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A B S T R A C T   

Joints are significant components in the design and construction of steel structures. The characteristic parameters 
of the connections must be reproduced in a reliable way to represent the actual behaviour of a structure. 
Accordingly, the study of semi-rigid joints is essential to better understand this issue. Among the different types 
of semi-rigid joints, angle connections stand out as a suitable solution in many cases. This paper presents a 
methodology using artificial neural networks for predicting the initial rotational stiffness of major axis sym-
metrical angle connections according to the Eurocode description. A consistent stiffness database was developed 
from the existing data in the Steel Connection Data Bank. Then, the database was cleansed to provide with a 
robust training set. Different network architectures were analysed until a topology that showed a good perfor-
mance and generalisation features was obtained. The network was successfully checked with some saved tests 
from the database and with off-database tests; the network could be reliably used within the range of the training 
input parameters.   

1. Introduction 

The use of semi-rigid bolted angle joints in steel construction has 
several advantages. They reduce the execution times of the works and 
their cost [1], develop a better response to seismic events than other 
connection typologies due to their good ductility [2], and are suitable 
when a design is conceived for deconstruction [3]. In the European steel 
construction industry, angle connections are not as commonly used as 
other solutions such as end-plate connections, and the European stan-
dard (EC3) has not yet fully developed their capabilities. However, in 
recent years, different scientific contributions have provided mechanical 
or numerical models studying numerous essential aspects of the 
behaviour of angle connections, which could be included in EC3′s 
component method. Several models have been developed to predict the 
rotational stiffness and resistance of these connections [4–6], the in-
fluence of bolt preloading [7], or how the presence of stiffeners affects 
the behaviour of the joint [8–10]. The difficulty in adequately repre-
senting the performance of the angle connections was evidenced in all 
these works, mainly due to the large number of components involved. 
Thus, the results of the different studies yielded complex mechanical 
models or numerical solutions that require a careful elaboration and 

subsequent validation and, therefore, are time-consuming and 
demanding [11,12]. One of the fundamental parameters according to 
EC3 is the initial rotational stiffness of connections. The Eurocode de-
fines the initial rotational stiffness, Sj,ini, as the slope of the elastic branch 
of the design moment-rotation characteristic [13]. Different criteria are 
used in experiments provided in the literature to measure this initial 
stiffness. Furthermore, the initial stiffness is occasionally not explicitly 
provided by some authors, who only include the moment-rotation 
curves in their works. Therefore, one of the main tasks of this study 
was to obtain the initial stiffness from tests on semi-rigid joints with 
angles extracted from the Kishi and Chen Steel Connection Data Bank 
(SCDB) [14]. A stiffness database was obtained in a uniform and 
consistent way in order to validate the methodology developed in this 
work and that of any future works, whether analytical or numerical. In 
this study, the initial stiffness was predicted using artificial neural net-
works (ANN). A potential advantage of this specific ANN study is that it 
was based on experimental data which included real imperfections [15], 
so that the results presented here are probably more realistic than those 
obtained by other methods such as finite element models (FEM) [11,12], 
analytical approaches [14] or mechanical models [5]. A second advan-
tage of this proposal is that the response was much faster than that 
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derived from FEMs, which can be useful for research purposes or making 
decisions in experimental works without the need for expensive and 
complex numerical models. From the perspective of steel building 
design, ANNs are adequate tools for predicting the characteristic pa-
rameters of connections as long as the corresponding safety factors are 
adopted within the framework of some specified validity ranges [15]. In 
the literature, several authors have used ANNs to study semi-rigid joints. 
Abdalla and Stavroulakis [16] used ANNs to predict the moment- 
rotation curve of simple beam-to-column angle joints. Furthermore, 
Anderson et al. [17] used ANNs to study the behaviour of end-plate 
beam-to-column joints in the minor axis. Lima et al. [18] used ANNs 
to predict the stiffness and resistance of different types of beam-to- 
column joints. More recently, the moment-rotation behaviour of top 
and seat angle connections with double web angles was also investigated 
using ANNs [19]. In addition, Kim et al. [20] proposed a mechanical and 
an ANN informational model of steel beam-to-column connections, 
considering that some features of response are not represented by me-
chanical models. 

The objective of this study was to generate a reliable ANN capable of 

predicting the initial rotational stiffness of semi-rigid beam-to-column 
connections. The first step was to produce a debugged database and to 
select the critical parameters for the determination of the initial stiff-
ness. The second step consisted in finding the best network architecture. 
Once the network architecture was defined, a training process was 
recursively executed until the mean squared error (MSE) was minimised. 
The final step involved validating the network at the end of the opti-
misation process by verifying its generalisation power. Some of the tests 
from the debugged database were preserved to validate the network, 
which was additionally checked with some experimental tests not 
included in the database. 

2. Experimental data 

A databank of angle connection stiffness can help develop design 
methods and research without the need for costly experimental cam-
paigns. In addition, some national regulations such as the American 
Institute of Steel Construction (AISC) standard [21] indicate that 
moment-rotation characteristics should be obtained from databanks to 
produce accurate results during the analysis of semi-rigid frames. 

2.1. Steel connection data bank 

Although other data references are available in the literature 
[22,23], this study will only use the SCDB database compiled by Kishi 
and Chen [14] to develop the ANN, since all the tests from this databank 
are deeply documented, including the points from the experimental 
moment-rotation curve. This databank originated from the studies 
conducted by Kishi and Chen [24] and by Chen and Kishi [25] which 
consisted of a comprehensive search on beam-to-column riveted, bolted, 
and welded connections. These studies provided the corresponding pa-
rameters and moment-rotation characteristics of semi-rigid connections 
related to steel construction published from 1936 to 1985, and all this 
information was compiled into a database. Then, Kishi revised the 
database, adding 93 experimental data for the period from 1986 to 1998 
and Komuro and Kishi improved the connection database including the 
SCDB program. The connection data included in the databank currently 
consists of 486 experimental tests. The data were compared with some 
prediction equations: the analytical polynomial equation proposed by 
Frye and Morris [26], a three-parameter power model, and a modified 

Table 1 
Authors and number of tests: Top-and-Seat-Double-Web (TSDW) and Top-and- 
Seat (TS).  

