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Abstract

Time series and extreme value analyses are two statistical approaches usually
applied to study hydrological data. Classical techniques, such as autoregressive
integrated moving-average models (in the case of mean flow predictions), and
parametric generalised extreme value fits and nonparametric extreme value
methods (in the case of extreme value theory) have been usually employed in this
context. In this article, nonparametric functional data methods are used to per-
form mean monthly flow predictions and extreme value analysis, which are
important for flood risk management. These are powerful tools that take advan-
tage of both, the functional nature of the data under consideration and the flexi-
bility of nonparametric methods, providing more reliable results. Therefore, they
can be useful to prevent damage caused by floods and to reduce the likelihood
and/or the impact of floods in a specific location. The nonparametric functional
approaches are applied to flow samples of two rivers in the United States. In this
way, monthly mean flow is predicted and flow quantiles in the extreme value
framework are estimated using the proposed methods. Results show that the
nonparametric functional techniques work satisfactorily, generally outperforming
the behaviour of classical parametric and nonparametric estimators in both
settings.

Introduction

Prediction of future values is essential for the design of
water systems, and control measures will be more effective
if the process is reliable. Likewise, management and sche-
duling of areas exposed to flood risk rely heavily on tools
for frequency analysis of hydrological extremes.
Numerous studies have been carried out on hydrological

problems using statistical methods. Among them, time
series prediction is topical in this field (Toth et al., 2000;
Tamea et al., 2005; Wu et al., 2009). Research studies on
time series also include linear models for forecasting river
flows (see Wang et al., 2009, and references therein).
Among the several techniques to model time series, autore-
gressive integrated moving-average (ARIMA) models
described well the data analysed in the present research
and, therefore, they were employed to fit the hydrological
time series studied. Moreover, with this choice, a similar
comparison (between ARIMA models and nonparametric
functional methods) to that performed in some works
widely cited in the literature (Ferraty et al., 2005) can be
carried out. Basically, ARIMA models are preferred for

time series of short-memory type (the autocorrelation
structure decreases quickly), while, in other cases, hydro-
logical processes are of long-memory type. Other possible
alternatives not considered in the present research would
be, for example, fractional Gaussian noise and broken line
models (Koutsoyiannis, 2000).
Statistics of extremes (Coles, 2001) is also one of the

most significant techniques in frequency analysis (Katz
et al., 2002; Singh et al., 2005; Saf, 2009). Daily, monthly, or
annual maximum time series of river flow recordings are
typically represented by the generalised extreme value
(GEV) distribution.
ARIMA and GEV fitting are typical examples of para-

metric modelling. A different type of statistical model
applied to hydrological data involves using nonparametric
curve estimation methods, which does not require restric-
tive assumptions on the distribution of the population of
interest. Several papers have applied nonparametric estima-
tion methods to hydrological time series to carry out pre-
dictions as well as to perform extreme value analysis (Lall
et al., 1993; Guo et al., 1996; Sharma et al., 1997; Kim and
Heo, 2002; Wang et al., 2009; Quintela-Del-Río, 2011).
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Further details regarding nonparametric techniques
(including theoretical motivations, practical applications to
several scientific fields and references) may be found in, for
instance, the books of Ruppert et al. (2003) or Wasser-
man (2005).
Time series were recently analysed by nonparametric func-

tional data analysis (NFDA) (Ramsay and Silverman, 2005;
Ferraty and Vieu, 2006). NFDA works with data consisting
of curves or multidimensional variables. Different procedures
using these techniques have been applied to several complex
real problems (Besse et al., 2000; Hall et al., 2001; Fernández
De Castro et al., 2005; Castellano Méndez et al., 2009).
This article focuses on applying NFDA techniques in

prediction problems and extreme value analysis in the set-
ting of hydrology. The organisation of the article is as fol-
lows. Statistical methods presents the statistical methods
used in this article. These methods correspond to ARIMA
models for time series prediction (Time series analysis,
ARIMA models), and GEV parametric estimators and non-
parametric methods in extreme value analysis (The GEV
distribution and Nonparametric estimators, respectively).
Next, the new proposals using NFDA to study both pro-
blems (time series prediction and extreme value analysis)
are presented (NFDA applied to time series analysis). In
Hydrological data, these tools are applied to river flow data
from two sites in the United States. Finally, in Discussion, a
general discussion of the results is included.

