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Abstract. 

Introduction: The unanticipated magnetic resonance imaging (MRI) detection in 

the brain of asymptomatic subjects of white matter lesions suggestive of multiple 

sclerosis (MS) has been named as radiologically isolated syndrome (RIS). As the 

difference between early MS (i.e., clinically isolated syndrome [CIS]) and RIS is the 

occurrence of a clinical event, it should be logical to improve detection of 

subclinical form without interfering with MRI as there are radiological diagnostic 

criteria for that. Our objective was to use machine-learning classification methods 

to identify morphometric measures that help to discern patients with RIS from 

those with CIS. 

Methods: We used a multimodal 3T MRI approach by combining MRI biomarkers 

(cortical thickness, cortical and subcortical grey matter volume, and white matter 

integrity) of a cohort of 17 RIS and 17 CIS patients for single-subject level 

classification. 

Results: The best proposed models to predict the CIS and RIS diagnosis were 

based on the Naive Bayes, Bagging and Multilayer Perceptron classifiers using 

only three features: the left rostral middle frontal gyrus volume, and the fractional 

anisotropy values in the right amygdala and in the right lingual gyrus. The Naive 

Bayes obtained the highest accuracy (overall classification, 0.765 and AUROC, 

0.782). 

Conclusions: A machine-learning approach applied to multimodal MRI data may 

differentiate between the earliest clinical expressions of MS (CIS and RIS), with an 

accuracy of 78%. 
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INTRODUCTION 

The steady increase in the use of magnetic resonance imaging (MRI) for the 

evaluation of different medical conditions, such as headaches or dizziness, has led 

to the emergence of a new entity named radiologically isolated syndrome (RIS), 

which is characterized by incidental brain MRI finding of white matter lesions 

demonstrating dissemination in space in subjects with a normal neurologic 

examination, and without historical accounts of typical multiple sclerosis (MS) 

symptoms.[1] 

Multiple sclerosis (MS) is an inflammatory, demyelinating, and 

neurodegenerative disease that predominantly affects young adults and it is 

characterized by heterogeneous manifestations and evolution. At the clinical onset 

of the disease, approximately 85% of patients experience an acute or subacute 

episode of neurologic disturbance, known as clinically isolated syndrome (CIS).[2] 

The differentiation of RIS from CIS, typically the earliest clinical expression of 

MS, may be challenging. In fact, a number of recent studies suggest that RIS and 

relapsing-remitting MS or CIS patients share both nonmotor clinical features[3, 4] 

and quantitative brain tissue damage,[5] thereby suggesting that RIS, as an entity, 

may reflect the earliest and preclinical form of MS. Although the difference between 

CIS and RIS, by definition, is the presence of clinical symptoms, some people with 

CIS may have symptoms so mild that they go unnoticed and hence they could be 

diagnosed with RIS. From a clinical point of view, it is extremely important to 

differentiate both entities (RIS vs. CIS), since CIS patients are usually treated with 

disease-modifying therapies, unlike RIS patients.[6]  

 



In this context, several quantitative MRI methods have been established to 

assess changes in brain areas, which appear to be normal on conventional MRI, the 

so-called normal-appearing grey and white matter.[7] Also, the width of the cortical 

grey matter layer that covers the surface of the brain, referred to as cortical 

thickness, has been assessed as an useful measure in a variety of disorders to study 

neuroanatomical patterns, including MS.[8] Diffusion tensor imaging (DTI) has the 

potential to quantify microstructural changes that modify the integrity of brain 

tissues.[9] By using DTI, the brain tissue microstructure can be determined by 

quantitative indexes, such as mean diffusivity (MD), which is affected by cellular size 

and integrity, and fractional anisotropy (FA), which reflects the degree of alignment 

of cellular structures within fibre tracts and their structural integrity.[9] 

The above MRI modalities provide extremely high-dimensional raw data like 

cortical thickness, cortical and subcortical grey matter volumes or FA and MD values. 

