
Hardening of a Continuous Behavior-based
Authentication Distributed System

Julián González-Muñoz, Mario Casado, Daniel Garabato, Francisco J.
Nóvoa, and Carlos Dafonte
Telematic Group, Faculty of Computer Science, Universidade da Coru~na, 15071 A

Coru~na, Spain

CITIC Research Center, Computer Science and Information Technologies

Department, Campus de Elvi~na, 15071 A Coru~na, Spain

Correspondence: {j.gonzalezm, mario.diez, daniel.garabato, fjnovoa,
carlos.dafonte}@udc.es

DOI: https://doi.org/10.17979/spudc.000024.31

Abstract: Password-based traditional authentication systems are increasingly insufficient when
it comes to providing security and checking the identity of the authenticated user. What hap-
pens when the password of an user has been stolen or an active user is not the same user who
authenticated firstly?
A distributed system using AI (Artificial Intelligence) acting as a second factor authentication
method by analyzing user’s mouse events has to provide confidentiality and integrity in order to
protect against different attacks such as Man-In-The-Middle that allow sniffing or data tamper-
ing, resulting in an identity spoof.
In order to grant integrity and confidentiality, encryption and authentication must be imple-
mented. Authentication is used to allow one node to produce or consume data from an existent
message stream and encryption in order to avoid exposing these data to external agents.
PKI (Public Key Infrastructure) system is widely used over the internet, so it is a trusty authen-
tication and encryption framework. By using PKI in this project, hardening is performed by
creating with OpenSSL a trusted Certificate Authority that issues and signs the certificates used
by each node in the distributed system. Trust in this Certificate Authority is implemented by
creating keystores and truststores for each node with keytool. This project resulted in a secure
communication system preventing data from being sniffed or tampered.

1 Introduction
Password-based traditional authentication systems are increasingly insufficient when it
comes to providing security and checking the identity of the authenticated user. Biometric
identification, physical keys or password policies came up as different solutions to manage
these problems, but, even so, these solutions act as a first security barrier. Incident handling
techniques or security controls try to increase trustness in traditional authentication systems
by using security policies in order to force re-authentication periodically, dificulting identity
spoofing of an authenticated user but falling again in the problem of using one isolated
event as an identity checking system. At the same time, forcing an user to re-authenticate
periodically can worsen the user experience or the user performance during a job.

The need to apply a new authentication system based on a different method of identity
demonstration comes up after analyzing the weaknesses of the traditional authentication
methods. A distributed system has been built in order to provide a continuous behavior-based

197

https://doi.org/10.17979/spudc.000024.31


198 Proceedings XoveTIC 2023

Figure 1: Distributed system deployed in this project

authentication method based on AI (Artificial Intelligence) acting as a second factor authenti-
cation method.

Once the system is working and providing authentication service, there is a need to apply
security to its infrastructure and communications in order to avoid identity spoofing.

In Section 2 the architecture of the distributed system is explainend in order to contextualize
the starting point. Next, in Section 3 the hardening methodology and PKI will be explained as
well as the tools used to implement PKI. Finally, in Section 4 conclusions are discussed.

2 System Architecture
The distributed system used in this project uses Kafka messaging system to process all the
information gathered from the user mouse movements [Narkhede et al. (2017)].

Usermousemovements are sent via Kafka queues to the central node (broker) of the system.
Once there, mouse events are splitted and transformed through Kafka Streams in order to use
these transformed events as characteristics. The created characteristics are returned to theKafka
system via different queues splitted by user, these queues will be used by the final inference AI
system to determine whether an active user is the one previously authenticated or not (Figure
1) [Silvelo et al. (2020)].

By using Confluent Kafka, we can encrypt communications with SSL and authenticate them
with the use of different authentication protocols such as SASL, mTLS or HTTP Basic Auth.

3 Hardening of the system
A lot of advantages exist when having a distributed system like the one used in the project
(Figure 1). One of them is that it allows the possibility to split each node of the system in dif-
ferent places or servers. In addition, the client-side application will be always communicating
through the Internet.

Considering these scenarios and the possibility of a malicious user trying to tamper the data,
the communications among nodes of the systemmust be protected through different methods.
The first method of protection is to encrypt communications in order to avoid sniffing and tam-



González-Muñoz et al. Hardening of a Distributed System 199

Figure 2: PKI simple schema [Tan et al. (2015)].

pering techniques. The other protection method consists of the authentication among nodes
when consuming or producing data, this authentication would avoid malicious agents getting
potentially confidential data from the system or producing and sending data to the system.

As mentioned in the previous chapter (Chapter 2) mTLS can be implemented in order to
encrypt communications and perform authentication.