Statistical methods

Time series analysis, ARIMA models

Let {Zt}t 2ℝ be a stochastic process or time series observed
until a time T. Usually, the process is observed at
N discretised times, and the observations are denoted by
{Z1, …, ZN}. To predict a future value ZN + s, the simplest
way consists of taking into account one single past value.
This is done by constructing a two-dimensional statistical
sample of size n = N − s, by setting Xi = Zi and Yi = Zi + s,
with i = 1,..., N − s. Therefore, the problem is converted
into a standard prediction problem of a response Y, given
an explanatory variable X. This can be generalised by con-
sidering the following autoregressive process of order p:

Zi + s =m Zi,…,Zi−p+ 1
� �

+ εi, i= p,…,N − s; ð1Þ

where εi is the error process, assumed to be independent of
Zi, and the aim is to estimate the function m(�).
A first approximation consists in assuming that m(�)

belongs to a particular class of functions, only depending
on a finite number of parameters to be estimated, such as
the ARIMA(p, d, q) models (Singh et al., 2005). If d is a

non-negative integer, then {Zt} is said an ARIMA(p, d, q)
process if Yt = (1 − B)dZt is a causal ARMA(p, q) process,
where B is the backward shift operator defined by BjZt =
Zt − j, j = 0, � 1, � 2, … (Brockwell and Davis, 1991).
Note that the process {Zt, t = 0, � 1 � 2, …} is said an
ARMA(p, q) process if {Zt} is stationary and if for every t,
Zt − φ1Zt − 1 − … − φpZt − p = εt + θ1εt − 1 + … + θqεt − q

where {εt} is a process of error terms, generally assumed to
be uncorrelated random variables with mean 0 and variance
σ2. In a ARIMA(p,d,q), p is the order (number of time lags)
of the autoregressive model, d is the degree of differencing
(the number of times the data have had past values sub-
tracted), and q is the order of the moving-average model.
The good practical properties of ARIMA models have led to
regularly use them to study hydrological problems. Some
relevant papers on this topic are, for example, Montanari
et al. (1997), Toth et al. (2000), or Tamea et al. (2005).
The prediction problem can be tackled using nonparametric

methods. To apply these methods only some mild regularity
conditions on the functionm(�) have to be assumed. The ‘curse
of dimensionality problem’ (Wand and Jones, 1995, p. 90) is
particularly troublesome in this nonparametric framework.
It has to do with the selection of the number of past values
to consider in the model. This is indeed an important ques-
tion. The lower the number of past predictors, the less flexi-
ble the model is, but when the lag increases, a large number
of observations are needed to obtain good estimates of the
model parameters. This number increases exponentially as
the dimension becomes larger.

Extreme value analysis

The GEV distribution

Suppose X1, …, Xn is a sequence of extreme values with a
common distribution function F. In the context of this article,
these variables can be the maximum river flows measured in
a specific period of time (24 h, a month, a year, etc.). Classical
parametric extreme value theory uses the idea that, under cer-
tain regularity conditions (Fisher and Tippett, 1928), the limit
of the distribution function F of the maximum is the GEV
distribution. Its cumulative distribution function is:

Fθ xð Þ=
exp − 1 + γ x−μð Þ=σ½ �−1=γ

n o
ifγ 6¼ 0

exp −exp − x−μð Þ=σ
h in o

ifγ = 0

8<
: ð2Þ

with θ = (μ, σ, γ). Here, μ is the location parameter, σ > 0
is the scale parameter, and γ is the shape parameter. Mean
and standard deviation are obtained as functions of these
parameters (Coles, 2001). The range of definition of the
GEV distribution depends on γ. If γ 6¼ 0, Fθ(x) is defined
for x such that 1 + γ(x − μ)/σ > 0, while if γ = 0, it is
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defined for − ∞ < x < ∞. Various values of the shape
parameter yield the extreme value type I, II, and III distri-
butions. Specifically, the three cases γ = 0, γ > 0, and γ < 0
correspond to the Gumbel, Fréchet, and ‘reversed’ Weibull
distributions, respectively. Using the random sample of

extreme values, an estimator θ̂ for θ can be obtained. Then,
substituting F by F θ̂ , estimators of some important func-
tions in this framework can be defined. For instance:
1. The function providing the probabilities of exceedance. In

the context of this article, it corresponds to the function
that, for a river flow c, gives the probability of obtaining a
flow larger than c (per unit of time). It is defined as

R cð Þ= P X > cð Þ= 1−F cð Þ: ð3Þ

2. The flow quantile, defined as the value of the flow that
can be expected to be once exceeded during a T period
of time. For each value of T, it is given by

FQ Tð Þ= F −1 1−
1
T

� �
ð4Þ

3. The mean return period or recurrence interval of a par-
ticular river flow c, defined as an estimator of the inter-
val of time between events of this flow. It can be
expressed as the inverse of the probability that a flow
c will be exceeded in one period of time:

RT cð Þ= 1
P X > cð Þ =

1
1−F cð Þ : ð5Þ

An application of these expressions is given in Extreme
value analysis.

