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Alcalá de Henares, 28871 Madrid, Spain

cDepartment of Computer Science, University of A Coruña
Campus de Elviña s/n 15071 - A Coruña, Spain

Abstract

Feature selection (FS) is a key preprocessing step in data mining. CFS (Correlation-

Based Feature Selection) is an FS algorithm that has been successfully applied to

classification problems in many domains. We describe Distributed CFS (DiCFS)

as a completely redesigned, scalable, parallel and distributed version of the CFS

algorithm, capable of dealing with the large volumes of data typical of big data

applications. Two versions of the algorithm were implemented and compared

using the Apache Spark cluster computing model, currently gaining popular-

ity due to its much faster processing times than Hadoop’s MapReduce model.

We tested our algorithms on four publicly available datasets, each consisting

of a large number of instances and two also consisting of a large number of

features. The results show that our algorithms were superior in terms of both

time-efficiency and scalability. In leveraging a computer cluster, they were able

to handle larger datasets than the non-distributed WEKA version while main-

taining the quality of the results, i.e., exactly the same features were returned

by our algorithms when compared to the original algorithm available in WEKA.
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1. Introduction

In recent years, the advent of big data has raised unprecedented challenges

for all types of organizations and researchers in many fields. Xindong et al.

[38], however, state that the big data revolution has come to us not only with

many challenges but also with plenty of opportunities for those organizations5

and researchers willing to embrace them. Data mining is one field where the

opportunities offered by big data can be embraced, and, as indicated by Leskovec

et al. [23], the main challenge is to extract useful information or knowledge

from these huge data volumes that enable us to predict or better understand

the phenomena involved in the generation of the data.10

Feature selection (FS) is a dimensionality reduction technique that has emerged

as an important step in data mining. According to Guyon and Eliseeff [14] its

purpose is twofold: to select relevant attributes and simultaneously to discard

redundant attributes. This purpose has become even more important nowadays,

as vast quantities of data need to be processed in all kinds of disciplines. Practi-15

tioners also face the challenge of not having enough computational resources. In

a review of the most widely used FS methods, Bolón-Canedo et al. [5] conclude

that there is a growing need for scalable and efficient FS methods, given that

the existing methods are likely to prove inadequate for handling the increasing

number of features encountered in big data.20

Depending on their relationship with the classification process, FS methods

are commonly classified in one of three main categories : (i) filter methods, (ii)

wrapper methods, or (iii) embedded methods. Filters rely solely on the charac-

teristics of the data and, since they are independent of any learning scheme, they

require less computational effort. They have been shown to be important pre-25

processing techniques, with many applications such as churn prediction [20, 19]

and microarray data classification. In microarray data classification, filters ob-

tain better or at least comparable results in terms of accuracy to wrappers [4].

In wrapper methods, the final subset selection is based on a learning algorithm
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that is repeatedly trained with the data. Although wrappers tend to increase30

the final accuracy of the learning scheme, they are usually more computation-

ally expensive than the other two approaches. Finally, in embedded methods,

FS is part of the classification process, e.g., as happens with decision trees.

Another important classification of FS methods is, according to their results,

as (i) ranker algorithms or (ii) subset selector algorithms. With rankers, the35

result is a sorted set of the original features. The order of this returned set

is defined according to the quality that the FS method determines for each

feature. Some rankers also assign a weight to each feature that provides more

information about its quality. Subset selectors return a non-ordered subset of

features from the original set so that together they yield the highest possible40

quality according to some given measure. Subset selectors, therefore, consist

of a search procedure and an evaluation measure. This can be considered an

advantage in many cases, as rankers usually evaluate features individually and

leave it to the user to select the number of top features in a ranking.

One filter-based subset selector method is the Correlation-Based Feature Se-45

lection (CFS) algorithm [16], traditionally considered useful due to its ability

not only to reduce dimensionality but also to improve classification algorithm

performance. However, the CFS algorithm, like many other multivariate FS

algorithms, has a time execution complexity O(m2 · n), where m is the number

of features and n is the number of instances. This quadratic complexity in the50

number of features makes CFS very sensitive to the the curse of dimensional-

ity [3]. Therefore, a scalable adaptation of the original algorithm is required to

be able to apply the CFS algorithm to datasets that are large both in number

of instances and dimensions.

As a response to the big data phenomenon, many technologies and pro-55

gramming frameworks have appeared with the aim of helping data mining prac-

titioners design new strategies and algorithms that can tackle the challenge

of distributing work over clusters of computers. One such tool that has re-

cently received much attention is Apache Spark [40], which represents a new

programming model that is a superset of the MapReduce model introduced by60

3



Google [7, 8]. One of Spark’s strongest advantages over the traditional MapRe-

duce model is its ability to efficiently handle the iterative algorithms that fre-

quently appear in the data mining and machine learning fields.

We describe two distributed and parallel versions of the original CFS algo-

rithm for classification problems using the Apache Spark programming model.65

The main difference between them is how the data is distributed across the

cluster, i.e., using a horizontal partitioning scheme (hp) or using a vertical par-

titioning scheme (vp). We compare the two versions – DiCFS-hp and DiCFS-

vp, respectively – and also compare them with a baseline, represented by the

classical non-distributed implementation of CFS in WEKA [17]. Finally, their70

benefits in terms of reduced execution time are compared with those of the

CFS version developed by Eiras-Fanco et al. [10] for regression problems. The

results show that the time-efficiency and scalability of our two versions are an

improvement on those of the original version of the CFS; furthermore, similar

or improved execution times are obtained with respect to the Eiras-Franco et75

al [10] regression version. In the interest of reproducibility, our software and

sources are available as a Spark package1 called DiCFS, with a corresponding

mirror in Github.2

The rest of this paper is organized as follows. Section 2 summarizes the most

important contributions in the area of distributed and parallel FS and proposes a80

classification according to how parallelization is carried out. Section 3 describes

the original CFS algorithm, including its theoretical foundations. Section 4

presents the main aspects of the Apache Spark computing framework, focusing

on those relevant to the design and implementation of our proposed algorithms.