3.1 PKI
PKI is the framework that enables entities to securely exchange information using digital cer-
tificates. The components that form PKI include the hardware, software, policies, procedures
and entities needed to safely distribute, verify and revoke certificates [Ellison (1999) Wood
(2002)] (Figure 2).

Key elements of the PKI are:
• Certificate Authority (CA): Trusted party who provides certificates and authenticates

their identity.
• Registration Authority: Party allowed by CA to issue certificates
• Certificate store: Enables programs running on the system to access stored certificates,

certificate revocation lists (CRLs) and certificate trust lists (CTLs).
• Certificate database: This database stores information about issued certificates. In ad-

dition to the certificate itself, the database includes the validity period and status of each
PKI certificate.

PKI has been used in this project by creating our ownRoot CA in order to issue all the needed
digital certificates to encrypt and authenticate communications among nodes.

OpenSSL
OpenSSL is theworld’smostwidely used implementation of the Transport Layer Security (TLS)
protocol. It provides a set of command-line tools that serve a variety of purposes, including
support for common PKI operations and TLS testing [Ristić (2023)].

The creation of a private CA is performed by using the OpenSSL command-line tool, creat-
ing a CA root certificate which is used to sign all the CSR (Certificate Signing Request) of the
distributed system. Signed certificates of each node will be then stored in Keytool’s keystores
and the private CA will be trusted by all of the nodes by using Keytool’s truststores.



200 Proceedings XoveTIC 2023

Figure 3: TLS configuration example in the Kafka Broker [Pandey (2020)]

Keytool
Keytool is a Java command-line tool which allows us to manage a keystore (database) of cryp-
tographic keys, X.509 certificate chains, and trusted certificates [Oracle (2020)]. In this project,
PKCS12 databases were created with Keytool to store signed certificates signed by the created
CA (keystore) as well as the CA root certificate (truststore). Both keystores and truststores can
contain more than one certificate.

4 Conclusions
The creation of a private CA with OpenSSL (Section 3.1) allows to sign the CSR of each node
thus creating each node’s signed certificate and storing it in their Keytool’s keystores. These
signed certificates will be trusted by using Keytool’s truststores where the CA root certificate
is stored. This implementation can be shown in the Figure 3 where the structure of the mTLS
communication configuration is represented.

The implementation of continuous authentication as a second factor method is a need nowa-
days, it provides an extra layer of security in the systems but it is not enough if it is not properly
hardened. By using PKI, data flows in the distributed system are encrypted and authenticated,
preventing identity spoofing from malicious actors (Figure 4).

Acknowledgements
Thisworkwas funded by the SpanishMCIN/AEI/10.13039/501100011033 and EuropeanUnion
Next Generation EU/PRTR through grant TED2021-130492B-C21 and the Galician Regional
Government, Xunta de Galicia, through grants ED431B 2021/36 and ED431G 2019/01



González-Muñoz et al. Hardening of a Distributed System 201

Figure 4: Encrypted communications between desktop client and broker

Bibliography
C. M. Ellison. The nature of a useable pki. Computer Networks, 31(8):823–830, 1999.

N. Narkhede, G. Shapira, and T. Palino. Kafka: the definitive guide: real-time data and stream pro-
cessing at scale. ” O’Reilly Media, Inc.”, 2017.

Oracle. keytool — docs.oracle.com. https://docs.oracle.com/javase/8/docs/technotes/tools/unix/
keytool.html, 2020.

M. Pandey. Kafka SSL: Setup with self signed certificate—Part 1 — medium.com. https://
medium.com/jinternals/kafka-ssl-setup-with-self-signed-certificate-part-1-c2679a57e16c, 2020.

I. Ristić. Library: OpenSSL Cookbook 3ed — Feisty Duck — feistyduck.com. https://
www.feistyduck.com/library/openssl-cookbook/, 2023.

A. Silvelo, D. Garabato, R. Santoveña, and C. Dafonte. A first approach to authentication based
on artificial intelligence for touch-screen devices. Proceedings, 54(1), 2020.

S.-Y. Tan, W.-C. Yau, and B.-H. Lim. An implementation of enhanced public key infrastructure.
Multimedia Tools and Applications, 74(16):6481–6495, Aug 2015.

D. Wood. Pki, the what, the why, and the how. GSEC–SANS Institute, 2002.

https://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html
https://medium.com/jinternals/kafka-ssl-setup-with-self-signed-certificate-part-1-c2679a57e16c
https://medium.com/jinternals/kafka-ssl-setup-with-self-signed-certificate-part-1-c2679a57e16c
https://www.feistyduck.com/library/openssl-cookbook/
https://www.feistyduck.com/library/openssl-cookbook/

	pbs@ARFix@204: 
	pbs@ARFix@205: 
	pbs@ARFix@206: 
	pbs@ARFix@207: 
	pbs@ARFix@208: 


