and not the bias) gives the main contribution to
the root-MSE.

D k nd = 10 nd = 25 nd = 50 nd = 100 nd = 10 nd = 25 nd = 50 nd = 100

25
1 0.0343 0.0260 0.0161 0.0081 4.6486 3.0845 2.0983 1.2370
2 0.0394 0.0254 0.0173 0.0110 5.0017 3.3268 2.2643 1.3389
3 0.0221 0.0120 0.0076 0.0035 2.1821 1.3585 0.8987 0.5243

50
1 0.0331 0.0236 0.0179 0.0073 4.5547 3.0608 2.0938 1.2360
2 0.0425 0.0265 0.0189 0.0093 4.9271 3.3193 2.2674 1.3411
3 0.0192 0.0118 0.0071 0.0041 2.1727 1.3563 0.9019 0.5239

100
1 0.0358 0.0253 0.0179 0.0102 4.4957 3.0426 2.0841 1.2337
2 0.0371 0.0263 0.0182 0.0112 4.8706 3.3010 2.2643 1.3392
3 0.0186 0.0107 0.0073 0.0040 2.1592 1.3549 0.8997 0.5236

200
1 0.0350 0.0228 0.0156 0.0305 4.4750 3.0357 2.0810 1.2350
2 0.0388 0.0263 0.0187 0.0316 4.8511 3.2984 2.2634 1.3419
3 0.0215 0.0125 0.0076 0.0122 2.1552 1.3516 0.8980 0.5240

Table 5.2.1. ARBk (left) and RREk (right), ρu = −0.8, ρe = 0.8.

Figure 5.2.1. Biases Bdk, d = 1, . . . ,D, k = 1, 2, 3, with D = 25, ρu = −0.8, ρe = 0.8.
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Figure 5.2.2. REdk, d = 1, . . . ,D, k = 1, 2, 3, with D = 25, ρu = −0.8, ρe = 0.8.

We run new simulations for comparing the EBLUPs based on the BNER model with the EBLUPs
based on the two independent NER models. All simulation settings remain the same, with the
exception of θ3 = ρu and θ6 = ρe. In the case ρu = ρe = 0, the independent NER models
generate the data. In all the remaining cases, the BNER model generates the data. We run
Fisher-scoring algorithms for calculating the REML estimators of the NER and BNER model
parameters. Table 5.2.3 presents the simulation results and the medians of the computational
times (c.time in seconds) that Fisher-scoring algorithms take to calculate the REML estimators
of the model parameters in all iterations. The ”Predictor” column indicates in which model
(NER or BNER) the predictor is based. We observe that the BNER model provides better
results than the NER model if the correlations ρu and ρe have a different sign. In the remaining
cases, both procedures behave similarly. On the other hand, fitting two separate and independent
NER models has much lower computational cost.

ARBk RREk c.time

Predictor ρu ρe k = 1 k = 2 k = 3 k = 1 k = 2 k = 3 seconds

NER 0.0 0.0 0.1363 0.1246 0.1278 2.1921 2.3107 1.7847 0.035
BNER 0.1372 0.1235 0.1273 2.1930 2.3117 1.7857 12.446

NER -0.8 -0.8 0.1367 0.1441 0.1536 2.1805 2.3161 2.2886 0.035
BNER 0.1364 0.1456 0.1534 2.1839 2.3192 2.2914 12.418

NER 0.8 0.8 0.1203 0.1121 0.0636 2.1817 2.3228 0.8477 0.035
BNER 0.1206 0.1135 0.0620 2.1829 2.3265 0.8473 12.452

NER 0.8 -0.8 0.1329 0.1453 0.1762 2.1829 2.3123 2.4353 0.035
BNER 0.1372 0.1310 0.1623 2.1112 2.2586 2.3844 12.467

NER -0.8 0.8 0.1246 0.1125 0.0676 2.1835 2.3224 0.9362 0.035
BNER 0.1096 0.1058 0.0627 2.1323 2.2509 0.9011 12.499

Table 5.2.3. Simulation results for D = 25 and nd = 50.

5.3 Simulation 3

The target of Simulation 3 is to investigate the behavior of the MSE estimators of the EBLUPs
under the BNER model (3.2). The population and sample data is generated in the same way as
in Simulation 2. The steps of Simulation 3 are

1. Generate xdjk, d = 1, . . . ,D, j = 1, . . . , Nd, k = 1, 2. Construct the population matrices
Xdj of dimensions 2× p.
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2. Take MSEdk = (REdk)
2, d = 1, . . . ,D, k = 1, 2, 3, from the output of Simulation 2.

