
Application of automated software
development techniques in
Geographic Information Systems

Author: Suilen Hernández Alvarado
PhD thesis UDC / 2023

Advisors:
Oscar Pedreira Fernández
Miguel Ángel Rodríguez Luaces

Aplicación de técnicas de desarrollo
automatizado de software en
Sistemas de Información Geográfica

Autor: Suilen Hernández Alvarado
Tesis doctoral UDC / 2023

Directores:
Oscar Pedreira Fernández
Miguel Ángel Rodríguez Luaces

Programa Oficial de Doutoramento en Computación

PhD thesis supervised by
Tesis doctoral dirigida por

Óscar Pedreira Fernández
Departamento de Computación y Tecnologías de la Información
Facultad de Informática
Universidade da Coruña
15071 A Coruña (España)
Tel: +34 881016028 ext. xxxx
opedreira@udc.es

Miguel Angel Rodríguez Luaces
Departamento de Computación y Tecnologías de la Información
Facultad de Informática
Universidade da Coruña
15071 A Coruña (España)
Tel: +34 981167000
luaces@udc.es

Óscar Pedreira Fernández y Miguel Angel Rodríguez Luaces, como directores,
acreditamos que esta tesis cumple los requisitos para optar a los título de doctor en
computación y autorizamos su depósito y defensa por parte de Suilen Hernández
Alvarado cuya firma también se incluye.

iii

iv

“Todo lo que la mente puede concebir se puede lograr.”
William Clement Stone

v

vi

Agradecimientos

Es difícil escribir estas palabras cuando existen tantas personas a las que agradecer
en la vida. En primer lugar, quiero dar gracias a Dios por permitirme llegar hasta
aquí y escribir las siguientes líneas:

A mis padres y a mi familia, gracias a ellos he aprendido la motivación de seguir
siempre adelante.

A Jose, la mitad de mi vida, que fue capaz de dejarlo todo para que yo cumpliera
este sueño.

A mi Gastón, por acompañarme en cada momento.
A mis amigos, de ahora y de siempre.
A Gonzalo y a todos los profesores del Master en Ciencias de la Computación de

la UDEC, Chile, que hicieron posible el comienzo de este camino.
A Nieves Rodríguez Brisaboa, que confió en mi cuando yo era una desconocida

que estudiaba al otro lado del mundo.
A Carmen Cao, por su ayuda y apoyo incondicional.
A mis directores de tesis Óscar y Miguel, por su profesionalidad y guía.
Al Laboratorio de Bases de Datos de la UDC por haber formado parte de esta

aventura.
A todas las personas que me han ayudado a llegar hasta aquí.
¡¡¡Gracias!!!

vii

viii

Abstract

Geographic Information Systems (GIS) has been widely adopted within different areas such
as infrastructure administration, traffic control or environmental management. Despite
each application can be very specific in terms of its functional scope, they share a set of
elements that make all systems very similar. These characteristics have made us consider
investigating software engineering techniques that may be useful to support the automation
of the development of these applications from high-level specifications. Our contributions are
as follows: (i) a declarative, close to natural, domain-specific language for the development
of GIS, that allows users without deep programming knowledge to specify and generate
a basic system; (ii) the theoretical bases for the application of multilevel modelling to
GIS-based applications in different real-world scenarios. This can improve the simplicity,
expressiveness, and flexibility of the modelling process and (iii) new mutation operators,
the automation of the workflow to generate the mutate versions and a new tool to support
the application of mutation testing in the GIS domain.

ix

x

Resumen

Los Sistemas de Información Geográfica (SIG) se han adoptado ampliamente en diferentes
áreas como la administración de infraestructura, el control del tráfico o la gestión ambiental.
A pesar de que cada aplicación puede ser muy específica en cuanto a su alcance funcional,
comparten un conjunto de elementos que hacen que todos los sistemas sean muy similares.
Estas características nos han hecho plantearnos investigar técnicas de ingeniería de software
que puedan ser útiles para apoyar la automatización del desarrollo de estas aplicaciones
a partir de especificaciones de alto nivel. Nuestras contribuciones son las siguientes: (i)
un lenguaje declarativo, cercano al natural, de dominio específico para el desarrollo de
SIG, que permite a los usuarios sin conocimientos profundos de programación especificar y
generar un sistema básico; (ii) las bases teóricas para la aplicación de modelos multinivel a
aplicaciones basadas en SIG en diferentes escenarios del mundo real. Esto puede mejorar la
simplicidad, expresividad y flexibilidad del proceso de modelado y (iii) nuevos operadores
de mutación, la automatización del flujo de trabajo para generar las versiones mutadas y
una nueva herramienta para apoyar la aplicación de pruebas de mutación en el dominio
SIG.

xi

xii

Resumo

Os Sistemas de Información Xeográfica (SIX) adoptáronse amplamente en diferentes áreas
como a administración de infraestrutura, o control do tráfico ou a xestión ambiental. A
pesar de que cada aplicación pode ser moi específica en canto ao seu alcance funcional,
comparten un conxunto de elementos que fan que todos os sistemas sexan moi similares.
Estas características fixéronnos expornos investigar técnicas de enxeñería de software que
poidan ser útiles para apoiar a automatización do desenvolvemento destas aplicacións a
partir de especificacións de alto nivel. As nosas contribucións son as seguintes: (i) unha
linguaxe declarativo, próximo ao natural, de dominio específico para o desenvolvemento de
SIX, que permite aos usuarios sen coñecementos profundos de programación especificar e
xerar un sistema básico; (ii) as bases teóricas para a aplicación de modelos multinivel a
aplicacións baseadas en SIG en diferentes escenarios do mundo real. Isto pode mellorar a
simplicidade, expresividade e flexibilidade do proceso de modelado e (iii) novos operadores
de mutación, a automatización do fluxo de traballo para xerar as versións mutadas e unha
nova ferramenta para apoiar a aplicación de probas de mutación no dominio SIG.

xiii

xiv

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 4
1.3 Thesis Outline . 5

2 Background and state of the art 7
2.1 An overview of GIS . 7

2.1.1 GIS Architecture . 9
2.1.2 GIS Technologies . 10

2.2 Model-driven software engineering and Donamin Specific Languages 11
2.3 Automated Testing . 12
2.4 Developing GIS with SPL . 15

3 A Domain Specific Language for Web-based GIS 19
3.1 Background and Related Work . 19
3.2 A Domain-specific Language for Web GIS 20

3.2.1 GIS Architecture and Main Constructs 20
3.2.2 GIS-DSL . 23

3.2.2.1 CREATE GIS and USE sentence 23
3.2.2.2 CREATE ENTITY sentence 24
3.2.2.3 CREATE LAYER sentence 24
3.2.2.4 CREATE MAP sentence 25
3.2.2.5 GENERATE GIS sentence 25

3.2.3 Use Example . 25
3.2.3.1 Administrative office . 25
3.2.3.2 Point of interest . 27

3.3 Implementation of the DSL . 28
3.3.1 GIS-DSL Parser . 29
3.3.2 Code Generation Engine . 31
3.3.3 Generated Code . 32

3.4 Case Study and Evaluation . 34
3.4.1 Sample Project 1: Points of Interest 34
3.4.2 Sample Project 2: Local Civil Infrastructure Management 35
3.4.3 Results . 37

xv

xvi Contents

3.5 Conclusions . 38

4 Multilevel Modeling of Geographic Information Systems 41
4.1 Background and Related Work . 43

4.1.1 Multilevel modeling and its applications 44
4.1.2 Applications of MDE to GIS . 44

4.2 Conceptualizing GIS with a Multilevel Modelling Approach 45
4.2.1 Multilevel notation and patterns . 46
4.2.2 Bridging the gap between conceptual and implementation standards

in GIS . 47
4.2.2.1 Overview . 47
4.2.2.2 Multilevel modeling solution 48
4.2.2.3 Discussion . 48

4.2.3 Ensuring interoperability in spatial data infrastructures 50
4.2.3.1 Overview . 50
4.2.3.2 Multilevel modeling solution 53
4.2.3.3 Discussion . 57

4.2.4 Modeling common GIS structures . 58
4.2.4.1 Overview . 58
4.2.4.2 Multilevel modeling solution 58
4.2.4.3 Discussion . 63

4.2.5 Using common structures in unrelated domains 64
4.2.5.1 Overview . 64
4.2.5.2 Multilevel modeling solution 64
4.2.5.3 Discussion . 66

4.3 Discussion and evaluation . 68
4.4 Conclusions . 71

5 Mutation Testing for Geographic Information Systems 73
5.1 Fundamentals concepts . 74

5.1.1 Mutation . 74
5.1.2 Mutation Operator . 74
5.1.3 Aspect-Oriented Programming . 75
5.1.4 Mutation Operators with Aspects 78

5.2 A collection of mutation operators for GIS 79
5.2.1 Operators on connectivity between user interface and service layer . 80

5.2.1.1 ChangeCoordSys: . 80
5.2.1.2 ExpandVisualRange: . 80
5.2.1.3 WMSDoesntRespond: . 81
5.2.1.4 CostlyWFS: . 81

5.2.2 Internal processing errors . 82
5.2.2.1 BooleanPolygonConstraint 82
5.2.2.2 RESTToGeometry: . 83

5.2.3 Interaction with the spatial database: 83
5.2.3.1 CantConnectPostgreSQL: 83
5.2.3.2 ForceQueryTimeout: . 84

5.3 Mutation operator generation process . 84

Contents xvii

5.4 Application examples . 88
5.4.1 Land Reparcelling App . 89
5.4.2 Interest Point App . 90

5.5 Conclusions . 92

6 Conclusions and Future Work 93

A Publications and other research results 95

B Complete models of Multilevel Modeling Chapter 97

Bibliography 120

xviii Contents

List of Figures

2.1 GIS Application, generic architecture . 9
2.2 Basic elements of DSLs. Based on [TA19], 13
2.3 Tool architecture . 16

3.1 Supported data types for our metamodel of web-based GIS. 21
3.2 A metamodel of web-based GIS (reduced version, adapted from [ACL+19]). 22
3.3 Typical architecture of a web-based GIS (reproduced from [ACL+19]). . . . 23
3.4 Data model of the example application (reproduced from [ACL+19]). 26
3.5 Architecture of the GIS-DSL code generation engine. 28
3.6 DSL Model Component. 32
3.7 Low-level components of the generated source code. 33
3.8 Class diagram of the first example project. 34
3.9 Class diagram of the second example project. 36
3.10 Example of a map defined for the product described in section 3.4.2. 37

4.1 Example models showing the notation used for multilevel modeling and
common multilevel modeling patterns. Inspired by examples from [dLGC14]. 47

4.2 Excerpt from the multilevel solution to bridge the ISO conceptual model and
the OGC implementation model. Figure B.1 and Figure B.2 in appendix B
show the extended models . 49

4.3 Two-level solution to bridge the ISO conceptual model and the OGC
implementation model . 49

4.4 Overview of the INSPIRE Data Specifications. The top layer are ISO/OGC
international standards, the middle layer are INSPIRE common models, the
bottom layer contains the 34 INSPIRE data specifications. 51

4.5 INSPIRE Administrative Units Overview, from https://inspire.ec.
europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:1:
2:1:7106 . 52

4.6 Modeling multilevel Territory Administration - Meta-level @2 53
4.7 Modeling multilevel Territory Administration - Meta-level @1 for Spain . . 54
4.8 Modeling multilevel Territory Administration - Meta-level @1 for Portugal . 55
4.9 Modeling multilevel Territory Administration - Example of Level 0 for Spain 56
4.10 Modeling multilevel Spatial Networks - A simple example 59
4.11 Modeling multilevel Spatial Networks - Overview 60

xix

https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:1:2:1:7106
https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:1:2:1:7106
https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:1:2:1:7106

xx List of Figures

4.12 Modeling multilevel Spatial Networks - Meta-level @4 62
4.13 Modeling multilevel Facilities Management - Meta-level @4. 65

5.1 Business Process Workflow, generation of mutation operators 85
5.2 Prototype Interface, generation of mutation operators 85
5.3 Aspect file structure . 86
5.4 The Operator Class . 87
5.5 Land Reparcelling App . 89
5.6 Original and mutant application. 89
5.7 Interest Point App. 90
5.8 Original and mutant application. 91

B.1 ISO 19107: Geographic Information - Spatial Schema 98
B.2 OGC Simple Feature Access (OGC SFA) . 98
B.3 INSPIRE Network Base Model and Common Transport Elements Overview,

from https://inspire.ec.europa.eu/data-model/approved/r4618-ir/
html/index.htm?goto=2:1:9:6:7590 . 99

B.4 Modeling multilevel Spatial Networks - Meta-level @3 for transportation
networks . 100

B.5 INSPIRE Road Transport Network, from https://inspire.ec.europa.eu/
data-model/approved/r4618-ir/html/index.htm?goto=2:1:9:7:7627 . . 101

B.6 Modeling multilevel Spatial Networks - Meta-level @2 for roads networks . . 102
B.7 INSPIRE Railway Transport Network, from https://inspire.ec.europa.

eu/data-model/approved/r4618-ir/html/index.htm?goto=2:1:9:4:7508 103
B.8 Modeling multilevel Spatial Networks - Meta-level @2 for railway networks 104
B.9 INSPIRE Common Utility Network Elements, from https://inspire.ec.

europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:3:
20:3:1:8887 . 105

B.10 Modeling multilevel Spatial Networks - Meta-level @3 for utility networks . 106
B.11 INSPIRE Water Network, from https://inspire.ec.europa.eu/

data-model/approved/r4618-ir/html/index.htm?goto=2:3:20:3:7:8933 107
B.12 Modeling multilevel Spatial Networks - Meta-level @2 for water pipes networks108
B.13 INSPIRE Electricity Network, from https://inspire.ec.europa.eu/

data-model/approved/r4618-ir/html/index.htm?goto=2:3:20:3:2:8910 109
B.14 Modeling multilevel Spatial Networks - Meta-level @2 for electricity networks110
B.15 INSPIRE Activity Complex Base Model, from https://inspire.ec.europa.

eu/data-model/approved/r4618-ir/html/index.htm?goto=3:1:4:1:8990 111
B.16 INSPIRE Environmental Management Facilities, from https://inspire.

ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:
3:20:2:8857 . 112

B.17 Modeling multilevel Facilities Management - Meta-level @2 for environmental
management facilities. 113

B.18 INSPIRE Agricultural and Aquaculture Facilities, from https://inspire.
ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:
3:3:1:7925 . 114

https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:1:9:6:7590
https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:1:9:6:7590
https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:1:9:7:7627
https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:1:9:7:7627
https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:1:9:4:7508
https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:1:9:4:7508
https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:3:20:3:1:8887
https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:3:20:3:1:8887
https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:3:20:3:1:8887
https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:3:20:3:7:8933
https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:3:20:3:7:8933
https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:3:20:3:2:8910
https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:3:20:3:2:8910
https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=3:1:4:1:8990
https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=3:1:4:1:8990
https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:3:20:2:8857
https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:3:20:2:8857
https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:3:20:2:8857
https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:3:3:1:7925
https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:3:3:1:7925
https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:3:3:1:7925

List of Figures xxi

B.19 Modeling multilevel Facilities Management - Meta-level @2 for agricultural
facilities. 115

B.20 INSPIRE Production and Industrial Facilities, from https://inspire.ec.
europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:3:
15:1:8641 . 116

B.21 Modeling multilevel Facilities Management - Meta-level @2 for production
and industrial facilities. 117

B.22 INSPIRE Buildings Base and Core 2D, from https://inspire.ec.europa.
eu/data-model/approved/r4618-ir/html/index.htm?goto=2:3:2:2:7911 118

B.23 Modeling multilevel Facilities Management - Meta-level @3 for building
facilities. 119

B.24 Modeling multilevel Facilities Management - Meta-level @2 for building
facilities. 119

https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:3:15:1:8641
https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:3:15:1:8641
https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:3:15:1:8641
https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:3:2:2:7911
https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:3:2:2:7911

xxii List of Figures

List of Tables

3.1 Characteristics of each example project. 37
3.2 Characteristics of the generated software for each example project. 38

4.1 Occurrence of multilevel metamodeling patterns in the scenarios. 70

5.1 Example of a function and its mutated versions 74
5.2 Traditional Mutation Operators . 75
5.3 Mutation Operators for OOP . 76
5.4 Keywords used in pointcut capture types 77

xxiii

xxiv List of Tables

List of Algorithms

1 Pseudocode algorithm to generate the mutation operator. 88

xxv

xxvi List of Algorithms

Chapter 1

Introduction

1.1 Motivation
The main characteristic that differentiates Geographic Information Systems (GIS) from
other information systems is that they merge entities with a geoespatial component that
plays a central role in the systems functionalities and the processing of data. The geoespatial
data of the entities is usually represented with data types such as points, lines, polygons,
or variant of these data types. GIS are developed with component and technologies that
allow the user to capture, store, analyze and manage any type of referenced geographic
information associated with territory. The first GIS was a costly system developed by public
administrations or large private companies to support the management of infrastructures.
However, the evolution of the technologies for GIS development and the availability of
multiple cheap devices with GPS capabilities (such as smartphone, for example) has made
GIS much more accessible for many companies.

As a consequence of the widespread utility of GIS-based software and due to factors
such as the development of urbanization, smart cities, or the increase in the availability of
data in the cloud, there is a high demand for geographic information systems solutions that
allow the analysis of territorial data applied to various fields. For example, in transport
and logistics management, they have a fundamental role since they allow optimizing times
and distances, managing and planning routes, analyzing traffic, etc. Likewise, in the
agricultural sector, this type of tool is essential for, for example, the control, recognition,
and monitoring of crops or the study of fire zones. GIS also contribute to strengthening
the potential of the tourism sector, thanks to these systems it is possible to develop maps,
tourist databases, and tools that allow real-time generation of routes and trails of interest,
create visit plans, or administer and manage areas of touristic interest.

Also, GIS has contributed to developing sectors such as public administration, in the
development of infrastructure management systems such as roads, public buildings, signage,
traffic control, etc. Also in environmental management or supply infrastructure such as
water, electricity, fuel, or telecommunications. These are some examples of the various
applications of use and potential offered by this type of system to solve problems in different
sectors of society.

1

2 Chapter 1. Introduction

Regardless of the application area of each GIS, these systems share many characteristics
and functionalities. When developing these systems there are common requirements that
are demanded regardless of the business area to which they are oriented, such as the
digitization of geographic data, the capacity to answer database queries based on spatial
data, the visualization of geolocated data in viewers maps, structuring map visualization
with layers, common map-related tools like pan and zoom, route calculations, etc.

This has been acknowledged by the ISO/TC 2111 and OGC2, which have defined a set
of evolving standards related to all levels of GIS, from conceptual definition to many aspects
regarding the implementation. Therefore, nowadays GIS not only share the functional
features but also the models, procedures, services, a common architecture. Currently,
for the development of applications based on GIS there are commercial solutions based
on frameworks such as ARGIS or GEOSERVER can be used to develop GIS, or a set
of architectures, components, tools, and libraries open source based on ISO and OGC
standards are also available.

GIS applications are built largely by applying software development techniques that
sequentially cover the stages of specification, design, development, and testing in a
traditional way. The development of GIS does not start strictly from scratch, since
there are many technologies that support this development from the database to the user
interface. However, apart from those technologies, the development of a specific GIS
application does start from scratch, that is the development teams writes all the code in a
traditional way, without applying automated or semi-automated development techniques.
However, although each application can be very specific, in term of its functional scope,
there is a set of common elements that make all GIS applications very similar. These
characteristics have made us consider investigating software engineering techniques that
may be useful to support the automation of the development of these applications from
high level specification.

The goal of this thesis is to develop techniques that allow the development
of Geographic Information Systems to be automated as much as possible. The
motivation that leads to this objective is that we believe that this is possible
given the similarity and the number of elements in common that all these
systems have. In previous works this approach was addressed with SPLE,
however in this research, we have considered addressing it with MDE, in
addition, we have also paid attention to the testing phase, addressing this
process through the automation of the tests.

Two of the software engineering areas focused on automating the software development
process are Software Product Line Engineering (SPLE) and Model-Driven Engineering
(MDE). SPLE apply the principle of "series production" to the development software to
create families of systems that share common characteristics [CN15]. In this way instead
of developing each of these systems individually, they develop platforms that automate the
creation of software systems aimed at a specific market segment. In SPLE, systems of the
same family are modeled but considering the variability of each of the products individually.
From a selection of the characteristics that will be present in each system, these are
generated in the platform in an automated way through the integration, adaptation, and

1International Organization for Standardization committee on Geographic information/Geomat-
ics: https://committee.iso.org/home/tc211

2The Open Geospatial Consortium: http://www.opengeospatial.org/

https://committee.iso.org/home/tc211
http://www.opengeospatial.org/

1.1. Motivation 3

configuration of a set of core assets. This technique, was applied in [CLP+17, CLPP17] to
create web-based GIS integrating MDE and SPLE concept. On the other hand, the MDE
[BCW17a] is a paradigm centered on two fundamental concepts: abstraction, by specifying
the system to be developed in high-level abstraction models and the automation of the
transformation processes of these abstract models to models closer to the source code of
the system.

An approach based on a similar idea that of Domain-Specific Languages (DSL). In this
case, instead of specifying the system through a model, we specify it using a high-level
language that manage concepts specific to a given app domain and that allow us to delineate
in a formalized way software systems of specific application domains. Thus, an expert
using this formal specification language in a specific domain can achieve not only a formal
representation of the system to be created but also have a better understanding of the
situation to be solved [Fow10].

A DSL concerning a general-purpose language provides us with multiple benefits to
represent and model solutions. For example, one of these advantages is less complexity
of understanding for users, since it focuses on expressing the concepts and terms of a
specific domain that are directly aligned with how domain experts express themselves.
These languages have a greater expressiveness of solutions within their domain so they can
improve the productivity, maintainability, and reusability of the applications. When writing
a solution using a DSL, as long as the language constructs are correct, any written statement
can be considered correct since the validations are performed at the domain level. Currently,
there is a great variety of DSL that have been specified to cover different purposes, some
of the best known in the area of informatics are for example the SQL language for the
definition of queries, HTML to define web user interfaces, XML for transport or persist
data, REGEX to form search patterns or character substitution, WSDL to specify web
service data interfaces, CSS to define the appearance of user interfaces at the presentation
level, among many others, which facilitate the way to work.

Part of our research has focused on defining a DSL to represent and describe the GIS
domain. In our proposal, we have focused on representing the most used basic spatial data
types in this domain, which serve as a basis for generating any functional application. In
our DSL it is possible to write declarative sentences that allow us to represent maps, layers,
and entities without the need to emphasize how to implement these elements. In chapter
chapter 3 we go into this topic in-depth and illustrate several use cases of our proposal.