The analysis of these biomarkers, using statistical packages for neuroimaging 

analysis like SPM (www.fil.ion.ucl.ac.uk/spm/), FSL (fsl.fmrib.ox.ac.uk/fsl/fslwiki) or 

FreeSurfer (surfer.nmr.mgh.harvard.edu), allows us to study differences between 

groups (e.g. RIS vs. CIS). However, these methods are not applicable on a single-

subject level and therefore do not improve the clinical diagnosis potential. To 

overcome this issue, machine-learning techniques have recently been identified as 

promising tools in neuroimaging data analysis for individual class prediction.[10] 

Automatic classification techniques provide tools for analysing all these variables 

simultaneously and observe inherent disease-related patterns in the data.[10] 

Despite the fact that machine-learning techniques have been widely used for 

MRI images in several neurological and neurodegenerative disorders, including MS 

http://www.fil.ion.ucl.ac.uk/spm/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki


for predicting disease course,[11] classifying between different MS disease 

courses,[12] or even for predicting CIS conversion to MS,[13] no study to date has 

been conducted to discern between CIS and RIS patients. We hypothesized that a 

machine-learning approach, applied to multimodal MRI data, can differentiate 

between CIS and RIS patients. The aim of this study was therefore to test and 

evaluate the effectiveness of machine-learning schemes for single-subject level 

classification of individuals affected by earliest forms of MS (CIS and RIS). Towards 

this purpose, we used a multimodal 3T MRI approach by combining MRI biomarkers 

(cortical thickness, cortical and subcortical grey matter volume, and white matter 

integrity) of a cohort of RIS and CIS patients. The collection of WEKA machine-

learning algorithms was used for this purpose. 

 

METHODS 

Participants 

Seventeen RIS patients (13 women, 4 men; mean age 41.6 years, range 27–

52 years) were recruited at four centres specialized in demyelinating diseases in 

Madrid (Spain). These patients had detected after undergoing conventional brain 1.5 

T MRI for various medical events not suggestive of MS. RIS patients who were 

included in the current study represent a subset of our previous RIS cohort;[3, 4] 

specifically, only those who underwent a complete 3 T multimodal MRI study.  

Brain white matter abnormalities were initially identified by a neuroradiologist 

and subsequently examined by an MS specialist at each clinical site to guarantee 

the diagnostic criteria for RIS by Okuda et al.[14] 



Seventeen patients (12 women, 5 men; mean age 39.5 years, range 30–55 

years) who had presented with a CIS suggestive of MS were recruited from the 

University Hospital “Gregorio Marañón,” and from the University Hospital of Getafe, 

both in Madrid (Spain). All CIS patients underwent a complete neurological 

evaluation, including Expanded Disablity Status Scale (EDSS)[15] by experienced 

neurologists (M.L.M.-G. and Y.A). Patients selected met the following inclusion 

criteria: 1) single clinical episode indicative of MS; 2) total follow-up time of at least 

3 months from the occurrence of the first inflammatory demyelinating event; and 3) 

the presence of  ≥ 1 asymptomatic T2 lesion(s) in at least two or more brain 

locations considered characteristic for MS (juxtacortical, periventricular, 

infratentorial, and spinal cord)[16] at the initial or follow-up MRI. Participants were 

excluded if they had received steroid medication during the month before the study 

inclusion and a longitudinal evaluation longer than five years. 

All patients (CIS and RIS) underwent a multisequence MRI examination, 

which was acquired in a single session using a single 3 T scanner at CIEN (Centre 

for Research on Neurological diseases, in Spanish) Foundation in Madrid (Spain). 

All the participants included in the study gave their written informed consent 

after full explanation of the procedure. The study, which was conducted in 

accordance with the principles of the Helsinki declaration of 1975, was approved by 

the ethical standards committee on human experimentation at the University 

Hospital “12 de Octubre” (Madrid).  

 

 

 



Measurement Instruments 

MRI Acquisition 

All MRI data were acquired with a clinical 3T Signa HDx MRI scanner (GE 

Healthcare, Waukesha, WI) using an 8-channel phased array coil. The imaging 

(MRI) standardized protocol (without injection of contrast agent) included a 3D T1-

weighted SPGR with a TR = 10.012 ms, TE = 4.552 ms, TI = 600 ms, NEX = 1, 

acquisition matrix = 288 × 288, full brain coverage, resolution = 0.4688 × 0.4688 × 1 mm, 

flip angle = 12. The diffusion-weighted image (DWI) protocol acquisition consisted of 

3 images without diffusion gradients (b = 0 s/mm2) followed by 45 images measured 

with 45 directions (b = 1000 s/mm2) isotropically distributed in space. Additional 

parameters of the acquisition were: TE = 85.3 ms, TR = 10.100ms, flip-angle = 90, slice 

thickness = 3 mm (no gap), resolution = 2.6042 × 2.6042 × 2.6 mm, FOV = 250 mm and 

axial acquisition. 