Author N◦ of tests Typology 

Altman et al. (1982) [28] 20 TSDW 
Rathbun (1936) [29] 2 TSDW 
Roeder et al. (1996) [30] 1 TSDW 
Elnashai et al. (1998) [31] 1 TSDW 
Fu et al. (1998) [32] 4 TSDW 
Calado et al. (2000) [33] 3 TSDW 
Komuro et al. (2002) [34] 2 TSDW 
Rathbun (1936) [29] 3 TS 
Hetchman and Johnston (1947) [35] 12 TS 
Marley et al. (1982) [36] 26 TS 
Maxwell et al. (1981) [37] 12 TS 
Davison et al. (1987) [38] 1 TS 
Altman et al. (1982) [28] 2 TS 
Harper (1990) [39] 1 TS 
Mander et al. (1994) [40] 4 TS 
Bernuzzi et al. (1996) [41] 1 TS 
Kubo et al.(1999) [42] 5 TS 
Komuro et al. (2002) [34] 1 TS 
Sato et al. (2007) [43] 6 TS  

Fig. 1. Moment-Rotation curve of the 8S1 test and regression model for the first points (left) and polynomial fit (right).  
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exponential model [27]. Each experimental datum included the 
moment-rotation characteristics and the parameters used in the pre-
diction equations. The databank included 107 experimental data on 
semi-rigid angle connections: 74 experimental data for Top and Seat 
angle connections (TS) and 33 experimental data for Top and Seat angle 
connections with a Double Web angle (TSDW). Double Web angle con-
nections were not included in this study because this typology is 
considered to be a simple connection. Table 1 summarises the compiled 
data used in this study. Tests 14SW1 and 14SW2 from Altman et al. [28] 
were disregarded because the angles were welded to the beam. In 
addition, tests N011, N017, N018, and N023 from Hetchman [35] were 
discarded because they were related to minor axis joints. Thus, a total of 
101 tests were considered in this research. 

2.2. Determination of the rotational stiffness 

According to experiments, beam-to-column angle connections usu-
ally display a moment-rotation behaviour that becomes non-linear 
during the first stages of the loading process. Therefore, a careless 

selection of the first points of the moment-rotation curve may occa-
sionally give rise to the wrong values of initial stiffness. In this study, a 
univocal methodology based on a regression analysis was employed to 
compute the initial rotational stiffness. This linear regression was 
developed by considering the first points of the experimental moment- 
rotation curves, according to the data compiled in the SCDB database 
[14]. On this basis, the value of the initial stiffness could be obtained 
following the description of the Eurocode EC3 [13]. The general criteria 
to develop the linear regression were the following: 1) creating the 
regression model with at least four points whenever possible; 2) 
achieving a value of the coefficient of determination R2 greater than 
0.95; 3) and disregarding the points related to very low rotations. 
Regarding the range, the rotation is below 1.5 mRad in most tests, except 
in the series of tests conducted by Kubo et al. [42] where the range 
reached 4 mRad. Fig. 1 shows an example of the linear regression made 
for the 8S1 test. For this particular test, Altman et al. provided a value of 
7540 kNm/rad obtained as the initial slope of the moment-rotation 
curve, measured as the derivative of a second degree polynomial fit 
through the first data points [28]. However, if a six-degree polynomial 

Table 2 
Obtained initial stiffness, coefficient of determination, and number of points used for the linear approximation.  

N◦ TEST AUTHOR Sjini (kN/mm) R2 N N◦ TEST AUTHOR Sjini (kN/mm) R2 N 

1 8S1 AZIZINAMINI 8280  0.999 4 52 D2-1/4-1 MARLEY 773  1.000 4 
2 8S2 AZIZINAMINI 15,593  0.990 4 53 D2-1/4-2 MARLEY 1755  1.000 3 
3 8S3 AZIZINAMINI 12,813  0.999 4 54 D3-1/4-1 MARLEY 813  1.000 4 
4 8S4 AZIZINAMINI 1875  1.000 4 55 D3-1/4-2 MARLEY 279  1.000 3 
5 8S5 AZIZINAMINI 10,258  1.000 4 56 A-1/2-1 MARLEY 1948  1.000 4 
6 8S6 AZIZINAMINI 5347  0.992 4 57 B-1/2-1 MARLEY 6930  1.000 4 
7 8S7 AZIZINAMINI 5588  0.991 4 58 B-1/2-2 MARLEY 4679  0.995 4 
8 8S8 AZIZINAMINI 6858  0.999 4 59 C1-1/2-1 MARLEY 3932  1.000 4 
9 8S9 AZIZINAMINI 12,032  0.996 4 60 C1-1/2-2 MARLEY 3069  1.000 3 
10 8S10 AZIZINAMINI 24,919  0.988 4 61 C2-1/2-1 MARLEY 6380  0.993 4 
11 14S1 AZIZINAMINI 32,326  1.000 4 62 C2-1/2-2 MARLEY 2204  0.991 4 
12 14S2 AZIZINAMINI 35,523  0.950 4 63 D1-1/2-1 MARLEY 3912  0.995 4 
13 14S3 AZIZINAMINI 14,343  0.999 4 64 D1-1/2-2 MARLEY 6545  1.000 4 
14 14S4 AZIZINAMINI 24,568  0.999 4 65 D2-1/2-1 MARLEY 10,976  1.000 3 
15 14S5 AZIZINAMINI 22,310  0.999 4 66 D2-1/2-2 MARLEY 3431  1.000 4 
16 14S6 AZIZINAMINI 27,427  0.999 4 67 D3-1/2-1 MARLEY 4784  0.985 4 
17 14S8 AZIZINAMINI 55,014  1.000 4 68 D3-1/2-2 MARLEY 3087  1.000 4 
18 14S9 AZIZINAMINI 28,172  0.999 4 69 A1 MAXWELL 32,504  0.999 4 
19 B11 RATHBUN 24,613  0.992 5 70 A2 MAXWELL 24,446  1.000 4 
20 B12 RATHBUN 28,483  0.992 4 71 A3 MAXWELL 18,789  1.000 4 
21 L1 ROEDER 13,541  0.963 3 72 A4 MAXWELL 24,217  1.000 4 
22 SBR01 ELNASHAI 14,237  1.000 4 73 B1 MAXWELL 20,616  1.000 4 
23 LM-P FU 9092  0.981 4 74 B2 MAXWELL 16,393  0.998 4 
24 LM-T FU 8891  0.992 4 75 B3 MAXWELL 17,375  0.998 4 
25 LM-P15 FU 7658  0.961 4 76 B4 MAXWELL 18,651  1.000 4 
26 LM-T15 FU 8946  0.998 4 77 C1 MAXWELL 15,851  1.000 4 
27 BCC7-M CALADO 23,557  0.995 4 78 C2 MAXWELL 17,063  0.999 4 
28 BCC9-M CALADO 18,819  0.996 4 79 C3 MAXWELL 22,390  1.000 4 
29 BCC10-M CALADO 19,975  0.999 4 80 C4 MAXWELL 24,389  1.000 4 
30 W18-M KOMURO 55,284  0.998 4 81 JT/08 DAVISON 15,089  0.998 4 
31 W29-M KOMURO 58,351  1.000 3 82 AZITS1 AZIZINAMINI 12,518  0.979 4 
32 B8 RATHBUN 23,744  0.993 5 83 AZITS2 AZIZINAMINI 26,049  0.975 4 
33 B9 RATHBUN 15,938  0.994 5 84 TEST3 HARPER 5831  0.990 3 
34 B10 RATHBUN 23,968  0.990 5 85 R1-01 MANDER 7406  0.982 4 
35 N02 HECHTMAN 10,166  0.999 6 86 R1-05 MANDER 15,010  0.999 4 
36 N05 HECHTMAN 21,523  1.000 4 87 R1-06 MANDER 14,594  0.998 4 
37 N09 HECHTMAN 39,321  0.993 4 88 R0-11 MANDER 11,975  1.000 4 
38 N010 HECHTMAN 47,457  0.960 4 89 TSC/M BERNUZZI 10,492  0.961 3 
39 N016 HECHTMAN 17,837  1.000 4 90 N01 KUBO 3500  0.997 3 
40 N020 HECHTMAN 28,246  1.000 4 91 N03 KUBO 4195  0.980 4 
41 N022 HECHTMAN 26,592  1.000 4 92 N05 KUBO 4490  1.000 4 
42 N024 HECHTMAN 38,767  0.991 4 93 N07 KUBO 3515  0.992 4 
43 A-1/4-1 MARLEY 1333  1.000 3 94 N09 KUBO 5125  0.997 4 
44 A-1/4-2 MARLEY 1078  1.000 4 95 W00-M KOMURO 36,546  0.982 3 
45 B-1/4-1 MARLEY 1229  1.000 3 96 G60 SATO 41,532  0.975 4 
46 B-1/4-2 MARLEY 2589  0.999 5 97 G105 SATO 24,256  0.996 4 
47 C1-1/4-2 MARLEY 2549  1.000 4 98 G150 SATO 11,465  0.969 4 
48 C2-1/4-1 MARLEY 3398  0.999 4 99 GW60 SATO 43,407  1.000 3 
49 C2-1/4-2 MARLEY 1438  1.000 4 100 A40 SATO 47,406  0.999 3 
50 D1-1/4-1 MARLEY 594  0.995 5 101 A90 SATO 45,026  0.998 3 
51 D1-1/4-2 MARLEY 557  1.000 4        
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fit of the 8S1 test is considered, the tangent at the origin provides a 
stiffness of 7972 kNm/rad, a value that is closer to that obtained with the 
methodology proposed in this paper following EC3 prescriptions. 