Section 5 describes and discusses our -hp and DiCFS-vp versions of the CFS85

algorithm. Section 6 describes our experiments to compare results for DiCFS-hp

and DiCFS-vp, the WEKA approach and the Eiras-Fanco et al. [10] approach.

Finally, conclusions and future work are outlined in Section 7.

1https://spark-packages.org
2https://github.com/rauljosepalma/DiCFS
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2. Background and Related Work

As might be expected, filter-based FS algorithms have asymptotic complexi-90

ties that depend on the number of features and/or instances in a dataset. Many

algorithms, such as the CFS, have quadratic complexities, while the most fre-

quently used algorithms have at least linear complexities [5]. This is why, in

recent years, many attempts have been made to achieve more scalable FS meth-

ods. In what follows, we analyse recent work on the design of new scalable95

FS methods according to parallelization approaches: (i) search-oriented, (ii)

dataset-split-oriented, or (iii) filter-oriented.

Search-oriented parallelizations account for most approaches, in that the

main parallelizations are searches guided by a classifier and the corresponding

evaluation of the resulting models. We classify the following studies in this100

category:

• Kubica et al. [22] developed parallel versions of three forward-search-based

FS algorithms, where a wrapper with a logistic regression classifier is used

to guide a search parallelized using the MapReduce model.

• Garćıa et al. [12] presented a simple approach for parallel FS, based on105

selecting random feature subsets and evaluating them in parallel using a

classifier. In their experiments they used a support vector machine (SVM)

classifier and, in comparing their results with those for a traditional wrap-

per approach, found lower accuracies but also much shorter computation

times.110

• Wang et al. [37] used the Spark computing model to implement an FS

strategy for classifying network traffic. They first implemented an initial

FS using the Fisher score filter [9] and then performed, using a wrapper

approach, a distributed forward search over the best m features selected.

Since the Fisher filter was used, however, only numerical features could115

be handled.
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• Silva et al. [35] addressed the FS scaling problem using an asynchronous

search approach, given that synchronous search, as commonly performed,

can lead to efficiency losses due to the inactivity of some processors waiting

for other processors to end their tasks. In their tests, they first obtained120

an initial reduction using a mutual information (MI) [27] filter and then

evaluated subsets using a random forest (RF) [18] classifier. However,

as stated by those authors, any other type of criterion could be used for

subset evaluation.

Dataset-split-oriented approaches have the main characteristic that paral-125

lelization is performed by splitting the dataset vertically or horizontally, then

applying existing algorithms to the parts and finally merging the results follow-

ing certain criteria. We classify the following studies in this category:

• Peralta et al. [28] used the MapReduce model to implement a wrapper-

based evolutionary search FS method. The dataset was split by instances130

and the FS method was applied to each resulting subset. Used as a re-

duction step was simple majority voting for the selected features and the

final subset of feature was selected according to a user-defined threshold.

All tests were carried out using the EPSILON dataset, which we also use

here (see Section 6).135

• Bolón-Canedo et al. [4] proposed a framework to deal with high dimension-

ality data by first optionally ranking features using a FS filter, then par-

titioning vertically by dividing the data according to features (columns)

rather than, as commonly done, according to instances (rows). After

partitioning, another FS filter is applied to each partition, and finally, a140

merging procedure guided by a classifier obtains a single set of features.

The authors’ experiments with five commonly used FS filters for the par-

titions, namely, CFS [16], Consistency [6], INTERACT [41], Information

Gain [30] and ReliefF [21], and with four classifiers for the final merging,

namely, C4.5 [31], Naive Bayes [33], k-Nearest Neighbors [1] and SVM [36],145
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show that their own approach significantly reduces execution times while

maintaining and, in some cases, even improving accuracy.

Finally, filter-oriented methods include redesigned or new filter methods that

are, or become, inherently parallel. Unlike the methods in the other categories,

parallelization in this category methods can be viewed as an internal, rather150

than external, element of the algorithm. We classify the following studies in

this category:

• Zhao et al. [42] described a distributed parallel FS method based on a vari-

ance preservation criterion and use of the proprietary software SAS High-

Performance Analytics. 3 One remarkable characteristic of the method is155

its support not only for supervised FS, but also for unsupervised FS where

no label information is available. Their experiments were carried out with

datasets with both high dimensionality and a high number of instances.

• Ramı́rez-Gallego et al. [32] described scalable versions of the popular

mRMR [27] FS filter that included a distributed version using Spark. The160

authors showed that their version that leveraged the power of a cluster

of computers could perform much faster than the original and processed

much larger datasets.

• In a previous work [26], using the Spark computing model we designed a

distributed version of the ReliefF [21] filter, called DiReliefF. In testing165

using datasets with large numbers of features and instances, it was much

more efficient and scalable than the original filter.