Another idea on which we have focused our attention in this thesis is to apply multilevel
modeling to the development of GIS. In previous works [CLP+17, CLPP17], this domain
has been modeled in the traditional way posed by MDE. This traditional form considers two
levels of abstraction, first, a metamodel is created with the most representative elements of
this type of application and from this metamodel, the model instances are generated that
will be later transformed into source code. Based on these proposals we have considered
reformulating the GIS modeling following an approach that instead of having two levels, has
several. We have applied this technique in order to show the modeling flexibility, simplicity,
and expressiveness that this type of design can have in our domain. In chapter chapter 4
we go into detail about this modeling technique and show three scenarios that we consider
representative of GIS applications that illustrate the benefits of using multilevel modeling.

Finally, we have focused our attention on the software testing stage and on how we could
benefit the domain of GIS applications with techniques that help improve the quality of

4 Chapter 1. Introduction

these types of applications. For this, we have paid attention to how to automate the testing
process, in our case we have investigated the mutation testing technique [DLS78, Bud80].
This technique is a type of white box test and its objective is to introduce artificial errors
in the source code, to generate faulty versions of the system and thus implement good
sets of test cases that detect these errors. These artificial errors are introduced to run
our test suite and see which of these errors are detected. If the errors we introduce make
sense because a programmer could make them, our tests should detect them. If there is an
undetected error, this will give us information on how we can improve our test suite.

In our case, we have studied the main technologies and tools used to build GIS-based
applications and based on this analysis, we have proposed a set of mutation operators that
simulate the most common errors made by programmers in the development stage.

We believe that advances toward this goal will provide with tools, techniques and
technologies that world allow to design and develop GIS with less effort, and with higher
quality levels. Therefore, the main goal of this thesis is to investigate the application
of automated software development techniques in GIS so that the creation of tools that
facilitate its development.

1.2 Contributions
In this thesis, we have focused on the investigation of automated software development
techniques applicable to GIS domain and that contributes to automating the development
stage of GIS-based applications. Our contributions are as follows:

1. Implement of GIS with a domain-specific language: Our first contribution is
the definition of GIS-DSL, a declarative domain-specific language for the development
of GIS. This language allows the developers to specify the system simply by specifying
its components at a conceptual level with entities with a spatial component, map,
and layers. Also, GIS-DSL is declarative and close to natural language, so even users
without deep programming knowledge can specify and generate a basic system. From
the system specification using GIS-DSL, it is possible to generate the source code of
the basic functionalities for managing the defined elements and their visualization.

2. Modelling of geographic information system with multilevel modelling:
Our second contribution is the proposal of the application of the multilevel modeling
approach to GIS-based application. We have applied this approach to different
scenarios that versus two-level modeling we have identified benefits in terms of
simplicity, expressiveness, and flexibility of modeling both types and entities, where
it is possible to add these elements dynamically, as well as instantiate elements
or relationships in levels lower models as required by business rules. In addition,
defining the models at the lowest level of abstraction would require less effort, since
we would not need to repeat structures that could be moved to upper levels and
more understandable solution.

3. Mutation-based testing of geographic information system: Our latest
contribution is the application and automation of the mutation testing technique in
the GIS domain. Three derived contributions are: (i) the definition of new mutation
operators for GIS; (ii) The automation of the workflow carried out to generate
the mutation operators and generate the mutated versions of the system using the

1.3. Thesis Outline 5

operators that were defined; and (iii) The implementation of a tool supports this
process. As proof of concept, we developed 2 case studies where we use two real
applications and we apply the defined mutation operators and generate the mutants
with our tool.

1.3 Thesis Outline
The rest of this thesis is structured as follows:

• In Chapter 2, we provide a brief introduction to GIS and their development, including
the architecture, tools, and technologies most used for its development.

• In Chapter 3, we present GIS-DSL, a domain-specific language for the development
of GIS. GIS-DSL is a declarative language that allows the developer to define the
entities, relationships, maps, and layers of the system.

• In Chapter 4, we present and discuss the idea of applying multilevel modeling to the
development of geographic information systems.

• In Chapter 5, we address the mutation-based testing of geographic information
systems (GIS), by proposing a set of mutation operators that address the typical
errors that can be made with the technologies used to develop these systems.

• In Chapter 6, we present the conclusions on the results of the research done in this
theses and possible lines for future work are discussed.

6 Chapter 1. Introduction

Chapter 2

Background and state of the
art

This chapter presents the general context in which this thesis is developed and a description
of the state of the art relevant to it. In each section, we describe the background of the
techniques applied to geographic information systems.

2.1 An overview of GIS
Geographic information systems is a field focused on information systems with geospatial
characteristics and capabilities that allow us to represent and manipulate knowledge
regarding geographical information [WD04]. GIS were traditionally used by some
organizations, such as public institutions, for territorial administration, but since the
major advances happened in communication technologies, more and more companies and
organizations in many fields and domains are adopting GIS solutions to improve their
workflows.

GIS were traditionally used by public institutions for administering the territory and
managing public resources. Lately, the major advances in communication technologies
and the technologies used in GIS development have increased the availability of GIS
applications, and organizations from many domains are adopting GIS software. Moreover,
the appearance of smartphones with GPS capabilities marked an important milestone in
the development of GIS because gathering geospatial information is now cheap and easy for
any company. This context has made it mandatory in some application domains to use a
GIS-based solution to be competitive. For example, in warehouse logistics, GIS are needed
to plan transportation routes in the most efficient way; in public transportation, to know
which lines are overused or underused, and to decide how to change them accordingly; or
even in social networks and advertisement, since knowing the position of the users and their
publications enhance the information they collect to improve their algorithms or to enrich
the data that afterward is used by ad services. Regardless of the application area or the
purpose of each GIS, there are a set of features that are very common among them, such

7

8 Chapter 2. Background and state of the art

as digitizing geographic data, representing geo-located data in map viewers, the common
tools related to these map viewers (from panning and zooming to measuring dimensions or
objects within the map, or sorting the different layers), route calculation, etc.

GIS have changed a lot since they first appeared many decades ago [Tom69]. At first,
for a long time, each GIS application was developed ad-hoc, totally independent from any
other GIS application, and even when the functional features provided by the systems were
quite similar, the concepts behind GIS, such as the definition of what is a polygon, were
different among several systems. The problem of that approach is that interoperability
between GIS was not addressed in any way. Nowadays, that situation has changed thanks
to two organizations, the ISO committee on geographic information/geomatics (ISO/TC
2111) and the Open Geospatial Consortium (OGC2), which have defined a set of evolving
standards related to all levels of GIS. Most GIS software assets follow these standards and,
therefore, GIS applications are quite similar, geographic data can be used in different GIS,
and GIS components are, in general, interoperable.

For example, the standard ISO 19107: Geographic Information - Spatial Schema [Inta]
defines all the geographic data types, such as Point, Line, Polygon, or Sphere, and all the
GIS related operations, such as the predicates intersects, overlaps, or within a specified
distance. OGC also defines a set of web services that are widely used and supported
by map servers and map viewers. Some of the most important ones are the web map
service [Thec] and the web feature service [Theb]. Regarding architecture, the standard ISO
19119: Geographic Information - Services [Intb] identifies architecture patterns for service
interfaces and the relationship between them, proposes a geographic services architecture,
and provides some guidelines for the selection and specification of geographic services.

These standards are followed by most GIS software products and libraries, and therefore
most GIS applications are quite similar. In the case of web-based GIS applications, the
similarities affect even to the specific software assets used, since most of them are widely
popular, such as GeoServer, a map server that provides most of the standard services, or
OpenLayers and Leaflet, two map viewer libraries.

The main characteristic of Geographic Information Systems (GIS), which is also their
main difference from other information systems, is that they manage entities with a geo-
spatial dimension. That is, an entity is defined by a set of attributes, each one being of a
particular type. Commonly used data types, such as String or Integer, store alphanumeric
information. In a GIS, there are specific data types to store a geometric structure in
the space, like a point or a surface in a specific position in the world. The attributes of
geographic data types can store, for example, the location of a building or a meteorological
station, the paths of a road network, or the area covered by a forest. Having entities
with such attributes allows an application to visualize them with maps instead of typical
alphanumeric listings, but it also allows an application to make certain operations or analysis
with these geographic data, such as getting the ten closest entities to a user position, or
the most efficient path across a set of entities. Summing up, GIS have particular features
and use specific technologies that allow us to collect, store, process, and visualize spatial
information [WD04].

1https://committee.iso.org/home/tc211
2https://www.ogc.org/

https://committee.iso.org/home/tc211
https://www.ogc.org/

2.1. An overview of GIS 9

Figure 2.1: GIS Application, generic architecture

2.1.1 GIS Architecture
Figure 2.1 shows the generic architecture of a GIS application, which is divided into three
layers, described below:

• Presentation layer: this layer implements the user interface that allows visualizing
and managing the geographic information. The most used library to support this layer
is nowadays Leaflet, which acts as a client of the standard cartography publication
services (WMS and WFS).

• Business layer: this layer supports the processing of user requests related to
spatial operations, analysis techniques, and generation of response information. The
components of this layer, such as the Java Topology Suite or GeoTools, implement
operations that allow the spatial part of the entities to be processed. For example,
operations can be performed to check whether two geometries meet a certain spatial
predicate, or new geometries can be created from others that we already have stored
in the database. The components of this layer generate results that will be displayed
in the view layer through services such as WMS and WFS.

• Data layer: This layer includes the Database Management System (DBMS), files
belonging to the application, and external data sources. In this layer, the most used
DBMS for storing and querying geographic information is nowadays PostgreSQL

10 Chapter 2. Background and state of the art

together with the PostGIS extension. These systems support most of the functionality
required in a GIS regarding data storage, such as data types, operations, and indexes
to represent and query geographic information in the database in a robust and
efficient manner.

2.1.2 GIS Technologies
As we have already pointed out, there is a large set of libraries and frameworks that can
be used for developing a GIS. We have focused on the most popular technologies used
to implement a GIS based on the architecture we have just described. The view layer is
usually implemented with web libraries such as Leaflet3. However, parts of the system not
implemented in Java are out of the scope of our analysis.

• Leaflet is a library to visualize and manage geographic information in the user
interface layer. This library is used for the creation and presentation of interactive
maps in Javascript-based Web applications. Acts as a client of standard cartography
publishing services.
We have analyzed class structures such as FeatureJSON, GeomUtils or FeatureCol-
lection. These classes contain methods that enable interface-services connectivity.
These methods manipulate the exchange of data in GeoJSON format through REST
and WFS services.

• Java Topology Suite (JTS) is an open source Java software library for the processing
of linear geometries in two-dimensional Cartesian spaces. It provides a model of
spatial objects and 2D geometric functions. This library is used in the development
of geospatial applications. JTS implements a set of functionalities to support and
manipulate objects that have a spatial component, as well as algorithms and data
structures used in the implementation of geometric operations.
The class structures GeometryFactory and Geometry has been analyzed. These
structures implement geometry types such as Points, MultiPoints, LineString,
Polygons, etc., and contain geometric operations such as spatial predicates, overlay
functions, metrics, and other that allow you to manipulate these types of objects.

• PostGIS is an extension for the PostgreSQL relational database, which adds features
such as spatial data types, spatial indexes and functions that operate on them. In
this way, PostgreSQL becomes a spatial database and expands its capabilities for
spatial support allowing to manipulate, store and query vector geometric objects.
The classes Connection, PreparedStatement, Statement and DriverManager has been
analyzed. These classes contain methods such as executeQuery (..), prepareStatement
(..), prepareStatement (..) or getConnection (..), which enable connection to the
database server and the realization of spatial queries.

• Geoserver is an open source server for sharing geospatial data. This J2EE application
provides two geographic information publishing services in the Web layer following
the open Web Map Service (WMS) and Web Feature Service (WFS) standards
defined by the Open Geospatial Consortium.

3https://leafletjs.com/

2.2. Model-driven software engineering and Donamin Specific Languages 11

• GeoTools is an open source Java software library for working with geospatial data.
This library is used to the development of GIS applications. Classes like FeatureJSON,
GeometryJSON or GetMapRequest has been analyzed, that handle geometries in
GeoJSON format through REST or WFS services.

2.2 Model-driven software engineering and Don-
amin Specific Languages

Model-driven engineering (MDE) is a software development approach that promotes the
use of models as active artifacts in all stages of software development [PM07a, BCW17b].
In MDE, high-level models are automatically transformed into models at lower levels of
abstraction, and finally, into the source code of the system (or part of) according to a
set of transformation rules. The goal of this paradigm is to produce software following
an approach similar to that of other traditional industries. One of the approaches within
MDE is model-driven development (MDD) [BCW17b], which defines models as the main
artifact for modeling software systems at a level of abstraction higher than the allowed by
programming languages. The goal of this approach is to increase the levels of automation,
quality, and productivity. A domain-specific language (DSL) is based on a similar idea.
Instead of specifying the system through a model, we specify it using a high-level language
that directly supports the main elements of the application domain. These approaches
lead to a reduction of the development effort and the number of errors introduced in the
implementation since part of the source code is generated automatically.

A standard defined by the Object Management Group (OMG)4 on its particular vision
of MDD is the model-driven architecture (MDA)5 [PM07a], structured into four layers:
CIM (computational independent models), PIM (platform-independent models), PSM
(platform-specific models), and ISM (implementation-specific model). These models can
be defined using general-purpose modeling languages, such as UML, or domain-specific
languages.

A domain-specific language is a high-level language designed for software development
in a specific application domain. Some of the definitions of a DSL are: According to Voelter,
a DSL is “a language that is optimized for a given class of problems, called a domain. It
is based on abstractions that are closely aligned with the domain for which the language
is built” [VBD+19]. Fowler defines a DSL as “a computer language that’s targeted to a
particular kind of problem, rather than a general-purpose language that’s aimed at any
kind of software problem” [Fow10].

DSLs are part of many of the IT tools we use every day. The evolution of a solution
to a problem goes through different stages. First, we make a first draft of the solution
without any clear guidelines, then as we gain experience and knowledge of the business we
can align ourselves with good practices that allow us to have portability and scalability. In
later stages of maturity, we can abstract these good practices and turn them into patterns
that solve various problems focused on the same application domain. These patterns can
be combined to form a framework, which can finally be increasingly configurable and

4OMG: http://www.omg.org
5MDA: http://www.omg.org/mda

12 Chapter 2. Background and state of the art

automated and evolve to what we know as DSL. There are many domains that can be
modeled and specified based on their business rules, validations, and concepts.

The difference between a DSL and a general-purpose programming language is that a
DSL allows us to work directly with domain-specific concepts and constructs, which leads
to a greater expressiveness [MHS05, Fow10, Fra13]. Although implementing a DSL can
require a significant effort, their main benefit is that they allow us to specify/implement a
system with significantly less effort.

The Figure fig. 2.2, based on [TA19], shown the main elements that contain a DSLs.
The abstract syntax specifies the structure, constructs, connectors, and properties that the
language can implement. The concrete syntax specifies the notation with which users of the
language will be able to use it. Static semantics or formation rules define the restrictions
on the abstract syntax. Semantics defines the meaning of concepts in the abstract syntax.

There is a way to categorize DSLs, based on your implementation approach, internal
and external DSLs. An external DSL is a domain-specific language represented in a separate
language to the main programming language it’s working with. This language may use a
custom syntax, or it may follow the syntax of another representation such as XML. An
internal DSL is built on top of a General-Purpose Language(GPL), such as Python, CSharp
or Java. In this case, libraries and frameworks that implement DSL can be built on the
syntax and native from the base language [SZ09b, VDE+].

2.3 Automated Testing
Another approach that we have addressed is the automated testing, in this case, we have
focused on the Mutation-based testing. This technique involves artificially and intentionally
injecting errors into a system under test (SUT), running a test suite on the SUT, and
checking which of those errors are detected by the test suite [DLS78, Bud80]. A mutant
is a version of the SUT in which a change has been injected which, in most cases, will
produce, under certain circumstances, some difference in the behavior compared to the
behavior of the SUT. If a test case can detect the error, we say that it kills that mutant.
In this context, the effectiveness of a test suite is measured as its mutation score, which
is defined as the percentage of mutants killed by the test suite. The higher the mutation
score, the more effective the test suite. If the test suite kills all the mutants, then it is said
to be mutation-adequate. If, in addition, the test suite does not find errors in the SUT,
then we can be relatively sure about the quality of the SUT. However, this also depends on
other factors, one of them being the quality of the errors injected to create the mutants.

Mutants are generated by injecting errors in the SUT through the application of
mutation operators. The quantity and quality of the mutants depends on the number of
mutation operators we apply to the SUT and the variety and interest of the errors they
can introduce. A mutation operator should try to introduce an error that programmers are
likely to make during the development. Two of the principles underlying mutation testing
are (i) the coupling effect, that is, if a test case is sensitive enough to find the simple errors,
then it will also find more complex errors, and (ii) the competent programmer, that is, a
good programmer writes almost optimal programs, making only small mistakes.

Mutation operators can be general-purpose or specific to a given domain or technology.
General-purpose mutation operators [OLR+96, MOK05] affect the most basic elements of
programming languages, such as arithmetic and logical operations, for example, and they

2.3. Automated Testing 13

Figure 2.2: Basic elements of DSLs. Based on [TA19],

14 Chapter 2. Background and state of the art

try to reproduce typical errors when using those basic operators. For example, a mutation
operator could replace a ≤ operator by a <, since this is a typical error that a good test
suite should detect. Most of the existing mutation operators in the literature fall in this
category. General-purpose mutation operators are considered a traditional technique, but
they are not able to reproduce errors specific to a certain technology or application domain.
Technology-specific mutation operators try to reproduce errors that are probable when
using a specific technology, so they enrich the variety of errors that we can inject into the
system.

The original idea of the mutation-based testing was proposed by Richard Lipton [DLS78],
and developed by Budd et. al. [Bud80]. Subsequently, this idea has been extended and
mutation operators have been defined for programming languages such as C [ADH+89],
C# [Der06], PHP [SZ09a], Python [DH14], [DPMBDJ+15] or Java [MO05a, MO05b].

Mutation operators can be classified into general-purpose operators, and operators
specifically designed for a given programming paradigm, technology, or domain. General-
purpose operators are applicable to any programming language [OLR+96] and address the
injection of errors in operations that can be used in any system, such as arithmetic and
logical operators. Other mutation operators have been developed for specific technologies,
such as, for example, object-oriented programming [MOK05].

Many of these operators have been implemented in different mutation analysis tools such
as: MuJava [MOK05, MOK06], Jumble [IPT+07], Judy [MR10], Major [JSK11, Jus14] or
Bacterio [MU12]. Given the need to facilitate the incorporation of new operators to the
existing catalogs of these tools, scalable architectures have been designed to facilitate their
inclusion [URRH17].

Recently, mutation tests have been addressed through the paradigm of aspect-oriented
programming. This paradigm has been used to intercept and manipulate the source code of
a system, expressing the mutation operators as pointcuts. The first research that used this
approach [BW06a, BW06b] within the technique of testing based on mutation were based
on a prototype to simulate the mutations through the interception of the calls to the SUT
that are made from the cases test, altering the return values of the methods. Subsequently
Polo Usaola [Pol14], expresses the mutation operators as aspect files to capture the SUT
source code and modify its behavior at runtime.

In the state of the art [JH11] we have found mutation operators specific to different
technologies. Saleh et. al. [SN14] propose a scalable cloud-based mutation testing
framework that reuses the MapReduce programming model to improve the performance of
mutant generation and testing of large-scale software projects. Cañizares et. al. [CNM18],
implement an mutation testing framework to detect errors in distributed applications
running in simulated environments.

Tuya et. al. [TSCDLR07] propose a set of mutation operators to modify the behavior of
SQL queries (SELECT) that recover data from a database. These operators were designed
to cover different features of this language such as mutations related to the handling of
NULL values, replacement of column reference identifiers, or mutations to the main SQL
clauses. Later, Zhou et. al. [ZF09] extends the mutation testing approach for SQL by Tuya
et al. to adapt it to Java applications that interact with a database through the JDBC
API (Java Database Connectivity). This research describes the mutation testing tool for
Java JDAMA (Java Database Application Mutation Analyzer) programs, which perform
mutation testing on SQL statements executed by JDBC.

2.4. Developing GIS with SPL 15

Operators oriented to mobile technologies have also been developed. Deng et al.
[DOAM17] proposes 11 mutation operators to test various features of Android applications
such as source code, XML files, or permissions. Saifan et. al.[SA20] define 42 mutation
operators and a tool to generate mutants according to the features of android applications:
apps with user location and maps, apps with multimedia, apps with graphics and apps with
content sharing, Linares-Vasquez et al. [LVBT+17] also proposed introduced 38 mutation
operators for Android apps and Polo Usaola et. al [PURT21] analyses how the combination
of different cost reduction techniques improves the execution time of mutation testing in
mobile apps.

The mutation technique has also been addressed to mutate written programs in the
aspect paradigm. Ferrari et. al. [FRM13] define a set of mutation operators for specific
AspectJ constructs along with the implementation of a tool that automates this approach.

Another context in which mutation testing has been developed is in the detection of
memory bugs. Nanavati et al. [NWH+15, WNH+17] study memory faults and propose 9
memory mutant operators targeting common faults.

2.4 Developing GIS with SPL
Model-driven engineering (MDE) is an approach to software development in which models
play a central and active role, far beyond just describing the system. In MDE, models
describe the software system and are artifacts that can be processed to be successively and
automatically transformed into models at lower levels of abstraction, and, finally, into the
source code of the system [BCW17c, PM07b]. A common approach to MDE is based on
the OMG’s6 model-driven architecture (MDA)7, which defines four layers: computational
independent models, platform independent models, platform-specific models, and system
code. The OMG also defined a standard for meta-object facility (MOF), that defines the
way to create domain-specific modeling languages (DSML), usually, through meta-modeling
based on two levels of abstraction.

The traditional approach to MDE considers two-levels. In the most abstract one, a
metamodel defines the main concepts of the domain. In a lower level, a domain specific
modeling language can be defined from the metamodel to allow the designer to create
models of the system. A promising trend within MDE is that of multilevel software modeling
[AK01, AK03, AK08]. In contrast to a more “traditional” approach, multilevel modeling
does not constrain the number of levels, so the designer could use the number of levels
that better fit a particular domain. This approach aims at simplifying the complexity of
the models through the separation of specific domain concepts that can be modeled at
several levels. Multilevel modeling solves some drawbacks and restrictions that can occur
in the traditional two-level modeling [dLGC14]. As explained in [Fra18], many modeling
languages for this purpose have been proposed and, although they are different in some
elements, they all share common features, such as considering that all classes at any level
are also objects and allowing for deferred instantiation of attributes.

De Lara et al. present in [dLGC14] a research work focused on when and how to use
multilevel modeling in software development. The authors mention that “unfortunately,

6Object Management Group: http://www.omg.org
7Model Driven Architecture: http://www.omg.org/mda

16 Chapter 2. Background and state of the art

Figure 2.3: Tool architecture

there are scarce applications of multilevel modeling in realistic scenarios [. . .]”. After
analyzing a large set of metamodels from different sources, they identified many domains
in which a multilevel approach could be more beneficial than a two-level approach, and
they also identified a set of patterns where multilevel modeling may bring advantages.