Table 2 lists the tests and the initial stiffness values obtained, the 
coefficients of determination R2, and the number of points N used for the 
linear approximation (at least four points in 87 out of 101 specimens). 
The percentage of the resistance range covered in the regression analysis 
was between 10% and 50% of the plastic moment for TS connections, 
and between 20% and 80% of the plastic moment for TSDW connections. 
In almost all the tests, the linear approximation was satisfactory, with R2 

values close to 1, except for some which, despite presenting slightly 
lower values, still accounted for more than 95% of the variability in the 
response in all cases. 

3. Parameter selection 

If the number of points in the ANN training dataset is much larger 
than the number of parameters in the network, then there is no chance of 
overfitting. Since the supply of data is limited, and collecting more data 
under the same conditions as those provided by SCDB database is 
difficult, thus increasing the size of the training set, strategies should be 
considered to prevent overfitting [44]. The addition of parameters lead 
the model to memorise the data instead of finding generalisations. 
Therefore, an ANN trained on a dataset would probably reproduce the 
memorised data instead of learning. Therefore, numerous solutions can 
be obtained which fit the training data well but will not generalise at all. 
The optimal number of parameters in the ANN also depend on the data 
distribution, the quality of the obtained solution, the amount of noise, 
and the nature of the function being approximated [45]. Considering 
these premises, the rotational stiffness should be characterised through a 
reduced number of significant parameters. Azizinamini et al. [46] 
identified the most significant parameters affecting the initial stiffness of 
angle connections as the depth of the beam section, the thickness of the 
flange angles, and the gage in the leg of the flange angle attached to the 
column. They also detected three secondary parameters that also had an 
effect on the response of the connection: the length of the flange angles, 
that of the web angles, and the thickness of the latter. Since these pa-
rameters are also involved in the power model of Kishi and Chen [27], 
which is a simple and widely studied methodology, they were finally 
selected for this study. Therefore, the following predictors were 
considered in the ANN approach: the beam depth, hb, the top angle 
thickness, tta, the top angle length, Lta, the gage distance, g, the web 
angle thickness, twa, and the web angle length, Lwa. Fig. 2 shows these 
geometrical parameters in a typical configuration for a TSDW angle 
connection. 

4. Statistical analysis for data cleansing 

Data pre-processing was an important step in this study since the 
analysis of data that are not carefully examined can lead the ANN to 
produce misleading results. The development and assessment of exper-
imental tests on semi-rigid joints, where a large number of components 
are involved, entails difficulties and possible execution and measure-
ment inaccuracies; a prior data cleaning process can be used to detect 
these. A multilinear regression (ML) model may be used for the identi-
fication of anomalies in the data if the hypotheses of linearity and 
normality are confirmed. Therefore, a statistical analysis was carried out 
using the IBM SPSS® software package [47] concerning the data from 
the SCDB databank together with the previously obtained values of 
rotational stiffness. For this problem, the rotational stiffness was the 
dependent variable of the ML approximation, and it was related to 
several independent variables, the predictors described in the previous 
section, that are affected by regression coefficients. The method of least 
squares was used to estimate the regression coefficients in the ML model. 
Once these coefficients were obtained, the prediction for the stiffness 
was the output from SPSS®. 

Table 3 provides a summary of the ML model results, including the 
multiple correlation coefficient R, the coefficient of determination R2, 
the Fisher ratio F, the Durbin-Watson coefficient, and the regression 
coefficients. The value of the adjusted coefficient of determination R2 

indicates that the model accounts for just 71% of the variability in the 
initial stiffness response. However, the model can still be useful in 
detecting the presence of severe anomalies in the data. Table 4 shows 
that the test for significance of regression confirms the null hypothesis, 
with a Fisher value F = 41.583 > F0.01,6,94 = 3.03, so that the stiffness is 
linearly related to the predictors. 

Fig. 3 shows a histogram of the regression standardised residuals vs 
frequency, and the normal probability P-P graphic of the regression 
standardised residuals. The histogram of the standardised residuals in-
dicates a nearly symmetric, moderate tailed distribution. Therefore, the 
next step involved analysing the normal probability plot. Generally 
speaking, the “S” pattern, which could usually indicate non-linearity, is 
fairly mild. In addition, in the middle of the plot, the data exhibit a linear 
pattern and the first and last points do not show an increasing departure 
from the fitted line. Therefore, it can reasonably be concluded that the 
normal distribution provides an adequate fit for the residuals. 

Table 5 shows the prediction from the ML model and the ratio r 
between the predicted rotational stiffness, Sjini_MLR, and the experi-
mental values Sjini_exp. 

In order to select a debugged set of input data to train the network, 
the tests that presented a very high or very low r ratio were removed. In 
particular, these selected ratio values were r greater than 1.6 or r < 0.4. 
The reason for choosing this relatively wide range was the need to obtain 
a database that was as clean as possible while maintaining a sufficient 
number of data for training the network, at least ten times the number of 
entry parameters. Thus, 33 experimental tests were removed from the 
original data, and therefore, 68 tests remained for developing the ANN 
approach. Table 6 shows the tests that remained in the same sorting 
order that they are presented in in the databank. 