• Finally, Eiras-Franco et al [10], using four distributed FS algorithms, three

of them filters, namely, InfoGain [30], ReliefF [21] and the CFS [16], reduce

execution times with respect to the original versions. However, in the CFS170

case, the version of those authors focuses on regression problems where

all the features, including the class label, are numerical, with correlations

3http://www.sas.com/en_us/software/high-performance-analytics.html
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calculated using the Pearson coefficient. A completely different approach

is required to design a parallel version for classification problems where

correlations are based on the information theory.175

The approach described here can be categorized as a filter-oriented approach

that builds on works described elsewhere [32], [26], [10]. The fact that their

focus was not only on designing an efficient and scalable FS algorithm, but also

on preserving the original behaviour (and obtaining the same final results) of

traditional filters, means that research focused on those filters is also valid for180

adapted versions. Another important issue in relation to filters is that, since

they are generally more efficient than wrappers, they are often the only feasible

option due to the abundance of data. It is worth mentioning that scalable

filters could feasibly be included in any of the methods mentioned in the search-

oriented and dataset-split-oriented categories, where an initial filtering step is185

implemented to improve performance.

3. Correlation-Based Feature Selection (CFS)

The CFS method, originally developed by Hall [16], is categorized as a sub-

set selector because it evaluates subsets rather than individual features. For

this reason, the CFS needs to perform a search over candidate subsets, but190

since performing a full search over all possible subsets is prohibitive (due to the

exponential complexity of the problem), a heuristic has to be used to guide a

partial search. This heuristic is the main concept behind the CFS algorithm,

and, as a filter method, the CFS is not a classification-derived measure, but

rather applies a principle derived from Ghiselly’s test theory [13], i.e., good fea-195

ture subsets contain features highly correlated with the class, yet uncorrelated

with each other.

This principle is formalized in Equation (1) where Ms represents the merit

assigned by the heuristic to a subset s that contains k features, rcf represents

the average of the correlations between each feature in s and the class attribute,200

and rff is the average correlation between each of the ( k
2 ) possible feature pairs
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in s. The numerator can be interpreted as an indicator of how predictive the

feature set is and the denominator can be interpreted as an indicator of how

redundant features in s are.

Ms =
k · rcf√

k + k(k − 1) · rff
(1)

Equation (1) also posits the second important concept underlying the CFS,205

which is the computation of correlations to obtain the required averages. In

classification problems, the CFS uses the symmetrical uncertainty (SU) mea-

sure [29] shown in Equation (2), where H represents the entropy function of a

single or conditioned random variable, as shown in Equation (3). This calcu-

lation adds a requirement for the dataset before processing, which is that all210

non-discrete features must be discretized. By default, this process is performed

using the discretization algorithm proposed by Fayyad and Irani [11].

SU = 2 ·
[
H(X)−H(X|Y )

H(Y ) + H(X)

]
(2)

H(X) = −
∑
x∈X

p(x) log2 p(x)

H(X|Y ) = −
∑
y∈Y

p(y)
∑
x∈X

p(x|y) log2 p(x|y) (3)

The third core CFS concept is its search strategy. By default, the CFS

algorithm uses a best-first search to explore the search space. The algorithm

starts with an empty set of features and at each step of the search all possible215

single feature expansions are generated. The new subsets are evaluated using

Equation (1) and are then added to a priority queue according to merit. In the

subsequent iteration, the best subset from the queue is selected for expansion

in the same way as was done for the first empty subset. If expanding the best

subset fails to produce an improvement in the overall merit, the next best subset220

from the queue is selected and this counts as a fail. By default, the CFS uses

five consecutive fails as a stopping criterion and as a limit on queue length.
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The final CFS element is an optional post-processing step. As stated before,

the CFS tends to select feature subsets with low redundancy and high correlation

with the class. However, in some cases, extra features that are locally predictive225

in a small area of the instance space may exist that can be leveraged by certain

classifiers [15]. To include these features in the subset after the search, the

CFS can optionally use a heuristic that enables inclusion of all features whose

correlation with the class is higher than the correlation between the features

themselves and with features already selected. Algorithm 1 summarizes the230

main aspects of the CFS.

4. The Spark Cluster Computing Model

The following short description of the main concepts behind the Spark com-

puting model focuses exclusively on aspects that complete the conceptual basis

for our DiCFS proposal in Section 5.235

The main concept behind the Spark model is what is known as the resilient

distributed dataset (RDD). Zaharia et al. [40, 39] defined an RDD as a read-

only collection of objects, i.e., a dataset partitioned and distributed across the

nodes of a cluster. The RDD has the ability to automatically recover lost par-

titions through a lineage record that knows the origin of the data and possible240

calculations done. Even more relevant for our purposes is the fact that opera-

tions run for an RDD are automatically parallelized by the Spark engine; this

abstraction frees the programmer from having to deal with threads, locks and

all other complexities of traditional parallel programming.

With respect to the cluster architecture, Spark follows the master-slave245

model. Through a cluster manager (master) a driver program can access the

cluster and coordinate the execution of a user application by assigning tasks

to the executors, i.e., programs that run in worker nodes (slaves). By default,

only one executor is run per worker. Regarding the data, RDD partitions are

distributed across the worker nodes, and the number of tasks launched by the250

driver for each executor is set according to the number of RDD partitions re-
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Algorithm 1 CFS [16]

1: Corrs := correlations between all features with the class

2: BestSubset := ∅

3: Queue.setCapacity(5)

4: Queue.add(BestSubset)

5: NFails := 0

6: while NFails < 5 do

7: HeadState := Queue.dequeue {Remove from queue}

8: NewSubsets := evaluate(expand(HeadState), Corrs)

9: Queue.add(NewSubsets)

10: if Queue.isEmpty then

11: return BestSubset {When the best subset is the full subset}

12: end if

13: LocalBest := Queue.head {Check new best without removing}

14: if LocalBest.merit > BestSubset.merit then

15: BestSubset := LocalBest {Found a new best}

16: NFails := 0 {Fails must happen consecutively}

17: else

18: NFails := NFails + 1

19: end if

20: end while

21: {Optionally add locally predictive features to BestSubset}

22: return BestSubset
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siding in the worker.