All MRI acquisitions and image postprocessing (see below) were performed 

by a neuroradiologist (JA-L, see acknowledgments) and a physicist (VM-A) who 

were blinded to the clinical diagnoses. 

Data Post-processing 

MRI 

Cortical thickness and cortical volume measurements were calculated using 

the freely available software FreeSurfer (http://surfer.nmr.mgh.harvard.edu/). Using 

a surface-based approach, FreeSurfer can automatically segment the brain into 

different cortical regions of interest and calculate average thickness in the defined 

regions. In brief, images underwent pre-processing including intensity normalization 

and skull stripping, which was followed by labelling of cortical and subcortical 



regions. FreeSurfer's main cortical reconstruction pipeline began with the 

registration of the structural volume with the Talairach atlas.[17] After bias field 

estimations and the removal of these bias, the skull was stripped and subcortical 

white and grey matter structures were segmented.[18] Next, tessellation, automated 

topology correction, and surface deformation routines to create the white/grey 

(white) and grey/cerebrospinal fluid (pial) surface models.[19] These surface models 

were then inflated, registered to a spherical atlas, and used to parcellate the cortical 

mantle, according to gyral and sulci curvature.[20] The closest distance from the 

white surface to the pial surface at each surface's vertex was defined as the 

thickness.[20] Average cortical thickness, surface area, and total volume statistics 

corresponding to each parcellated region were then computed. The accuracy of 

FreeSurfer's results was then assessed visually for the different participants. 

DWI 

DWI data were pre-processed with FMRIB's Diffusion Toolbox 

(fsl.fmrib.ox.ac.uk/fsl/fslwiki/FslOverview). Pre-processing consisted of eddy-current 

correction, motion correction, and the removal of non-brain tissue using the robust 

Brian Extraction Tool.[21] Diffusion tensor images (DTIs) were created using the 

weighed least squares fitting method. We derived images of FA or MD from the DTI. 

To calculate the specific FA or MD values in the cortical and subcortical regions, we 

needed to map the DTI space to the Freesurfer's structural space (described above). 

The FA or MD maps were resampled by means of a rigid-body transformation from 

the diffusion to the structural space. After that, the FA or MD mean and standard 

deviation values from the Freesurfer's subcortical regions were computed. 

 



Dataset and analyses description 

The dataset was divided into the previously described groups (RIS and CIS). 

A total of 306 attributes resulted from the post-processing analysis for each of the 

34 cases/examples: the volume, the FA and MD values corresponding to 66 

cortical[18] and 14 subcortical[20] parcellated regions obtained with FreeSurfer as 

well as the average cortical thickness of the 66 cortical regions. Imaging features 

were coded using the following nomenclature: 

cerebralHemisphere_cerebralRegion_feature where “cerebralHemisphere” can be 

LH (for left hemisphere) or RH (for right hemisphere); “cerebralRegion” takes the 

FreeSurfer atlas coding and “feature” can be volume (for volumetric measures), 

thickness (for cortical thickness measures), FA (for fractional anisotropy measures) 

or MD (for mean diffusivity measures). 

The WEKA data mining software was used to search the best classification 

models using different sets of data and machine-learning techniques.[22] The 

calculations tried models using attributes from both hemispheres. All the WEKA 

algorithms were applied using the well-known 10-fold cross-validation technique to 

split the data. The performance of prediction models for a two-class problem was 

evaluated using a confusion matrix. There are several numbers of well-known 

accuracy measures for a two-class classifier in the literature. In the current study, 

we present the true positives (TP) score and the AUROC values for the validation 

process. Previous studies have suggested that, in general, AUROC is the best 

measure for model comparison.[23] 

Feature selection (FS) is a helpful stage prior to classification for 

dimensionality reduction, as well as selecting proper features and omitting improper 



features.[24] The aim of feature selection is to select a subset of extracted variables 

to reduce the number of input variables for the classifier, since the number and 

relevance of the input variables can affect the performance of the model.[24] A FS 

approach was performed to find the subset of features best describing the structure 

of the data. The FS process can answer the main question of how many and which 

are the most important features to discriminate between CIS and RIS patients. There 

are mainly three approaches for FS: Filter, Wrapper and Embedded. For the current 

study, a Filter approach was used to assess the relevance of features by looking 

only at the intrinsic properties of the data as a fast and simple computationally 

approach. 