5. Artificial neural networks 

5.1. Introduction 

Artificial neural networks are computing systems that are inspired by 
biological ANNs and composed of simple elements operating in parallel. 
The connections between these elements determine the network func-
tion. An ANN can be trained to carry out a particular function by rear-
ranging the values of the links between elements. These values are 
designated as weights. In an ANN, each neuron in a layer is connected 
via a weight to each neuron in the next activity. Each of these activities 
stores the weighted activities of previous layers. The bias is a parameter 

Fig. 2. Geometrical parameters considered in the study.  
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of the ANN which is used to adjust the weighted sum of the inputs to the 
neuron together with the output. The output of the network is computed 
by multiplying the input by the weight and running the result through an 
activation function, for example, the Sigmoid. When the weight 
changes, the steepness of the sigmoid also changes, but changing the 
steepness is not enough for achieving the result. Instead, the entire curve 
must be shifted, and therefore a bias value is needed. Indeed, the use of 
biases in an ANN increases the capacity of the network to solve 
problems. 

Artificial neural networks are adjusted so that a particular input 
leads to a specific target output, automatically generating identifying 
characteristics from the processed examples. Notably, ANNs have been 
trained to perform complex functions in various fields, including iden-
tification and pattern recognition, and to solve problems that are diffi-
cult for human beings or conventional computers. 

Standard backpropagation is the common gradient descent algo-
rithm used to train ANNs. After each forward pass-through, the algo-
rithm performs a backward pass while adjusting the parameters of the 
model: i.e., the weights and biases. The weights move along the negative 
gradient of the performance function and learning is obtained through 
the backpropagation of errors. 

The networks are properly trained if they are able to generalise. 
Generalisation means that good results can be obtained for data out of 
the representative input dataset where the network was trained. 

Network generalisation can be improved with several techniques. The 
use of a small-enough network is advisable since it will not have enough 
power to overfit the data. Nevertheless, it is relatively difficult to predict 
how large a network should be to avoid overfitting [44]. A commonly 
used method to improve generalisation is early stopping where the 
available data are divided into three sets: a training set, validation set, 
and test set. If the network overfits the data, the error of the validation 
set begins to increase and the training is stopped. Another method to 
improve generalisation is regularisation, which consists in modifying 
the performance function. This modification is done by adding the mean 
of the sum of squares of weights and biases to the basic performance 
function, which is the sum of squares of the network errors on the 
training set. Obtaining the optimal regularisation parameters can be 
challenging, and thus, a Bayesian approach can be used to ease and 
automate the process [45]. In the Bayesian framework, the weights and 
biases are random variables, and the regularisation parameters can be 
determined through statistical techniques. For small datasets and func-
tion approximation networks, the Bayesian approach provides a better 
performance than early stopping techniques since it does not require a 
validation dataset and uses all the data. However, the network must be 
trained until it reaches convergence. Finally, another strategy to 
improve generalisation, when facing difficulties associated with small 
and noisy datasets, involves training multiple ANNs and averaging their 
outputs using the Bayesian regularisation approach. 

The data used in this research can be considered small and likely 
noisy, even after the cleansing process. Therefore, the Bayesian 
approach could be considered for improving generalisation, since 
overfitting becomes much more difficult to avoid in this small-data 
context. In any case, the training algorithm and the number of neu-
rons in the hidden layer will be discussed in the following sections to 
ensure the best performance within the smallest network. 

Table 3 
Model Summary.  

R R2 Adjusted R2 Std. Error R2 Change F Change Sig. F Change Durbin-Watson 

0,852 0,726 0,709 7532,7781 0,726 41,583 0,000 1,216 
Predictor Constant hb tta Lta g twa Lwa 

Coefficient −17036,48 46,93 1062,22 72,53 −89,32 −2944,30 143,25 
Std. Error 4276,76 9,33 318,67 20,06 53,44 984,59 37,29  

Table 4 
Results of the analysis of variance.   

Sum of Squares df Mean Square F Sig. 

Regression 14157231040,000 6 2359538506,000 41,583 0,000b 

Residual 5333818058,000 94 56742745,300   
Total 19491049100,000 100     

Fig. 3. Histogram of regression standardised residuals vs frequency and P-P plot.  
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5.2. Matlab neural network toolbox 

The Matlab Neural Network (NN) Toolbox™ emphasises the use of 
ANNs in engineering and other practical applications. The graphical 
Matlab tools for training ANNs can be used to solve problems in function 
fitting since ANNs are good at fitting functions [44]. The NN Toolbox 
software can be used in several ways: through graphical user interfaces, 
using command-line operations, through customisation, and, finally, by 
modifying any of its functions. The customisation capability allows the 
creation of custom ANNs, while maintaining access to the full func-
tionality of the toolbox. Networks with arbitrary connections can be 
created and trained using the existing toolbox training functions. The 
standard steps for designing ANNs to solve function fitting problems are 
shown in Fig. 4. 

In this paper, the data was divided into two datasets: a training 
dataset and a testing dataset. The size of the training dataset was 
selected to guarantee a minimum number of samples regarding the 
number of input parameters, as will be described in the next section. In 
addition, the Matlab neural fitting tool was used to automatically 

generate a script that could be customised both to train and to validate 
the network. Otherwise, the validation of the network was developed 
not only with the preserved testing dataset, but also with some other test 
from the literature to further check the generalisability. 

5.3. Datasets for the study 

At the end of the network training process, the network performance 
must be checked with values that are not used to train it. Therefore, one 
out of eight of the remaining tests from Table 6 was extracted, leading 
the same order as sorted by the SCDB databank. Thus, eight tests were 
preserved to analyse the network at the end of the process, and, there-
fore, it was trained with the remaining 60 data. Tables 7 and 8 show the 
training and testing datasets, respectively. This training dataset ensured 
that there was an amount of data at least ten times greater than the 
number of parameters [48]. 

Table 5 
Prediction from the multilinear regression (ML) model and ratio r.  