Two types of operations can be executed on an RDD, namely, actions and

transformations. Of the actions, which allow results to be obtained from a

Spark cluster, perhaps the most important is collect, which returns an array255

with all the elements in the RDD. This operation has to be done with care, to

avoid exceeding the maximum memory available to the driver. Other important

actions include reduce, sum, aggregate and sample, but as they are not used

by us here, we will not explain them. Transformations are mechanisms for cre-

ating an RDD from another RDD. Since RDDs are read-only, a transformation260

creating a new RDD does not affect the original RDD. A basic transformation

is mapPartitions, which receives, as a parameter, a function that can han-

dle all the elements of a partition and return another collection of elements to

conform a new partition. The mapPartitions transformation is applied to all

partitions in the RDD to obtain a new transformed RDD. Since received and265

returned partitions do not need to match in size, mapPartitions can thus re-

duce or increase the overall size of an RDD. Another interesting transformation

is reduceByKey; this can only be applied to what is known as a PairRDD,

which is an RDD whose elements are key-value pairs, where the keys do not

have to be unique. The reduceByKey transformation is used to aggregate the270

elements of an RDD, which it does by applying a commutative and associative

function that receives two values of the PairRDD as arguments and returns one

element of the same type. This reduction is applied by key, i.e., elements with

the same key are reduced such that the final result is a PairRDD with unique

keys, whose corresponding values are the result of the reduction. Other impor-275

tant transformations (which we do not explain here) are map, flatMap and

filter.

Another key concept in Spark is shuffling, which refers to the data com-

munication required for certain types of transformations, such as the above-

mentioned reduceByKey. Shuffling is a costly operation because it requires280

redistribution of the data in the partitions, and therefore, data read and write

across all nodes in the cluster. For this reason, shuffling operations are mini-
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mized as much as possible.

The final concept underpinning our proposal is broadcasting, which is a useful

mechanism for efficiently sharing read-only data between all worker nodes in a285

cluster. Broadcast data is dispatched from the driver throughout the network

and is thus made available to all workers in a deserialized fast-to-access form.

5. Distributed Correlation-Based Feature Selection (DiCFS)

We now describe the two algorithms that conform our proposal. They rep-

resent alternative distributed versions that use different partitioning strategies290

to process the data. We start with some considerations common to both ap-

proaches.

As stated previously, CFS has a time execution complexity of O(m2 · n)

where m is the number of features and n is the number of instances. This

complexity derives from the first step shown in Algorithm 1, the calculation of295

the
(
m+1
2

)
correlations between all pairs of features including the class, and the

fact that for each pair, O(n) operations are needed in order to calculate the

entropies. Thus, to develop a scalable version, our main focus in parallelization

design must be on the calculation of correlations.

Another important issue is that, although the original study by Hall [16]300

stated that all correlations had to be calculated before the search, this is only

a true requisite when a backward best-first search is performed. In the case

of the search shown in Algorithm 1, correlations can be calculated on demand,

i.e., on each occasion a new non-evaluated pair of features appears during the

search. In fact, trying to calculate all correlations in any dataset with a high305

number of features and instances is prohibitive; the tests performed on the

datasets described in Section 6 show that a very low percentage of correlations is

actually used during the search and also that on-demand correlation calculation

is around 100 times faster when the default number of five maximum fails is

used.310
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Below we describe our two alternative methods for calculating these corre-

lations in a distributed manner depending on the type of partitioning used.

5.1. Horizontal Partitioning

Horizontal partitioning of the data may be the most natural way to distribute

work between the nodes of a cluster. If we consider the default layout where the315

data is represented as a matrix D in which the columns represent the different

features and the rows represent the instances, then it is natural to distribute

the matrix by assigning different groups of rows to nodes in the cluster. If we

represent this matrix as an RDD, this is exactly what Spark will automatically

do.320

Once the data is partitioned, Algorithm 1 (omitting line 1) can be started

on the driver. The distributed work will be performed on line 8, where the best

subset in the queue is expanded and, depending on this subset and the state of

the search, a number nc of new pairs of correlations will be required to evaluate

the resulting subsets. Thus, the most complex step is the calculation of the325

corresponding nc contingency tables that will allow us to obtain the entropies

and conditional entropies that conform the symmetrical uncertainty correlation

(see Equation (2)). These nc contingency tables are partially calculated locally

by the workers following Algorithm 2. As can be observed, the algorithm loops

through all the local rows, counting the values of the features in pairs and storing330

the results in a map containing the feature pairs as keys and the contingency

tables as their matching values.

The next step is to merge the contingency tables from all the workers to

obtain global results. Since these tables hold simple value counts, they can

easily be aggregated by performing an element-wise sum of the corresponding335

tables. These steps are summarized in Equation (4), where CTables is an RDD

of keys and values, and where each key corresponds to a feature pair and each

value to a contingency table.
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Algorithm 2 function localCTables(pairs)(partition)

1: pairs← nc pairs of features

2: rows← local rows of partition

3: m← number of columns (features in D)

4: ctables← a map from each pair to an empty contingency table

5: for all r ∈ rows do

6: for all (x, y) ∈ pairs do

7: ctables(x, y)(r(x), r(y)) += 1

8: end for

9: end for

10: return ctables

pairs = {(feata, featb), · · · , (featx, featy)}

nc = |pairs|

CTables = D.mapPartitions(localCTables(pairs)).reduceByKey(sum)

CTables =


((feata, featb), ctablea,b)

...

((featx, featy), ctablex,y)


nc×1

(4)

Once the contingency tables have been obtained, the calculation of the en-

tropies and conditional entropies is straightforward since all the information340

necessary for each calculation is contained in a single row of the CTables RDD.