In [CLP+17, CLPP17] we have already considered the application of automated software
development to the GIS domain and we proposed an architecture and a tool for this purpose
combining SPLE and MDE approaches.

Software product lines engineering is a field that pursues the industrialization in
software development by applying the same processes that were carried out in the factories
industrialization, such as reusing components and assembling specific products from a
selection of features from the whole set supported. This whole set of features supported
by a product family is represented by feature models [SHTB07]. The first step to apply
SPLE techniques to GIS is to analyze different GIS products and extract the set of possible
features of these products, classifying these features into common features or variability.
Each one of these features must be implemented with a software asset or component. In
fact, most of the features related to processing geographic information, such as importing a
shapefile8 or geocoding postal addresses, are implemented in encapsulated components that
provide interfaces and that can be used “as they are” independently of the domain or the
particular product, maybe with small variations such as supported file formats or using
Google Maps geocoding9 or OpenStreetMaps Nominatim10. Therefore, from a specification
of the features to be included in the system, we can build the application combining and
configuring the components related to those features.

Although the features and components are common to the family of GIS products,
there is one caveat: the data model depends on the particular domain and, even when
there are some models that appear frequently, it is required that each product is defined by
means of the data it should support with total flexibility. The only difference between the
data model in GIS and other applications is that in GIS we need geographic data types.

Generating code from models was addressed with model-driven engineering, so we
defined a metamodel to specify how the data model of the products of our family is

8Shapefile reference: https://doc.arcgis.com/en/arcgis-online/reference/shapefiles.htm
9Google Maps geocoding: https://developers.google.com/maps/documentation/geocoding/

intro
10OSM Nominatim: https://nominatim.openstreetmap.org/

 https://doc.arcgis.com/en/arcgis-online/reference/shapefiles.htm
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://nominatim.openstreetmap.org/

2.4. Developing GIS with SPL 17

described.
Figure 2.3 shows the architecture of our tool for the automatic generation of GIS using

SPLE and MDE. In the metamodel level, our design combines two metamodels: the first
one defines the entities of the GIS domain, allowing to model entities with a geographic
component and the relations between them; the second one is a feature model [SHTB07]
which contains the features that we can select for a specific product and the set of constraints
between them. The metamodel considers the definition of entities with their attributes
and relationships, with the particularity that spatial data types can be used. That is, the
MDE part of the platform presented in [CLPP17, CLP+17] allows the designer to create
models with entities using spatial data types. To generate a product, these metamodels
are instantiated into models, defining both the data model and the selection of features of
a particular system. These two models combined are the system specification, which in our
case is represented by a JSON document. This specification is processed by the derivation
and code generation engine that finally generates the source code of a working system.

Our tool, and the metamodels it handles are very flexible and complete, and they
allow us to define GIS applications for any domain. For example, if we need to develop a
product handling public resources, we can define entities representing hospitals and other
kinds of medical centers, education buildings such as universities or schools, the public bus
transportation network, the sections of a water supply network, etc. However, this design
following the two-level modeling approach has some caveats. First, it would force us to
define all possible elements of a GIS in a single metamodel. This would not allow us to
reflect in the model or set of models of the system common situations in this domain, such
as defining entities that refine other entities at higher levels of abstraction. Second, since
GISs manage entities with a spatial component in the real world, it is relatively common
that some structures appear repeatedly with some adaptations and particularities. Working
with a two-level approach does not allow us to take any advantage of this scenario.

As we will explain in section 4.2, these disadvantages can be addressed by applying a
multilevel approach. For example, let us assume we need to develop a GIS that allows a
city manager to handle the road networks, the public transportation networks and also
the electricity, water, and telecommunication supply networks. As we will see in the next
section, all these networks share the same structure, although they may differ in specific
attributes of the network elements. Our proposal shows that applying a multilevel approach
allows us to metamodel, at an intermediate level, the most common GIS structures, so we
can use these structures to make simpler models in the lower level.

18 Chapter 2. Background and state of the art

Chapter 3

A Domain Specific Language
for Web-based GIS

This chapter presents GIS-DSL, a domain-specific language for the development of GIS. GIS-
DSL is a declarative language that allows the developer to define the entities, relationships,
maps, and layers of the system. According to this specification, a software tool then
generates the source code of a GIS supporting the management of all those elements. We
present the metamodel, the language, a use example, and a case study in which we develop
two sample applications to analyze the resulting software products. This research has been
published as a conference and journal paper in [ACL+19] [REF].

The rest of the chapter is structured as follows: in section 3.1 we review background and
related work. In section 3.2 we present GIS-DSL, including an analysis of the architecture
and main components of a GIS, the metamodel, the language, and a use example. section 3.3
details the implementation of the tool that allows us to transform a system specification in
GIS-DSL into source code. section 4.3 presents a case study on two sample applications.
Finally, section 5.5 presents the conclusions of the paper and lines for future work.

3.1 Background and Related Work
A wide variety of DSL have been developed in different domains. For example, in software
engineering, DSLs have been proposed to support the process of generating source code for
desktop-based database applications in Java [LK11], or to model performance tests for web
applications [BZR16]. In [DSDS16] describes DSL3S, a domain specific modeling language
for Spatial Simulation in the field of GIS that synthesizes relevant concepts of spatial
simulation in a UML profile. This Profile forms a graphical language, and its companion
MDD3S framework, that involves a modeling and a model-to-code transformation
infrastructure allows the design of simulation models through the arrangement of graphical
elements.

The systematic mapping presented in [KBM16] highlights some open lines of DSL
research. For example, this mapping revealed that most articles focus on the design and

19

20 Chapter 3. A Domain Specific Language for Web-based GIS

implementation of DSLs, but few of them considered aspects such as validation and usability
evaluation, domain analysis, or maintenance.

In previous works [CLP+17, CLPP17], it has been explored the automated development
of GIS through a combination of software product line (SPL) technologies and basic MDE
techniques applied to the generation of the database and data model. The platform allowed
the user to define the data model of the system, and to specify a selection of optional
features that could be included in the final system. In this chapter, we further explore
the application of MDE techniques for the development of web-based GIS through the
definition of a DSL that considers the definition of the domain geospatial entities, and also
how they will be visualized in the web.

The application of MDE techniques to GIS development has been explored in previous
works. For example, [LFSNdVB10] and [SNF10] presented an UML profile to support
GIS-related concepts in UML conceptual models. Later, [JFD+13] presented a work in
which that UML profile was used in a MDA architecture to generate the SQL code for the
creation of spatial databases. Many GIS standards (such as those from ISO, OGC, and
the INSPIRE1 initiative) include metamodels that cover different concepts and application
areas. Kutzner [Kut16] addressed the model-driven transformation of geospatial data
according to different metamodels that can present differences between them.

3.2 A Domain-specific Language for Web GIS
Although some GIS applications are developed for desktop, the web has become the
preferred choice. The ISO and the OGC have defined a set of evolving standards that
define most of the aspects for the GIS domain, including models, procedures, services, and
architectures. We can see the focus on the web in these standards since many network-based
services were defined, such as the web map service2 (WMS) or the web feature service3

(WFS).
In this section, we present a DSL for web-based GIS. Its main characteristics are: (i) it

allows the developer to specify the entities to be managed and how they will be visualized
in the web through layers and maps, (ii) it is a declarative language, that is, the developer
specifies the entities of the system and how the data will be visualized, without having to
implement any details related to these features.

3.2.1 GIS Architecture and Main Constructs
A GIS manages entities with spatial properties such as points, line-strings, and polygons.
A Point is defined by its latitude and longitude and represents a position in the space. A
LineString is a set of joined points, and it is commonly used to represent objects such
as roads or pipes, for example. Polygons are used to represent areas, such as divisions
of the territory. In some cases, we need to work with collections of these basic spatial
types. These collections are supported by the data types MultiPoint, MultiLineString, and
MultiPolygon. The Geometry data type is a superclass of all these types. Figure 3.1 shows

1http://inspire.ec.europa.eu
2http://www.opengeospatial.org/standards/wms
3http://www.opengeospatial.org/standards/wfs

http://inspire.ec.europa.eu
http://www.opengeospatial.org/standards/wms
http://www.opengeospatial.org/standards/wfs

3.2. A Domain-specific Language for Web GIS 21

Figure 3.1: Supported data types for our metamodel of web-based GIS.

the data types supported in the metamodel of our DSL, which includes common data types
(numbers, booleans, strings, and dates) and the spatial data types we have mentioned.

The GIS domain is large and other data types exist. The standards by ISO, OGC,
and INSPIRE include a large number of metamodels. Previous works addressed GIS
metamodeling too. For example, the UML profile presented in [LFSNdVB10] and [SNF10]
includes data types to represent networks and other spatial phenomena. In [Kut16],
Kutzner addressed the model-driven transformation of geospatial data according to different
metamodels. We have decided to include only the basic spatial data types in our metamodel
as we believe they are the most common to any GIS application, and the purpose of the
metamodel is to serve as the basis for the design of a DSL that will allow to automatically
generate base functional applications that can manage entity types with a spatial component.
However, both the metamodel and the DSL we present could be easily extended with other
data types and constructs.

Spatial properties need to be defined within a spatial reference system (SRS) that
defines the map projection used by some spatial data or by a map viewer. Using a specific
SRS is required to transform coordinates into the actual position of an object. Depending
on the spatial context for which a GIS is built, we may prefer to use one SRS or another.

Spatial data types and operations are supported by specific tools and technologies that
comply with the GIS standards.There are relational database extensions that handle GIS
features, such as PostGIS4 or Oracle Spatial5. At higher levels, there are Java libraries
to work with spatial data, such as the Java Topology Suite (JTS) or the library collection
Java GeoTools. We can handle spatial data in JavaScript with GeoJSON and libraries such
as Turf. The view layer is built with the help of tools such as OpenLayers or Leaflet.

The visualization of geospatial data involves three concepts: layers, styles, and maps.
A layer is an image that can be geographically bounded. This image can be composed of a
set of real photos, as in the case of a satellite view, or it can be generated from geographic
data by applying a given style. When a layer is loaded in a map viewer, the viewer is

4https://postgis.net/
5https://www.oracle.com/database/technologies/spatialandgraph.html

https://postgis.net/
https://www.oracle.com/database/technologies/spatialandgraph.html

22 Chapter 3. A Domain Specific Language for Web-based GIS

Figure 3.2: A metamodel of web-based GIS (reduced version, adapted
from [ACL+19]).

responsible for asking the specific image needed depending on the bounds of the view, using
a specification such as TileLayer or WMS. In some cases, the image is generated by the
map viewer itself when we are dealing with raw data loaded with GeoJSON documents.
The styles determine how the data behind a layer is transformed into images. Depending
on the type of layer, we have different style specifications. For example, styles are usually
not necessary for satellite images. If we are handling a WMS layer we need to use a style
layer descriptor (SLD). A map is composed of a set of layers with their styles rendered in a
particular order. Usually the layers are generated from data of the application itself, that
is, from entities with spatial properties. For example, we can have a layer of the traffic
lights of a city, or a layer that shows the roads of a region. The metamodel presented in
fig. 3.2 formalizes these concepts and how they relate to each other.

fig. 3.3 shows our architecture for a web-based GIS. The server side provides two services
for the clients: a REST service handles most of the alphanumeric data and can provide
geographic data in a serializable format (such as GeoJSON), and a WMS that provides
cartography images by using a map server. Both the data and cartography services are fed
from the same database. In the client side, the data layer is the component in charge of
handling the REST communication, the logic of the application is handled by JavaScript
code, and the templates are created using HTML. There is also a map viewer library that is
working as a closed component and that can handle direct communication with the WMS.

In the current implementation of GIS-DSL, we aim at generating GIS applications
according to a specific architecture and a set of technologies. Therefore, we have not

3.2. A Domain-specific Language for Web GIS 23

Figure 3.3: Typical architecture of a web-based GIS (reproduced
from [ACL+19]).

followed the complete MDA architecture, since we transform the specifications of the DSL
directly into code. However, the DSL would still be valid if we were interested into a
MDA-based implementation, able to generate applications for different platforms.

3.2.2 GIS-DSL
GIS-DSL is a declarative language composed of sentences that allow programmers to specify
the entities, maps, and layers they need, without needing to specify any detail on how to
implement them or the control flow associated to their processing [Fow10, Seb16].

3.2.2.1 CREATE GIS and USE sentence

The specification of an application starts with the sentence CREATE GIS. We specify the
name of the project, and the spatial reference system that will be used (each reference
system is defined by a specific id, srid).

CREATE GIS name USING srid;

Listing 3.1: CREATE and USE sentences.

24 Chapter 3. A Domain Specific Language for Web-based GIS

3.2.2.2 CREATE ENTITY sentence
The domain can be specified using the sentence CREATE ENTITY (see listing 3.2). Each
entity has a name and a set of properties. A property is defined by its name and its
data type, which can be any of the types shown in Figure 3.1. Each entity must have
an identifier, defined by adding the keyword IDENTIFIER to the properties that compose
it. Relationships between entities can be defined as well, indicating the name of the
relationship, its cardinally, and its navigability.

CREATE ENTITY entityName (
propertyName1 dataType1 [IDENTIFIER] [REQUIRED] [DISPLAY_STRING] [UNIQUE],
propertyName2 dataType2 [IDENTIFIER] [REQUIRED] [DISPLAY_STRING] [UNIQUE],
...
relationshipName1 entityName RELATIONSHIP{ (

{ 0..1 | 1..1 | 0..* | 1..* },
{ 0..1 | 1..1 | 0..* | 1..* }

) [BIDIRECTIONAL] | MAPPED_BY relationshipNameInTheOtherEntity },
...

);

Listing 3.2: CREATE ENTITY sentence.

3.2.2.3 CREATE LAYER sentence
Once the domain model of the system has been defined, we can define the layers available
to be visualized in the map viewers of the application (see listing 3.3). The CREATE LAYER
sentence allows us to create three different types of layers: Tile Layers, WMS Layers, and
GeoJSON Layers. Tile layers are defined by an external URL, and they are used normally
as base layers. GeoJSON layers are generated from an entity of the application, which is
loaded into the map from the REST service applying a certain style. Entities loaded using
this type of layers can be editable using the forms of the application. Finally, WMS layers
are loaded as cartography through a map server, and they can be generated from one or
several entities from the application.

CREATE TILE LAYER name [AS label] (
url STRING

);

CREATE GEOJSON LAYER name [AS label] (
entity [EDITABLE],
fillColor HEX,
strokeColor HEX,
fillOpacity FLOAT,
strokeOpacity FLOAT

);

CREATE WMS_STYLE name (
styleLayerDescriptor FILE_PATH

);

CREATE WMS LAYER name [AS label] (
entity1 WMS_STYLE,
entity2 WMS_STYLE,

3.2. A Domain-specific Language for Web GIS 25

...
);

Listing 3.3: CREATE LAYER sentence

3.2.2.4 CREATE MAP sentence
The CREATE MAP sentence allows us to define the map viewers (see Listing 3.4). A map
is composed of a set of layers, with one of them acting as the base layer. A layer can be
defined as hidden by default in the view.

CREATE [SORTABLE] MAP name [AS label] (
layer1 [IS_BASE_LAYER] [HIDDEN],
layer2 [IS_BASE_LAYER] [HIDDEN],
...

);

Listing 3.4: CREATE MAP sentence.

3.2.2.5 GENERATE GIS sentence
The sentence GENERATE GIS transforms all the specifications made with previous sentences
into the source code of a working system. The resulting GIS provides the users with forms
and listings to create, edit, list, and remove any of the entities defined in the data model.
The map viewer also includes all the layers, styles, and maps defined. The resulting system
may be missing complex functionalities required by the users. It must be noticed that
the purpose of the DSL is not to generate a complete system with arbitrarily complex
functionalities but to generate a functional system that can be extended with more complex
functions implemented in the general-purpose programming language.

GENERATE GIS name;

Listing 3.5: GENERATE GIS sentence.

3.2.3 Use Example
To illustrate the use of the DSL, we present examples with two basic GIS applications,
Administrative Office and Point of Interest.

3.2.3.1 Administrative office
Local administrations usually need to manage a set of buildings with different functions,
such as water distribution buildings (pipes, wells, tanks, chlorination stations, etc.), road
networks (streets, municipal roads, bridges, etc.), cultural-related buildings (schools, sport
halls, community centers, etc.), or administrative buildings. Most applications managing
this kind of data use GIS technologies, allowing the users to visualize the information
through map viewers and to digitize new elements.

26 Chapter 3. A Domain Specific Language for Web-based GIS

Figure 3.4: Data model of the example application (reproduced
from [ACL+19]).

fig. 3.4 shows a data model that specifies that we manage municipalities, roads,
and administrative offices, each one with its geographic component (a multi-polygon
for municipalities, a multi-line for roads, and a point for administrative offices) and with
their relationships. listing 5.22 shows the GIS-DSL code that specifies the web-based GIS
application that manages that application model. First, a new GIS is created. We use the
SRID EPSG:25829, which is a local reference system commonly used when working in the
north-west of Spain.

Next, we define the application model, creating its three entities. The names of the
entities will be used afterward for defining the different layers that will be provided by the
application. These layers are also linked to the only map viewer we define, in which it will
appear a TileLayer from Open Street Maps (OSM) that works as the base layer, a WMS
Layer that combines both the municipalities and the roads, and a GeoJSON Layer with
the administration offices. The latter also allows accessing a form directly from the map
viewer so the offices can be edited. Finally, the GIS application is generated, with forms,
listings, and maps to manage the entities.

CREATE GIS local_administration_manager USING
25829;

CREATE ENTITY Road (
id Long IDENTIFIER DISPLAY_STRING,
status String,
path MultiLineString

);

CREATE ENTITY Municipality (
id Long IDENTIFIER,

name String REQUIRED DISPLAY_STRING,
extension MultiPolygon,
roads Road RELATIONSHIP(1..1, 0..*),
offices AdministrativeOffice

RELATIONSHIP(1..1, 0..*) BIDIRECTIONAL
);

CREATE ENTITY AdministrativeOffice (
id Long IDENTIFIER DISPLAY_STRING,
status String,
location Point,

3.2. A Domain-specific Language for Web GIS 27

municipality Municipality RELATIONSHIP
MAPPED_BY offices

);

CREATE TILE LAYER base AS "Base Layer" (
url "https://{s}.tile.osm.org/

{z}/{x}/{y}.png"
);

CREATE GEOJSON LAYER offices AS
"Administrative Offices" (

AdministrativeOffice EDITABLE,
fillColor #243452,
strokeColor #eeeee3,
fillOpacity 0.8,
strokeOpacity 0.9

);

CREATE WMS STYLE BasePolygonStyle (
styleLayerDescriptor

"/home/user/sld/file_polygon_sld.xml"
);

CREATE WMS STYLE BaseLineStyle (
styleLayerDescriptor

"/home/user/sld/file_line_sld.xml"
);

CREATE WMS LAYER defaultOverlay AS "Overlay" (
Municipality BasePolygonStyle,
Road BaseLineStyle

);

CREATE SORTABLE MAP theMap AS "Map Viewer" (
base IS_BASE_LAYER,
defaultOverlay,
offices HIDDEN

);

GENERATE GIS local_administration_manager;

Listing 3.6: Example of application Administrative office defined by the
DSL.

3.2.3.2 Point of interest
Points of interest is a mobile application that allows you to register places of interest for
the user and track their entry/exit points. From this information, the application records
the routes through which the user has traveled and generates a visit plan. Our model is
represented by four entities: City, Streets,Points of interest, and Point type. Each City has
a collection of Streets, defined spatially by a multi-line. In each City the system will allow
storing Points of interest that belong to a given Point type and are spatially defined by a
point. fig. 3.8 shows the simplified class diagram of this application. In the listing 3.7 is
shown an example of the application point of interest defined by the DSL proposed.

CREATE GIS point_of_interest USING 25829;

CREATE ENTITY City (
id Long IDENTIFIER,

name String REQUIRED DISPLAY_STRING,
extension MultiPolygon,
street Street RELATIONSHIP(1..1, 0..*)

BIDIRECTIONAL,
pinterest PointOfInterest

RELATIONSHIP(1..1, 0..*) BIDIRECTIONAL
);

CREATE ENTITY Street (
id Long IDENTIFIER,

name String REQUIRED DISPLAY_STRING,
type String,
path MultiLineString,
city City RELATIONSHIP MAPPED_BY street

);

CREATE ENTITY PointOfInterest (
id Long IDENTIFIER,
name String REQUIRED DISPLAY_STRING,

location Point,
city City RELATIONSHIP MAPPED_BY pinterest,
poiType PoiType RELATIONSHIP MAPPED_BY

pinterest
);

28 Chapter 3. A Domain Specific Language for Web-based GIS

System
specification in

GIS-DSL
Parser

System
specification in

code generation
engine JSON

Code generation
engine

System code
(Java, Js, HTML, …)

Base application
+

Code templates

GIS-DSL tool

Figure 3.5: Architecture of the GIS-DSL code generation engine.

CREATE ENTITY PoiType (
id Long IDENTIFIER,
name String REQUIRED DISPLAY_STRING,

pinterest PointOfInterest
RELATIONSHIP(1..1, 0..*)

);

CREATE TILE LAYER base AS "Base Layer" (
url "https://{s}.tile.osm.org/

{z}/{x}/{y}.png"
);

CREATE GEOJSON LAYER pointOfInterest AS "My
PointOfInterest" (

PointOfInterest EDITABLE,
fillColor #243452,
strokeColor #eeeee3,
fillOpacity 0.8,
strokeOpacity 0.9

);

CREATE WMS STYLE BasePolygonStyle (

styleLayerDescriptor
"/home/user/sld/file_polygon_sld.xml"

);

CREATE WMS STYLE BaseLineStyle (
styleLayerDescriptor

"/home/user/sld/file_line_sld.xml"
);

CREATE WMS LAYER defaultOverlay AS "Overlay" (
City BasePolygonStyle,
Street BaseLineStyle

);

CREATE SORTABLE MAP theMap AS "Map Viewer" (
base IS_BASE_LAYER,
defaultOverlay,
pointOfInterest HIDDEN

);

GENERATE GIS point_of_interest;

Listing 3.7: Example of application Point of interest defined by the DSL.

3.3 Implementation of the DSL
The implementation of GIS-DSL is based on the use of the generation engine presented
in [CLPP17]. This engine receives an input consisting of a specification of classes,
relationships, and other auxiliary elements, which is processed and combined with a
set of templates to generate source code applying scaffolding technologies.

Figure 3.5 presents a diagram with the architecture of our tool.The input is a file
containing the specification of the GIS application using the DSL. This specification is first

3.3. Implementation of the DSL 29

processed by a parser, which reads all its elements. and transforms it into an intermediate
specification in JSON, which is the input for the generation engine. The intermediate
specification is then processed by the code generation engine and combined with a set of
templates to generate the source code of the final system, which includes files in different
programming languages, such as Java, JavaScript, and HTML. The code templates are
part of a base application that also contains other source code that will form part of any
application generated by our tool.