Test Sjini_exp Sjini_MLR r Test Sjini_exp Sjini_MLR r 

8S1 8280 8938  1.08 D2-1/4-1 773 −782  −1.01 
8S2 15,593 10,638  0.68 D2-1/4-2 1755 −782  −0.45 
8S3 12,813 12,623  0.99 D3-1/4-1 813 −782  −0.96 
8S4 1875 4966  2.65 D3-1/4-2 279 −782  −2.80 
8S5 10,258 13,188  1.29 A-1/2-1 1948 5963  3.06 
8S6 5347 7804  1.46 B-1/2-1 6930 5963  0.86 
8S7 5588 9503  1.70 B-1/2-2 4679 5963  1.27 
8S8 6858 8938  1.30 C1-1/2-1 3932 5963  1.52 
8S9 12,032 10,638  0.88 C1-1/2-2 3069 5963  1.94 
8S10 24,919 14,037  0.56 C2-1/2-1 6380 5963  0.93 
14S1 32,326 31,021  0.96 C2-1/2-2 2204 5963  2.71 
14S2 35,523 34,420  0.97 D1-1/2-1 3912 5963  1.52 
14S3 14,343 20,134  1.40 D1-1/2-2 6545 5963  0.91 
14S4 24,568 21,894  0.89 D2-1/2-1 10,976 5963  0.54 
14S5 22,310 31,021  1.39 D2-1/2-2 3431 5963  1.74 
14S6 27,427 34,420  1.25 D3-1/2-1 4784 5963  1.25 
14S8 55,014 37,819  0.69 D3-1/2-2 3087 5963  1.93 
14S9 28,172 34,420  1.22 A1 32,504 21,367  0.66 
B11 24,613 20,598  0.84 A2 24,446 24,993  1.02 
B12 28,483 29,839  1.05 A3 18,789 21,367  1.14 
L1 13,541 34,974  2.58 A4 24,217 24,993  1.03 
SBR01 14,237 15,226  1.07 B1 20,616 23,491  1.14 
LM-P 9092 12,758  1.40 B2 16,393 27,118  1.65 
LM-T 8891 12,758  1.43 B3 17,375 23,491  1.35 
LM-P15 7658 12,758  1.67 B4 18,651 27,118  1.45 
LM-T15 8946 12,758  1.43 C1 15,851 26,678  1.68 
BCC7-M 23,557 18,569  0.79 C2 17,063 30,304  1.78 
BCC9-M 18,819 18,569  0.99 C3 22,390 26,678  1.19 
BCC10-M 19,975 18,569  0.93 C4 24,389 30,304  1.24 
W18-M 55,284 29,251  0.53 JT/08 15,089 9031  0.60 
W29-M 58,351 45,009  0.77 AZITS1 12,518 18,922  1.51 
B8 23,744 10,848  0.46 AZITS2 26,049 22,321  0.86 
B9 15,938 14,533  0.91 TEST3 5831 21,625  3.71 
B10 23,968 25,587  1.07 R1-01 7406 10,347  1.40 
N02 10,166 21,071  2.07 R1-05 15,010 10,347  0.69 
N05 21,523 34,496  1.60 R1-06 14,594 10,347  0.71 
N09 39,321 37,895  0.96 R0-11 11,975 10,347  0.86 
N010 47,457 41,188  0.87 TSC/M 10,492 17,273  1.65 
N016 17,837 17,672  0.99 N01 3500 10,530  3.01 
N020 28,246 33,278  1.18 N03 4195 10,440  2.49 
N022 26,592 35,671  1.34 N05 4490 6842  1.52 
N024 38,767 37,895  0.98 N07 3515 6851  1.95 
A-1/4-1 1333 −782  −0.59 N09 5125 6860  1.34 
A-1/4-2 1078 −782  −0.73 W00-M 36,546 24,076  0.66 
B-1/4-1 1229 −782  −0.64 G60 41,532 26,816  0.65 
B-1/4-2 2589 −782  −0.30 G105 24,256 22,797  0.94 
C1-1/4-2 2549 −782  −0.31 G150 11,465 18,777  1.64 
C2-1/4-1 3398 −782  −0.23 GW60 43,407 26,816  0.62 
C2-1/4-2 1438 −782  −0.54 A40 47,406 26,816  0.57 
D1-1/4-1 594 −782  −1.32 A90 45,026 26,816  0.60 
D1-1/4-2 557 −782  −1.40      

J.M. Reinosa et al.                                                                                                                                                                                                                              



Structures 56 (2023) 104904

7

5.4. Selection of training algorithm and number of neurons 

5.4.1. Selection of training algorithm 
The NN Toolbox software contains a list of available training algo-

rithms which compute either the gradient or the Jacobian by performing 
calculations backward through the network [44]. Two-layer feed-for-
ward networks, with a sigmoid hidden layer and linear output layer, can 
fit multi-dimensional problems, given consistent data and enough neu-
rons in the hidden layer. An ANN that is just large enough to obtain an 
adequate fit can improve the network generalisation. As the size of the 
network increases, the functions it can create become more complex. 
Therefore, small enough networks will not have enough power to pro-
duce overfitting. Among the different possibilities offered by the NN 
Toolbox, three of the most widely used algorithms were analysed: 
Levenberg-Marquardt (LM) backpropagation, scaled conjugated 
gradient (SCG) backpropagation, and Bayesian regularisation (BR) 
backpropagation. 

5.4.1.1. Levenberg-Marquardt (LM) backpropagation: Trainlm. This 
training function updates the weight and bias values as stated by the LM 
optimisation. The trainlm routine is usually the fastest backpropagation 
algorithm in the toolbox, and is often recommended as the first-option 
algorithm, although it requires more memory than other algorithms. 
Particularly, in function approximation problems, trainlm will have the 
fastest convergence and can obtain lower mean square errors than other 
algorithms. However, the advantage of trainlm decreases with the in-
crease of the number of weights in the network. Therefore, it is rec-
ommended for small and medium size networks, if there is enough 
memory available. 

5.4.1.2. Scaled conjugate gradient (SCG) backpropagation: Trainscg. The 
SCG algorithm uses the scaled conjugate gradient method to update the 
weight and bias values, and performs well for networks with a large 
number of weights. The trainscg procedure is faster than the LM algo-
rithm for function approximation problems where large networks and 
few memory demands are involved. 

5.4.1.3. Bayesian regulation (BR) backpropagation: Trainbr. As previ-
ously discussed, the BR algorithm is particularly well-suited to cases 
involving a relatively small dataset available for network training, and it 
uses the whole of the available dataset for training purposes without 
requiring a validation set. Accordingly, the methodology prevents data 
discards and maximises the amount of training data. Furthermore, BR 
reduces previous works before training and preserves an optimal 
network size [44]. The trainbr routine updates the weight and bias 
values considering the LM optimisation. In the regularisation process, it 
minimizes a combination of squared errors and weights. Subsequently, it 
determines the right combination to produce a network that generalises 
adequately. The BR algorithm performs well on function approximation 

Table 6 
Tests remaining after discarding.  

Order Test Order Test Order Test Order Test 

1 8S1 18 B12 35 N022 52 C3 
2 8S2 19 SBR01 36 N024 53 C4 
3 8S3 20 LM-P 37 B-1/2-1 54 JT/08 
4 8S5 21 LM-T 38 B-1/2-2 55 AZITS1 
5 8S6 22 LM-T15 39 C1-1/2-1 56 AZITS2 
6 8S8 23 BCC7-M 40 C2-1/2-1 57 R1-01 
7 8S9 24 BCC9-M 41 D1-1/2-1 58 R1-05 
8 8S10 25 BCC10-M 42 D1-1/2-2 59 R1-06 
9 14S1 26 W18-M 43 D2-1/2-1 60 R0-11 
10 14S2 27 W29-M 44 D3-1/2-1 61 N05 
11 14S3 28 B8 45 A1 62 N09 
12 14S4 29 B9 46 A2 63 W00-M 
13 14S5 30 B10 47 A3 64 G60 
14 14S6 31 N09 48 A4 65 G105 
15 14S8 32 N010 49 B1 66 

67  
GW60 

16 14S9 33 N016 50 B3 67  A40 

17 B11 34 N020 51 B4 68 A90  

Fig. 4. Standard steps for designing an artificial neural network (ANN).  