This calculation can therefore be performed in parallel by processing the local

rows of this RDD.

Once the distributed calculation of the correlations is complete, control re-

turns to the driver, which continues execution of line 8 in Algorithm 1. As345

can be observed, the distributed work only happens when new correlations are

needed, and this occurs in only two cases: (i) when new pairs of features need
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to be evaluated during the search, and (ii) at the end of the execution if the

user requests the addition of locally predictive features.

To sum up, every iteration in Algorithm 1 expands the current best subset350

and obtains a group of subsets for evaluation. This evaluation requires a merit,

and the merit for each subset is obtained according to Figure 1, which illus-

trates the most important steps in the horizontal partitioning scheme using a

case where correlations between features f2 and f1 and between f2 and f3 are

calculated in order to evaluate a subset.355

5.2. Vertical Partitioning

Vertical partitioning has already been proposed in Spark by Ramı́rez-Gallego

et al. [32], using another important FS filter, mRMR. Although mRMR is a

ranking algorithm (it does not select subsets), it also requires the calculation of

information theory measures such as entropies and conditional entropies between360

features. Since data is distributed horizontally by Spark, those authors propose

two main operations to perform the vertical distribution:

• Columnar transformation. Rather than use the traditional format whereby

the dataset is viewed as a matrix whose columns represent features and

rows represent instances, a transposed version is used in which the data365

represented as an RDD is distributed by features and not by instances, in

such a way that the data for a specific feature will in most cases be stored

and processed by the same node. Figure 2, based on Ramı́rez-Gallego et

al. [32], explains the process using an example based on a dataset with

two partitions, seven instances and four features.370

• Feature broadcasting. Because features must be processed in pairs to cal-

culate conditional entropies and because different features can be stored in

different nodes, the feature is broadcast over the cluster so that all nodes

can access and evaluate the feature along with the other stored features.

In the case of the adapted mRMR [32], since every step in the search requires375

the comparison of a single feature with a group of remaining features, it proves
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efficient, at each step, to broadcast this single feature (rather than multiple

features). In the case of the CFS, the core issue is that, at any point in the

search when expansion is performed, if the size of subset being expanded is k,

then the correlations between the m− k remaining features and k − 1 features380

in the subset being expanded have already been calculated in previous steps;

consequently, only the correlations between the most recently added feature and

the m − k remaining features are missing. Therefore, the proposed operations

can be applied efficiently in the CFS just by broadcasting the most recently

added feature.385

The disadvantages of vertical partitioning are that (i) it requires an extra

processing step to change the original layout of the data and this requires shuf-

fling, (ii) it needs data transmission to broadcast a single feature in each search

step, and (iii) the fact that, by default, the dataset is divided into a number of

partitions equal to the number of features m in the dataset may not be optimal390

for all cases (while this parameter can be tuned, it can never exceed m). The

main advantage of vertical positioning is that the data layout and the broad-

casting of the compared feature move all the information needed to calculate the

contingency table to the same node, which means that this information can be

more efficiently processed locally. Another advantage is that the whole dataset395

does not need to be read every time a new set of features has to be compared,

since the dataset can be filtered by rows to process only the required features.

Due to the nature of the search strategy (best-first) used in the CFS, the

first search step will always involve all features, so no filtering can be performed.

For each subsequent step, only one more feature per step can be filtered out.400

This is especially important with high dimensionality datasets: the fact that

the number of features is much higher than the number of search steps means

that the percentage of features that can be filtered out is reduced.

We performed a number of experiments to quantify the effects of the advan-

tages and disadvantages of each approach and to check the conditions in which405

one approach was better than the other.
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6. Experiments

The experiments tested and compared time-efficiency and scalability for the

horizontal and vertical DiCFS approaches so as to check whether they improved

on the original non-distributed version of the CFS. We also tested and compared410

execution times with that reported in the recently published research by Eiras-

Franco et al. [10] into a distributed version of CFS for regression problems.

Note that no experiments were needed to compare the quality of the results

for the distributed and non-distributed CFS versions as the distributed versions

were designed to return the same results as the original algorithm.415

For our experiments, we used a single master node and up to ten slave nodes

from the big data platform of the Galician Supercomputing Technological Centre

(CESGA). 4 The nodes have the following configuration:

• CPU: 2 X Intel Xeon E5-2620 v3 @ 2.40GHz

• CPU Cores: 12 (2X6)420

• Total Memory: 64 GB

• Network: 10GbE

• Master Node Disks: 8 X 480GB SSD SATA 2.5” MLC G3HS

• Slave Node Disks: 12 X 2TB NL SATA 6Gbps 3.5” G2HS

• Java version: OpenJDK 1.8425

• Spark version: 1.6

• Hadoop (HDFS) version: 2.7.1

• WEKA version: 3.8.1

4http://bigdata.cesga.es/
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Table 1: Description of the four datasets used in the experiments

Dataset No. of

Samples

(×106)

No. of

Features.

Feature

Types

Problem

Type

ECBDL14 [2] ∼33.6 632 Numerical,

Categorical

Binary

HIGGS [34] 11 28 Numerical Binary

KDDCUP99 [25] ∼5 42 Numerical,

Categorical

Multiclass

EPSILON 1/2 2,000 Numerical Binary

The experiments were run on four large-scale publicly available datasets.