3.3.1 GIS-DSL Parser
The parser was implemented with ANTLR6. Besides producing the parser that can read,
validate, and process the language, it provides easy mechanisms to run native code as the
grammar rules are processed.

listing 3.8 shows the GIS-DSL grammar, omitting the definition of the lexer. Every
token that finishes with the suffix _SYMBOL corresponds to the text that comes before the
underscore. For example, SORTABLE_SYMBOL is the word SORTABLE, and MAP_SYMBOL is the
word MAP. The symbols OPAR, CPAR and SCOL are “(”, “)”, and “;”, respectively.

parse: sentence+;

sentence: createStatement | useGIS |
generateGIS;

createStatement:
CREATE_SYMBOL (

createGIS | createEntity | createLayer
)

;

createGIS:
GIS_SYMBOL identifier USING_SYMBOL srid

SCOL_SYMBOL
;

createEntity:
ENTITY_SYMBOL identifier OPAR_SYMBOL

property (COMMA_SYMBOL property)*
CPAR_SYMBOL SCOL_SYMBOL

;

createLayer: createTileLayer |
createGeoJSONLayer | createWmsStyle |
createWmsLayer | createMap |
createSortableMap;

createTileLayer:
TILE_SYMBOL LAYER_SYMBOL identifier

(AS_SYMBOL text)? OPAR_SYMBOL
URL_SYMBOL text

CPAR_SYMBOL SCOL_SYMBOL;

createGeoJSONLayer:
GEOJSON_SYMBOL LAYER_SYMBOL identifier

(AS_SYMBOL text)? OPAR_SYMBOL
identifier (EDITABLE_SYMBOL)? COMMA_SYMBOL
FILL_COLOR_SYMBOL hexColor COMMA_SYMBOL
STROKE_COLOR_SYMBOL hexColor COMMA_SYMBOL
FILL_OPACITY_SYMBOL floatNumber

COMMA_SYMBOL
STROKE_OPACITY_SYMBOL floatNumber

CPAR_SYMBOL SCOL_SYMBOL;

createWmsStyle:
WMS_SYMBOL STYLE_SYMBOL identifier

OPAR_SYMBOL
SLD_SYMBOL text

CPAR_SYMBOL SCOL_SYMBOL;

createWmsLayer:
WMS_SYMBOL LAYER_SYMBOL identifier

(AS_SYMBOL text)? OPAR_SYMBOL
wmsSubLayer (COMMA_SYMBOL wmsSubLayer)*

CPAR_SYMBOL SCOL_SYMBOL;

wmsSubLayer: identifier identifier;

createSortableMap: SORTABLE_SYMBOL createMap;

useGIS: USE_SYMBOL GIS_SYMBOL identifier
SCOL_SYMBOL;

createMap:
MAP_SYMBOL identifier (AS_SYMBOL text)?

6ANTLR: https://www.antlr.org/

https://www.antlr.org/

30 Chapter 3. A Domain Specific Language for Web-based GIS

OPAR_SYMBOL
mapLayer (COMMA_SYMBOL mapLayer)*

CPAR_SYMBOL SCOL_SYMBOL;

mapLayer: identifier (IS_BASE_LAYER_SYMBOL)?
(HIDDEN_SYMBOL)?;

generateGIS: GENERATE_SYMBOL GIS_SYMBOL
identifier SCOL_SYMBOL;

property: propertyDefinition |
relationshipDefinition;

propertyDefinition:
identifier TYPE (

IDENTIFIER_SYMBOL
| DISPLAYSTRING_SYMBOL
| REQUIRED_SYMBOL
| UNIQUE_SYMBOL

)*
;

relationshipDefinition:
ownedRelationshipDefinition |

mappedRelationshipDefinition;

mappedRelationshipDefinition:
identifier identifier RELATIONSHIP_SYMBOL

MAPPEDBY_SYMBOL identifier;

ownedRelationshipDefinition:
identifier identifier RELATIONSHIP_SYMBOL

OPAR_SYMBOL cardinality COMMA_SYMBOL
cardinality

CPAR_SYMBOL BIDIRECTIONAL_SYMBOL?;

cardinality:
ZERO_ONE_SYMBOL
| ONE_ONE_SYMBOL
| ZERO_MANY_SYMBOL
| ONE_MANY_SYMBOL

;

srid: INT_NUMBER;
identifier: IDENTIFIER;
text: QUOTED_TEXT;

hexColor: HEX_COLOR;
floatNumber: FLOAT_NUMBER;

Listing 3.8: GIS-DSL grammar.

As an example, Listing 3.9 shows the specification of an entity AdministrativeOffice. The
parser transforms this specification into an intermediate JSON file, shown in listing 3.10.

CREATE ENTITY AdministrativeOffice (
id Long IDENTIFIER DISPLAY_STRING,
status String,
location Point,
municipality Municipality RELATIONSHIP MAPPED_BY offices

);

Listing 3.9: Specification of AdministrativeOffice in GIS-DSL.

1 {
2 "name": "AdministrativeOffice",
3 "properties": [{
4 "name": "id",
5 "class": "Long (autoinc)",
6 "pk": true,
7 "required": true,
8 "unique": true
9 },{

10 "name": "status", "class": "String"
11 },{

3.3. Implementation of the DSL 31

12 "name": "location", "class": "Point"
13 },{
14 "name": "municipality",
15 "class": "Municipality",
16 "owner": true,
17 "bidirectional": "offices",
18 "multiple": false,
19 "required": true
20 }],
21 "displayString": "$id"
22 }

Listing 3.10: Specification of AdministrativeOffice in JSON.

3.3.2 Code Generation Engine
The generation engine7 used in our tool has been previously designed and developed to
generate code from a system definition using a set of annotated code templates [CLPP17].

Based on [CLPP17] we User interface specification DSL use the Code Generation Engine
to handle different components that allow define an API to generate the different software
products. These components, as show the Figure 3.6 are the file manager, template engine
and the assets handler.

• The assets handler allow validate the features that has been selected by the analyst.
To do that, we need load the different assets throw the features model. This feature
model is generated from annotations that previously has been created from our DSL.

• The file manager allow handle all related to access to the templates to generate
source code. For example, template annotations are defined as comments of the
programming language in which the template is written and its content can be any
JavaScript code. These annotations allow you to select or exclude a set of features
that are desirable for the system. Subsequently, these characteristics through a
generation engine are translated into implemented source code and assembled into a
final product.

• The template engine has been designed to simultaneously support concepts from
software product lines engineering (SPLE) and model-driven engineering (MDE).
From SPLE, it supports feature models to manage the variability of the products that
can be generated. A feature model, briefly explained, is a way to organize and describe
the characteristics or functionalities that appear in a family of products [KCH+90].
There are a set of operations related to feature models [BSRC10a], mostly used to
determine if a particular configuration for a new product of the family is valid. From
MDE, our generation engine uses scaffolding techniques to transform models and text
into text, that is, system specifications and annotated code templates are transformed
into the final source code of the system and the product assembles.

7spl-js-engine: https://github.com/AlexCortinas/spl-js-engine

https://github.com/AlexCortinas/spl-js-engine

32 Chapter 3. A Domain Specific Language for Web-based GIS

Figure 3.6: DSL Model Component.

3.3.3 Generated Code
The fig. 3.7 shows the structure of the low-level software elements generated by our tool for
each element in the input specification, and the relationships between these components. The
components belong to each one of the layers of our architecture, and they are implemented
in different languages: Java, JavaScript, JSON, and HTML. On the server side, the data
persistence is implemented with PostGIS and JPA (Hibernate specifically), so for each
entity, we generate a class representing the entity, Entity, and a DAO, EntityRepository.
Besides that, the data is provided by a REST service, so we generate a RESTController
for each entity, EntityResource. On the client side, we can differentiate two types of
visualization: lists and forms. For the former, we generate a component, entityList, with
its controller and router definition (JS), and with the view (HTML). For the latter, we
need two different components: one for the detail view, entityForm-detail, and one for
the edition view, entityForm-update, each one of them with the controller (JS), router
definition (JS) and the view (HTML). The rest of the files generated for each entity on the
client side handle the communication with the REST service, entity.resource, and the
message internationalization files, in JSON format.

On the other hand, each map defined in the specification only generates one file, a
JSON that indicates the configuration of the different layers of the map. The component
that renders the map takes this file and dynamically generates every layer, applies the
required styles and configures the different options of the map, such as allowing to sort the
layers.

3.3. Implementation of the DSL 33

Figure 3.7: Low-level components of the generated source code.

34 Chapter 3. A Domain Specific Language for Web-based GIS

Figure 3.8: Class diagram of the first example project.

3.4 Case Study and Evaluation
In this section, we present a case study on the use of GIS-DSL that allowed us to evaluate the
language and its implementation, focusing on the size and characteristics of the generated
products, which have a direct impact on the development effort. We used two sample
projects of different sizes. Each sample project is characterized by its number of entities,
properties, relationships, maps, and layers since these are the elements that define the size
of the system and the ones we can specify with the DSL. For both of them, we analyzed
the resulting GIS application in terms of the total number of source code files, and the
number of generated lines of code.

In the rest of this section, we describe the sample projects and their models. We then
compare the results obtained in the generated products and discuss the findings in these
results, and the limitations of the case study.

3.4.1 Sample Project 1: Points of Interest
Figure 3.8 shows a class diagram that defines the first sample project. In this case we are
defining a simple application with just four entity types that will allow storing data of
cities, defined spatially by a multi-polygon that defines the city boundaries. Each City has
a collection of Streets, defined spatially by a multi-line. Also, the system will allow storing
Points of interest that belong to a given Point type and are spatially defined by a point.

The two colors in the diagram identify the two maps that we want to define. The first
one (orange background) will show the streets in the cities using a WMS layer, applying a
style that depends on the type property of each street. The second map (purple background)
will show the points of interest of the city in a GeoJSON layer. Using a GeoJSON layer is

3.4. Case Study and Evaluation 35

useful if we want to facilitate the edition of the elements of the layer since the users can
access the edition form from a popup that shows clicking on an element of the map.

3.4.2 Sample Project 2: Local Civil Infrastructure Manage-
ment

A typical problem for many public administrations is civil infrastructure management. The
list of elements to manage is large but, to keep the example within a reasonable scope, we
decided to focus on five areas: urban planning, road management, population information,
medical facilities, and water supply facilities. Figure 3.9 shows a class diagram that defines
the second sample project (as in the previous example, the background colors indicate the
entities that will be shown together in a map):

• Urban planning (orange background): local administrations in Spain must define an
urban plan that structures the territory of the municipality into areas with different
construction permissions. In this way, the administration establishes the types of
buildings that can be built in each zone. This information is kept in the system with
the entities UrbanPlan (since a municipality can define many urban plans over time)
and UrbanPlanZone, defined spatially with a multi-polygon.

• Road management (purple background): our system will store the information of the
Roads and their Road sections. Each road section is defined spatially by its route (a
multi-line string) and its surface (a multi-polygon), which can be also of interest in
many cases.

• Population information (yellow background): demography is an important aspect
of municipal administration. The PopulationEntity class represents the partition
of each municipality into lower-level entities with their boundaries represented
with a multi-polygon and storing the population that lives in the entity without
living in a population settlement (i.e., outside cities, towns or villages). The
PopulationSettlement class represents the settlements withing each population entity
using a multi-polygon for the boundary and storing the number of inhabitants.

• Medical and social facilities (green background): our system will allow storing
information of medical and social buildings, such as Hospitals, Medical centers
(both defined spatially by a point), and Social centers (in this case, defined by
two multi-polygons defining the area of the building and the surrounding parcel
respectively).

• Water supply network (red background): the water supply network is defined by a set
of nodes, that typically include water Collection and Storage locations, Purification
and Pumping premises, and a set of edges, the SupplyPipes. The nodes are defined
spatially by points, and the pipes are defined by multi-line strings.

In this example we defined 15 layers, where 14 of them correspond to the entities with
an spatial component (that is, all entities except UrbanPlan), and an additional layer used
to include the roads in the rest of the maps. In fig. 3.10 we show a capture of the application
on the map “Urban planning”, which includes a base layer from OpenStreetMap and 4
layers from our data (entities Municipality, Building, RoadSection and UrbanPlanZone).

36 Chapter 3. A Domain Specific Language for Web-based GIS

Figure 3.9: Class diagram of the second example project.

3.4. Case Study and Evaluation 37

Figure 3.10: Example of a map defined for the product described in
section 3.4.2.

3.4.3 Results
In this section, we present the results of the analysis of the results obtained in the two
sample projects. For each project, we wrote the system specification in GIS-DSL and
generated the applications. In the previous section, we explained that the software is
generated from a set of code templates and a base application, that comprises 175 files
(Java, HTML, and JavaScript), and 13,569 lines of code. For both projects, we measured
the number of source code files and the number of lines of code (LOC). In the case of the
lines of code, we distinguished between the total number of lines and the newly generated
lines of code. We also distinguished between the number of LOC in the back-end and the
front-end.

Table 3.1: Characteristics of each example project.

Project Entities Properties Relationships Maps Layers

Project 1 4 12 3 2 4
Project 2 16 82 15 5 15

Table 3.1 shows the characteristics of the two sample projects in terms of the number
of entities, properties, relationships, maps, and layers. Table 3.2 shows the size of the
resulting generated projects, in terms of the number of files and the number of lines of code
(LOC).

As we can see in the tables, the differences between the two sample projects allow us

38 Chapter 3. A Domain Specific Language for Web-based GIS

Table 3.2: Characteristics of the generated software for each example project.

Project Files Lines of code (LOC)
Total Generated Back-end Front-end

Project 1 78 17,673 4,104 10,113 7,560
Project 2 273 29,573 16,004 13,988 15,585

to analyze the results of the code generation process in different settings. In both cases,
we can see that the number of LOC is similar in the back-end. However, the number of
LOC in the front-end is much higher in project 2 because it contains more maps and layers.
In the case of project 1, the number of generated LOC is small compared to the number
of lines of the base application. However, in project 2, with just 16 entities, the number
of generated LOC is considerably higher. We can see also that the number of generated
LOC per entity is almost the same in both projects, 1,026 in project 1, and around 1,000
in project 2.

A potential limitation of this case study is that its extent does not allow us to conclude
that this ratio would be the same in any other project since the number of generated lines
of code is also influenced by the number of properties, relationships, maps, and layers.
However, it gives us an idea of the code generation ratio we can achieve, and of the savings
we could obtain in larger projects, with tens or hundreds of entities. In addition, these
data could be combined with the average cost per hour at a given company to compute
the savings directly in economic terms. Therefore, these data give us an insight on the
improvements in development productivity.

Other aspects that can be analyzed on the generated code are its quality and
maintainability. The code generated by our implementation follows a clear architecture and
a set of design patters, without any possible deviation from those prescriptions because is
generated automatically.

A more extensive experimental evaluation remains as future work. Using the DSL to
generate existing real applications would imply additional coding on top of the generated
applications. That would allow us to evaluate the savings and productivity improvements
more accurately and, also, it would allow us to analyze the break-even point. In addition, it
would also allow us to better evaluate the quality of the generated code compared to that
of custom-developed applications and its maintainability, according to models based on the
family of norms ISO 25.000, such as [RP14], and even the satisfaction level of programmers
using the DSL and users of the resulting software.

3.5 Conclusions
A GIS manages entities with a spatial component that plays a central role in the system and
its functionalities. Most GIS share a common set of concepts, architecture, design patterns,
and technologies, so their development is quite similar in many aspects. Therefore, we
consider that GIS is a suitable domain for applying model-driven engineering techniques.

3.5. Conclusions 39

In this chapter, we have proposed GIS-DSL, a declarative domain-specific language
for the development of GIS. This language allows the developer to specify the system by
defining its entities, with their properties and relationships, maps, and layers. We have
implemented the DSL in a tool that generates the source code of the system from the
specification in GIS-DSL. Although the current implementation generates applications
written in Java, HTML, and JavaScript, it could easily be modified to generate applications
in another programming languages and platforms, just replacing the base application and
the code templates.

As it happens in many applications of MDE, the purpose of GIS-DSL and the tool that
implements the language is not being able to implement every functionality of any specific
GIS, but to implement the basic management functions on the defined entities, and the
visualization based on the layers and maps defined by the developer. Therefore, in most
cases, the resulting software product will have to be completed to match all the functional
requirements of the domain.

We have presented a case study in which we used two sample projects to evaluate the
software products generated from the specifications in GIS-DSL. In particular, the first
sample project is a simple application for managing points of interest (with four entities),
and the second sample project is an application for managing civil infrastructures (roads,
water supply networks, urban planning, population information, and medical and social
facilities). These sample projects are of different sizes, which allowed us to analyze the
lines of code generated in different scenarios, also considering the number of lines of code
that form the base application. A limitation of the case study is the choice of technologies,
architecture, and implementation decisions we have made, which could be different in other
settings. However, it allowed us to conclude that the number of lines of source code we
can generate is high if compared with the size of the specification of the systems. As we
explained in the previous section, a more extensive evaluation, involving the generation of
real applications, remains as future work.

40 Chapter 3. A Domain Specific Language for Web-based GIS

Chapter 4

Multilevel Modeling of
Geographic Information
Systems

Geographic Information Systems (GIS) support the processes of capturing, managing,
visualizing, and analyzing data with a geospatial component [WD04]. GIS are used in
many application domains, such as the management of transportation networks, logistics,
supply infrastructures, or territory administration, among many others. Although in their
beginnings GIS were used mainly by public administrations and engineering companies, the
evolution of technologies for GIS development and the appearance of cheap mobile devices
with GPS capabilities has extended the use of GIS to companies in very different domains.

Despite the differences in their functional scope, most GIS applications share a common
set of concepts, standards, architecture, components, and technologies. For example, all
GIS deal with spatial data types (such as points, lines, polygons, or variants of these basic
types), coordinate systems, maps, layers (used to organize the information shown in maps),
and operations to process spatial data. All these elements are defined in different standards
from the ISO committee on geographic information/geomatics (ISO/TC 2111) and the
Open Geospatial Consortium (OGC2), hence existing technologies for GIS development
support them in the same (or very similar) way. Therefore, two different GIS are modeled
and developed similarly, even if they have a different purpose and functional requirements.
Also, due to the nature of the information managed in these application domains, some
common structures appear repeatedly, such as, for example, network structures (e.g., in
domains such as road networks, telecommunications, or energy supply), or hierarchical
decomposition of entities at different spatial levels (e.g., territory administration or facility
management).

In model-driven engineering (MDE), models play a central and active role in the

1https://committee.iso.org/home/tc211
2http://www.opengeospatial.org/

41

https://committee.iso.org/home/tc211
http://www.opengeospatial.org/

42 Chapter 4. Multilevel Modeling of Geographic Information Systems

software development process, far beyond just describing the system. Models describe
the software system, and they are artifacts that can be processed to be successively and
automatically transformed into models at lower levels of abstraction, and, finally, into
the source code of the system [BCW17c, PM07b]. In MDE, a metamodel describes the
elements that can be used in the models that conform to that metamodel. The traditional
approach to MDE considers a fixed number of metamodeling levels. Typically, objects are
described by models that define their state, behavior, and relations, and these models use
concepts defined in a metamodel at a higher level of abstraction. At the same time, at the
metamodel level, we can use elements defined in a meta-metamodel defined at a higher
level. A common approach to MDE is based on the OMG’s3 model-driven architecture
(MDA)4, which defines four layers for software modeling: computational independent
models, platform-independent models, platform-specific models, and system code. The
OMG also defined a standard for meta-object facility (MOF), that defines the way to create
domain-specific modeling languages (DSML), usually, through meta-modeling based on two
levels of abstraction.

Working in one metamodel level implies balancing the scope of the metamodel and the
flexibility of the solution. On the one hand, a simple metamodel would only define basic
elements that could be potentially used in any other model. This solution would be simple
but would force us to repeat the same information structures in different systems. On the
other hand, creating a complex and rich metamodel that tries to define those information
structures may be too rigid since it would be difficult to adapt to the particularities of
a specific model. In [CLP+17, CLPP17, ACL+20], for example, we opted for creating a
simple metamodel with just the basic elements common to any GIS (basic entities with
a spatial component, layers, and maps). The resulting metamodel is very flexible, but it
forces the designer to repeat many elements in different models.

A recent trend in MDE is multilevel modeling [dLGC14, AK01, Atk97]. The idea of
multilevel modeling is that the number of metamodeling levels is not fixed, so the designer
can use the number of levels that better fit a particular domain. This approach aims at
simplifying the complexity of the models through the separation of specific domain concepts
that can be modeled at different levels. Multilevel modeling solves some drawbacks and
restrictions that can occur in the traditional two-level modeling, which forces the description
of the application domain in one level, something that can lead to an unnecessary complexity
[dLGC14]. Despite the attention multilevel modeling is attracting, few works focus on its
application to real scenarios. This has already been pointed out by de Lara et al., that
mention in [dLGC14] that “there are scarce applications of multilevel modeling in realistic
scenarios”, and by Frank who also pointed out in [Fra16] that “only little attention has
been paid to applying multilevel modeling to particular domains”.

In this chapter, we address the modeling of geographic information systems with a
multilevel approach. Our main goal was to determine if a solution for GIS based on
multilevel modeling could solve the drawbacks of a two-level solution, considering the
following requirements: (R1) Scope: the set of models should be rich and include the typical
elements in most GIS models; (R2) Reuse of common structures: the set of models must
support the definition and reuse of common structures appearing in many GIS application
domains; (R3) Flexibility: the solution must allow the designer to adapt high-level designs

3Object Management Group: http://www.omg.org
4Model Driven Architecture: http://www.omg.org/mda

http://www.omg.org
http://www.omg.org/mda

4.1. Background and Related Work 43

to the particularities of an application, and be easily extensible to incorporate new elements;
(R4) Realistic: the solution must consider (not necessarily in an exhaustive way) scenarios
extracted from existing proposals for the modeling of GIS; and (R5) Generality: the solution
must not be limited to one particular case.

We present a proposal with a set of models that are based on international standards
for geographic information systems. The first scenario applies multilevel modeling to the
conceptual standards defined by ISO TC/211 and the implementation standards defined
by the OGC to bridge the gap between these two sets of standards. The following three
scenarios were extracted from the data specifications of the European Union INSPIRE
Directive, which defines a set of models for information regarding resource and environmental
management so that EU member countries can follow them to ensure interoperability. We
have selected the application domains of territory administration, spatial networks, and
facilities management. The four scenarios show the advantages that multilevel modeling
may bring when compared with a two-level approach.