3. Repeat I = 200 times (i = 1, . . . , 200)

3.1. Generate the populations random vectors u
(i)
d ∼ N2(0, Vud), e

(i)
dj ∼ N2(0, Vedj) and

y
(i)
dj = Xdjβ + u

(i)
d + e

(i)
dj , d = 1, . . . ,D j = 1, . . . , Nd.

3.2. Extract the sample (ydj ,Xdj), d = 1, . . . ,D, j = 1, . . . , nd.

3.3. Calculate the REML estimators β̂
(i)
11 , β̂

(i)
12 , β̂

(i)
21 , β̂

(i)
22 , θ̂

(i)
1 , . . . , θ̂

(i)
6 .

3.4 Calculate mse
(i)
dk = mse

(
Ŷ

eb(i)

dk

)
, k = 1, 2, and mse

(i)
d3 = mse

(
R̂

in(i)
d

)
.

4. For d = 1, . . . ,D, k = 1, 2, 3, calculate the absolute performance measures

REdk =
(1
I

I∑

i=1

(mse
(i)
dk −MSEdk)

2
)1/2

, Bdk =
1

I

I∑

i=1

(mse
(i)
dk −MSEdk),

5. For d = 1, . . . ,D, k = 1, 2, 3, calculate the relative performance measures

RREdk =
100REdk

MSEdk
, RBdk =

100Bdk

MSEdk
, RREk =

1

D

D∑

d=1

RREdk, ARBk =
1

D

D∑

d=1

|RBdk|.

Tables 5.3.1 presents the simulation results for Ŷ
eb

d1 (k = 1), Ŷ
eb

d2 (k = 2) and R̂in
d (k = 3). We

obtain similar results as in Simulation 2. The performance measures decrease as the sample size
nd increases. If the sample size remains fixed and the number of domains D increases then the
reduction of bias and MSE is small.

D k nd = 10 nd = 25 nd = 50 nd = 100 nd = 10 nd = 25 nd = 50 nd = 100

25
1 330.97 126.43 54.98 18.42 362.03 141.03 61.71 20.55
2 337.20 128.91 56.14 18.35 369.30 143.86 62.93 20.53
3 100.90 41.85 19.07 6.17 220.53 118.66 79.71 58.99

50
1 327.05 120.63 52.82 18.04 343.49 127.95 56.04 19.15
2 333.46 122.57 54.24 18.36 350.65 130.10 57.55 19.51
3 98.43 40.45 18.37 6.80 214.56 118.19 81.23 61.94

100
1 306.09 117.29 49.98 16.74 312.07 120.15 51.43 17.22
2 311.92 119.28 50.62 17.16 317.90 122.19 52.08 17.64
3 89.25 37.01 16.21 5.70 187.73 106.81 74.64 58.51

200
1 319.79 117.42 50.53 16.88 324.21 119.12 51.31 17.17
2 327.10 119.47 51.24 17.21 331.55 121.22 52.03 17.49
3 93.18 38.18 17.29 7.26 193.19 108.73 76.48 60.19

Table 5.3.1. ARBk (left) and RREk (right), ρu = −0.8, ρe = 0.8.

As Table 5.3.1 contains aggregated information, we give information about domain-level non-
relative performance measures (bias and MSE). Figures 5.3.1 and 5.3.2 presents the boxplots of
biases Bdk and root-MSEs Edk of the MSE estimators respectively. The figures shows that the
three predictors have a positive bias that decreases as the sample size increases. Further, the
bias (and not the variance) gives the main contribution to the root-MSE of the MSE estimators.
The bad news, is that the introduced analytic MSE estimator has not performed well in domains
with very small sample sizes (e.g. nd ≤ 25). This fact lets an open door to investigate MSE
estimators based on resampling procedures; for example, by adapting the bootstrap procedures
of González-Manteiga et al. (2008a) to the multivariate case.
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Figure 5.3.1. Biases Bdk, d = 1, . . . ,D, k = 1, 2, 3, with D = 25, ρu = −0.8, ρe = 0.8.

Figure 5.3.2. REdk, d = 1, . . . ,D, k = 1, 2, 3, with D = 25, ρu = −0.8, ρe = 0.8.