Nonparametric estimators

The main advantage of working with nonparametric methods
is that they are model-free, that is, no specific functional form
is required for the parameters or curves to be estimated. Several
nonparametric estimators for different functions of interest
have been developed in the last decades. In this work, kernel
estimators of the density function and the distribution function
are used.
Let X be a continuous random variable, with density

function f and distribution function F. Given a random
sample X1, …, Xn, each Xi having the same distribution as
X, the Parzen-Rosenblatt nonparametric kernel estimator
(Parzen, 1962) of f is defined by:

fh xð Þ= 1
nh

Xn
i= 1

K
x−Xi

h

� �
ð6Þ

where K is a kernel function (normally, K is a density func-
tion with some regularity conditions) and h = h(n) 2 ℝ+ is
the smoothing parameter (or bandwidth) that regulates the
amount of smoothing to be used. From the relation
between a density function and a distribution function, a
nonparametric kernel estimator of the distribution function
can be directly constructed:

Fh xð Þ=
ðx
−∞

fh tð Þdt = 1
n

Xn
i= 1

H
x−Xi

h

� �
ð7Þ

where H uð Þ=
ðu
−∞

K tð Þdt is the distribution function of the

kernel K.
Using Eqn (7), nonparametric estimators of the probabilities

of exceedance, the flow quantiles, and the recurrence intervals
defined in Eqns (3)–(5), respectively, can be obtained:

Rh cð Þ= 1−Fh cð Þ ð8Þ

FQh Tð Þ= F −1
h 1−

1
T

� �
ð9Þ

and

RTh cð Þ= 1
1−Fh cð Þ ð10Þ

An important first step to compute (8), (9) and (10) is
the selection of the smoothing parameter h. Popular techni-
ques to select the bandwidth are the modified cross-valida-
tion (Bowman et al., 1998; Quintela-Del Río, 2011) and
plug-in methods (Lall et al., 1993; Quintela-Del-Río, 2011).
In the examples presented in this work, a cross-validation
bandwidth selection method is used.
In an extreme value framework, it can be of interest to esti-

mate the flow quantiles or the return periods for extremely
large events. In a hydrological context, Lall et al. (1993)
found that the previous nonparametric estimators can suffer
from boundary problems. Some authors have addressed
extrapolation issues using nonparametric estimators like
those given in Eqn (9) or (10). They basically focused on
studying the influence of the kernel function and the band-
width parameter in the final results. Regarding the kernel,
while Guo et al. (1996) proposed to use a Gumbel kernel and
Lall et al. (1993) discussed the use of a variable kernel distri-
bution function estimator to tackle this problem, Adamowski
and Feluch (1990) tested Gaussian, Gumbel, and Epanechni-
kov kernels in flood frequency analysis and found that the
choice of the kernel is not important, and the shape of the ker-
nel does not affect extrapolation accuracy. As for the smooth-
ing parameter, the use of variable or local bandwidths to
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address the extrapolation problem was discussed in Ada-
mowski (1989) or Guo et al. (1996). Note that the variance of
the (parametric or nonparametric) estimators can increase sig-
nificantly when the interest is to estimate extremely large flow
quantiles. For this, in that case, the results obtained should be
considered carefully. In this article, the methods will always be
applied for values inside the range of the observed data.
Nonparametric kernel quantile function estimators based

on smoothing the empirical quantile function are proposed
and studied by Moon and Lall (1994) and Apipattanavis
et al. (2010). They follow similar ideas, but while in Moon
and Lall (1994) the Gasser–Müller estimator (Gasser and
Müller, 1984) with higher order kernel is used, in Apipatta-
navis et al. (2010) the smoothing process is carried out
employing the local polynomial estimator (Fan and Gijbels,
1996) with a local bandwidth.

Functional data, NFDA techniques

Let {(χi, Yi), i = 1, …, n} be a sample of n random pairs,
each distributed as X ,Yð Þ, where the variable X is of func-
tional nature (a curve), and Y is scalar. Formally, X is a
random variable valued in some semi-metric functional
space E, and d(�,�) denotes the associated semi-metric,
according to the definition (Ferraty and Vieu, 2006):
1. 8 x 2 E, d(x, x) = 0.
2. 8 x, y, z 2 E, d(x, y) ≤ d(x, z) + d(z, y).
The conditional cumulative distribution of Y given X is

defined for any y 2 ℝ and any χ 2 E by:

F yjχð Þ= P Y ≤ yjX = χð Þ ð11Þ

A functional variable can be considered a generalisation
of a multidimensional variable, assuming that the variable χ
is p-dimensional, with p an integer (for example, p = 12 for
the monthly mean flow in the 12 months of a year). In this
case, the functional space would be E = ℝp and the semi-
metric could be the classical Euclidean distance or some
equivalent measure (Ramsay and Silverman, 2005).
Both parametric and nonparametric methods can be used in

functional data applications. The monograph of Ferraty and
Vieu (2006) provides a benchmark of nonparametric curve
estimation for functional data. As shown in this book, the con-
ditional distribution F(�|χ) given in Eqn (11) can be nonpara-
metrically estimated by:

F̂n yjχð Þ=

Xn
i= 1

K d χ,χið Þ
h

� �
H y−Yi

g

� �

Xn
i = 1

K d χ,χið Þ
h

� � ð12Þ

where K is a kernel function and H is defined as the distri-
bution of another kernel density function K0, that is,