The motivation and contribution of this theses are twofold. First, the models of the
INSPIRE Directive of the UE provide a general design of GIS for different purposes in
the public administration. That approach is based on well-known international standards
and tries to provide a general solution to different GIS problems that may fit the needs of
administrations and companies in different countries of the Union. However, that solution
is based on deep and complex hierarchies of classes, which, based on our experience, should
be extended even more to adapt them to the particularities of each country. In this research,
we present an alternative solution using multilevel modeling and show that it is more
flexible and easily adaptable to those particularities than a traditional solution based on
two levels. Second, we believe the solution we present also provides a real application
scenario for an emerging modeling approach as multilevel modeling, that allows us to
compare it with an existing design based on a traditional two-level approach, and that can
contribute to understanding the advantages of this modeling technique in a real scenario.

The rest of the chapter is structured as follows:
In section 4.1 we present background and related work, including a brief description

of the main elements of a GIS, and a summary of previous work on applying a two-level
MDE approach for their development. In section 4.2 we present our proposal for developing
GIS under a multilevel modeling approach. We describe four scenarios with problems
that appear in real-world GIS applications, we then present example metamodels based
on international standards for each scenario, and we describe the advantages of using
multilevel modeling.

Section 4.3 presents a discussion and evaluation of the solution presented in section 4.2.
Finally, section 4.4 presents the conclusions of the paper, the work we are currently
undertaking, and lines for future work.

4.1 Background and Related Work
In this section, we review existing works on the application of multilevel modeling. Finally,
we present previous applications of MDE and software product lines engineering (SPLE)
to the GIS domain.

44 Chapter 4. Multilevel Modeling of Geographic Information Systems

4.1.1 Multilevel modeling and its applications
The traditional approach to MDE considers two metamodeling levels. In the metamodel
level, the designer defines the main concepts of the domain. At a lower level, a domain-
specific modeling language can be defined from the metamodel to allow the designer to
create models of the system. A promising trend within MDE is that of multilevel software
modeling [AK01, AK03, AK08]. In contrast to a more “traditional” approach, multilevel
modeling does not fix the number of metamodeling levels, so the designer could use the
number of levels that better fit a particular domain. This approach aims at simplifying the
complexity of the models through the separation of specific domain concepts that can be
modeled at several levels. Multilevel modeling solves some drawbacks and restrictions that
can occur in the traditional two-level modeling [dLGC14]. As explained in [Fra18], many
modeling languages for this purpose have been proposed and, although they are different
in some elements, they all share common features, such as considering that all classes at
any level are also objects, and allowing for deferred instantiation of attributes.

Few works have presented applications of multilevel modeling in real scenarios: for
example, Al-Hilank et al. [AHJK+14] applied multilevel modeling in the context of
development process improvement in the automotive industry to model the mappings
between the concepts that describe the software development process and different quality
standards. In Al-Hilank’s work, multilevel modeling allowed to model the relations between
domain concepts at different levels of abstraction. Frank [Fra16] applied multilevel modeling
in the development of systems and models to support IT management, so the concepts of
the IT domain could be refined in successive levels. Similarly, Benner [Ben17] applied it to
model-based development of user interfaces. Benner’s proposal allows to model elements of
user interfaces in different levels of abstraction without using deep inheritance hierarchies.
Nesic and Nyberg [NN17] applied multilevel modeling to data integration in the context
of software product lines. In [RRD+18], multilevel modeling was applied by Rodriguez et
al. to the modeling of colored Petri nets. In [RDIR19], Rossi et al. presented a multilevel
modeling solution to the modeling of IoT applications for the detection of tourism flows,
so different aspects and concerns of the system’s architecture can be modeled at different
levels. All these works share a common motivation: the need to represent abstract concepts
in more than two metamodeling levels. Since the area of multilevel modeling is relatively
new, some of these works have also mentioned issues such as the lack of tools.

de Lara et al. present in [dLGC14] a research work focused on “When and how to
use multilevel modelling”. The authors mention that “unfortunately, there are scarce
applications of multilevel modeling in realistic scenarios [. . .]”. After analyzing a large set
of metamodels from different sources, they identified many domains in which a multilevel
approach could be more beneficial than a two-level approach, and they also identified a
set of patterns where multilevel modeling may bring advantages. Frank also pointed out
in [Fra16] that “only little attention has been paid to applying multilevel modeling to
particular domains”.

4.1.2 Applications of MDE to GIS
Although most GIS applications are based on a common set of standards, technologies,
and assets, they are usually developed “from scratch” with the help of these tools and
libraries. This results in low productivity, long time-to-market projects, and high costs,

4.2. Conceptualizing GIS with a Multilevel Modelling Approach 45

especially in the maintenance and evolution stages. However, it remains clear due to all the
exposed above that GIS is a more than adequate field to apply techniques of semi-automatic
software development.

Some previous works have applied elements of MDE to GIS development. Regarding
modeling and development, Lisboa-Filho et al. [LFSNdVB10, SNF10] proposed a UML
profile to support GIS-related concepts in UML conceptual models that was used in [SNF10]
to generate spatial database. That UML profile was also used in an MDA architecture
to generate the SQL DDL code for spatial databases [JFD+13]. Many GIS standards
from ISO, OGC, and INSPIRE include metamodels covering different parts of a GIS.
Kutzner [Kut16] addressed the model-driven transformation of geospatial data according
to different metamodels that can present differences between them.

In [CLP+17, CLPP17] we have already considered the application of automated software
development to the GIS domain and we proposed an architecture and a tool for this purpose
combining SPLE and MDE approaches. We analyzed the features of a generic family of
GIS products and the components implementing these features, we designed a feature
model [BSRC10b] to represent this set of features, and we defined a traditional two-level
metamodel to specify how the data model of the products of our family can be described.
Afterward, we implemented a tool supporting the automatic generation of GIS products
from these models. In [ACL+20], that metamodel was used to define a DSL for GIS
development.

Even though our tool and the metamodels it handles are very flexible and complete,
this design following the two-level modeling approach has some caveats. First, it forces
us to define all possible elements of a GIS in a single metamodel. This does not allow us
to reflect in the model common structures in this domain, such as defining entities that
refine other entities at higher levels of abstraction. Second, since GIS manage entities with
a spatial component in the real world, it is relatively common that some structures appear
repeatedly with some adaptations and particularities. Working with a two-level approach
does not easily allow us to take any advantage of this scenario. Defining those structures
in the metamodel would allow us to use them directly, but they would be difficult to adapt
to the particularities of a specific application.

As we will explain in section 4.2, these disadvantages can be addressed by applying
multilevel modeling. For example, let us assume we need to develop a GIS that allows a
city manager to handle the road networks, the public transportation networks, and also
the electricity, water, and telecommunication supply networks. As we will see in the next
section, all these networks share the same structure, although they may differ in specific
attributes of the network elements. Our proposal shows that applying a multilevel approach
allows us to metamodel, at an intermediate level, the most common GIS structures, but
allowing us to easily extend and adapt them, so we can use these structures to make simpler
models in the lower level.

4.2 Conceptualizing GIS with a Multilevel Mod-
elling Approach

We have identified four scenarios in which multilevel modeling provides a clear advantage
over the traditional two-level modeling approach. In each of the scenarios we describe

46 Chapter 4. Multilevel Modeling of Geographic Information Systems

how they are currently modeled in international standards from ISO, OGC, and the
EU INSPIRE Directive, then we present our proposal for modeling those scenarios with
multilevel modeling, and we end with a discussion of its advantages compared with a
two-level approach.

4.2.1 Multilevel notation and patterns
Before describing our proposal, we introduce the notation used in the multilevel models and
a set of recurring patterns that will be addressed during the discussion of our multilevel
proposals.

There is not a standard language for multilevel modeling yet. Lately, there has been
an attempt to identify the most common characteristics of the existing proposals, or the
requirements that these proposals target [Fra18]. Tooling support for creating multilevel
models is scarce, and the existing prototypes have certain limitations. Given that we have
to represent several large models, for convenience we decided to use a standard UML tool
to create them.

In this work, we express the multilevel models using the notation presented in [dLG10].
We show an example of the notation in fig. 4.1, inspired by examples from [dLGC14].
We use the symbol “@” to indicate the potency of the meta-classes or clabjects [AK02].
The potency of an element represents the number of meta-levels a property needs to be
instantiated before we get a plain instance and hence we have to assign it a value [AK02]. If
an element does not have an explicit potency indicated, it takes the potency of its container.
Each element, class, or relationship that instantiates a higher-level element is underlined,
and the instantiated element is indicated after the symbol “:”. For our explanations along
this section, we will use the concepts potency and classification level indistinctly, and when
we refer to a meta-level with a particular potency assigned we use also the symbol “@”
in the text (e.g., meta-level @5 means the level assigned potency 5, or the set of elements
with potency 5). As an example, we describe fig. 4.1, where we can see three meta-levels,
assigned to potency 2 to 0. In meta-level @2, or meta-level assigned potency 2, we have a
meta-class Product without any explicit potency. Therefore, it has potency @2, which is
the one assigned to the meta-level. Its attribute vat has potency 1. Therefore, it must be
assigned a value one meta-level below, when the meta-class Product is instantiated into
Publication and vat takes the value “4.0”. We can also see that the relationship published
by, with potency 1, is an instance of the relationship made by, with potency 2.

When designing meta-level models there are patterns that appear often, the same way
that in traditional two-level modeling there are a well known set of design and architectonic
patterns. An effort to identify and describe these patterns was done in [dLGC14], where
each pattern is shown with examples and compared to other two-level solutions. These
recurring patterns appear on situations where multilevel modeling is adequate, and therefore
we will identify them in the example models we present in this section. The patterns are
briefly described next, referring to elements shown in fig. 4.1 to illustrate them:

• Type-object pattern: modeling types and instances of these types dynamically (e.g.,
the meta-classes Publication or Book).

• Dynamic features pattern: adding a feature to a dynamic type, and to all the
instances of this new type (e.g., the attribute vat).

4.2. Conceptualizing GIS with a Multilevel Modelling Approach 47

@0@1@2

made by

Product

vat@1: double

price: double

Book: ProductNewspaper:
Product

GoF: Book

price= 35

pages= 349

Manufacturer

Editorial:
Manufacturer

published by: made by

Add. Wesley:
Editorial

:published by

*

*

authors Author

name: String :Author

name= "E. Gamma"

*

*
authors

Publication: Product

vat= 4.0

price: double

pages: int

Figure 4.1: Example models showing the notation used for multilevel
modeling and common multilevel modeling patterns. Inspired by examples
from [dLGC14].

• Dynamic auxiliary domain concepts pattern: adding domain related entities that
have relationships with existing dynamic types (e.g., the meta-class Author and the
relationship authors).

• Relation configurator pattern: allowing the configuration of a relationship (e.g., the
relationship published by).

• Element classification pattern: dynamically create hierarchies of elements, allocating
the features that are inherited by the child types (e.g., the hierarchy descending from
the abstract meta-class Publication).

Finally, the classes that define geographic data types in the international standards are
used as UML data types in the models (e.g., 4.3). Just like we can use String or Integer as
the class of an attribute, we use geographic data types such as Geometry or Point. It may
seem that if a class includes an attribute of a geographic type, this should be modeled as a
relationship between the class and the class that represents the geographic type. However,
we decided not to represent such relationships in that way for three reasons: 1) ISO/OGC
UML models consider geographic classes as data types, even though they do not use the
stereotype dataType; 2) in the logical and physical levels of a GIS, a geographic class works
as a data type: it is not implemented using an association between objects in Java, but as
a data type, and it is not represented using a foreign key to a table of geographic values
in the database, but in the same row of the database; 3) the geographic attribute of the
SpatialEntity meta-class is used and redefined in many other models, so if we represent it
as a relationship it would worsen the legibility of these models.

4.2.2 Bridging the gap between conceptual and implementa-
tion standards in GIS

4.2.2.1 Overview
In recent years, there has been a great effort of standardization in the field of GIS.
Two international organizations (ISO/TC 211 and OGC) have defined around a hundred
standards for GIS that cover a multitude of aspects (e.g., conceptual models, logical
models, physical models, web services). ISO/TC 211, being an organization composed

48 Chapter 4. Multilevel Modeling of Geographic Information Systems

of the standardization agencies of the member countries, has focused on the definition of
conceptual standards aimed at providing solutions for general problems. On the other
hand, OGC, being an organization composed of companies in the GIS sector, has focused
on the definition of implementation standards aimed at solving problems of interoperability
between tools and datasets. This has created a gap between the two sets of standards.
Although the two sets of standards are focused on the same sector, they are not formally
connected and they just have textual references between them. Multilevel modeling would
allow to build a bridge between both sets of standards and have a more consistent and
reusable domain description.

Consider as an example the standards that define a model for describing the spatial
characteristics of geographic entities using vector geometries. The ISO standard ISO
19107: Geographic Information - Spatial Schema [Inta] defines primitive data types such as
GM_Point, GM_Curve, and GM_Surface, aggregate data types such as GM_MultiPoint,
GM_MultiCurve, and GM_MultiSurface, as well as many other data types. The data
types are structured in a hierarchy that allows application schemas to use data types from
the higher levels of the hierarchy to represent spatial entities whose spatial component
can be of any of the data types. The schema described in ISO 19107 is conceptual, and
it provides no implementation details. OGC Simple Feature Access (OGC SFA) [Thea],
which is also an ISO standard (ISO 19125 [Intc]), offers the most popular implementation
of ISO 19107, describing a common architecture for simple feature geometry. In practice,
most GIS data models use the spatial data types from OGC SFA, like Point, LineString,
or Polygon (some data types from OGC SFA match the names of ISO 19107 without the
namespace prefix). Even though ISO and OGC have worked together on the definition of
the standards (in fact, OGC SFA is also an ISO standard, ISO 19125 [Intc]), the connection
between the standards is limited to an informative annex in ISO 19125 that “identifies
similarities and differences” with textual descriptions without formal models (e.g., Annex
A ISO 19125 [Intc] states that “MultiPoint in SFA-CA corresponds to GM_MultiPoint in
Spatial Schema” but it does not provide a UML model).

4.2.2.2 Multilevel modeling solution
Figure 4.2 shows an excerpt of the metamodels that bridge the gap between the ISO
conceptual model and the OGC implementation model. The complete models are included
in appendix B (fig. B.1 and fig. B.2). The left part of the figure shows part of the model
for meta-level @6 that corresponds to the ISO GM_Point data type (a geographic point).
The right part shows part of the model for the metal-level @5 that corresponds to the
OGC Point data type. The OGC data types defined in meta-level @5 instantiate the
data types defined by ISO at meta-level @6. We have also defined a class in meta-level
@6 (SpatialEntity) that we use in the following models (section 4.2.3, section 4.2.4, and
section 4.2.5) to describe geographic attributes without specifying the specific type of
geographic object until the application schema.

4.2.2.3 Discussion
If the ISO and OGC standards were defined following a multilevel approach, the connection
between the models would be explicit and based on a model, rather than implicit and based
on a textual explanation. New implementation standards based on the ISO conceptual

4.2. Conceptualizing GIS with a Multilevel Modelling Approach 49

@6
GM_Object

GM_Primitive

GM_Point

SpatialEntity

geometry: GM_Object

@5

Geometry:
GM_Object

Point: GM_Point

Figure 4.2: Excerpt from the multilevel solution to bridge the ISO
conceptual model and the OGC implementation model. Figure B.1 and
Figure B.2 in appendix B show the extended models

GM_Object

GM_Primitive

GM_Point

Geometry

Point

SpatialEntity

geometry: GM_Object

Figure 4.3: Two-level solution to bridge the ISO conceptual model and the
OGC implementation model

standard could be defined (e.g., an implementation model that used Bézier curves instead of
line segments in the definition of geometries). These new standards would remain connected
with the ISO conceptual model, which would allow applying MDE techniques to all ISO
and OGC standards (e.g., using model transformation techniques to convert data between
the models).

Furthermore, defining a SpatialEntity class at meta-level @6 would allow the decision of
the specific data type of an attribute to be deferred until the definition of the application
data model. This would allow intermediate models (such as those defined by INSPIRE, see
section 4.2.3, section 4.2.4, and section 4.2.5) to be independent of the implementation,
and hence allowing developers to design applications without selecting the implementation
technology.

Figure 4.3 shows a two-level model similar to the one presented in fig. 4.2. The connection
between ISO 19107 and OGC-SFA datatypes has to be made through inheritance, which
would reduce the readability of the model. Furthermore, multiple inheritances would
cause difficulties in languages that do not support it, in addition to all the traditional
difficulties of multiple inheritance in object-oriented programming languages. Furthermore,
the SpatialEntity class would have to be associated with GM_Object, and although a

50 Chapter 4. Multilevel Modeling of Geographic Information Systems

particular application might use a subclass of GM_Object, it cannot be explicitly reflected
in the application schema.

Regarding the complexity of the models, the number of classes in the multilevel models
and the 2-level models is the same because the goal is to replicate the same set of data
types. However, the number of associations is much lower because in the multilevel models
we instantiate the ISO conceptual model data types into OGC conceptual model data types
instead of using inheritance relationships. In particular, we avoid 8 inheritances. There are
6 other inheritances that would be avoided, but they are not shown in our models because
we have not included the complete ISO 19107 model because it is a 239 page document in
which a large number of data types are defined. As an example, GM_Curve is the root of
a hierarchy of specialization that includes 17 children classes. The classes LineString, Line
and LinearRing from the OGC-SFA model would inherit from some of these classes.

4.2.3 Ensuring interoperability in spatial data infrastruc-
tures

4.2.3.1 Overview
The European Parliament and the Council of The European Union approved on 2007 the
Directive 2007/2/EC establishing an Infrastructure for Spatial Information in the European
Community (INSPIRE), to create “a European Union spatial data infrastructure for the
purposes of EU environmental policies or activities which may have an impact on the
environment”. This directive is a promising initiative in the management of spatial data in
different countries regarding the interoperability and sharing of data.

One of the main parts of INSPIRE is the technical guidelines (called data specifications5)
that specify common data models to achieve interoperability of spatial data sets and services
across Europe. fig. 4.4 describes the organization of these data specifications. The bottom
layer of fig. 4.4 contains the 34 data specifications that provide UML application schema
for the themes of interest for public administrations regarding resource management and
information needed to monitor and define environmental policies. Some example data
specifications are Administrative Units, Transport Network, or Production and Industrial
Facilities. The middle layer of fig. 4.4 contains the UML application schema defined by
INSPIRE that are reused across the 34 data specifications. As an example, INSPIRE defines
a generic application schema for Networks that provides basic types that are extended in
other data specifications such as the data specification for transport networks (it covers
road networks and rail networks among others), or the data specification for Utility and
Governmental Services (it covers water networks and electrical networks, among others).
The top layer of fig. 4.4 contains UML application schema defined by third parties that
are used by INSPIRE data specifications. For example, it contains the ISO standard ISO
19107: Geographic Information - Spatial Schema [Inta].

Considering the characteristics of INSPIRE we have mentioned, this is a clear example
of a problem where multilevel modeling is well-suited. One of the drawbacks of INSPIRE
is its complexity. Across the 34 technical guidelines, we can find many elements that share
a set of common attributes and relationships. Sometimes these common elements are
not reflected in the technical guidelines, which can lead to repeating the same structures

5https://inspire.ec.europa.eu/data-specifications/2892

https://inspire.ec.europa.eu/data-specifications/2892

4.2. Conceptualizing GIS with a Multilevel Modelling Approach 51

Import

Import

foundation schemas

ISO19107 ISO19123 OGC Sensor Web Enablement Other models

generic conceptual model

INSPIRE Base Types Activity Complex Network Other models

INSPIRE application schemas

Administrative Units Transport Networks Production Facilities Other models

Figure 4.4: Overview of the INSPIRE Data Specifications. The top layer are
ISO/OGC international standards, the middle layer are INSPIRE common
models, the bottom layer contains the 34 INSPIRE data specifications.

and patterns in different domains. In other cases, those commonalities are identified and
considered in the technical guidelines, but through complex and deep inheritance hierarchies
that can be difficult to specialize and adapt to the particularities of a specific country.

Consider as an example the application domain of territory administration. Its main
responsibility is representing the boundaries of spaces and territories, both rural and
urban. Typically, the administration of the territory divides the geographic space into
administrative units, that can be composed of other administrative units, and so on. For
example, Spain is divided into 17 autonomous communities and 2 autonomous cities. Each
autonomous community is further divided into provinces that are divided into municipalities.
Autonomous cities are not divided into provinces and they contain a single municipality.
On the other hand, Portugal is divided into 18 districts and 2 autonomous regions, both
are divided into municipalities, which are themselves divided into parishes. Hence, each
country has its own structure for its territory, with its own names, levels and restrictions.

To support all this variability, INSPIRE has defined a generic model6 that can be
applied to all of them, independently of their particularities, shown in fig. 4.5.

The class called AdministrativeUnit represents any part of the territory, from a whole
country to a small village. The administrative hierarchy level is stored with a generic
enumerated, where values go from 1stOrder (country) to 6thOrder (smallest administrative
level of a country). Other attributes are the name (or names), the INSPIRE identification

6INSPIRE Data Specification on Administrative Units – Technical Guidelines: https://inspire.
ec.europa.eu/Themes/114/2892

https://inspire.ec.europa.eu/Themes/114/2892
https://inspire.ec.europa.eu/Themes/114/2892

52 Chapter 4. Multilevel Modeling of Geographic Information Systems

+ boundary
<<voidable>>

1..* 1..*+ admUnit
<<voidable>>

<<featuretype>>
AdministrativeBoundary

+ country: CountryCode

+ geometry: GM_Curve

+ inspireId: Identifier

+ nationalLevel: AdministrativeHierarchyLevel [1..6]
<<voidable, lifeCycleInfo>>

+ beginLifespanVersion: DateTime

+ endLifespanVersion: DateTime [0..1]

<<voidable>>

+ legalStatus: LegalStatusValue = "agreed"

+ technicalStatus: TechnicalStatusValue = "edge-matched"

+ admUnit
<<voidable>>

1..*

+ condominium
<<voidable>> 0..*

<<featuretype>>
AdministrativeUnit

+ country: CountryCode

+ geometry: GM_MultiSurface

+ inspireId: Identifier

+ name: GeographicalName [1..*]

+ nationalCode: CharacterString

+ nationalLevel: AdministrativeHierarchyLevel
<<voidable, lifeCycleInfo>>

+ beginLifespanVersion: DateTime

+ endLifespanVersion: DateTime [0..1]

<<voidable>>

+ nationalLevelName: LocalisedCharacterString [1..*]

+ residenceOfAuthority: ResidenceOfAuthority [1..*]

+ coAdminister
<<voidable>> 0..* 0..*

+ administeredBy
<<voidable>>

+ upperLevelUnit
<<voidable>>

0..10..* + lowerLevelUnit
<<voidable>>

<<featuretype>>
Condominium

+ geometry: GM_MultiSurface

+ inspireId: Identifier
<<voidable, lifeCycleInfo>>

+ beginLifespanVersion: DateTime

+ endLifespanVersion: DateTime [0..1]

<<voidable>>

+ name: GeographicalName [0..*]

<<dataType>>
ResidenceOfAuthority

+ name: GeographicalName
<<voidable>>

+ geometry: GM_Point

<<enumeration>>
TechnicalStatusValue

edgeMatched
notEdgeMatched

<<enumeration>>
LegalStatusValue

agreed
notAgreed

<<codeList>>
AdministrativeHierarchyLevel

+ 1stOrder

+ 2ndOrder

+ 3rdOrder

+ 4thOrder

+ 5thOrder

+ 6thOrder

Figure 4.5: INSPIRE Administrative Units Overview, from
https://inspire.ec.europa.eu/data-model/approved/r4618-ir/
html/index.htm?goto=2:1:2:1:7106

https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:1:2:1:7106
https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:1:2:1:7106

4.2. Conceptualizing GIS with a Multilevel Modelling Approach 53

@2

<<voidable>>
+residenceOfAuthority

1..*1..*

AdministrativeUnit: SpatialEntity

countryCode@1: CountryCode

geometry: GM_MultiSurface

inspireId: Identifier

name: GeographicalName [1..*]

nationalCode: CharacterString

nationalLevel@1: AdministrativeHierarchyLevel

<<voidable, lifeCycleInfo>>

beginLifespanVersion: DateTime

endLifespanVersion: DateTime [0..1]

<<voidable>>

nationalLevelName@1: LocalisedCharacterString [1..*]

parent

0..1

upperLevelUnit

0..*

lowerLevelUnit

ResidenceOfAuthority:
SpatialEntity

name: GeographicalName

<<voidable>>

geometry: GM_Point

<<codelist>>
AdministrativeHierarchyLevel

1stOrder

2ndOrder

3rdOrder

4thOrder

5thOrder

6thOrder

Figure 4.6: Modeling multilevel Territory Administration - Meta-level @2

(a unique identifier within all Europe), and the geometry representing the surface of the
territory. This class also stores information about the country to which it belongs, and
an identifier within this country. Finally, there are some optional attributes to represent
the version of each instance of the class, to store the residence of authority (usually, a
capital city), or the name of the administration level of the instance within the country
(for example, in Spain the administrative units of 3rd level are called Provincias). The
ResidenceOfAuthority has its own representation, which is very simple, just the name of the
place and its geometry. Each administrative unit can aggregate a series of administrative
units of a lower level. For example, a country and the regions of this country are related,
being the former the upperLevelUnit and the latter the lowerLevelUnit of the relationship
we can see in fig. 4.5.