6 Application to Spanish household budget survey data

This section applies the developed SAE methodology to data from the SHBS of 2016. The first
step is to fit a BNER model to the target vectors (ydj1, ydj2) containing the food and non-food
annual expenses of households and the auxiliary variables xdjk, d = 1, . . . ,D, j = 1, . . . , nd,
k = 1, 2, described in Section 2. The variables Income and NCU are treated as covariables and
the variables FC and Rural as factors with reference categories FC4 and R0 respectively. For
each target variable, Table 6.1 presents the estimates of the regression parameters and their
standard errors. It also presents the asymptotic p-values for testing the hypothesis H0 : βkr = 0.
Table 6.2 presents the estimates of the variance and correlation parameters with their 95%
asymptotic confidence intervals. This table shows that all the estimated parameters are signif-
icantly greater than zero. We remark that correlations ρu and ρe are significantly greater than
zero, so that the independent univariate modeling of y1 and y2 is not appropriate.
Figure 6.1 (left) maps the means of the household annual expenditures in food by Spanish
provinces. Figure 6.1 (right) maps the estimated relative root-MSEs (RRMSE) in %. This
Figure shows that expenditures on food is rather variable within Autonomous Regions.
Figure 6.2 (left) plots the ratios of household expenditures in food by Spanish provinces (in %).
Figure 6.2 (right) plots the corresponding RRMSEs in %. An interesting feature observed here
is that within some Autonomous Regions, the percentages of food expenditure could be rather
variable. This happens mostly in the Autonomous Regions of Andalućıa, Aragón, Castilla León
or in Galicia, where there are many provinces and some of them are more deprived than others.
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Expenditure Variable Estimate z-value St.error p-value

Food Intercept 0.02 1.54 0.01 0.12
Income 0.53 38.17 0.01 0.00
NCU 0.02 38.91 0.00 0.00
FC1 0.05 9.29 0.01 0.00
FC2 -0.02 2.60 0.01 0.01
FC3 -0.03 7.71 0.00 0.00

Non-food Intercept 0.31 8.74 0.04 0.00
Income 6.89 105.94 0.07 0.00
NCU 0.04 27.01 0.00 0.00
R1 0.04 2.41 0.02 0.02

Table 6.1: Regression parameters of the fitted BNER model.

Estimate Lower.lim Upper.lim

σ2
u1 0.002 0.001 0.003

σ2
u2 0.025 0.014 0.037

ρu 0.552 0.324 0.781
σ2
e1 0.057 0.056 0.058

σ2
e2 1.261 1.237 1.285

ρe 0.201 0.188 0.214

Table 6.2: Variance and correlation parameters.

Mean of food expenditure

<=3969.1
>3969.1 <= 4201
>4201 <= 4458.7
>4458.7

Mean of food expenditure RRMSE (%)

<=4.3
>4.3 <= 4.8
>4.8 <= 5.6
>5.6

Figure 6.1: Means Ŷ
eb

d1 (left) and their relative root-MSEs in % (right) of household annual
expenditures in food by Spanish provinces.

In contrast, there are other regions, such as Cataluña and Basque Country where the variability
of the estimated ratios is smaller.

For the sake of comparability, two separate and independent NER models are fitted with the
same auxiliary variables appearing in Table 6.1. The two NER models are incorrect models
since we have assumed that the fitted BNER model is the true model. Therefore the predictors
obtained using the EBLUP calculation formulas under a NER model are not EBLUPs and are
called INDEP.
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Percentage of food expenditure

<=15
>15 <= 15.5
>15.5 <= 16.1
>16.1

Percentage of food expenditure RRMSE (%)

<=3.6
>3.6 <= 4.5
>4.5 <= 5.1
>5.1

Figure 6.2: Ratios R̂in
d in % (left) and their relative root-MSEs in % (right) of household annual

expenditures in food by Spanish provinces.

Figure 6.3 plots the direct, INDEP and EBLUP estimates of Y 1 (left) and Y 2 (right). The
domains are sorted by sample sizes and the sample size is printed in the axis OX. This figure
shows that the three estimators follow the same pattern and come closer as the sample size
increases, but the INDEP and EBLUP have a smoother behavior.

Figure 6.3: Direct and EBLUP estimates

Figure 6.4 plots the estimated RRMSE of the direct estimators and the INDEP and EBLUP
predictors of Y 1 (left) and Y 2 (right). As before, the domains are sorted by sample size. For the
estimation of the MSE of the INDEP predictors, we use the estimator mseindk , k = 1, 2 formulas
of the functions g1− g4 that are described, for example, in Chapter 7 of Rao and Molina (2015).
We recall that those formulas are here incorrect, because the assumed true model is the BNER
and not the two independent and marginal NER models. We remark that a BLUP is the
predictor of linear parameter that minimizes the MSE in the class of unbiased predictors and
the EBLUP, with REML estimators, inherit this property asymptotically. Therefore, the MSEs
of the EBLUPs should be smaller than the MSEs of the INDEP predictors under the BNER
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model.