H xð Þ=
ðx
−∞

K0 uð Þdu. Parameters g and h are smoothing

parameters or bandwidths (they could take the same value).
Equation (12) is a direct extension of the nonparametric

estimator of a conditional distribution function [F(y|
X = x), for (X, Y) real random variables (Hall et al., 1999)].
The main difference between functional and non-functional
estimators lies in the use of a semi-metric d(χ, χi) instead
of the Euclidean distance kχ − χik. Several types of kernel
functions and semi-metrics can be considered (see Ferraty
and Vieu, 2006, Sections 3.2–3.4), depending, essentially,
on the data at hand. Theoretical optimality properties of
the estimator (Eqn (12)) can be found in Quintela-Del-
Río (2008).
An important advantage of NFDA techniques is that the

framework model reduces to a bivariate setting and, there-
fore, the curse of dimensionality problem is basically
avoided. Additionally, the boundary problems of nonpara-
metric estimators, previously described, can be partially
avoided in functional data estimation. This fact requires a
proper choice of the semi-metric (Ferraty and Vieu, 2006).

NFDA applied to time series analysis

As it is well known, ARIMA models are constrained by
their particular structure and the number of past values
used in the statistical model for prediction purposes. NFDA
methods overcome these two restrictions, because of the
nonparametric nature of the approaches and dividing the
observed seasonal time series into a sample of curves. In
Monthly mean flow prediction, NFDA methods are applied
to predict monthly mean flows in practical situations, and
the performance of these approaches is compared with that
obtained when ARIMA models are employed.
To analyse a monthly mean series as a set of functional

data, the original time series is converted into annual
curves. Note that if there were some months in which the
corresponding measures were not available, the curves
would not have the same number of components (this is
known as an unbalanced data setting), and more complex
specific preprocessing would be required (see Section 3.6

of Ferraty and Vieu, 2006). Let Zkf gNk= 1 be the complete
time series. For i = 1, …, n, the annual curves, χi =
(χi(1), …, χi(12)), are constructed, where

8t 2 1,2,…,12f g, χi tð Þ=Z12� i−1ð Þ+ t ð13Þ

corresponds to the monthly mean flows of the ith year.
Each annual curve is considered as a continuous path (i.-
e. χi = {Z12 � (i − 1) + t, t 2 [0, 12)}), but observed only at
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12 discretised points. Thus, the time series consists of a
sample of n dependent functional data χ1, …, χn.
In this way, much information from the past of the time

series can be taken into account, but still using for the past
a single continuous object (exactly 1 year). For more
insight on this issue, let us suppose, for instance, that the
time series could be measured p-times each year with
p > 12. In this case, the functional data analysis will con-
sider the whole continuous past year and the same asymp-
totic behaviour remains, independent of p.
In order to predict the monthly mean flow in the year

n + 1, the following process was carried out. For
i = 1, …, n − 1 and for any fixed δ in {1, …, 12}, take
Yi(δ) = χi + 1(δ), i.e. Yi(δ) denotes the monthly flow in
the month δ and the year i + 1. Thus, a sample of n − 1

pairs, χi,Yi δð Þf gn−1i = 1 , with Yi(δ) a real variable and χi a
functional one, is available. According to Functional data,
NFDA techniques, a predictor of Yn(δ), knowing χn, can be
achieved by estimating the median of the conditional
distribution:

Ŷn δð Þ= t̂0:5 = F̂ −1
n 0:5jχnð Þ ð14Þ

where F̂n �jχnð Þ is the estimated distribution of Y(δ) given
χn. Repeating this step for δ = 1, …, 12, the mean values of
the flow for the (n + 1)th year can be predicted.
In the functional data context of this article, another

approximation consists in considering a regression
model like Eqn (1) and using a nonparametric kernel
functional method to estimate the regression function
m(�). Considering the sample data of functional covari-

ates and a scalar response, χi,Yi δð Þf gn−1i = 1 , the nonpara-
metric functional estimator (Ferraty and Vieu, 2006) has
the expression:

m̂ χð Þ=

Xn−1
i= 1

Yi δð ÞK d χ,χið Þ
h

� �

Xn−1
i= 1

K d χ,χið Þ
h

� � ð15Þ

Equation (15) constitutes a functional alternative based
on regression techniques to the approach previously used
based on median estimation. Using Eqn (15), the flows of
the (n + 1)th year can be predicted calculating

Ŷn δð Þ= m̂ χnð Þ δ= 1,…,12ð Þ ð16Þ

NFDA applied to extreme value analysis

Denote by tα the α-order quantile of the distribution
of Y given a particular value of χ. From the

conditional distribution function, the α-order quantile
is defined as:

tα = F
−1 αjχð Þ, 8α2 0,1ð Þ ð17Þ

Using the estimator given in Eqn (12), a nonparametric
estimator of tα in Eqn (17) is readily obtained by

t̂α = F̂
−1
n αjχð Þ ð18Þ

Several asymptotic properties of this estimator are shown
in Ferraty et al. (2005). Equation (18) can be immediately
used as an estimator of the flow quantiles Eqn (4). Extreme
value analysis presents an application of this approximation
using a time series of a river in the United States.
The problem of extreme quantile estimation using func-

tional data has also been addressed in Gardes et al. (2010),
where nonparametric estimators of quantiles from heavy-
tailed distributions when functional covariate information
is available are studied.