Table 7 
Training dataset.  

Order Test Order Test Order Test 

1 8S1 21 BCC7-M 41 A2 
2 8S2 22 BCC10-M 42 A3 
3 8S3 23 W18-M 43 B1 
4 8S5 24 W29-M 44 B3 
5 8S6 25 B8 45 B4 
6 8S8 26 B9 46 C3 
7 8S9 27 B10 47 C4 
8 14S1 28 N09 48 JT/08 
9 14S2 29 N016 49 AZITS1 
10 14S3 30 N020 50 R1-01 
11 14S4 31 N022 51 R1-05 
12 14S5 32 N024 52 R1-06 
13 14S6 33 B-1/2-1 53 R0-11 
14 14S8 34 B-1/2-2 54 N05 
15 B11 35 C1-1/2-1 55 N09 
16 B12 36 D1-1/2-1 56 W00-M 
17 SBR01 37 D1-1/2-2 57 G105 
18 LM-P 38 D2-1/2-1 58 GW60 
19 LM-T 39 D3-1/2-1 59 A40 
20 LM-T15 40 A1 60 A90  

Table 8 
Testing dataset.  

Order Test 

1 8S10 
2 14S9 
3 BCC9-M 
4 N010 
5 C2-1/2-1 
6 A4 
7 AZITS2 
8 G60  
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Fig. 5. Best performance found for the Levenberg-Marquardt (LM) training with ten neurons.  

Fig. 6. Best performance found for the scaled conjugate gradient (SCG) training with ten neurons.  
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problems since the approximation to the Hessian used in the LM algo-
rithm is accurate when the network output is not saturated. The main 
disadvantage of the BR method is that it takes longer to converge than 
early stopping. 

A comparison between the three methods is here proposed for a 
network with ten neurons. For the LM and SCG training algorithms, 70% 
of the samples were set aside for training, 15% for validation, and 15% 
for testing. Validation allowed us to measure the network generalisation 
and stop the training before over-fitting. In addition, testing provided an 
independent measure of network performance during and after training. 
Several hundred networks were trained in each case until an optimal 
performance value, in terms of MSE, was reached. In the case of the LM 
and SCG methods, a reasonable good performance meant that the test set 
error and validation set error characterisations were similar and the test 
curve did not increase significantly before the validation curve 

increased. Figs. 5 and 6 show the best validation performance in terms of 
MSE regarding the number of epochs, where an epoch represent the 
training of the neural network with all the training data for one cycle. 

Fig. 7 shows the results for the best solution found through BR 
training, leading to a correlation coefficient R equal to 0.98368 from the 
comparison between outputs and targets in the regression plot. Fig. 8 
shows the performance comparison for the three studied training 
methods in terms of the MSE. As expected, the methodology that offered 
the best results was BR, which used all data for training in a small-data 
problem context. In the case of the other two methods, the LM training 
provided better results than the SCG training probably because the MSE 
stabilised early and the LM worked well when the number of weights in 
the neural network was not large. Regarding the speed, the fastest al-
gorithm was LM, but for this network configuration, with just ten neu-
rons in one layer, speed did not become a real problem. 

Fig. 7. Best performance found for the Bayesian regulation training with ten neurones.  

Fig. 8. Performance comparison for the studied training methods.  
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5.4.2. Number of neurons in the hidden layer 
A large number of neurons in the hidden layer provides the network 

with more flexibility because it has more parameters to optimise. 
Nevertheless, if the hidden layer is too large, it might lead to an under- 
characterisation of the problem, since the network must optimise more 
parameters than existing data vectors to constrain these parameters. The 
training points could be adequately fitted, but the fitting curve would 
randomly oscillate between these points. In contrast, too few neurons 
can lead to underfitting. 

There are still no strong mathematical methods for predicting the 
number of neurons in the hidden layers. However, several rules of 
thumb have been presented in the literature. Blum et al. [49] proposed 
that the size of this hidden layer must be between the size of the input 
layer size and that of the output layer. Furthermore, Berry et al. [50] 
proposed that the size should never be more than twice that of the input 
layer. Even so, these rules do not take into account the number of 
training samples. Other empirical rules, such as those of Ke et al. [51] 
and Shibata et al. [52], only work for particular situations. Huang and 
Babri [53] proved that a single hidden layer feedforward network with 
at most Nh hidden neurons can learn different Ns samples without error. 
This statement applies to any bounded, non-linear activation function 
with the limit at one infinity [53]. Thus, the upper bound for a single 
layer feedforward network is Nh ≤ Ns. Hecht-Nielsen [54] stated that any 
continuous function f defined on an n-dimensional unit cube can be 
implemented exactly by a three-layer network with 2n + 1 hidden 
nodes. According to Hecht-Nielsen, an upper bound for the number of 
hidden neurons using Kolmogorov’s theorem could be Nh ≤ 2Ni + 1 
where Nh is the number of hidden neurons and Ni is the number of input 

Fig. 9. Mean squared error regarding the number of neurons.  

Fig. 10. Correlation coefficient regarding the number of neurons.  

Fig. 11. Artificial neural network (ANN) architecture.  
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parameters. Nevertheless, there is another possibility that consist of 
searching through all the reasonable network topologies within the 
theoretical bounds and choosing the one with the least generalisation 

error. The main problem with this approach is that it can be very time- 
consuming but only for networks with more than one hidden layer. Since 
this study’s network consisted of a single hidden layer, this methodology 

Fig. 12. Neural network training performance progress.  

Fig. 13. Error histogram.  
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could be used to find the optimum number of neurons [55]. Therefore, 
the network was trained several times, varying the number of neurons in 
the hidden layer between 1 and 16, until reiterative low values of MSE 
were obtained for each case. Figs. 9 and 10 show the performance results 
in terms of both the minimum MSE found and the correlation coefficient 
R. From Nh = 7, no significant improvements were obtained in either of 
the two indices. Besides, this number of neurons in the hidden layer was 
consistent with the recommendations of Berry et al. and also with 
respect to the suggestions of Huang-Babri and Hecht-Nielsen. Accord-
ingly, the neural architecture described in Fig. 11 was chosen. It con-
sisted of six input parameters, one layer of neurons with seven hidden 
neurons, and the rotational stiffness as the only output from the 
network. 

5.5. Training and testing of ANN 

The toolbox allowed the creation of custom functions leading to a 
great control over the network algorithms. Thus, a simple generated 
script was modified to check the network performance each time the 
training was completed. The possibility of using the multiple networks 
training technique was analysed, since it represented a good choice for 
problems linking small dataset with BR [44]. However, the results tak-
ing the average of the outputs from multiple networks did not improve 
the performance of the best network found after the iterative process. 

Therefore, after hundreds of training cycles using an Intel® Core ™ 
i7 – 1065 G7 processor, several networks producing low MSE values 
were studied. The correlation coefficients and error histograms were 

Fig. 14. NN Training Regression Plot.  