Figure 6.4: RRMSEs of direct and EBLUP estimates

Figure 6.4 shows that the EBLUPs have lower RRMSEs than the direct estimators and that
the RRMSEs come closer as the sample size increases. Further, it shows that mseindk under-
estimates the MSE of the INDEP predictors of Y 1 and Y 2. This is something quite interesting
for practitioners. If we do not take into account the correlation between the two target variable,
we can deliver good estimates of domain quantities, but we fail in estimating MSEs.

Figure 6.5 (left) plots the direct and indep and plug-in estimates of ratios of food expenditure
in %. Figure 6.5 (right) plots estimated RRMSEs for the direct estimator and the plug-in
predictors. The MSEs of the direct estimators of ratios are estimated by plug-in the design-
based covariances estimators (2.2) in the formula (4.2). For the INDEP predictor, we cannot
calculate MSEs because there is no way to estimate the required covariance term (cf. formula
(4.2)). This figure shows that the model-based plug-in estimators have lower RRMSEs than the
direct estimators and that the RRMSEs come closer as the sample size increases.

Tables 6.3 and 6.4 present some condensed numerical results. The tables has been constructed
in two steps. The domains are sorted by sample size, starting by the domain with the small-
est sample size. A selection of 14 domains out of 52 is done from the positions 1, 5, 9,. . . ,52.
The name and code of provinces are labeled by Prov and d respectively and the sample sizes by n.

Table 6.3 presents the direct and model-based estimates of mean food and non-food household
expenditures and the corresponding ratios of food expenditures by provinces. The estimators are
denoted by dir1, eb1, dir2, eb2, Rdir and Rin. The lower and upper limits of the 95% confidence
intervals (CIs) for Rd (in %) are in the columns labelled by Rin− and Rin+ respectively. We
calculate the CIs by applying the standard normality formulas to the plug-in estimates Rin and
to its RMSEs. This table shows that the model-based estimates follow the pattern of direct
estimates and that both estimates are closer when the sample size is large.

Table 6.4 presents the RRMSEs of direct and model-based estimators of Y d1, Y d2 and Rd.
The RRMSEs are labeled by dir1, eb1, dir2, eb2, Rdir and Rin. By observing the columns of
RRMSEs, we conclude that the model-based predictors are preferred to the direct estimators.
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Sample size

102 125 198 366 617 1242

12
14

16
18

20

DIR

PLUG IN

INDEP

R

Sample size

102 125 198 366 617 1242

4
6

8
10

12

DIR

PLUG IN

RRMSE R

Figure 6.5: Direct and plug-in estimates of ratios (left) and their estimated RRMSEs (left).

Prov d n dir1 eb1 dir2 eb2 Rdir Rin Rin− Rin+

Guadalajara 19 102 3999 4229 25591 25686 13.52 14.14 12.69 15.59
Palencia 34 118 4357 4396 17893 19671 19.58 18.26 16.07 20.46
Cuenca 16 123 3099 3480 19123 19505 13.95 15.14 13.13 17.15
Ourense 32 169 2926 3064 14691 16354 16.61 15.78 13.40 18.16
Burgos 9 187 4666 4651 23492 23255 16.57 16.67 15.25 18.09
Granada 18 198 3729 3841 21833 21545 14.59 15.13 13.62 16.64
Albacete 2 249 3858 4075 21039 21250 15.49 16.09 14.63 17.55
Ciudad Real 13 355 3858 4018 20714 21085 15.70 16.01 14.64 17.37
Pontevedra 36 463 4469 4451 23593 23197 15.93 16.10 14.95 17.25
Coruña, A 15 536 4145 4306 23429 23464 15.03 15.51 14.42 16.59
Zaragoza 50 678 4228 4410 23889 23436 15.04 15.84 14.82 16.86
Cantabria 39 761 4014 4173 23536 23602 14.57 15.02 14.03 16.02
Murcia 30 913 4347 4557 23379 23310 15.68 16.35 15.38 17.33
Madrid 28 1653 4006 4094 28676 28021 12.26 12.75 12.04 13.46

Table 6.3: Estimates of Y d1, Y d2 and Rd and CIs for Rd (in %).

7 Conclusions

This paper introduces small area predictors of expenditure means and ratios based on the BNER
model (3.1). For a given domain, the EBLUP of a linear domain parameter based on the
BNER model borrows strength from the auxiliary data, the data from other domains and the
correlation between the target variables. By using this model, applied statistician can obtain
estimates of domain parameters that behave in a smooth an stable form across domains and
target parameters. This is usually considered as a good property for official statistics. The
paper also approximates the matrix of MSEs of the EBLUP and introduces an explicit-formula
estimator.