Hydrological data

In this section, the functional nonparametric techniques are
applied to two time series of river flow (measured in cubic
metres per second, m3/s), in the United States, which were
downloaded from the National Water Information System
(NWIS) of the United States, http://waterdata.usgs.gov. The
free statistical software R (R Development Core Team, 2016)
was employed to implement the different procedures.
Specific packages used in this process are cited below.
Firstly, flow data of Salt River near Roosevelt, AZ, were

selected. The annual peak flow data for this river were
considered by Katz et al. (2002), where they used a GEV
distribution. A study is also available in Anderson and
Meerschaert (1998), who found that the monthly mean
flow is quite seasonal and possesses a heavy-tailed distribu-
tion. These data have been also used in nonparametric
studies (Quintela-Del-Río, 2011). In this article, Salt River
hydrological data are employed to examine the approaches
on flow prediction and extreme value analysis. Addition-
ally, a monthly mean flow time series of Christina River at
Coochs Brigde, DE, was also considered (Senior and Koer-
kle, 2003; Celebioglu, 2006). These data are only used in
the time series prediction application, but not to perform
extreme value analysis. Lower flow values, compared with
those of Salt River, are obtained here (Figures 2 and 4).
These two rivers were selected because they belong to

two different climate areas with disparate temperatures and
significant differences in rainfall throughout the year (see
Figure 1 for a location map). Christina River at Coochs
Bridge at Delaware (United States) is influenced by an
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Atlantic climate, with high humidity and stable precipita-
tions. The average annual temperature in this location is
about 13 �C, and the average annual precipitation is around
1168 mm. Salt River near Roosevelt, Arizona, belongs to a
Continental area, with high average annual temperature
(over 21 �C), and an average annual precipitation around
635 mm. Thus, the performance of the NFDA techniques
can be compared in different scenarios.

Monthly mean flow prediction

Monthly mean flow data of both rivers, from January 1944
to December 2009, are considered. The number of observa-
tions in this time interval is 792. In both cases, no missing
values appear, and the quality of the records is guaranteed
by the information of the web page of the NWIS.
Firstly, a descriptive statistical analysis of both time series

is performed. Table 1 presents the most usual descriptive sta-
tistics for the data of the two rivers. In both cases, high values
for the kurtosis and the skewness (to the right), and the

presence of maximum values far away from the rest of data,
according to a heavy-tailed distribution, can be observed.
The mean monthly time series, which does not fit a

normal distribution, can be normalised using a log-
transformation function in order to remove the periodicity
of the original series (Keskin et al., 2006; Wang et al.,
2009). In Figure 2, Salt River data, before and after the log-
arithmic transformation are shown. Figure 3 presents the
estimated density functions computed with Eqn (6) using
these data. In Figure 4, similar plots to those in Figure 2,
but for Christina River, are displayed.
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Figure 2 Salt River monthly mean flow data. (a) Original data
(measured in m3/s). (b) Natural logarithm of original data.
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Figure 3 Nonparametric density estimates of Salt River flow data.
(a) Original data. (b) Natural logarithm of original data.
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Figure 4 Christina River monthly mean flow data. (a) Original
data (measured in m3/s). (b) Natural logarithm of original data.

Table 1 Descriptive statistics for the monthly mean flow variable
of Salt River and Christina River

Statistic Salt River Christina River

Minimum 2.11 0.03
1st quartile 5.88 0.32
Median 9.13 0.62
Mean 23.32 0.82
3rd quartile 24.72 1.11
Maximum 381.47 4.68
Standard deviation 35.93 0.67
Skewness 4.01 1.80
Kurtosis 23.13 7.85
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In Figures 5 and 6, the autocorrelation functions for the
data of both rivers before and after the logarithmic trans-
formation, respectively, are shown. The plots present differ-
ent dependence structures, and suggest that the ARIMA
modelling could be a possible approximation for prediction
purposes.
To perform a functional analysis of the series and fol-

lowing NFDA applied to time series analysis, the original
time series are converted into annual curves. In this case,
there are no missing data and measures for all the
months are available. Therefore, the number of annual
curves is 66. To validate the performance of the
approaches, the values in the 66th year (2009) are pre-
dicted using the values from the 65 previous years, and
these predictions are compared with the real values in
that year. To apply the nonparametric functional meth-
ods, two bandwidths have to be selected. To do this, in a
first step, considering the first 64 years, the 65th is used
as a validation step. As explained in NFDA applied to

time series analysis, given the sample χi,Yi δð Þf g64i = 1, a pre-
dictor of Y64(δ), knowing χ64, can be achieved using
Eqn (14). Repeating this step for δ = 1, …, 12, the mean
values of the flow for the 65th year can be predicted. The
NFDA estimators are applied using kernels based on the
Epanechnikov density, G(u) = 0.75(1 − u2)1[−1,1](u), taking