Given that the INSPIRE data specifications are abstract, each member country of the
European Union is expected to adapt them to their particularities. Even though the model
in fig. 4.5 can be used to represent the hierarchical division of the territory of a country, it
has some drawbacks. First, the semantics of the administrative division of a country are
missing. For instance, it is possible that objects from an upper level (e.g., an autonomous
community in Spain, a 2nd order division) aggregate objects from the wrong lower level
(e.g., municipalities in Spain, a 4th order division). Second, a member country may require
that objects from each level of the administrative division have additional attributes. For
example, autonomous communities and municipalities in Spain have specific legislation but
provinces do not. Hence, the classes for the 2nd and 4th level in Spain require attributes
describing the legislation but the class for the 3rd level does not require the attribute.

4.2.3.2 Multilevel modeling solution

In order to solve these drawbacks, we use multilevel modeling. We define a meta-level @2
in fig. 4.6 that is similar to the one defined by INSPIRE. This meta-level @2 model can be
instantiated in each member country in such a way that it describes the semantics of its

54 Chapter 4. Multilevel Modeling of Geographic Information Systems

1..* communities: lowerLevelUnit

1

country: upperLevelUnit

1..*

autonomousCities: lowerLevelUnit

1

country: upperLevelUnit

capitals: residenceOfAuthority
1..* 1..*

capital: residenceOfAuthority 1

1..*

PopulatedPlace: ResidenceOfAuthority

name: GeographicalName

geometry: GM_Point

population: Integer

populationReferenceDate: LocalDate

nationalCode: CharacterString

^AdministrativeUnit^
AutonomousCommunity

countryCode = "ESP"

geometry: GM_MultiSurface

inspireId: Identifier

name: GeographicalName [1..*]

nationalCode: CharacterString

nationalLevel = "2ndOrder"

nationalLevelName = ["Comunidad Autónoma"]

^AdministrativeUnit^
AutonomousCity

countryCode = "ESP"

geometry: GM_MultiSurface

inspireId: Identifier

name: GeographicalName [1..*]

nationalCode: CharacterString

nationalLevel = "2ndOrder"

nationalLevelName = ["Ciudad Autónoma"]

Country: AdministrativeUnit

countryCode = "ESP"

geometry: GM_MultiSurface

inspireId: Identifier

name: GeographicalName [1..*]

nationalCode: CharacterString

nationalLevel = "1stOrder"

nationalLevelName = ["Estado"]

@1

1..* communities: lowerLevelUnit

1

country: upperLevelUnit

1..*

provinces: lowerLevelUnit

community: upperLevelUnit

1

1..*municipalities: lowerLevelUnit

province: upperLevelUnit0..1

1..*

autonomousCities: lowerLevelUnit

1 country: upperLevelUnit

municipalities:
lowerLevelUnit

0..1

city: upperLevelUnit

1..1

ca
pi

ta
l:

re
si

de
nc

eO
fA

ut
ho

rit
y

1

capital: residenceOfAuthority

1

1..*

capital: residenceOfAuthority

1..*
1

capitals: residenceOfAuthority

1..*

1..*

capital: residenceOfAuthority 1

1..*

PopulatedPlace: ResidenceOfAuthority

name: GeographicalName

geometry: GM_Point

population: Integer

populationReferenceDate: LocalDate

nationalCode: CharacterString

AutonomousCommunity: AdministrativeUnit

countryCode = "ESP"

geometry: GM_MultiSurface

inspireId: Identifier

name: GeographicalName [1..*]

nationalCode: CharacterString

nationalLevel = "2ndOrder"

nationalLevelName = ["Comunidad Autónoma"]

Province: AdministrativeUnit

countryCode = "ESP"

geometry: GM_MultiSurface

inspireId: Identifier

name: GeographicalName [1..*]

nationalCode: CharacterString

nationalLevel = "3rdOrder"

nationalLevelName = ["Provincia"]

Municipality: AdministrativeUnit

countryCode = "ESP"

geometry: GM_MultiSurface

inspireId: Identifier

name: GeographicalName [1..*]

nationalCode: CharacterString

nationalLevel = "4thOrder"

nationalLevelName = ["Municipio"]

AutonomousCity: AdministrativeUnit

countryCode = "ESP"

geometry: GM_MultiSurface

inspireId: Identifier

name: GeographicalName [1..*]

nationalCode: CharacterString

nationalLevel = "2ndOrder"

nationalLevelName = ["Ciudad Autónoma"]

Country: AdministrativeUnit

countryCode = "ESP"

geometry: GM_MultiSurface

inspireId: Identifier

name: GeographicalName [1..*]

nationalCode: CharacterString

nationalLevel = "1stOrder"

nationalLevelName = ["Estado"]

Figure 4.7: Modeling multilevel Territory Administration - Meta-level @1
for Spain

administrative division.
In figs. 4.7 and 4.8 we show the model for the meta-level @1 of two particular countries:

Spain and Portugal. Being both territorial structures very similar, there are certain
particularities in the administration of these countries that are specified in these levels.
Spain (fig. 4.7) is composed by AutonomousCommunities, that are composed by Provinces,
and these ones by Municipalities. There are also AutonomousCities, composed each one by
a single Municipality. Regarding the residence of authority linked to the administrative
units, all have exactly one PopulatedPlace (that represents a city or village) as capital,
except in the case of AutonomousCommunities because some of them can have more than
one capital (e.g., the capital of the Canary Islands is shared by Santa Cruz de Tenerife and
Las Palmas de Gran Canaria).

The territorial division of Portugal (fig. 4.8) is a bit different. The first level of
the administrative division (2nd order from the EU point of view) consists of Districts
and Autonomous Regions (i.e. Azores and Madeira). Both of them are composed by
Municipalities, which are themselves composed by Parishes.

The particularities of each country are explicit in the meta-level @1 metamodels by
redefining the relationships between administrative units and residences of authority.
Of course, any extra attribute required for modeling the administrative divisions of
these countries could be added at this level (e.g., we have added a few attributes to
PopulatedPlace), and many attributes are instantiated at this level, such as countryCode or

4.2. Conceptualizing GIS with a Multilevel Modelling Approach 55

@1

1..* districts: lowerLevelUnit

country: upperLevelUnit1

municipalities: lowerLevelUnit

district: upperLevelUnit1

1..*

1..*
parishes: lowerLevelUnit

municipality: upperLevelUnit

0..1

1..*

au
to

no
m

ou
sR

eg
io

ns
: l

ow
er

Le
ve

lU
ni

t

1

country: upperLevelUnit

1..*

0..1

region: upperLevelUnit

ca
pi

ta
l:

re
si

de
nc

eO
fA

ut
ho

rit
y

1

1..*

1..*

1

ca
pi

ta
l:

re
si

de
nc

eO
fA

ut
ho

rit
y

1..*

capital: residenceOfAuthority

1

1..* capital: residenceOfAuthority

1

District: AdministrativeUnit

countryCode = "PRT"

geometry: GM_MultiSurface

inspireId: Identifier

name: GeographicalName [1..*]

nationalCode: CharacterString

nationalLevel = "2ndOrder"

nationalLevelName = ["Distrito"]

Parish: AdministrativeUnit

countryCode = "PRT"

geometry: GM_MultiSurface

inspireId: Identifier

name: GeographicalName [1..*]

nationalCode: CharacterString

nationalLevel = "4thOrder"

nationalLevelName = ["Freguesía"]

PopulatedPlace:
ResidenceOfAuthority

name: GeographicalName

geometry: GM_Point

Country: AdministrativeUnit

countryCode = "PRT"

geometry: GM_MultiSurface

inspireId: Identifier

name: GeographicalName [1..*]

nationalCode: CharacterString

nationalLevel = "1stOrder"

nationalLevelName = ["Estado"]

AutonomousRegion: AdministrativeUnit

countryCode = "PRT"

geometry: GM_MultiSurface

inspireId: Identifier

name: GeographicalName [1..*]

nationalCode: CharacterString

nationalLevel = "2ndOrder"

nationalLevelName = ["Região Autónoma"]

Municipality: AdministrativeUnit

countryCode = "PRT"

geometry: GM_MultiSurface

inspireId: Identifier

name: GeographicalName [1..*]

nationalCode: CharacterString

nationalLevel = "3rdOrder"

nationalLevelName = ["Concelho"]

municipalities: lowerLevelUnit

1..*

capital: residenceOfAuthority

1

Figure 4.8: Modeling multilevel Territory Administration - Meta-level @1
for Portugal

56 Chapter 4. Multilevel Modeling of Geographic Information Systems

@0

spain: Country

geometry = <GM_MultiSurface for Spain>

inspireId = "ES.IGN.SIGLIM.34000000000"

name = ["España"]

nationalCode = 34000000000

:country :country

asturias_community: AutonomousCommunity

geometry = <GM_MultiSurface for Asturias>

inspireId = "ES.IGN.SIGLIM34030000000"

name = ["Principado de Asturias"]

nationalCode = 34030000000

galicia: AutonomousCommunity

geometry = <GM_MultiSurface for Galicia>

inspireId = "ES.IGN.SIGLIM34120000000"

name = ["Galicia"]

nationalCode = 34120000000

:community:community

coruña_province: Province

geometry = <GM_MultiSurface for Coruña>

inspireId = "ES.IGN.SIGLIM34121500000"

name = ["A Coruña", "Coruña"]

nationalCode = 34121500000

lugo_province: Province

geometry = <GM_MultiSurface for Lugo>

inspireId = "ES.IGN.SIGLIM34122700000"

name = ["Lugo"]

nationalCode = 34122700000

:capital :capital

:province

:capital

santiago_municipality: Municipality

geometry = <GM_MultiSurface for Santiago>

inspireId = "ES.IGN.SIGLIM34121515078"

name = ["Santiago de Compostela"]

nationalCode = 34121515078

santiago_place: PopulatedPlace

name = "Santiago de Compostela"

geometry = <GM_Point for Santiago>

population = 80274

populationReferenceDate = 2018-31-12

nationalCode = 15078000101

coruña_place: PopulatedPlace

name = "A Coruña"

geometry = <GM_Point for A Coruña>

population = 213081

populationReferenceDate = 2018-31-12

nationalCode = 15030000101

asturias_province: Province

geometry = <GM_MultiSurface for Asturias>

inspireId = "ES.IGN.SIGLIM34033300000"

name = ["Asturias"]

nationalCode = 34033300000

:community

coruña_municipality: Municipality

geometry = <GM_MultiSurface for Coruña>

inspireId = "ES.IGN.SIGLIM34121515030"

name = ["A Coruña", "Coruña"]

nationalCode = 34121515030

:capital

:province

Figure 4.9: Modeling multilevel Territory Administration - Example of
Level 0 for Spain

4.2. Conceptualizing GIS with a Multilevel Modelling Approach 57

nationalLevelName, simplifying meta-level @0 models. In fig. 4.9 there is an example of
the meta-level @0 model of an application based on the metamodel for Spain.

4.2.3.3 Discussion
The main advantage of applying multilevel modeling in this scenario is that the model
of meta-level @2 can be instantiated in such a way that it can capture the semantics of
each member country. Hence, the application schema of each member country forbids that
objects from an upper level (e.g., an autonomous community in Spain, a 2nd order division)
aggregate objects from the wrong lower level (e.g., municipalities in Spain, a 4th order
division). The same goal could have been achieved in a traditional two-level approach using
inheritance, but it would require a complex inheritance hierarchy and the redefinition of the
association between administrative units defined in the INSPIRE data specification. This
solution would be less reusable and flexible than the multilevel solution that we propose.

Another advantage is that member countries may now easily add additional attributes
to specific levels of the administrative division modifying the meta-level @1 as desired.
Again, the same goal could have been achieved using an inheritance hierarchy, but the
resulting model would not be as clear.

Finally, the advantages described in section 4.2.2.3 also apply in this scenario. First,
the models of the member countries would be explicitly and formally connected, and hence
data transformation techniques could be used to achieve interoperability of the applications.
Second, using the SpatialEntity class from meta-level @6 would make INSPIRE Data
Specifications independent of the implementation and it would still be easy to select a data
type from the implementation model in the application schema.

In the example models described we can find several common patterns of multilevel
modeling (see section 4.2.1):

• Type-object pattern: e.g., AdministrativeUnit is instantiated into different types in
lower meta-levels, such as Country or Municipality (see fig. 4.7).

• Dynamic features pattern: e.g., the attributes included in meta-classes of the meta-
level @1, such as population or nationalCode in PopulatedPlace (see fig. 4.7). Also,
almost every instance of SpatialEntity in all the examples include new attributes,
since the meta-class SpatialEntity is very generic. For example, inspireId, name or
countryCode in AdministrativeUnit of the meta-level @2 (see fig. 4.6).

• Relation configurator pattern: both the relationships parent and residenceOfAuthority
defined in the meta-level @2 (see fig. 4.6) are configured or redefined in the meta-level
@1, changing the cardinality and the end classes in every case. For example, in the
case of the association between Province and AutonomousCommunity (see fig. 4.7).

Regarding the complexity of the models, the number of classes is the same in the
INSPIRE models and in our proposal. However, the INSPIRE models would require many
inheritance associations (i.e., one for each administrative division of each member country)
that are represented as instantiations in our models. Furthermore, the INSPIRE models
would not easily represent the semantics of the administrative divisions of each member
country because UML does not provide simple notation to specify that an association is
specialized in a inheritance hierarchy (i.e., constraints must be used).

As a conclusion, the solution based on multilevel modeling is more expressive, flexible
and simple. It also ensures interoperability between member countries because it ensures

58 Chapter 4. Multilevel Modeling of Geographic Information Systems

that the model of each country remains formally connected to the INSPIRE model while
allowing the addition of country-specific semantics.

4.2.4 Modeling common GIS structures
4.2.4.1 Overview
Spatial networks are one of the most common data model structures in GIS. Many domains
require modeling and processing different types of networks. Two of the most common
domains are transport networks, such as those representing roads, railways, or flight routes,
and resource distribution networks, such as electricity supply, telecommunications, or water
supply networks.

From the most abstract point of view, a network is composed of nodes and edges. When
a GIS is used to model networks, both nodes and edges of a spatial network are spatial
entities because they represent real-world geographic features. Each node has a location,
which is usually a point in the space (a GM_Point geometry). The edges of the network
are defined by the two nodes they connect. If the edge is directed, one node plays the
role of the source, and the other plays the role of the target. In most cases, edges are
defined in the space by a line or curve (a GM_Curve geometry). Even though the data
model for spatial networks is clearly understood (it was already defined in [G9̈4]), each
GIS application schema has to redefine the same classes for networks composed of edges
and nodes instead of referencing the spatial network definition as a common structure.

The idea of reusing the model that defines spatial networks was applied by the designers
of the INSPIRE data specifications. Given that spatial networks are required by three
data specifications in INSPIRE (namely, transport networks, hydrography, and utility and
government services), they have defined a generic network model as part of its base models7.
Then, each data specification extends the classes in the Generic Network Model to define a
common set of base classes for transport networks8, hidrography9, and utility networks10.
Finally, each data specification defines classes for specific network types extending the classes
of the common model (e.g., the specification for transport networks defines classes for road
railway, air, water, and cable transport networks, and the specification for utility networks
defines classes for electricity, oil-gas-chemicals, water, sewer, and thermal networks). The
result is a set of quite complex models with a very deep inheritance hierarchy that makes
the model quite difficult to understand.

4.2.4.2 Multilevel modeling solution
Figure 5.2 shows a simple example of a multilevel solution for modeling networks with
four levels. The upper level (not shown) consists of the meta-level @6 of spatial entities

7INSPIRE Data Specifications – Base Models – Generic Network Model: https:
//inspire.ec.europa.eu/documents/inspire-data-specifications-%E2%80%93-base-models-%
E2%80%93-generic-network-model

8INSPIRE Data Specification on Transport Networks – Technical Guidelines: https://inspire.
ec.europa.eu/Themes/115/2892

9INSPIRE Data Specification on Hidrography – Technical Guidelines: https://inspire.ec.
europa.eu/Themes/116/2892

10INSPIRE Data Specification on Utility and Government Services – Technical Guidelines:
https://inspire.ec.europa.eu/Themes/136/2892

https://inspire.ec.europa.eu/documents/inspire-data-specifications-%E2%80%93-base-models-%E2%80%93-generic-network-model
https://inspire.ec.europa.eu/documents/inspire-data-specifications-%E2%80%93-base-models-%E2%80%93-generic-network-model
https://inspire.ec.europa.eu/documents/inspire-data-specifications-%E2%80%93-base-models-%E2%80%93-generic-network-model
https://inspire.ec.europa.eu/Themes/115/2892
https://inspire.ec.europa.eu/Themes/115/2892
https://inspire.ec.europa.eu/Themes/116/2892
https://inspire.ec.europa.eu/Themes/116/2892
https://inspire.ec.europa.eu/Themes/136/2892

4.2. Conceptualizing GIS with a Multilevel Modelling Approach 59

@1

@2

@3

*
enSource: sourceElectricalEdge: Edge

geometry: GM_Curve

safetyDistance@1: Integer

voltage@1: {LO,ME,HI}

*
enNodes: nodes

ElectricalNetwork: Network

id: Long

description: String

maxPower@1: Integer

*
enTarget: target

*
enEdges: edges

*
sourceEdge: SpatialEntity

geometry: GM_Curve

Node: SpatialEntity

id: Long

description: String

geometry: GM_Point

*
nodes

Network

id: Long

description: String

*
target*

edges

Substation: ElectricalNode

id: Long

description: String

geometry: GM_Point

voltageIn = 66 kV

voltageOut = 33 kV

model: String

producer: String

ElectricalNode: Node

id: Long

description: String

geometry: GM_Point

voltageIn@1: Integer

voltageOut@1: Integer

model: String

producer: String

TransformationCenter:
ElectricalNode

id: Long

description: String

geometry: GM_Point

voltageIn = 33 kV

voltageOut = 15 kV

model: String

producer: String

Figure 4.10: Modeling multilevel Spatial Networks - A simple example

60 Chapter 4. Multilevel Modeling of Geographic Information Systems

@2

@4

@6

@3

@2

Spatial Entities

Spatial Networks

Transport Networks Utility Networks

Road Networks Railway Networks Electricity Networks Water Networks

Instantiates Instantiates Instantiates Instantiates

InstantiatesInstantiates

Instantiates

Figure 4.11: Modeling multilevel Spatial Networks - Overview

defined in fig. 4.2. The meta-level @3 is used to model the generic structure for a network,
independently of the nature of either the nodes or edges. Nodes are spatial entities for
which the geometry is a point. Besides, all nodes must have an identifier and a description.
Edges are spatial entities too, but their geometry is a line. In addition, edges have two
associated nodes (source and target). All these attributes are instantiated in meta-level @0.

The meta-level @2 shows the model of a specific type of network, an Electricity Supply
Network. As we can see in the figure, the edges need to store data regarding the voltage
they transport (which can be low, medium, or high) and the safety distance they must keep
to buildings or trees. For each node, we must know the input and output voltages (which
can be different, as it happens in the case of transformation centers). Other attributes to
store for each electric node can be the model or the producer.

The design we have presented is extended in the next level, in which we define specific
classes for specific types of nodes of the network that instantiate some of the attributes. For
example, we define a TransformationCenter which is a special type of node that transforms
medium-voltage electricity into low-voltage electricity, and a class ElectricalSubstation,
which transforms high-voltage electricity into medium-voltage electricity. In this case, these
classes instantiate the attributes voltageIn and voltageOut, since it is not necessary to do it
in the meta-level @0.

Figure 4.11 shows the overview of our multilevel modeling approach to the INSPIRE
models. The topmost level (i.e. meta-level @6) is the level of ISO 19107 and the class
SpatialEntity described in section 4.2.2. The meta-level @4 corresponds to the generic
network model defined by INSPIRE. The meta-level @3 corresponds to the common data
models defined in INSPIRE for transport networks and utility networks. Finally, the meta-
level @2 corresponds to the data models defined by INSPIRE for road and railway networks
in the data specification for transport networks, and electricity and water networks in the

4.2. Conceptualizing GIS with a Multilevel Modelling Approach 61

data specification for utility networks. The INSPIRE data specifications include additional
data models for networks that we have not included here for the sake of clarity (e.g., water
transport networks, or sewer networks). The meta-level @1 is also left undefined in this
paper because it should be defined by each member country with its specific requirements.

Figure 4.12 shows the meta-level @4 of our multilevel metamodel for modeling spatial
networks that replicates the INSPIRE Generic Network Model11. A Network is composed by
NetworkElements, which can be Nodes and Links (edges), both of them being SpatialEntities
with geometries. A NetworkElement can also be a set of Links (to represent collections of
related edges) or a sequence of Links (to represent ordered collections of related edges).
NetworkProperty can be used to reference a collection of NetworkElements to apply properties
to sections of the network. The reference can be applied to the whole NetworkElement or a
part of it using a point and an offset, or using an offset and a length (i.e., the traditional
concept of linear referencing in GIS). This is a design that allows, for example, to specify
in a road network that the maximum speed for the first half of a road link is different than
the one for the second half).