Table 9 
Validation of the neural network (NN) with the tests preserved from the databank.   

Sj,ini_exp 

(kNm/rad) 
Sj,ini_NN 

(kNm/rad) 
Sj_NN/Sj_exp Sj,ini_Kishi 

(kNm/rad) 
Sj_Kishi/Sj_exp Sj,ini_Faella 

(kNm/rad) 
Sj_Faella/Sj_exp 

8S10 24,919 28,656  1.15 36,712 1,47 23,420 0,94 
14S9 28,172 32,670  1.16 47,188 1,67 39,572 1,40 
BCC9-M 18,819 22,204  1.18 41,878 2,23 31,575 1,68 
N010 47,457 46,922  0.99 242,721 5,11 39,018 0.82 
C2-1/2-1 6380 6244  0.98 3540 0,55 2646 0,41 
A4 24,217 26,448  1.09 118,160 4,88 28,750 1,19 
AZITS2 26,049 25,649  0.98 44,898 1,72 24,984 0,96 
G60 41,532 44,881  1.08 105,589 2,54 32,128 0,77   

Mean  1.08 Mean 2,52 Mean 1,02   
StDev  0.08 StDev. 1,53 StDev. 0,37  
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checked and the best-trained network was selected. Fig. 12 shows the 
training performance progress for the best solution. This figure also in-
dicates the iteration at which the performance reached a minimum. 
Fig. 13 shows the error histogram, which is the histogram of the errors 
between the target values and predicted values following the training of 
a feedforward neural network. The bins are the number of vertical bars 
on the graph and the Y-axis represents the number of samples from the 
dataset regarding a particular bin. 

The neural network training regression plot is presented in Fig. 14, 
showing the relationship between the outputs of the network and the 
targets. The dashed line in each axis represents the ideal result where the 
outputs are equal to the targets. The solid line represents the best-fit line 
between the outputs and targets. The correlation value R indicates the 
relationship between the outputs and targets. If R is close to 1, this in-
dicates that the relationship between the outputs and targets is quasi- 
linear. Indeed, a value of R between 0.9 and 1 indicates a very high 
positive correlation. In this case, the training and test correlations pro-
vided values of 0.98 and 0.95 respectively, indicating a relatively good 
fit, so that the network seemed suitable for predicting the rotational 
stiffness. 

5.6. Validation of the ANN 

Once the training was completed, the network performance was 
checked with the test set preserved from the databank. Additionally, the 
predictive capacity of the ANN was compared with two highly proven 
analytical methodologies: the power model approach of Kishi and Chen 
[14] and the methodology proposed by Faella et al. [56]. Table 9 shows 
the prediction results, where Sj,ini_exp is the experimental rotational 
stiffness, Sj,ini_NN is the prediction from the NN, and Sj,ini_Kishi and Sj, 

ini_Faella are the predictions from Kishi and Chen, and Faella et al., 
respectively. 

The neural network proposal showed a good agreement with the 
experimental results, with a mean of 1.08 and standard deviation of 
0.08. 

To further assess the net generalisation capability, it could be helpful 
to check the ANN with tests not included in the SCDB database, some of 
them, if possible, including predictors with values outside the training 
ranges. Although experimental references are available in the literature, 
a few of them were not considered because they are not symmetrical 
tests [57], they are minor axis tests [58], or they are non-preloaded as in 
[59–61]; the TSC tests, from the second series of Bernuzzi et al. [41], and 
101,006 from Janss et al. [62] were also excluded. Table 10 shows the 
geometries related to the off-databank tests and Table 11 shows the 
selected available tests with their respective references and geometrical 
data, where Sj,ini_exp is the experimental rotational stiffness and Sj,ini_NN is 
the neural network prediction for the rotational stiffness. The tests from 
Mander et al. [40], Bernuzzi et al. [41], and Chasten et al. [63] are tests 
carried out on the same geometry. The initial stiffness values were ob-
tained from each reference, since the original data from the moment- 
rotation curves were not available. In the case of the experimental 
data from Zandonini et al. [64], the stiffness values were obtained with 
the RSTAB® structural analysis program, through an iterative procedure 
targeted to match the displacements measured in the experimental 
work. To carry out this task, the tests were simulated using the RSTAB® 
frame & truss analysis software as semi-rigid frame models where the 
connections were defined by means of a rotational spring. The starting 
rotational stiffness was iteratively modified until a maximum displace-
ment equal to that referred to by the authors in each test was obtained. 
Fig. 15 shows the RSTAB® model for specimen TSW10-i2. 

Table 11 shows the comparison between the experimental and 
stiffness prediction values for all off-database tests. The mean was 0.95 
and standard deviation reached 0.18. This statistical results show a good 
performance of the ANN, even for cases where the stiffness was not 
evaluated in the same consistent way as for the training set. 

Table 10 
Geometrical data of the tests out from SCDB databank (millimetres).  

Test Author hb tta Lta g twa Lwa 

R1-04 Mander et al. [40] 210 9,5 165,1 50,8 0 0 
R1-09 Mander et al. [40] 210 9,5 165,1 50,8 0 0 
TSC-A Bernuzzi et al. [41] 300 11,8 180 60.0 0 0 
TSC-B Bernuzzi et al. [41] 300 11,8 180 60.0 0 0 
TSC-C Bernuzzi et al. [41] 300 11,8 180 60.0 0 0 
TSC-D Bernuzzi et al. [41] 300 11,8 180 60.0 0 0 
TP3A Chasten et al. [63] 684 22,2 254 114,3 0 0 
TP3B Chasten et al. [63] 684 22,2 254 114,3 0 0 
T1_Jobaer Jobaer et al. [65] 354 12.0 202 64 10 214 
TS18-i2 Zandonini et al. [64] 300 18.4 180 60 0 0 
TS16-i2 Zandonini et al. [64] 300 16.4 180 60 0 0 
TSW9-i2 Zandonini et al. [64] 300 16.4 180 60 8.4 260 
TSW10-i2 Zandonini et al. [64] 300 18.4 180 60 10.4 260 
TS18-i5 Zandonini et al. [64] 300 18.4 180 60 0 0 
TS16-i5 Zandonini et al. [64] 300 16.4 180 60 0 0 
TSW9-i5 Zandonini et al. [64] 300 16.4 180 60 8.4 260 
TSW10-i5 Zandonini et al. [64] 300 18.4 180 60 10.4 260 
101,003 Janss et al. [62] 200 15 150 50 0 0 
101,012 Janss et al. [62] 300 15 150 50 0 0  

Table 11 
Neural network results for off-database tests.   