K(u) = 2G(u)1[0,1](u) and H uð Þ=
ðu
−∞

G tð Þdt. On the other

hand, the bandwidths h and g are selected by minimising
the prediction error over the 65th year, that isX12

δ = 1

h
Ŷ64 δð Þ−Y64 δð Þ

i2
, and the Functional Principal

Components Analysis semi-metric is used (for more
details, see Ramsay and Silverman, 2005).

Next, in a second step, given χi,Yi δð Þf g64i = 1 and the previ-

ous selected parameters h and g, F̂n �jχ65ð Þ is estimated and
a predictor of Y65(δ) for δ = 1, …, 12, using the corre-
sponding estimator of the median of the conditional distri-
bution F(�|χ65) given in Eqn (14), is obtained. Additionally,
the nonparametric functional estimator of the mean func-
tion (Eqn (15)), based on regression techniques, was also
applied. In this case, the monthly mean flows of the 66th
year were predicted using Eqn (16) for n = 65. The soft-
ware for computing the NFDA, programmed in R, can be
freely obtained at the web http://www.math.univ-toulouse.
fr/staph/npfda/.
A parametric ARIMA model is also fitted to the time

series, by means of the package forecast of the software
R. In this package, automatic methods to select the order of
the model and also to estimate the corresponding para-
meters are implemented. In this case, an ARIMA(1, 0, 2) is
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fitted for Salt River data and an ARIMA(4, 0, 4) for Chris-
tina River data.
Figure 7 shows, for Salt River data, the predicted values

for the 66th year (dashed line) together with the real values
in the 66th year (solid line). All the data considered are the
natural logarithm of the real values. Figure 8 is the equiva-
lent plot for the Christina River data set. In each case, the
top panel corresponds to the functional modelling using
the predictions based on regression (Eqn (16)), the middle
panel shows the functional modelling using the predictions
based on the median (Eqn (14)), and the bottom panel pre-
sents the ARIMA approach.
A numerical comparison for obtaining the best predictor is

made using the mean squared error (MSE) criterion, that is,

MSE =
1
12

X12
δ= 1

h
Ŷ65 δð Þ−Y65 δð Þ

i2
ð19Þ

The MSE values in both rivers are given in Table 2. In
the first row, the results using NFDA based on regression
(Eqn (16)) are presented. The results obtained applying
NFDA methods based on the median (Eqn (14)) are shown
in the second row. Finally, in the third row, MSE values
using ARIMA models are given.
As observed in Figures 7 and 8, NFDA predictions meth-

ods provide better fits to the real series. The ARIMA

predictions are, basically, the mean values. Moreover, it can
be observed in Table 2 that the MSE errors are lower using
the NFDA techniques, and the best criterion is that using
the median as the predicted value in the two time series.

Extreme value analysis

In this section, NFDA techniques are applied for extreme
value analysis. Equations described in NFDA applied to
extreme value analysis are used, and the results obtained
are compared with those using the parametric GEV and
nonparametric estimators presented in The GEV distribu-
tion and Nonparametric estimators, respectively. In this
case, only Salt River data are available. The maximum daily
flow data of this river, from 1 January 1987 to 31 December
2009, are used to calculate flow quantile estimates as indi-
cated in Eqn (4). In Figure 9, a boxplot computed with
these data is presented. It can be observed the very asym-
metric and heavy-tailed data distribution, with a lot of
extreme values corresponding to high quantiles of the vari-
able. Similar information can be deduced from Table 3,
where the most usual descriptive statistics for the maxi-
mum daily flow variable are shown.
The considered values from years 1987 to 2008 (inclu-

sive) are used in the estimation process, and the corre-
sponding estimates are checked with the real values in the
year 2009.

−
0.

2
0.

0
0.

2
0.

4

Lag (month)

A
C

F

Salt River

0 5 10 15 20 25
0.

0
0.

2
0.

4
0.

6

Lag (month)

A
C

F

Christina River

0 5 10 15 20 25 30

Figure 6 Autocorrelation functions (ACF) of Salt River and Christina River monthly mean flow data after the logarithmic transformation.