The ECBDL14 [2] dataset, from the protein structure prediction field, was used430

in the ECBLD14 Big Data Competition included in the GECCO’2014 interna-

tional conference. This dataset has approximately 33.6 million instances, 631

attributes and 2 classes, consists 98% of negative examples and occupies about

56GB of disk space. HIGGS [34], from the UCI Machine Learning Reposi-

tory [24], is a recent dataset representing a classification problem that distin-435

guishes between a signal process which produces Higgs bosons and a background

process which does not. KDDCUP99 [25] represents data from network connec-

tions and classifies them as normal connections or different types of attacks (a

multi-class problem). Finally, EPSILON is an artificial dataset built for the

Pascal Large Scale Learning Challenge in 2008.5 Table 1 summarizes the main440

characteristics of the datasets.

With respect to algorithm parameter configuration, two defaults were used

in all the experiments: the inclusion of locally predictive features and the use

of five consecutive fails as a stopping criterion. This applies to both distributed

and non-distributed versions. Moreover, for the vertical partitioning version, the445

5http://largescale.ml.tu-berlin.de/about/
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Figure 3: Execution time with respect to percentages of instances for four datasets, for DiCFS-

hp and DiCFS-vp using ten nodes and for a non-distributed implementation in WEKA using

a single node

number of partitions was equal to the number of features, as set by default in

Ramı́rez-Gallego et al. [32]. The horizontally and vertically distributed versions

of the CFS are labelled DiCFS-hp and DiCFS-vp, respectively.

We first compared execution times for the four algorithms in the datasets

using ten slave nodes with all their cores available. For the case of the non-450

distributed version of the CFS, we used the implementation provided in the

WEKA platform [17]. The results are shown in Figure 3.

Note that, with the aim of offering a comprehensive view of execution time

behaviour, Figure 3 shows results for sizes larger than the 100% of the datasets.

To achieve these sizes, the instances in each dataset were duplicated as many455

times as necessary. Note also that, since ECBDL14 is a very large dataset, its

temporal scale is different from that of the other datasets.
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Regarding the non-distributed version of the CFS, Figure 3 does not show

results for WEKA in the experiments on the ECBDL14 dataset, because it was

impossible to execute that version in the described platform due to memory460

requirements exceeding the available limits. This also occurred with the larger

samples from the EPSILON dataset for both algorithms. Even when it was

possible to execute the WEKA version with the two smallest samples from the

EPSILON dataset, these samples are not shown because the execution times

were too high (19 and 69 minutes, respectively). Figure 3 shows successful465

results for the smaller HIGGS and KDDCUP99 datasets, which could still be

processed in a single node of the cluster, as required by the WEKA version.

However, even in the case of these smaller datasets, much better execution

times can be observed for both distributed versions.

Regarding the distributed versions, DiCFS-vp was unable to process the470

oversized versions of the ECBDL14 dataset, due to the large amounts of memory

required to perform shuffling. The HIGGS and KDDCUP99 datasets showed

an increasing difference in favor of DiCFS-hp, however, due to the fact that

these datasets have much smaller feature sizes than ECBDL14 and EPSILON.

As mentioned earlier, DiCFS-vp ties parallelization to the number of features475

in the dataset, so datasets with small numbers of features were not able to

fully leverage the cluster nodes. Another view of the same issue is given by

the results for the EPSILON dataset; in this case, the execution times for the

300% sized dataset were better than for DiCFS-hp. This was because there

were too many partitions (2,000) for the number of instances available; further480

experiments showed that adjusting the number of partitions to 100 reduced the

execution time for the 100% EPSILON dataset from about 2 minutes to 1.4

minutes (faster than DiCFS-hp). Reducing the number of partitions further,

however, caused the execution time to start increasing again.

Figure 4 shows the results for similar experiments, except that this time the485

percentage of features in the datasets was varied and the features were copied

to obtain oversized versions. It can be observed that the number of features

had a greater impact on the memory requirements of DiCFS-vp. This caused
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Figure 4: Execution times with respect to different percentages of features in two datasets for

DiCFS-hp and DiCFS-vp

problems not only in processing the ECBDL14 dataset but also the EPSILON

dataset. We can also see quadratic time complexity in the number of features490

and how the temporal scale in the EPSILON dataset (with the highest number

of dimensions) matches that of the ECBDL14 dataset. As for the KDDCUP99

dataset, the results show that increasing the number of features obtained a

better level of parallelization and a slightly improved execution time for DiCFS-

hp.495

An important measure of the scalability of an algorithm is speed-up, which

is a measure that indicates how capable an algorithm is of leveraging a growing

number of nodes so as to reduce execution times. We used the speed-up defini-

tion shown in Equation (5) and used all the available cores for each node (i.e.,

12). The experimental results are shown in Figure 5, where it can be observed500
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that, for all four datasets, DiCFS-hp scales better than DiCFS-vp. It can also

be observed that the HIGGS and KDDCUP datasets are too small to take ad-

vantage of the use of more than two nodes and also that practically no speed-up

improvement is obtained from increasing this value.

To summarize, our experiments show that even when vertical partitioning505

results in shorter execution times (the case in certain circumstances, e.g., when

the dataset has an adequate number of features and instances for optimal par-

allelization according to the cluster resources), the benefits are not significant

and may even be eclipsed by the effort invested in determining whether this

approach is indeed the most efficient approach for a particular dataset or a510

particular hardware configuration or in fine-tuning the number of partitions.