Figure B.4 (in appendix B) shows the meta-level @3 model corresponding to the
INSPIRE model for transport networks12 (see fig. B.3 in appendix B), adapted to multilevel
approach. As we can see, it redefines some meta-classes from the previous metamodel
(fig. 4.12), adding the specific elements of the transport networks such as the typeOfTransport,
an attribute that defines the network nature that is instantiated in the next meta-level
(@2), or the properties MaintenanceAuthority, TrafficFlowDirection and OwnerAuthority.

The INSPIRE specifications define a more specific model for each kind of transport
network (see figs. B.5 and B.7 in appendix B). We have represented them as the metamodels
of the meta-level @2, shown in figs. B.6 and B.8 (in appendix B). These models instantiate
meta-classes of meta-level @3 as concrete meta-classes of level @2 (e.g., a Road class, a
ERoad class, or a RailwayLine as an instance of TransportLinkSet). They also add new
attributes when necessary (e.g., the European route number of an ERoad or the railway
line code of a RailwayLine).

We have followed a similar approach for the case of utility networks13 (see fig. B.9 in
appendix B). The model at meta-level @3 (fig. B.10, in appendix B) defines the common set
of classes used in INSPIRE for utility networks, namely an UtilityLinkSet as an instantiation
of a LinkSet of the meta-level @4, and classes to represent cables, pipes and ducts as
specializations of an UtilityLinkSet. The model at meta-level @3 also defines a class to
represent appurtenances of the utility network as an instance of the a Node from meta-level
@4. Then, the model at meta-level @3 for water networks (fig. B.12, which replicates the
INSPIRE data specification of fig. B.11, both in appendix B) instantiates the classes from
meta-level @2 adding additional attributes to better describe the objects (e.g., the pipe
diameter or the pressure). The same occurs with the meta-level @2 model for electricity
networks (fig. B.14, which replicates the INSPIRE data specification of fig. B.13,both in

11INSPIREDataSpecifications\T1\textendashBaseModels\T1\textendashGenericNetworkModel:
https://inspire.ec.europa.eu/documents/inspire-data-specifications-%E2%80%
93-base-models-%E2%80%93-generic-network-model

12INSPIRE Data Specification on Transport Networks – Technical Guidelines: https://inspire.
ec.europa.eu/Themes/115/2892

13INSPIRE Data Specification on Utility and Government Services – Technical Guidelines:
https://inspire.ec.europa.eu/Themes/136/2892

INSPIRE Data Specifications \T1\textendash Base Models \T1\textendash Generic Network Model: https://inspire.ec.europa.eu/documents/inspire-data-specifications-%E2%80%93-base-models-%E2%80%93-generic-network-model
INSPIRE Data Specifications \T1\textendash Base Models \T1\textendash Generic Network Model: https://inspire.ec.europa.eu/documents/inspire-data-specifications-%E2%80%93-base-models-%E2%80%93-generic-network-model
INSPIRE Data Specifications \T1\textendash Base Models \T1\textendash Generic Network Model: https://inspire.ec.europa.eu/documents/inspire-data-specifications-%E2%80%93-base-models-%E2%80%93-generic-network-model
https://inspire.ec.europa.eu/Themes/115/2892
https://inspire.ec.europa.eu/Themes/115/2892
https://inspire.ec.europa.eu/Themes/136/2892

62 Chapter 4. Multilevel Modeling of Geographic Information Systems

@4

NetworkProperty

inspireId: Identifier [0..1]

<<voidable, lifeCycleInfo>>

beginLifespanVersion: DateTime

endLifespanVersion: DateTime [0..1]

1 {ordered} 1..*
startNode

0..* 0..1

endNode
0..* 0..1

0..* 1..*element

1

1

1
1..*

1..*

LinkSequence

GeneralisedLink

Link: SpatialEntity

geometry: GM_Curve

ficticious: Boolean

DirectedLink

direction: Sign

Node: SpatialEntity

geometry: GM_Point

Area: SpatialEntity

geometry: GM_Surface

Network

<<voidable>>

geographicalName: GeographicalName [0..*]

NetworkReference

LinkSet

SimpleLinearReference

fromPosition: Length

toPosition: Length

<<voidable>>

offset: Length [0..1]

SimplePointReference

atPosition: Length

<<voidable>>

offset: Length [0..1]

LinkReference

<<voidable>>

applicableDirection: LinkDirectionValue

NetworkElement

inspireId: Identifier [0..1]

<<voidable, lifeCycleInfo>>

beginLifespanVersion: DateTime

endLifespanVersion: DateTime [0..1]

Figure 4.12: Modeling multilevel Spatial Networks - Meta-level @4

4.2. Conceptualizing GIS with a Multilevel Modelling Approach 63

appendix B) that adds attributes to describe information such as the operating voltage or
the nominal voltage of an electricity cable.

The proposal stops at meta-level @2 because it corresponds with the INSPIRE
specification. A member country is expected to define a level @1 model that takes
into consideration the specific requirements for its networks. Furthermore, if we take
into account that the electricity networks of a country are built and operated by different
companies, it would be possible to define an additional level below the INSPIRE level
(that is, raising all the levels from fig. 4.11 one level up), adding a new meta-level @2 with
elements like those used in fig. 5.2. This way, each company that operates an electricity
network could define a meta-level @1 model compliant with @2 but taking into consideration
the specific needs and functionalities of its information system.

4.2.4.3 Discussion

The advantages of multilevel modeling in this scenario are similar to those presented in
section 4.2.2 and section 4.2.3: the multilevel model is simpler, it is more flexible, it ensures
interoperability between INSPIRE member countries, and it can be easily extended to
additional domains. Regarding the complexity of the models, the number of classes is similar
because we have tried to replicate the models in the INSPIRE data specifications. However,
the number of associations is much lower. In fact, the UML models in the INSPIRE data
specification for transport networks uses non-standard UML notation to avoid cluttering
the diagram with multiple inheritances (e.g., the class TransportArea inherits both from
NetworkArea and TransportObject, but this is represented as a small italic text above the
UML stereotype instead of displaying the parent classes and the associations).

The following common patterns of multilevel modeling appear in the example models
for networks (see section 4.2.1):

• Type-object pattern: e.g., the different types that instantiate Node or Edge in lower
meta-levels, such as TransportNode or Appurtenance (see figs. B.4 and B.10 in
appendix B).

• Dynamic features pattern: e.g., the attributes added to meta-level @2 ElectricalNode,
such as model, voltageIn or voltageOut (see fig. 5.2).

• Dynamic auxiliary domain pattern: e.g., in fig. 5.2, there is a new meta-class in meta-
level @3, Network, and a new association between it and instances of SpatialEntity.
More examples of this pattern appear in the more complex example shown in fig. 4.12,
where instances of SpatialEntity have different relationships with domain-related
elements such as LinkSequence or Network.

• Element classification pattern: e.g., the hierarchy descending from the meta-class
RailwayNode, with its subclasses RailwayYardNode and RailwayStationNode, which
are all of them instances of TransportNode from the superior meta-level (see figs. B.4
and B.8 in appendix B).

As a conclusion, the multilevel models are general enough to be used outside the
INSPIRE domain and to be applied in any domain that needs the definition of spatial
networks. Hence, the multilevel model can be considered and used as a common structure.

64 Chapter 4. Multilevel Modeling of Geographic Information Systems

4.2.5 Using common structures in unrelated domains
4.2.5.1 Overview

In the previous Section, we have applied multilevel modeling in a domain that uses a
common structure in the field of GIS. There are other application domains that are related
but that are not usually modeled using the same common structure.

The INSPIRE data specifications provide an example for this scenario. INSPIRE
defines some data specifications in the domain of facilities management (e.g., environmental
management facilities, agricultural and aquaculture facilities, production and industrial
facilities, and buildings). In this domain, it is very common to have a hierarchy of facilities
that contain lower-level facilities. For example, a manufacturing plant is usually divided into
different facilities. Each facility may consist of different buildings and installations, each
one may be in turn divided into different parts. Another example may be an agricultural
installation divided into different units with different objectives. Unlike the approach taken
with networks, the authors of the INSPIRE data specifications did not consider to provide
a generic model for hierarchies of facilities. Therefore, each data specification takes a
different approach to model this hierarchy.

4.2.5.2 Multilevel modeling solution

Figure 4.13 presents a multilevel solution to the problem that allows us to define a hierarchy
of facilities using a composite design pattern that is then instantiated in different models
that are able to capture the specific semantics of the INSPIRE data specifications.

The meta-level @4 (fig. 4.13) of our solution defines a generic composite pattern to
represent hierarchies of facilities using as base class of the composite the ActivityComplex
class defined by INSPIRE as part of its base models14 (see fig. B.15 in appendix B). This
class includes an identifier, a geometry (which we include instantiating the SpatialEntity
class form meta-level @6) and one or several thematic identifiers and functions. It also
includes some voidable attributes related to life-cycle and validity information of the
instances, which can be used at the object level (meta-level @0) for convenience if the
actual application requires them. Then, we define a composite pattern of facilities inheriting
from ActivityComplex that can be used by models in lower meta-levels to represent the
hierarchy of facilities for each specific domain.

Figure B.17 (see appendix B) shows our solution to model environmental management
facilities that are used to handle environmental material flows, such as waste or wastewater
flows, which is based on the INSPIRE data specification on utility and government services15

(see fig. B.16 in appendix B). The meta-class EnvironmentalManagementFacility instantiates
ComplexFacility and redefines its relation since one of these facilities can manage a set of
facilities itself. Some attributes of this domain are added, such as a facilityDescription, or
the serviceHours.

14INSPIRE Data Specifications – Base Models – Activity Complex: https://inspire.
ec.europa.eu/documents/inspire-data-specifications-%E2%80%93-base-models-%E2%80%
93-activity-complex

15INSPIRE Data Specification on Utility and Government Services – Technical Guidelines:
https://inspire.ec.europa.eu/Themes/136/2892

https://inspire.ec.europa.eu/documents/inspire-data-specifications-%E2%80%93-base-models-%E2%80%93-activity-complex
https://inspire.ec.europa.eu/documents/inspire-data-specifications-%E2%80%93-base-models-%E2%80%93-activity-complex
https://inspire.ec.europa.eu/documents/inspire-data-specifications-%E2%80%93-base-models-%E2%80%93-activity-complex
https://inspire.ec.europa.eu/Themes/136/2892

4.2. Conceptualizing GIS with a Multilevel Modelling Approach 65

@4

1..*

parent

children

ActivityComplex: SpatialEntity

inspireId: Identifier

thematicId: ThematicIdentifier [0..1]

geometry: GM_Object

function: Function [1..*]

<<voidable>>

name: CharacterString [0..1]

validFrom: DateTime

validTo: DateTime [0..1]

<<voidable, lifeCycleInfo>>

beginLifespanVersion: DateTime

endLifespanVersion: DateTime [0..1]

Facility

SimpleFacilityComplexFacility

Figure 4.13: Modeling multilevel Facilities Management - Meta-level @4.

66 Chapter 4. Multilevel Modeling of Geographic Information Systems

In fig. B.19 (see appendix B) we have applied the pattern defined in fig. 4.13 to the
specification of agricultural facilities16 (see fig. B.18 in appendix B). The meta-class Holding
represents the whole area and the infrastructures within it under the control of an operator
to perform agricultural activities. Each Holding is composed by individual Sites. Holding
instantiates the meta-class ComplexFacility, while Site instantiates SimpleFacility, being
this a very straightforward example of the ActivityComplex composite.

A much more complex metamodel is the one for production facilities, as we can see
in fig. B.21 (see appendix B). The data specification for this domain by INSPIRE17

(see fig. B.20 in appendix B) defines a class ProductionSite representing the surface
where one or several ProductionFacilities are located. Each ProductionFacility is
composed itself by a set of ProductionPlots (land or water portions destined to functional
purposes), ProductionBuildings (artificial constructions within the production facility), and
ProductionInstallations. The latter are composed themselves by ProductionInstallationParts,
which are single engineered facilities that perform specific functionalities.

The last example is related to the representation of buildings in INSPIRE. The INSPIRE
specification for this domain18 (see fig. B.22 in appendix B) is a bit more complex than the
previous examples because it contemplates two different models to represent buildings: 2D
or 3D. Therefore, the data specification defines in a first data model the generic attributes
of constructions and buildings, which are then specialized in a 2D model by classes that
represent buildings using 2D geometries and in a 3D model by classes that represent
buildings using 3D geometries with different levels of detail. In our proposal (fig. B.23, see
appendix B), we have defined a model at meta-level @3 to represent the generic attributes
of constructions (i.e., class AbstractConstruction) and buildings (i.e., class AbstractBuilding).
Then, we have represented the composition of building parts into buildings instantiating the
classes SimpleFacility and ComplexFacility from meta-level@4 respectively. Our proposal
for the 2D version of the data specification is shown in fig. B.24 (see appendix B). The class
Building is instantiated into a class Building2D and the class BuildingPart is instantiated
into a class BuildingPart2D. Both are associated with a class BuildingGeometry2D.

4.2.5.3 Discussion
The main advantage of our solution is that we apply a well-known design pattern in
meta-level @4 (i.e., a composite pattern, see fig. 4.13) that is instantiated in the models of
four different application domains. The use of the design pattern allows software engineers
to take advantage of all its advantages (e.g., reusability and flexibility), while multilevel
modeling allows software engineers to express the specific restrictions of each application
domain.

The authors of the INSPIRE data specifications (almost) applied the composite pattern
in the definition of the data specification for administrative units (fig. 4.5). Hence, the
model in the data specification is flexible enough to accommodate the specific administrative
divisions of all member countries, but using a two-level solution prevents each member

16INSPIRE Data Specification on Agricultural and Aquaculture Facilities – Technical Guidelines:
https://inspire.ec.europa.eu/Themes/137/2892

17INSPIRE Data Specification on Production and Industrial Facilities – Technical Guidelines:
https://inspire.ec.europa.eu/Themes/121/2892

18INSPIRE Data Specification on Buildings – Technical Guidelines: https://inspire.ec.europa.
eu/Themes/126/2892

https://inspire.ec.europa.eu/Themes/137/2892
https://inspire.ec.europa.eu/Themes/121/2892
https://inspire.ec.europa.eu/Themes/126/2892
https://inspire.ec.europa.eu/Themes/126/2892

4.2. Conceptualizing GIS with a Multilevel Modelling Approach 67

country from defining specific restrictions while conforming to the model in the INSPIRE
data specification. However, the authors of the INSPIRE data specifications related to the
management of facilities decided not to use a design pattern because they considered that
representing the precise semantics of each domain was more important than using common
and well-known structures. This decision makes the models more difficult to understand.

Our solution has the advantages of both alternatives. On the one hand, the model at
meta-level @4 uses a composite pattern that provides flexibility and reusability. On the
other hand, each of the models of each domain captures the semantics of the domain, in
particular:

• The meta-level @2 for environmental management facilities does not define any
specific restrictions on the composition, just like the data specification does.

• The meta-level @2 for agricultural facilities restricts the composition to two levels
(i.e., holdings and sites) retaining the semantics of the data specification.

• The meta-level @2 for production facilities defines a hierarchy (i.e., nested
containment) with four levels, just like the data specification does.

• Our proposal for buildings shows two advantages. First, the composite pattern of
meta-level @4 is reused while keeping the semantics of the INSPIRE data specification.
Second, while the INSPIRE data specification must use a UML constraint to represent
that the part of a 2D building has to be a 2D building part (because the inheritance
hierarchy would allow any building part to be part of any building), our proposal
explicitly represents the constraint by redefining the association in meta-level @2.

Regarding common patterns of multilevel modeling (see section 4.2.1), the following
appear in the examples of this section:

• Type-object pattern: e.g., the different types that instantiate ComplexFacility or
SimpleFacility in fig. B.21 (see appendix B).

• Dynamic features pattern: besides the attributes added in the meta-class Activity-
Complex, that instantiates SpatialEntity (see fig. 4.13), we have new attributes for
example in EnvironmentalManagementFacility with respect to ComplexFacility (see
fig. B.17 in appendix B).

• Dynamic auxiliary domain pattern: e.g., new associations are created between
instances of Building and BuildingPart, and a new meta-class that instantiates
SpatialEntity (see fig. B.24 in appendix B).

• Relation configurator pattern: e.g., in fig. B.17 (see appendix B), the association
between
Facility and its subclass ComplexFacility is redefined since EnvironmentalManage-
mentFacility can be composed of instances of the same class.

The number of classes in these modes is similar to the models in the INSPIRE data
specifications because we have tried to replicate them. Regarding the number of associations,
our model does not require inheritance associations to ActivityComplex, thus reducing the
complexity. The number of associations between the classes is not reduced in our models,
but considering that we have included a composite design pattern, we can say that we have
improved reusability and flexibility without adding complexity.

68 Chapter 4. Multilevel Modeling of Geographic Information Systems

4.3 Discussion and evaluation
In this section, we evaluate the proposal presented in section 4.2 with respect to the
requirements we described in the introduction of this chapter for the modeling solution:
(R1) Scope, (R2) Reuse of common structures, (R3) Flexibility, (R4) Realistic, and (R5)
Generality. Also, we summarize the multilevel metamodeling patterns that occur in the
solution and the advantages that we have identified. Finally, we summarize the advantages
of the multilevel modeling solutions with respect to their two-level counterparts.

Scope (R1), flexibility (R3) and generality (R5) As we explained in previous
sections, working with one metamodel level requires balancing the trade-off between the
scope of the metamodel and its flexibility. Adding common elements and structures to the
metamodel would enforce all the models to use those elements and common structures as
they were defined and updating them would require updating the metamodel.

As an example, in the case of networks with a spatial component, in a two-level
metamodeling solution, all our models would have to conform to the network definition at
the metamodel level and adding new features or admitting potential modifications on that
network definition would force us to redefine the metamodel and, probably, add unnecessary
complexity to it. Trying to consider all those particularities in one meta-model would be
far from flexible. Moreover, the adaptations needed for two different applications could be
contradictory, which would pose a problem to the usability of the metamodel. This is the
reason why metamodels such as the one presented in [CLP+17, CLPP17, ACL+20] leaves
out of the metamodel some elements of the domain that are interesting.

Something similar happens in the case of territory administration. In the metamodel
level, we may define that a hierarchical decomposition of the territory follows a composite
pattern. While this is the general case, the specific legal context of two countries may specify
a more specific structure. For example, the territory can be structured in autonomous
communities, provinces, and municipalities in Spain, but it may follow a slightly different
schema in other countries. Trying to reflect all those specificities in the same metamodel
would lead to an artificially complex solution. We can find similar problems in the scenario
of facility management.

A multilevel modeling solution allows us to define common elements that may be
necessary for different applications while having the flexibility and generality to adapt them
to the particularities of each project in other metamodel levels.

The solution presented in section 4.2 defines at each level elements at a specific level of
abstraction that can be refined or adapted in metamodels at lower levels. For example, in
the case of networks we were able to first define a generic network structure, then refine it
to the case of transportation networks, and then adapt it again to the particular case of
road and railway networks. In territory administration, we considered a scope that can be
adapted to the particular case of any country, and in the case of facilities management, we
were able to consider different types of facilities (environmental, agricultural, industrial,
and buildings). Therefore, the solution based on multilevel modeling allowed us to address
a wider scope. In the multilevel solution, extending the scope of the metamodel does not
necessarily imply less flexibility. Therefore, in the multilevel solution, the flexibility and
the generality of the metamodel is not determined by the scope of the metamodel (R1, R3
and R5).

Scope (R1), reuse of common structures (R2), and generality (R5) The reuse

4.3. Discussion and evaluation 69

of common structures may not be relevant in other application domains, but it is especially
convenient in GIS. The common information structures we have modeled emerge naturally
from the information managed in these systems and its organization in the real world. In
the four scenarios we considered in our proposal, we were able to identify those information
structures and to model them in a general way that was then adapted to the particularities
of specific cases. More specifically, our solution covers the following common structures of
the GIS domain:

• ISO conceptual model and OGC implementation model: we propose in our solution
to apply multilevel modeling to the definition of international standards in GIS. This
is a very ambitious proposal since ISO and OGC have proposed 81 and 70 standards
each (although not all are related to each other, and there is overlap between the
standards). However, it cannot be denied that carrying out this task would meet the
requirements of scope, reuse of common structures and generality.

• Territory administration: our solution models a general decomposition of the territory
for administration purposes (just like the INSPIRE solution does) but allows us to
specialize it to the particular territory administration of different countries (in our
case, Spain and Portugal).

• Networks: from an abstract definition of a network, our solution considers the cases
of transportation networks (in our case, road and railway networks), and also utility
networks (in our case, electricity and water pipes networks). The solution could be
easily extended to consider other types of networks.

• Facilities: as in the previous examples, an abstract facility information structure
was then refined for managing environmental, agricultural, industrial, and building
facilities.

Scope (R1) and Realistic (R4) We consider the solution we have presented realistic
(R4) and covers a wide scope (R1) based on existing proposals for GIS that are currently
being used in the industry. One of our goals in this work was to create a model solution
according to real existing proposals for GIS modeling. Thus, we considered the INSPIRE
Directive, a very complete set of models that cover the most typical application areas of
GIS. INSPIRE defines 34 data specifications, and our goal was not to model INSPIRE
completely. Therefore, we focused on selecting representative examples that show in a real
example the benefits of a solution with multiple meta-modeling levels.

As we have seen in section 4.1, the INSPIRE data definitions support a large set of
concepts and many of the relationships among them. However, the models of INSPIRE
can be quite complex. The multilevel models we presented in section 4.2 provide a much
simpler solution, with each level concerning one level of abstraction that can be easily
adapted to specific needs of applications at lower levels.

Considering the purpose of INSPIRE and that it is thought to be used in different
countries, one of the benefits we appreciate in a multilevel modeling solution in GIS is
that it allows us to instantiate attributes, operations, and relationships at different levels.
This is particularly important in complex model structures such as the one proposed by
INSPIRE.

One of the advantages of multilevel modeling is the capability of deferring instantiation.
This is very adequate to our context since certain elements of the models need to be defined
depending on the particularities of the application context. For GIS applications based

70 Chapter 4. Multilevel Modeling of Geographic Information Systems

Patterns GIS Scenarios
Administration Networks Facilities

Type-object x x
Dynamic features x x x
Dynamic auxiliary
domain

x x

Relation configu-
rator

x x x

Element classifica-
tion

x

Table 4.1: Occurrence of multilevel metamodeling patterns in the scenarios.

on INSPIRE specifications, the application context depends not only on the requirements
of a specific application but also on the country. With our multilevel approach, the
particularities of the country can be expressed in a meta-level lower than INSPIRE, but
there is still a place for expressing the actual application requirements in the data model of
the application, in meta-level @1.