The bivariate unit-level models are the most appropriate models for deriving small area predic-
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Prov d n dir1 eb1 dir2 eb2 Rdir Rin

Guadalajara 19 102 11.13 6.00 11.42 4.89 12.51 5.22
Palencia 34 118 10.48 5.55 10.83 6.21 11.49 6.12
Cuenca 16 123 11.11 6.94 11.64 6.23 12.56 6.76
Ourense 32 169 9.12 7.31 9.65 7.01 10.56 7.67
Burgos 9 187 9.86 4.68 8.66 4.83 10.19 4.34
Granada 18 198 8.30 5.61 8.17 5.17 9.35 5.08
Albacete 2 249 7.32 5.00 7.93 5.03 8.47 4.61
Ciudad Real 13 355 6.25 4.72 6.48 4.83 6.91 4.33
Pontevedra 36 463 5.81 4.06 5.84 4.22 6.34 3.63
Coruña, A 15 536 5.35 4.10 5.50 4.10 5.95 3.56
Zaragoza 50 678 4.62 3.87 5.22 4.02 5.11 3.28
Cantabria 39 761 4.28 4.03 4.32 3.93 4.93 3.38
Murcia 30 913 4.00 3.61 4.19 3.92 4.62 3.02
Madrid 28 1653 2.95 3.82 2.93 3.17 3.37 2.82

Table 6.4: RRMSEs of estimators of Y d1, Y d2 and Rd (all in %).

tors of indicators depending on two target variables. The ratio of totals or means is a typical
example of this kind of parameters. These parameters could be estimated by fitting univariate
models to each of the response variables. The drawback of this approach is that the correlation
between the response variables and the correlation between the EBLUPs of the domain means
are not taken into account.
If the target domain parameters are totals or means, then the INDEP predictors based on the
“incorrect” separate NER models produce loss of efficiency, with respect to the EBLUPs based
on the “true” BNER model, mainly when the correlations of random effects and errors have
different sign. Otherwise, the loss of efficiency is rather small. The main problem is not the
INDEP predictor itself, but the corresponding MSE estimators based on the incorrect models.
These estimators behave rather bad. When the target variables are positively correlated, they
tend o under-estimate the MSEs, as it happens in the application to real data. This is a severe
error.

In the case that the target domain parameter is a ratio, the INDEP ratio estimators could
also be used. However, an appropriate estimator of the MSE of the ratio estimator could not
be constructed under the independent univariate modeling. This problem can be treated and
solved by using plug-in predictor of ratios based on the EBLUPs of the BNER model.
Three simulation experiments are carried out to empirically investigate and to check the be-
havior of the fitting algorithm, the predictors (EBLUP and plug-in) and the MSE estimators.
Simulation 1 investigates the behavior of the REML fitting algorithm and empirically shows
the consistency of the REML estimators of model parameters. Simulation 2 studies the gain
of efficiency of the EBLUPs and plug-in predictors when using bivariate models instead of uni-
variate ones. The conclusion is that predictors based on the BNER model (3.1) outperform the
corresponding ones based on two independent NER models when correlations of random effects
and random errors have different sign. Simulation 3 empirically shows that the bias and MSE
of the introduced estimator of the MSE matrix decrease as the sample size increases.

The new small area estimation methodology is applied to data from the SHBS of 2016. The
target is to estimate means of food and non-food household annual expenditures and ratios
of household annual expenditures by Spanish provinces. The estimation procedure takes into
account the correlation between the two target variables. The paper also compares the model-
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based estimates with the corresponding ones obtained by applying direct Hajéck-type estimators
and it shows that introduced estimators have lower MSEs than the direct estimators.

As far as the results obtained for the expenditures in the Spanish provinces, we can say that
the provinces with the highest mean of household annual expenditures in food are, mainly, in
the north of Spain. Also, we can conclude that the percentage of food expenditure is different
within the provinces of some Autonomous Regions and this can help to the regional authorities
to implement different plolicies in the provinces.
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area estimation of proportions under area-level compositional mixed models. TEST. DOI:
10.1007/s11749-019-00688-w.

Fay, R. E. (1987). Application of multivariate regression of small domain estimation. In: R.
Platek, J. N. K. Rao, C. E. Särndal and M. P. Singh (Eds.), Small Area Statistics, John
Wiley, New York, 91-102.

23
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