Horizontal partitioning should therefore be considered as the best option in the

general case.

speedup(m) =

[
execution time on 2 nodes

execution time on m nodes

]
(5)

We also compared the DiCFS-hp approach with that of Eiras-Franco et

al. [10], who described a Spark-based distributed version of the CFS for regres-515

sion problems. The comparison was based on their experiments on the same

datasets but using our current hardware. Those datasets were selected as only

having numerical features and so could naturally be treated as regression prob-

lems. Table 2 shows execution time and speed-up values obtained for different

sizes of both datasets for both distributed and non-distributed versions and con-520

sidering them to be classification and regression problems. Regression-oriented

versions for the Spark and WEKA versions are labelled RegCFS and RegWEKA,

respectively, the number after the dataset name represents the sample size and

the letter indicates whether the sample had removed or added instances (i) or

removed or added features (f ). In the case of oversized samples, the method525

used was the same as described above, i.e., features or instances were copied

as necessary. The experiments were performed using ten cluster nodes and a

single node for the WEKA version. The resulting speed-up was calculated as
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Figure 5: Speed-up for four datasets for DiCFS-hp and DiCFS-vp
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Table 2: Execution time and speed-up values for different CFS versions for regression and

classification

Dataset Execution Time (sec) Speed-Up

WEKA RegWEKA DiCFS-hp RegCFS RegCFS DiCFS-hp

EPSILON 25i 1011.42 655.56 58.85 63.61 10.31 17.19

EPSILON 25f 393.91 703.95 25.83 55.08 12.78 15.25

EPSILON 50i 4103.35 2228.64 76.98 110.13 20.24 53.30

HIGGS 100i 182.86 327.61 21.34 23.70 13.82 8.57

HIGGS 200i 2079.58 475.98 28.89 26.77 17.78 71.99

HIGGS 200f 934.07 720.32 21.42 34.35 20.97 43.61

the WEKA execution time divided by the corresponding Spark execution time.

Although the original experiments in [10] were performed only using EP-530

SILON 50i and HIGGS 100i, it can be observed that much better speed-up

was obtained by the DiCFS-hp version for EPSILON 50i but in the case of

HIGGS 100i, the resulting speed-up in the classification version is lower. More-

over, it can be observed that speed-up for the classification version was con-

siderably greater than for the regression version when the number of dataset535

instances or features was increased.

7. Conclusions and Future Work

We describe two parallel and distributed versions of the CFS filter-based FS

algorithm using the Apache Spark programming model: DiCFS-vp and DiCFS-

hp. These two versions essentially differ in how the dataset is distributed across540

the nodes of the cluster. The first version distributes the data by splitting

rows (instances) and the second version, following Ramı́rez-Gallego et al. [32],

distributes the data by splitting columns (features). As the outcome of a four-

way comparison of DiCFS-vp and DiCFS-hp, a non-distributed implementation

in WEKA and a distributed regression version in Spark, we can conclude as545

follows:
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• As was expected, both DiCFS-vp and DiCFS-hp were able to handle larger

datasets in much a more time-efficient manner than the classical WEKA

implementation. Moreover, in many cases they were the only feasible way

to process certain types of datasets because of prohibitive WEKA memory550

requirements.

• Of the horizontal and vertical partitioning schemes, the horizontal version

(DiCFS-hp) proved to be the better option in the general case due to its

better scalability and its natural partitioning mode that enables the Spark

framework to make better use of cluster resources.555

• For classification problems, the benefits obtained from distribution com-

pared to non-distribution version can be considered equal to or even better

than the benefits already demonstrated for the regression domain [10].

Regarding future research, an especially interesting line is whether it is nec-

essary for this kind of algorithm to process all the data available or whether it560

would be possible to design automatic sampling procedures that could guaran-

tee that, under certain circumstances, equivalent results could be obtained. In

the case of the CFS, this question becomes more pertinent in view of the study

of symmetrical uncertainty in datasets with up to 20,000 samples by Hall [15],

where tests showed that symmetrical uncertainty decreased exponentially with565

the number of examples and then stabilized at a certain number. Another line

of future work could be research into different data partitioning schemes that

could, for instance, improve the locality of data while overcoming the disadvan-

tages of vertical partitioning.
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A. Alonso-Betanzos, J. Touriño, Multithreaded and Spark parallelization

of feature selection filters, Journal of Computational Science 17 (2016)615

609–619. doi:10.1016/j.jocs.2016.07.002.

URL http://linkinghub.elsevier.com/retrieve/pii/

S1877750316301107

[11] U. M. Fayyad, K. B. Irani, Multi-Interval Discretization of Continuos-

Valued Attributes for Classification Learning (1993).620

URL http://trs-new.jpl.nasa.gov/dspace/handle/2014/35171

[12] D. J. Garcia, L. O. Hall, D. B. Goldgof, K. Kramer, A Parallel Feature

Selection Algorithm from Random Subsets (2004).

[13] E. E. Ghiselli, Theory of Psychological Measurement, McGraw-Hill series

in psychology, McGraw-Hill, 1964.625

URL https://books.google.es/books?id=mmh9AAAAMAAJ

[14] I. Guyon, A. Elisseeff, An Introduction to Variable and Feature Selection,

Journal of Machine Learning Research (JMLR) 3 (3) (2003) 1157–1182.

arXiv:1111.6189v1, doi:10.1016/j.aca.2011.07.027.