The WEKA data mining software contains a collection of algorithms, divided 

into different family groups, to solve classification problems. They have all been 

tested in the current study, but the ones that have been proven relevant are the 

following:  

● Bayes Theorem, such as the Naive Bayes Classifier, which depending on the 

hypothesis, the presence or absence of a disease is independent of the feature 

space. This classifier has been used to solve different problems in the medical field, 

such as data analysis, prediction models or improving the brain diagnosis 

accuracy by means of MRI images.[25] 

● Estimation of functions, such as the Artificial Neural Networks (ANNs), which are 

flexible, non-linear and multidimensional mathematical systems capable of solving 

complex functions in very diverse fields. They have been widely used in the medical 

area, such as Alzheimer’s disease and mild cognitive impairment diagnosis, by 



combining different MRI techniques,[26] or for predicting the short-term prognosis of 

MS,[25], among others. 

● Combination of multiple algorithms. An example of this kind of algorithms is Bagging 

(stands for Bootstrap Aggregation), which combines the results of base classifiers 

treating each model with equal weight to generate final prediction. To generate better 

prediction models, each base classifier was trained using randomly drawn sample 

sets (bootstrap samples) with replacement from original training set.[27]  

 

RESULTS 

Sample characteristics 

Table 1 summarizes the demographic and clinical characteristics of the 

entire sample and shows that the groups were well-matched for age (F(2.48)=0.68, 

p=0.51), sex ratio (χ2=0.55, p=0.75), and educational level (χ2=0.08, p=0.95). 

Reasons for the first RIS patients MRI, which was performed a mean of 4.1 years 

(range 1-11) earlier, were: headache (N=5); dizziness (N=4); tinnitus-hypocusia 

(N=3); syncope (N=1); restless legs (N=1); research control (N=1); traffic accident 

(N=1); and prolactinoma (N=1). 

CIS patients were characterized by low clinical disability (median EDSS 

score of 0, range 0-4) and a relatively short duration of disease (median disease 

duration from clinical onset = 12 months). Only 3/17 (17.6%) CIS patients had a 

disease evolution from clinical onset shorter than 12 months, whereas 7/17 

(41.1%) had disease duration from symptom onset of at least 48 months. Of the 17 

CIS patients, five (29.4%) presented with spinal cord symptoms, four (23.5%) with 

optic neuritis; three (17.6%) with brainstem symptoms; three with polysymptomatic 



onset and two (11.8%) with hemispheric cerebral symptoms. All CIS subjects 

fulfilled dissemination in space according to the McDonald 2010 criteria.[28]. Four 

(23.5%) were on disease-modifying treatment (interferon-beta). 

Using a cut-off score of 8 on the Hamilton Depression Rating Scale total 

score,[29] nine (52.9%) of the RIS group had at least mild clinical depression, with 

more than half of them (N=5, 55.9%) having moderate depressive symptoms, rates 

identical to that observed among CIS patients.  

Table 2 shows the results of RIS and CIS classification for those WEKA’s 

machine-learning algorithms depicting statistic value greater than 0.7. The models 

were based on MRI biomarkers for both hemispheres (LH+RH) and on individual 

hemispheres (LH or RH) for all possible classification problems. MRI biomarkers 

were identified by the nomenclature described above.  

The best proposed models to predict the CIS and RIS diagnosis were based 

on the Naive Bayes, Bagging and Multilayer Perceptron (MLP, one of the most 

popular ANN) classifiers using only three features: the left rostral middle frontal gyrus 

volume, and the FA values in the amygdala and in the lingual gyrus, both in the right 

hemisphere. The Naive Bayes obtained the highest accuracy (overall classification, 

0.765 and AUROC, 0.782). These methods could classify above 70% of accuracy 

using only the information provided by two features (FA values in the amygdala and 

in the lingual gyrus). Only the FA value in the right amygdala achieved classification 

results above the 70% with the Naive Bayes Classifier and the MLP.  

 

 

 



DISCUSSION 

 
Clinicians usually use conventional MRI technology more often than novel 

techniques. Efforts to improve the characterization of RIS are not only essential to 

prevent overdiagnosis, but to enhance medical counselling, surveillance 

recommendations, and future treatment strategies. 