J Flood Risk Management 11 (2018) S902–S915© 2016 The Chartered Institution of Water and Environmental Management (CIWEM) and John Wiley & Sons Ltd

S910 Quintela-del-Ro and Francisco-Fernández



In the classical parametric GEV estimation (The GEV
distribution), the data need to be independent, or, at least,
the dependence has to decrease suitably fast with increasing

time separation (Smith, 1989). However, nonparametric
estimators (both of functional and non-functional type)
can be correctly applied in this field and have good
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theoretical properties, although the assumption of inde-
pendence is not strictly fulfilled (Youndjé and Vieu, 2006;
Quintela-Del-Río, 2008).
The first step to apply NFDA (now, to calculate flow

quantiles) is to construct functional data from a sample of
daily maxima, in the same way as in Monthly mean flow

prediction. As daily data are available, functional data com-
posed of the corresponding values of each month are con-
structed. Unlike the situation in Monthly mean flow
prediction, now the number of components changes from
one functional variable χ to another (unbalanced data set-
ting). This happens because the months do not have the
same number of days. All months are considered to have
31 measures, interpolating linearly the two closest values
for each value that originally does not exist. Therefore, each
functional observation consists of 31 data.
Here, the construction of the functional data is analogous

to Eqn (13):

8t 2 1,2,…,31f g, χi tð Þ=Z31� i−1ð Þ+ t ð20Þ

where Zkf gnk= 1 denotes the complete time series of daily
maxima, and χi = (χi(1), …, χi(31)) the daily data of the
ith month. Now, our focus is on the estimation of the con-
ditional distribution function of the variable of each daily
maximum, conditioned on the values in the previous
month.
The comparison between the classical parametric GEV

methods, the nonparametric techniques and the NFDA
approaches is carried out in the following steps: a set of
values for levels ci from i = 1, …, 20 is selected. Specifi-
cally, c1 is chosen as the median of the data (up to the year
2008), and c20 as the quantile of order 0.95. The sequence ci
consists of 20 equally spaced points. Using the true mea-
sures of the last year 2009, the number of days in which the
values ci were exceeded can be computed. Thus, the recur-
rence intervals, using the corresponding empirical distribu-

tion function, Fn cið Þ= number of measures ≤ ci
365 , in Eqn (5), can

be approximated. These estimators are:

R̂T cið Þ= 1
1−Fn cið Þ , i = 1,…,20 ð21Þ

Now, any estimation method of the flow quantiles (Eqn
(4)), using the values in Eqn (21), should provide an
approximated value of the true values ci. The flow quantiles
are estimated using the classical parametric methods, the
nonparametric approaches and also by means of our
approximation based on NFDA methods, described below.

Parametric GEV approach

For each i = 1, …, 20, the flow quantiles are estimated by

ĉiθ = Fθ̂
−1 1−

1

R̂T cið Þ

� �
ð22Þ

For this, the package evir of the software R, that estimates
the GEV parameters by maximum likelihood, is used.

Table 3 Descriptive statistics for Salt River maximum daily flow
variable

Minimum 1.95
1st quartile 5.55
Median 8.26
Mean 27.25
3rd quartile 21.42
Maximum 4050.00
Standard deviation 94.51
Skewness 19.63
Kurtosis 592.33

Table 2 MSEs of the monthly mean flow predictors in the 66th
year (2009) using different methods (NFDA based on regression,
in the first row; NFDA based on the median, in the second row;
and ARIMA models in the third row), for Salt River and Christina
River

Method

River

Salt River Christina River

NFDA based on regression 0.5965 0.7388
NFDA based on the median 0.5208 0.4969
ARIMA models 1.0818 0.9430

MSE, mean squared error; NFDA, nonparametric functional data analysis;

ARIMA, autoregressive integrated moving average.
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Figure 9 Boxplot of Salt River maximum daily flow data, meas-
ured in m3/s.
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Nonparametric approach

For each i = 1, …, 20, nonparametric estimators of the
flow quantiles are calculated, as indicated in Eqn (9):

ĉih = F −1
h 1− 1

R̂T cið Þ

� �
, where the bandwidth, obtained by

cross-validation, is h = 13.66.

NFDA approach

Equation (14) can be adapted to estimate any quantile.
Then, for each i = 1, …, 20, estimators of the flow quan-
tiles are obtained by estimating the conditional quantile of

order 1=R̂T cið Þ by the expression:

Ŷ n=31ð Þ−1 δð Þ= F̂ −1
n 1−

1

R̂T cið Þ jχ n=31ð Þ−1

�
, δ= 1;2,…,31

�

ð23Þ

where, for each δ, Yj(δ) = χj + 1(δ) and χ(n/31) − 1 denotes
the functional data composed of the 31 measures of the
penultimate month. Then, for each day δ an estimated
value is available, and the functional nonparametric esti-
mate of the flow quantile, denoted by ĉiF, will be the sample
mean of these daily values Ŷ(n/31) − 1(δ). The same kernels,
bandwidths, and semi-metric as in the example in Monthly
mean flow prediction are used.