30

http://arxiv.org/abs/10.1.1.163.5292
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1145/1327452.1327492
http://dl.acm.org/citation.cfm?id=1327452.1327492
http://dl.acm.org/citation.cfm?id=1327452.1327492
http://dl.acm.org/citation.cfm?id=1327452.1327492
http://dl.acm.org/citation.cfm?id=1327452.1327492
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.133.1318{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.133.1318{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.133.1318{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.133.1318{&}rep=rep1{&}type=pdf
http://linkinghub.elsevier.com/retrieve/pii/S1877750316301107
http://linkinghub.elsevier.com/retrieve/pii/S1877750316301107
http://linkinghub.elsevier.com/retrieve/pii/S1877750316301107
http://dx.doi.org/10.1016/j.jocs.2016.07.002
http://linkinghub.elsevier.com/retrieve/pii/S1877750316301107
http://linkinghub.elsevier.com/retrieve/pii/S1877750316301107
http://linkinghub.elsevier.com/retrieve/pii/S1877750316301107
http://trs-new.jpl.nasa.gov/dspace/handle/2014/35171
http://trs-new.jpl.nasa.gov/dspace/handle/2014/35171
http://trs-new.jpl.nasa.gov/dspace/handle/2014/35171
http://trs-new.jpl.nasa.gov/dspace/handle/2014/35171
https://books.google.es/books?id=mmh9AAAAMAAJ
https://books.google.es/books?id=mmh9AAAAMAAJ
http://arxiv.org/abs/1111.6189v1
http://dx.doi.org/10.1016/j.aca.2011.07.027


[15] M. A. Hall, Correlation-based feature selection for machine learning,630

PhD Thesis., Department of Computer Science, Waikato University, New

Zealand (1999). doi:10.1.1.37.4643.

[16] M. A. Hall, Correlation-based Feature Selection for Discrete and Numeric

Class Machine Learning (2000) 359–366.

URL http://dl.acm.org/citation.cfm?id=645529.657793635

[17] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I. Witten, The

WEKA data mining software: An update, SIGKDD Explorations 11 (1)

(2009) 10–18. doi:10.1145/1656274.1656278.

[18] T. K. Ho, Random Decision Forests, in: Proceedings of the Third Inter-

national Conference on Document Analysis and Recognition (Volume 1) -640

Volume 1, ICDAR ’95, IEEE Computer Society, Washington, DC, USA,

1995, pp. 278—-.

URL http://dl.acm.org/citation.cfm?id=844379.844681

[19] A. Idris, A. Khan, Y. S. Lee, Intelligent churn prediction in telecom:

Employing mRMR feature selection and RotBoost based ensemble clas-645

sification, Applied Intelligence 39 (3) (2013) 659–672. doi:10.1007/

s10489-013-0440-x.

[20] A. Idris, M. Rizwan, A. Khan, Churn prediction in telecom using Random

Forest and PSO based data balancing in combination with various feature

selection strategies, Computers and Electrical Engineering 38 (6) (2012)650

1808–1819. doi:10.1016/j.compeleceng.2012.09.001.

[21] I. Kononenko, Estimating attributes: Analysis and extensions of RE-

LIEF, Machine Learning: ECML-94 784 (1994) 171–182. doi:10.1007/

3-540-57868-4.

URL http://www.springerlink.com/index/10.1007/3-540-57868-4655

[22] J. Kubica, S. Singh, D. Sorokina, Parallel Large-Scale Feature Selection,

in: Scaling Up Machine Learning, no. February, 2011, pp. 352–370. doi:

31

http://dx.doi.org/10.1.1.37.4643
http://dl.acm.org/citation.cfm?id=645529.657793
http://dl.acm.org/citation.cfm?id=645529.657793
http://dl.acm.org/citation.cfm?id=645529.657793
http://dl.acm.org/citation.cfm?id=645529.657793
http://dx.doi.org/10.1145/1656274.1656278
http://dl.acm.org/citation.cfm?id=844379.844681
http://dl.acm.org/citation.cfm?id=844379.844681
http://dx.doi.org/10.1007/s10489-013-0440-x
http://dx.doi.org/10.1007/s10489-013-0440-x
http://dx.doi.org/10.1007/s10489-013-0440-x
http://dx.doi.org/10.1016/j.compeleceng.2012.09.001
http://www.springerlink.com/index/10.1007/3-540-57868-4
http://www.springerlink.com/index/10.1007/3-540-57868-4
http://www.springerlink.com/index/10.1007/3-540-57868-4
http://dx.doi.org/10.1007/3-540-57868-4
http://dx.doi.org/10.1007/3-540-57868-4
http://dx.doi.org/10.1007/3-540-57868-4
http://www.springerlink.com/index/10.1007/3-540-57868-4
http://ebooks.cambridge.org/ref/id/CBO9781139042918A143
http://dx.doi.org/10.1017/CBO9781139042918.018
http://dx.doi.org/10.1017/CBO9781139042918.018


10.1017/CBO9781139042918.018.

URL http://ebooks.cambridge.org/ref/id/CBO9781139042918A143

[23] J. Leskovec, A. Rajaraman, J. D. Ullman, Mining of Massive Datasets,660

2014. arXiv:arXiv:1011.1669v3, doi:10.1017/CBO9781139924801.

URL http://ebooks.cambridge.org/ref/id/CBO9781139924801

[24] M. Lichman, UCI Machine Learning Repository (2013).

URL http://archive.ics.uci.edu/ml

[25] J. Ma, L. K. Saul, S. Savage, G. M. Voelker, Identifying Suspicious URLs665

: An Application of Large-Scale Online Learning, in: Proceedings of the

International Conference on Machine Learning (ICML), Montreal, Quebec,

2009.

[26] R. J. Palma-Mendoza, D. Rodriguez, L. De-Marcos, Distributed ReliefF-

based feature selection in Spark, Knowledge and Information Systems670

(2018) 1–20doi:10.1007/s10115-017-1145-y.

URL http://link.springer.com/10.1007/s10115-017-1145-y

[27] H. Peng, F. Long, C. Ding, Feature selection based on mutual information:

criteria of max-dependency, max-relevance, and min-redundancy., IEEE

transactions on pattern analysis and machine intelligence 27 (8) (2005)675

1226–38. doi:10.1109/TPAMI.2005.159.

URL http://www.ncbi.nlm.nih.gov/pubmed/16119262
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