The current work presents for the first time the classification of RIS and CIS 

with machine-learning techniques using multimodal 3T MRI data. Our analysis of 

MRI and DWI biomarkers showed that only three features were relevant for the 

classification process: the volume of the left rostral middle frontal gyrus and the FA 

values in both the right amygdala and the right lingual gyrus (overall classification, 

0.765 and AUROC, 0.782 for the Naive Bayes). We have not found any previous 

study that relates changes in lingual gyrus with RIS. However, changes in frontal 

gyrus and in the amygdala are in line with clinical findings found in previous studies. 

For example, RIS patients have higher rates of depression, particularly anxious 

depression when compared with CIS patients.[3] This kind of depression is 

associated with modulation of amygdala connectivity.[30] Specifically, the right 

amygdala has been shown to be the most significant feature to discriminate CIS and 

RIS groups in our study. In addition, it has been suggested that patients with major 

depression may have right hemispheric dominant pre-attentive dysfunction.[31] 

Accordingly, if RIS patients tend to present higher rates of depression, they should 

have more affected the right hemisphere, which agrees with our results. Regarding 

the middle frontal gyrus, a recent study has found assessed that RIS patients show 

altered microstructural integrity in bilateral frontal sub-gyral regions.[5]  



Among all the methods of the WEKA data mining software, the Naive Bayes 

classifier is the one that achieved the better performance. This classifier is widely 

recognized as a simple and effective probabilistic classification method for 

biomedical applications.[32] Bayesian methods have been able to account for a 

range of inference problems relevant to biomedical applications. The analysis and 

classification of biomedical data is challenging because it must be done in the face 

of uncertainty (datasets are often noisy and with missing data). Bayesian decision 

theory is the principal approach for inferring underlying properties of data in the face 

of such uncertainty. 

Our results also confirm that Bagging and MLP are accurate techniques for 

predicting CIS and RIS diagnosis. Bagging algorithm is mainly useful in the case of 

small sample sizes and high dimensional datasets to get a more robust estimate.[33] 

On the other hand, there are several studies across different fields that show that 

ANN approaches, MLP in particular, provide high prediction accuracies to solve 

classification problems [26]  

Although different studies in predicting disease course in MS have been 

undertaken,[34, 35] there remains much to learn about machine-learning techniques 

in demyelinating diseases of the central nervous system, especially in RIS. 

Therefore, our results cannot be compared with previous studies. Further, the 

comparison with other studies in MS is difficult, since they report a wide range of 

different accuracies for classification and prediction tasks and they have used 

different cohorts, features, and techniques. The classification accuracy could be 

influenced by several factors including both methods and cohort properties. Feature 

extraction methods, feature selection or classification tools, image quality, number 



of subjects, demographics and clinical diagnosis criteria are also important 

considerations. Despite all this, the scores obtained in the current study agree with 

previous ones based on machine-learning techniques in MS, where the accuracy 

tends to be around 70%. However, the studies published to date in this field are 

mainly focused in predicting disease course in MS patients and, in the current study, 

we are dealing with individuals affected by the earliest forms of MS, RIS and CIS, 

trying to discriminate between these two different clinical conditions. For example, 

Wottschel et al.,[13] predicted clinical conversion to MS from 74 CIS patients during 

one- and three-year follow-up using support vector machines with an accuracy of 

71.4% and 68% for one- and three-years, respectively using MRI data and clinical 

information. Also, Bejarano et al.,[25] explored different WEKA algorithms (Naive 

Bayes, simple logistic, decision trees, and MLP) for predicting short-term disease 

outcomes in MS in a cohort of 51 CIS patients using clinical, imaging, and 

neurophysiological variables. In this study,[25] they found that the MLP yielded the 

better performance for predicting the EDSS change two years later with and 

accuracy around 80%. The study carried out by Zhao et al.,[11] explored different 

machine learning methods for predicting MS disease course of a total of 1,693 

subjects (574 with MRI data) belonging to The Comprehensive Longitudinal 

Investigation of MS at the Brigham and Women's Hospital (CLIMB). Their main 

outcome in these experiments was to assess the ability of clinical and MRI features 

to predict EDSS status at up to five years.[34] The purpose of Ion-Mărgineanu et 

al.,[12] was to classify 87 MS patients in the four clinical forms defined by the 