To compare mathematically the three approaches, the
relative mean absolute error (RMAE) of ĉiθ, ĉih, and ĉiF is
computed, given by:

RMAE=
1
20

X20
i= 1

jci− ĉi*j
ci

ð24Þ

where ĉi* can be ĉiθ, ĉih, or ĉiF. The results obtained are

RMAE= 1:13,0:71, and 0:26 ð25Þ

for the parametric GEV, nonparametric, and NFDA esti-
mates, respectively. Therefore, the minimum error is obtained
with the NFDA techniques. On the other hand, Figure 10
shows the quantile estimations with the previous proposals
for Salt River data (parametric GEV estimations with a dotted
line, nonparametric with a dashed line, and NFDA estima-
tions with a solid line. The dashed diagonal line represents
the true values to be estimated). The long-tailed distribution
observed in Figure 9 clearly reveals the difficulty in the
extreme value estimation process (Serinaldi, 2009). However,
the NFDA approach, considering each functional datum as
the complete set of values for each month, gives more precise
estimations than those obtained with the parametric GEV or
the simple nonparametric methods. The largest differences
between the estimates occur at the highest levels, where the
good approximations of the NFDA estimates are observed
and it is more important to have reliable prediction techni-
ques. Note that a multivariate approach would be possible in
the parametric GEV and the nonparametric settings, but, in
this case, a vector composed of 30 predictor variables would
be necessary. This high value makes very difficult (if not
impossible) this kind of approximation in practice.

Discussion

Statistical techniques are usually applied to address practi-
cal problems in hydrology. In this article, two of them,
monthly mean river flow prediction and extreme value
analysis, are the focus of the research. NFDA approaches,
combining nonparametric methods with functional data,
are used in this setting.
The main objective of this article was to apply different

NFDA techniques to two particular hydrological problems,
and to test their behaviour in comparison to more classical
approaches. The nonparametric functional methods were
applied to real data of two rivers in the United States. The
different alternatives were validated using the final year in
the database as a testing sample, and the rest of the years as
the training sample.
In the prediction setting, two nonparametric functional

proposals, based on the median and the mean, respectively,
were applied and compared with classical ARIMA models.
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Figure 10 Estimations of the quantiles using the parametric gen-
eralised extreme value (GEV) estimator, nonparametric kernel
method, and the nonparametric functional data analysis
approach for Salt River data (parametric GEV estimations with a
dotted line, nonparametric with a dashed line, and nonparamet-
ric functional estimations with a solid line. The dashed diagonal
line represents the true quantiles to be estimated.
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The results showed that NFDA approaches, especially those
based on the median, had a better performance than the
classical ARIMA models.
The previous approaches could be extended including

available information like daily precipitation, daily temper-
ature, or any other climatic covariate. Several models simi-
lar to those presented incorporating covariates have been
proposed and studied previously. For example, the dynamic
regression (ARIMAX) combines the Box-Jenkins models
with the linear regression, obtaining a more general model
for the study of the time series (Shumway and Stoffer,
2011). This kind of models simply adds covariates to the
general expression of an ARIMA model, but the covariate
coefficients are hard to interpret.
An alternative approach could be the application of regres-

sion models with ARMA (or ARIMA) errors. This includes
the use of parametric, nonparametric, or semiparametric
approaches. In a hydrological context, Castellano-Méndez
et al. (2004) presents a study of the Xallas River (northwest
of Spain), using Box-Jenkins and neural networks methods,
incorporating exogenous variables such as rainfall informa-
tion. Regarding the case of functional methods, covariates
could be included in the problem through the use of semi-
functional partial linear models (Aneiros-Perez and Vieu,
2006). This approach uses a nonparametric kernel procedure;
the output is scalar, and a functional covariate and multivari-
ate non-functional covariate are considered. Functional
regression between functional explanatory variables and a
scalar response is also possible using the backfitting algo-
rithm (Febrero-Bande and González-Manteiga, 2011). This
would allow including functional covariates in the model.
The application of these techniques to our data would require
the availability of some relevant climatic variables. Unfortu-
nately, these variables are not available in the managed data-
bases. However, a more deep study of this issue could be
carried out in a future research.
Regarding the extreme value analysis, the estimation of the

flow quantiles has been the focus of the study. These values
play an important role in hydrological problems, because they
are directly linked with flood analysis. The new NFDA
approach performed better than the parametric GEV estima-
tors, producing more close estimations to the true values. On
the other hand, it is well known that due to the small number
of extreme values in a sample, it is usually difficult to obtain
reliable estimations. These estimations could be improved by
using more precise bandwidth parameters. The bandwidth
parameter selection in NFDA remains, nowadays, as an open
problem. The development of data-driven techniques for com-
puting optimal bandwidths will produce directly the improve-
ment of the promising results obtained in the quantile
estimation problem.
In general, the approaches proposed in this article

yielded accurate estimates of both the functions of interest,

such as the cumulative distribution function or the function
providing the probabilities of exceedance, and derived para-
meters, as, for example, the flow quantiles. They also cap-
tured more complex patterns in the data providing better
future estimations. Therefore, they represent a better alter-
native to the classical methods regularly used in this frame-
work, being useful tools for environmental agencies to
manage hydrological risks including those of floods.
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