Sj,ini_exp (kNm/rad)   Sj,ini_NN (kNm/rad) Sj_NN/Sj_exp 

R1-04 13,876 12,043  0.87 
R1-09 13,967 12,043  0.86 
TSC-A 21,550 17,979  0.83 
TSC-B 18,100 17,979  0.99 
TSC-C 17,600 17,979  1.02 
TSC-D 16,450 17,979  1.09 
TP3A 96,032 93,916  0.98 
TP3B 97,162 93,916  0.97 
T1_Jobaer 29,244 26,368  0.90 
TS18-i2 24,225 24,758  1.02 
TS16-i2 38,130 22,903  0.60 
TSW9-i2 44,595 39,534  0.89 
TSW10-i2 50,150 55,111  1.10 
TS18-i5 27,935 24,758  0.89 
TS16-i5 35,010 22,903  0.65 
TSW9-i5 32,830 39,534  1.20 
TSW10-i5 38,875 55,111  1.42 
101,003 

101,012 
17,650 14,201  0.80 

101,012 36,365 37,671  1.04   
Mean  0.95   
StDev.  0.18  
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6. Discussion 

The Kishi and Chen power model provided larger stiffness values for 
most of the tests, probably because it did not take into account the 
flexibility of the panel zone. Otherwise, the method of Faella et al. [56] 
yielded better results than the Kishi and Chen model for the analysed 
experimental tests, with a mean value close to 1, but the standard de-
viation was still high relative to the results from the neural network 
approach. However, considering that the results for test C2-1/2-1 

showed a ratio of 0.42 between Sj_Faella/Sj_exp, if this result was 
removed from the test set, the standard deviation of the Faella’s et al. 
methodology would be better. The prediction from the Kishi and Chen 
model for this test provided a unique Sj_Kishi/Sj_exp ratio that fell below 1. 
The C2-1/2-1 test was included in the experimental work of Marley et al. 
[36]. This series of tests presented low stiffness values, since the beam 
depth was just 127 mm, the minimum in the dataset. Specifically, this 
test had the same geometrical properties as the other 12 specimens (A1/ 
2-1 to D3-1/2-2), but the experimental stiffness values were very 
different in some cases, ranging between 1948 kNm/rad and 10,976 
kNm/rad. Nevertheless, the use of this specimen for the neural network 
testing was considered significant since its stiffness fell in the central 
range of results from the series. These low values of stiffness predictions 
for this particular case, in comparison with the other predictions, could 
indicate that both the power model and the Faella et al. method were 
sensitive to low values of beam depth, which is a parameter closely 
related to the lever arm in mechanical models. 

The methodology of Faella et al. considered the panel components, 

Fig. 15. RSTAB model for test TSW10-i2.  

Table 12 
Maximum and minimum values for the parameters in the training dataset.  

Parameter hb 

(mm) 
tta 

(mm) 
Lta 

(mm) 
g 
(mm) 

twa 

(mm) 
Lwa 

(mm) 

Max. Value 460,4 15,9 356 105 10 290 
Min. Value 127,2 7,9 121 35 0 0  

Fig. 16. Range of predictors in the training set.  
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but required the introduction of a large number of input parameters. In 
the neural network model, the input process was quick and easy due to 
the small number of parameters involved. 

The proposed ANN is just one of the possible solutions for the pre-
diction of rotational stiffness: any other combination of tests in the 
training set will provide other valid but different solutions. However, 
generating a reliable ANN with such a limited amount of data is a 
challenging task. The problem required a detailed study of the different 
network architecture options, as well as the most appropriate training 
methodology. The number of data can be artificially increased, either 
with synthetic data or with data from a parametric study with the sup-
port of a finite element method. Methods such as the synthetic minority 
over-sampling technique (SMOTE) [66] could create new data points 
from the minority class data points, in this case, the TSDW samples. 
Nevertheless, an overgeneralisation problem can arise since the majority 
class is not taken into account. Moreover, there is a lack of flexibility 
related to the SMOTE technique because the number of synthetic sam-
ples is fixed in advance. Thus, the use of real data from available 
experimental tests has been preferred in order to develop a realistic 
model. These data inherently incorporate geometric imperfections, the 
actual material properties, and other issues regarding the practice of 
constructional steel design. However, the limited number of data require 
the setting of allowable predictor ranges and the further study of the 
ANN generalisation power. Table 12 shows the limit ranges of the pre-
dictors regarding the training dataset. Figs. 16 and 17 show the values of 
predictors and the output values, respectively, along the training set. 
The ranges of the beam depths and the top angle thicknesses were not 
too large, with relatively small upper limit values. The other predictors 
presented comparatively wide ranges but with the evident discontinu-
ities with respect to the web angle parameters. 

Regarding the off-database tests, the prediction for the specimens 
from Chasten et al. [63], which are characterised by high values of the 
top angle thickness and the beam depth, was fairly good. Moreover, the 
prediction for the tests presented in Zandonini et al. [64] concerning 
values of the top angle thickness outside the training range, was 
moderately good in most cases. Nevertheless, the results of the TS16-i2 
and TS16-i5 tests were conservative while those of tests TSW10-i2 and 
TSW10-i5 were non-conservative. A possible explanation would be that, 
for some test geometries, the neural network does not work properly 
because these geometries, a particular geometrical parameter, or a 
combination of them are not well represented in the training set. The top 
and seat angle thicknesses were relatively large for these specimens and 
there were only five tests considering top angle thicknesses larger than 
15 mm in the training set, as shown in Fig. 16. However, the prediction 
for tests TS18-i2 and TS18-i5, which considered TS angle connections 
with a top angle thickness of 18.4 mm, provided better results, even 
when this particular thickness was out of the training set range. This 
issue could indicate good generalisation characteristics, as well as a 
tendency to produce conservative results in the case of TS joints and 
non-conservative results in the case of TSDW joints when the top angle 
thickness is large. 

7. Conclusions 

A database of experimental rotational stiffnesses obtained for TS and 
TSDW angle connections was created through a linear regression of data 
points in the elastic range of the moment-rotation curves from the SCDB 
databank. Subsequently, a reduced number of significant input param-
eters was selected considering the size of the database and recommen-
dations from well-known authors in the literature. Then, the data were 
analysed with a multiple linear regression model, once the normality 
hypothesis was confirmed, as a methodology to rule out outliers. For 
this, a discard criterion was established to obtain a database that was as 
clean as possible while maintaining a sufficient number of data for 
training the network. In this way, the ANN could be trained starting 
from a database that was, although small in size, consistent. Once the 
data were cleaned, an ANN was developed after having studied the 
network architecture in relation to the number of parameters to be 
considered and the number of neurons in the hidden layer. Among the 
different options studied, the best network architecture for this small- 
data problem was the one corresponding to a single hidden layer with 
seven neurons. The network was trained using a BR algorithm, which is 
particularly suitable for cases involving small datasets. The network was 
successfully tested with specimens from the SCDB databank and with 
other experimental tests not included in the databank. The results of the 
predictions made with these off-database tests were fairly good, even 
when some values of the top angle thickness and beam depth were 
outside the training range. The prediction accuracy in the TSDW and TS 
typologies, both for the in-database and off-database tests, was similar, 
with the exception of some off-database cases where the top angle 
thickness was large. The ANN proposed is valid for preloaded and 
symmetrical bolted angle connections in a major axis, and it can be 
reliably used within the range of the training input parameters. The 
presented methodology can be improved in the future by updating 
existing databases with the incorporation of new experimental results. 
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