McDonald criteria, using machine-learning algorithms on clinical data, lesion loads 



and MRI metabolic features. They found scores between 70 and 85% depending on 

the different groups.[12] 

The study should be interpreted within the context of several limitations. The 

most important, the small sample size. Given the low prevalence and incidence of 

the disease, the RIS literature generally comprises studies with small sample 

sizes.[1] However, we could classify with an overall accuracy of 78% between CIS 

and RIS patients even with these small numbers. Notwithstanding, it would be 

important to replicate these findings in a larger and independent data set. Also, white 

matter lesions were not in-painted before submitting the image to FreeSurfer, which 

could compromise the accuracy of measured cortical thickness. However, lesion in-

painting has only a small effect on the estimated regional and global cortical 

thickness.[36] Further, we have previously reported that white matter lesion volume 

did not differ significantly between RIS and CIS groups [5]. 

In closing, we have shown that a machine-learning approach applied to 

multimodal MRI data may differentiate between the earliest clinical expressions of 

MS (CIS and RIS), with accuracy of 78% (AUROC, 0.782). We used a multimodal 

approach by combining MRI biomarkers (cortical thickness, cortical and subcortical 

grey matter volume, and white matter integrity) over the collection of WEKA 

machine-learning algorithms. Our study reflects that the best results in terms of 

AUROC are the Naive Bayes, Bagging and MLP classifiers. Although this is the first 

application of machine-learning techniques to the classification of RIS patients, the 

scores obtained are in accordance with previous MS studies. This technique has the 

potential to be used to research in demyelinating diseases. 
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Table 1:  Demographic and clinical characteristics of the patients. 
 

 Clinically isolated 
syndrome patients 

(N=17) 

Radiologically isolated 
syndrome patients 

(N=17) 
Female / male (ratio) 12 / 5 (2.4) 13 / 4 (3.2) 
Age in years 39.5 ± 6.1 (30-55) 41.6 ± 7.1 (27-52) 
Educational level 
  Primary studies 
  Secundary studies 
  University studies 

 
5 (29.4%) 
4 (23.5%) 
8 (47.1%) 

 
4 (23.5%) 
7 (41.2%) 
6 (35.3%) 

Mean age at RIS diagnosis - 37.7 ± 7.4 
≥ 9 T2 white matter lesions (%) 10 (58.8%) 6 (35.3%) 
Spinal cord lesions on MRI 10 (58.8%) 17 (100%) 
Gadolinum-enhancing lesions 0 (0%) 3 (17.6%) 
Dissemination in time criteria 4 (23.5%) 5 (29.4%) 
Dissemination in space Barkhof criteria (%) 11 (64.7%) 15 (88.2%) 
Dissemination in space Swanson criteria (%) 17 (100%) 17 (100%) 
Expanded Disability Status Scale total score+ 0 (0-4) - 

 
Mean ± standard deviation (range) and frequency (%) are reported.  
+Ordinal variables or variables that were not normally distributed and therefore median (interquartile 
range) is provided. 
a % of patients with clinically significant depression;  
 



Table 2: Results for CIS-RIS classification using different sets of LH and RH brain areas for 
the WEKA algorithms with AUROC value greater than 0.7 

LH + RH: lh_rostralmiddlefrontal_volume, rh_Amygdala_FA, rh_lingual_FA 

ML method TP score for CIS TP score for RIS Overall accuracy AUROC value 

Naïve Bayes  0.824 0.706 0.765 0.782 

Multilayer Perceptron 0.824 0.647 0.735 0.720 

Bagging 0.647 0.765 0.706 0.761 

RH: rh_Amygdala_FA, rh_lingual_FA 

ML method TP score for CIS TP score for RIS Overall accuracy AUROC value 

Naïve Bayes 0.706 0.647 0.676 0.727 

Bagging 0.765 0.706 0.735 0.754 

RH: rh_Amygdala_FA 

ML method TP score for CIS TP score for RIS Overall accuracy AUROC value 

Naïve Bayes  0.706 0.706 0.706 0.711 

Multilayer Perceptron 0.824 0.706 0.765 0.730 

 
LH, left hemisphere; RH, right hemisphere; FA, fractional anisotropy; ML, machine-learning; 
TP, True Positives. 
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