Multilevel metamodeling patterns We analyzed the presence of the different
multilevel metamodeling patterns described in [dLGC14]: type-object, dynamic features,
dynamic auxiliary domain, relation configurator, and element classification. Table 4.1
shows the patterns that occur in each of the scenarios, we are using all the patterns at
some point of the solution, and all the scenarios use at least two multilevel metamodeling
patterns.

Summary of the advantages
The advantages of multilevel modeling in the GIS domain can be summarized as follows:

• Many organizations are defining models for many aspects of GIS that are strongly
related between them. However, these models are completely independent and they
are disconnected. If a multilevel modeling approach were used, the models would be
formally connected enabling many advantages related to MDE (e.g., applying model
transformation techniques).

• Multilevel modeling reduces inheritance in the models. This improves the readability
of the models and reduces the probability of requiring multiple inheritance and hence
avoiding its problems.

• Interoperability can be improved using multilevel modeling because the organizations
that define standards can propose metamodels that can later be instantiated in
a more precise metamodel at a lower-level standard organization. The INSPIRE
directive is a paradigmatic example in which the European Union would define
a metamodel for each of the themes of the European spatial data infrastructure,
that would, in turn, be instantiated in a new metamodel in each of the member
countries, that would finally be instantiated in an application schema (or even in a
new metamodel at a lower-level administrative division of the member country).

4.4. Conclusions 71

• Well-known common structures of GIS applications could be proposed as metamodels
that could later be instantiated in the metamodel of specific GIS development tools
to be finally instantiated in specific application schemas.

• Software engineering design patterns (e.g., the composite or the strategy design
patterns) could be applied to application domains that are currently unrelated to
transfer the benefits of the design patterns to the application domain. This would
add flexibility to the application domains and it would reduce the complexity of the
models and the learning curve of engineers and developers, facilitating the use of
standard models instead of ad-hoc solutions for each problem.

• Some modeling constraints can be modeled as first-class entities in multilevel modeling
instead of being external expressions in a different language or simple annotations.

4.4 Conclusions
Geographic information systems manage entities with a geospatial component that plays a
central role in the system. Even if two GIS applications have different functional scopes,
they will share a set of common concepts, data types for representing geometries, spatial
structures (such as territory decompositions or spatial networks), and a set of technologies
based on international standards published by different organizations, such as ISO or OGC.
These characteristics make GIS a suitable application domain for MDE.

In this work, we have addressed the modeling of GIS following a multilevel modeling
approach. More specifically, we have presented a multilevel modeling solution for GIS
considering different scenarios: harmonization of basic conceptual and implementation
models from ISO and OGC, territory administration, spatial networks, and facilities
management. These scenarios have been selected from the European Union’s INSPIRE
Directive, which defines a set of models for information regarding resource and environmental
management so that EU member countries can follow them to ensure interoperability. In
each of these scenarios, we have shown how typical elements and structures present in
many GIS applications can be modeled in abstract levels to be refined and instantiated
at lower levels. We have used these examples to show how multilevel modeling can be
applied to bridge the gap between conceptual and implementation standards in GIS,
ensuring interoperability in spatial data infrastructures, modeling common GIS patterns,
and applying common structures to unrelated domains.

Based on that previous experience and the analysis presented in the discussion sections
of this work, and although the set of models presented in this research does not pretend to
be exhaustive and is just a part of all the potential elements included in a GIS, we consider
that it shows that the application of multilevel modeling in this domain can lead to simpler,
more flexible, and more expressive solutions when compared with a two-level approach.
The multilevel solution allows us to define metamodels with a larger scope and richness
that can be later adapted. It also allows us to model common information structures
that appear repeatedly in GIS in a way that allows us to redefine or adapt them to the
particular needs of an application. The models defined by INSPIRE provide a solution
following a traditional modeling approach, but extending and adapting those models to
the particular needs of each country or organization would not always be possible, or it
would imply extending inheritance hierarchies that are already very complex. Also, the

72 Chapter 4. Multilevel Modeling of Geographic Information Systems

solution we have presented is based on existing standard models for GIS, which shows
that multilevel modeling can lead to a good solution in a realistic view of the domain
of geographic information systems. Furthermore, by using INSPIRE models to create a
multi-level model for GIS, we have shown that international standards for information
systems are a promising application domain for multilevel modeling approaches.

The scope of this work does not include aspects related to model transformation, code
generation, or other implementation aspects, which remain as future work.

Chapter 5

Mutation Testing for
Geographic Information
Systems

In this chapter, we address the mutation-based testing of geographic information systems
(GIS), by proposing a set of mutation operators that address the typical errors that can
be made with the technologies used to develop these systems. The main feature of GIS
is that they manage entities with a spatial component, typically represented as a point,
line, polygon, or as a variant of these basic geometries. As we will see in Section 2.1.1,
the processes for capturing, storing, processing, and visualizing these entities are based
on very specific technologies. If we want to apply mutation-based testing to GIS in an
effective way, we must be able to inject in the SUT meaningful errors related to the specific
technologies used in GIS development. Thus, in this chapter, we present a set of mutation
operators that reproduce common programming errors in the development of Geographic
Information Systems (GIS).

To obtain the set of operators that we present, we analyzed the most used free software
technologies in the development of GIS, and for each of the layers and technologies operators
were defined that reproduce errors that we consider likely during programming. Also, we
present how these operators have been implemented using aspect-oriented programming,
and an experimental evaluation where they were tested on real applications: a desktop GIS
software for land management, and an Android mobile application for configuring touristic
routes from a list of points of interest.

The rest of this chapter is organized as follows: In Section 3.1, we describe the work
related to this area. In Sections 2.1.1 and 5.2, we analyze the most used technologies in
the development of GIS and present a set of mutation operators that respond to errors
that may occur during the development of this type of applications. Section 5.3 describes
the process by which the operators are applied to the SUT to generate the mutants. In
Section 5.4, we present a case study that describes how these operators are implemented
and validates their use by reproducing these errors in real GIS. Finally, in Section 5.5 we

73

74 Chapter 5. Mutation Testing for Geographic Information Systems

present our conclusions.

5.1 Fundamentals concepts
5.1.1 Mutation
Mutation Testing is an error-based testing technique. It consists of making changes to a
program at the source or bytecode level1 and involves the construction of test data designed
to discover these changes [Woo93].

This technique has been used to validate sets of test cases. Your goal is to find errors
in a SUT in such a way that if a set of test cases does not find them, it is probably poorly
designed.

These errors are artificially injected into the SUT by mutation operators and are called
mutations. Mutations are a copy of the original program under test that has had semantic
or syntactic changes made without preventing the program from compiling correctly, thus
generating a faulty version of the original program.

Table 5.1 shows as an example a function that performs an arithmetic operation on two
numbers and three mutants generated for said operation. These mutants arise from the
syntactic modification of the arithmetic operator addition (+) by the applicable equivalent
subtraction (-), multiplication (*) and division (/) operators.

Function version Implementation
Original int sum(int a, int b){ return a+b; }
Mutant 1 int sum(int a, int b){ return a-b; }
Mutant 2 int sum(int a, int b){ return a*b; }
Mutant 3 int sum(int a, int b){ return a/b; }

Table 5.1: Example of a function and its mutated versions

5.1.2 Mutation Operator
The generation of the mutants from the original program is carried out by applying mutation
operators. Each operator introduces a certain type of error into the SUT, these failures
must be replicas of common errors that programmers may commit unintentionally. There
are types of operators classified according to the contexts for which they were implemented:

• Traditional: They apply to practically any programming language.
• Dependent on the Paradigm: They are oriented to different programming paradigms,

such as Object-Oriented Programming.
• Language-specific: They are defined for a particular programming language.
1Intermediate code between the source code and the machine code. It is generated from the

compilation process and is usually treated as a binary file that contains an executable program. Its
name originates from the fact that each opcode is generally one byte in length.

5.1. Fundamentals concepts 75

• Technology Oriented: They are specifically designed for a specific technology.

Tables 5.2 and 5.3 describe some of the Traditional mutation operators specific to the
Object Oriented Paradigm (OOP).

Mutation Operator Description

ABS (absolute value) Substitution of a variable
by its absolute value

ACR (array reference for constant
replacement)

Replacing a variable reference
to an array by a constant

AOR (arithmetic operator replacement) Substitution of an arithmetic operator
CRP (constant replacement) Substituting the value of a constant
ROR (relational operator replacement) Substitution of a relational operator
RSR (return statement replacement) Return statement replacement
SDL (statement deletion) Deleting a sentence
UOI (unary operator insertion) Unary operator insert

Table 5.2: Traditional Mutation Operators

5.1.3 Aspect-Oriented Programming
Aspect-Oriented Programming (POA) is a paradigm that attempts to formalize and
represent the transversal elements to the entire system, calling them Aspects. It emerged
from research conducted at the Xerox PARC Research Center during the 1980s and 1990s
[KLM+97].

A Appearance is a piece of code that implements a common interest and modifies the
behaviour of those areas of the code related to the purpose of the appearance. These areas
of the code whose behaviour is captured are called joinpoints (or endpoint). The code
that implements the change that must be executed when a joinpoint is captured is advice.
The advice code can be executed before (before), after (after) or instead of the (around)
joinpoint code. These modifiers and others make up the pointcut (or cut-off point) and
indicate when during the joinpoint execution the advice code should be executed. Through
these elements, it is possible to alter the behaviour of the original code without modifying
it. It also allows you to specify with a fine level of granularity the context of the application
behaviour alteration.

In POA, it is possible to define joinpoints on the execution that you want to capture in
a program, these represent the places where the aspects add their behaviour. Table 5.4
lists the keywords to indicate the type of capture that the pointcut must do followed by
the identification information of the method, constructor or another element to capture.

The pointcut can also include operators, wildcards, and other keywords to specify
exactly which joinpoints should be trapped.

76 Chapter 5. Mutation Testing for Geographic Information Systems

Operator Description
AMC (access modifier change) Access modifier replacement
AOC (argument order change) Changing the order of arguments passed

in a method call
CRT (compatible reference type replace-
ment)

Replacing a reference to an instance of
a class with a reference to an instance
of a compatible class

EHC (exception handling change) Changing an exception handling state-
ment to a statement that propagates
the exception, and vice versa

EHR (exception handling removal) Removing a Exception Handling State-
ment

HFA (hiding field variable addition) Adding in the subclass a variable with
the same name as a variable of its
superclass

MIR (method invocation replacement) Replacing a call to a method with a call
to another version of the same method

OMR (overriding method removal) Removal in subclass redefining of a
method defined in a superclass

POC (parameter order change) Changing the order of parameters in a
method declaration

SMC (static modifier change) Adding or removing the static modifier

Table 5.3: Mutation Operators for OOP

• Operators:

– ! negation.

– || OR logic.

– && AND logic.

– () parenthesis.

• Wildcard characters:

– * asterisk, to refer to anything.

– .. colon, to replace a single item..

– . a period, to refer to sub-packages.

– + plus sign, to refer to subtypes.

• Keywords:

5.1. Fundamentals concepts 77

Element to capture Keyword
Method calls call(method signature)
Method execution execution(method signature)
Constructor calls call new(constructor signature)
Initializer execution initialization(constructor signature)
Constructor execution execution new(constructor signature)
Static initializer execution static initialization(type name)
Field reading get(field signature)
Assignment of value to field set(field signature)
Execution of the exception handler handler(exception to catch)

Table 5.4: Keywords used in pointcut capture types

– target refers to the object on which the trapped code will be executed: that is,
the object that executes the joinpoint.

– args refers to the arguments of the trapped method.

Aspect-Oriented Programming has broad expressiveness for writing specific mutation
operators. For example, it is possible to express situations like the following:

Before calling any method within the calculate method, whose names begin with
subtraction or addition, that the first parameter is of type double, and that returns a
double, the divide operation is executed.

public privileged aspect AspectArithmeticOperation
{

double before(ArithmeticOperation operation, double x, double y):
withincode (void ArithmeticOperation.calculate())

call (double operation.subtract*(double, *)) || call (double operation.sum*(double, *))
&& target(operation)
&& args(x, y)
{

operation.divide;
}

}

Listing 5.1: Example of expressiveness aspect

Interlacing an aspect file with a program is done through the process of weaving or
interwoven. This process is responsible for adequately combining the original program
code, that is, the joinpoints, with the code that implements the change to be introduced,
in this case, the advice so that, when the system is up and running, the advice and
joinpoint run together. Interweaving can be static or dynamic, static interweaving handles
those elements that can be determined before the program begins its execution, usually at
compile-time, while dynamic interweaving occurs when the SUT is at execution time.

To make use of aspect-oriented programming it is necessary to:

78 Chapter 5. Mutation Testing for Geographic Information Systems

1. Base language: A general-purpose language where basic functionalities are defined.
2. Aspect-oriented language: A language for programming aspects.
3. A weaver: A program in charge of weaving that combines the program and the

aspects.

5.1.4 Mutation Operators with Aspects
Rather than manually manipulating the source code of a program to modify its behaviour
to reproduce bugs, with POA this can be accomplished without directly altering the original
source code. For this, through different elements, an aspect is written that intercepts the
original program, causing it to be modified. This abstraction in which the writing of a
program behaviour change is specified, simulating an error, represents a mutation operator
[Pol14].

Suppose we have the ArithmeticOperation Class 5.2, which contains a set of methods
for basic arithmetic operations. We want to apply the AOC (Argument Order Change)
mutation operator to the divide method, which exchanges the parameter values so that
if divide (10, 2) is written, divide (2, 10) is executed. You want to modify the execution
of the original program so that it behaves as if it were a programming error where the
position of the two arguments had been exchanged. In this case, the around clause is used,
which replaces the body of a method with the code included in the advice. Fragment 5.3
shows the code of the aspect that contains the pointcut that catches the call and the code
of the advice that performs the modification to this method of the Arithmetic Operation
class. In the advice 3 instructions have been added for illustrative purposes to carry out
the exchange of the parameter values using a temporary variable and then a call to the
function proceed (m, x, y) has been included), which produces a call to the original method.

package Aspects;
public class ArithmeticOperation {

public double sum(double x, double y) {
return x+y;

}
public double subtract(double x, double y) {

return x-y;
}
public double multiply(double x, double y) {

return x*y;
}
public double divide(double x, double y) {

return x/y;
}

}

Listing 5.2: Arithmetic operation class

public privileged aspect AspectArithmeticOperation
{

double around(ArithmeticOperation operation, double x, double y):

5.2. A collection of mutation operators for GIS 79

call (double operation.divide(double, double))
&& target(operation)
&& args(x, y)

{
double aux=x;

x=y;
y=aux;
return proceed(operation, x, y);

}
}

Listing 5.3: An aspect that implements the AOC operator to intercept the
divide method of the Arithmetic Operation class

Observe the code of the aspect presented in Fragment 5.3:

• In line 3 the clause around replaces the body of the method with the code included
in the advice.

• The arguments passed are: (1) the type of the object on which the operation is
executed, in this case the object operation of the class Arithmetic Operation and (2)
the types and names of the parameters of the method to be captured.

• After the colon symbol (:), line 4 indicates that the call will be caught with the
keyword call to the operation indicated as an argument of the call itself; that is,
the call to doubleArithmeticOperation.divide (double, double) will be trapped. After
call on lines 5 and 6 we identify the role of the elements that we pass as arguments
to the around: the target is the object on which the operation is executed, and the
arguments they are x and y.

• Starting from line 7 in the advice, write the code to be executed when the operation
divide (..) is called, which in this case will be to exchange the values of the method’s
parameters.

When interweaving the original program 5.2 with the Aspect 5.3 a different result will
be executed, for this case, instead of dividing the values (x, y) in that order, the aspect will
interchange them, introducing in its execution an error that does not exist in the original
class.

5.2 A collection of mutation operators for GIS
In order to identify a set of potential mutation operators for GIS, we systematically analyzed
the full stack of technologies we could use on its development. There are many approaches
to GIS development. In our work, we have focused on open-source technologies based on
the standards published by the Open Geospatial Consortium2 and ISO. In this Section, we
based the typical architecture that GIS application usually present and the most widely
used open-source technologies for develop them. These technologies were analyzed to
identify possible errors that may occur during the process of implementing a GIS.

In this section we present a collection of mutation operators for GIS based on the
analysis of the technologies we have described in the Section 2.1.1 , and on our experience

2http://www.ogc.com

80 Chapter 5. Mutation Testing for Geographic Information Systems

using them in real projects. Each mutation operator tries to reproduce an error that we
consider a developer could easily make in a real project. We tried to come up with a
collection as complete as possible. However, it is possible that other researchers consider
that other errors can be frequent and are not included in our collection. As we will see in
the next section (which focus on the implementation of the operators), the collection could
be easily extended.

From the analysis we have done on the different layers and technologies that support
the typical architecture of GIS applications, in this Section we present a set of mutation
operators that has been defined to reproduce errors that the programmer can make in the
different layers of a GIS during their development.

5.2.1 Operators on connectivity between user interface and
service layer

This sub-section presents mutation operators that affect the connectivity between the
service layer and the view layer. These operators introduce errors in methods for obtaining
geometries and maps from REST and WFS services, altering parameters on the calls to
the services, causing service drops, or overly expensive queries that can cause a timeout.

5.2.1.1 ChangeCoordSys:
This operator exchanges the coordinate system of a geometry so that it does not match
the coordinate system that it is using in the user interface. It simulates the error of not
checking that the coordinate system is correct (to change it if necessary) when a GIS works
with multiple data sources. The error is introduced by directly modifying the coordinate
system of a geometry when recovering the wrapping of the figure (Listing 5.5).

Geometry geometry = feature.getGeometry();

Listing 5.4: Captured original code

public class ChangeCoordSys extends Operator {

@Override
public String getCode(String code) {

code="pGeometry1.setSRID(-pGeometry1.getSRID());";
return code;

}
}

Listing 5.5: Operator ChangeCoordSys

5.2.1.2 ExpandVisualRange:
This operator allows to extend the extension of a polygon of Java Topology Suite that
represents the range of visualization allowed in the user interface. Thus, the system
may allow the user to enter values of geometries that are outside the originally allowed
range. The error is entered directly by expanding the polygon. This operator captures

5.2. A collection of mutation operators for GIS 81

the invocation to the method em GeometryFactory.toGeometry (envelope) and replaces it
with em GeometryFactory.toGeometry (envelope.expandBy (3.0)) simulating that the user
has selected geographical limits not allowed (Listing 5.7).

Polygon polygon = JTS.toGeometry(envelope);

Listing 5.6: Captured original code

public class ExpandVisualRange extends Operator {

@Override
public String getOperatorCode(String code) {

code="args[0]=pEnvelope1.expandBy(3.0);";
return code;

}
}

Listing 5.7: Operator ExpandVisualRange

5.2.1.3 WMSDoesntRespond:
This operator simulates the situation in which a WMS map server does not respond. This
situation is simulated by issuing an exception directly when it comes to accessing the service.
This operator captures the invocation to the method createGetMapRequest(), and to simulate
that the map server is down, the sentence is added: throw new ServiceException("WMS
does not respond") that throws a service availability exception (Listing 5.9).

GetMapRequest request = wms.createGetMapRequest();
GetMapResponse response = (GetMapResponse) wms.issueRequest(request);

Listing 5.8: Captured original code

public class WMSDoesntRespond extends Operator {

@Override
public String getOperatorCode(String code) {

code="throw new ServiceException(\"WMS does not respond\");";
return code;

}
}

Listing 5.9: Operator WMSDoesntRespond

5.2.1.4 CostlyWFS:
This operator introduces a waiting time that can produce a timeout when accessing a WFS
service. Simulates the actual situation in which the spatial database, by its size, or by the
type of query, may take time to respond. This operator captures the instantiation of an
object of type FeatureCollection using the method source.getFeatures(..) and replaces it
with the invocation to the method GeomUtils.createHugeWFSResponse(..) (Listing 5.11).

82 Chapter 5. Mutation Testing for Geographic Information Systems

FeatureCollection<SimpleFeatureType, SimpleFeature> objeto_feature;
objeto_feature = source.getFeatures(param);

Listing 5.10: Captured original code

public class CostlyWFS extends Operator {

@Override
public String getOperatorCode(String code) {

code=return GeomUtils.createHugeWFSResponse (param);
return code;

}
}

Listing 5.11: Operator CostlyWFS

5.2.2 Internal processing errors
Mutation operators that affect operations that are performed in the data processing layer.
These operators introduce errors in the processing of geometries in the service layer,
transforming geometries, coordinate systems, or disturbing the result of operations and
topological constraints between geometries.

5.2.2.1 BooleanPolygonConstraint
This operator disturbs the result of topological constraint operations that can be performed
between a polygon and another geometry (ie: disjoint, touches, overlaps, within, contains,
crosses, equals). It captures the previous operations and alters the geometry that is passed
as a parameter by adding to it a new point that passes through the centroid of the original
geometry (Listing 5.13).

@PolygonAndPolygon
Method(Polygon x, Polygon y);

Listing 5.12: Captured original code

public class BooleanPolygonConstraint extends Operator {

@Override
public String getOperatorCode(String code) {

code="com.vividsolutions.jts.geom.Coordinate[] coordinates =
pGeometry1.getCoordinates();\n" +

"\t\t\t\t\tcoordinates[0]=
pGeometry1.getCentroid().getCoordinate();\n" +
"\t\t\t\t\tcoordinates[coordinates.length-1]=
pGeometry1.getCentroid().getCoordinate();\n" +
"\t\t\t\t\tpGeometry1=
new com.vividsolutions.jts.geom.
GeometryFactory().createPolygon(coordinates);\n" +
"\t\t\t\t\targs[0]=pGeometry1;";
return code;

5.2. A collection of mutation operators for GIS 83

}
}

Listing 5.13: Operator BooleanPolygonConstraint

5.2.2.2 RESTToGeometry:

This operator set to null a received geometry from a REST service when trying to convert
to a geometry of the Geometry class. this operator identifies the line Geometry geo =
feature.getGeometry () and replaces it with Geometry geo = null (Fragments 5.14 and
5.15).

Geometry geo = feature.getGeometry();

Listing 5.14: Captured original code

public class RESTToGeometry extends Operator {

@Override
public String getOperatorCode(String code) {

code="return null;";
return code;

}
}

Listing 5.15: Operator RESTToGeometry

5.2.3 Interaction with the spatial database:
Mutation operators that simulate errors that can occur when interacting with a spatial
database, such as the use of operations that are not allowed in the current version of the
database , violations of topological restrictions, system crashes or timeouts for operations
that are too complex.

5.2.3.1 CantConnectPostgreSQL:

This operator simulates the situation in which it cannot connect to the server of spatial
databases, throwing an exception when it comes to establishing the connection. This
operator captures the invocation to the DriverManager.getConnection (...) method and
inserts the throwing of an exception type throw new SQLException ("Connection cannot
be established") just before being captured, conditioning to the connection never being
established (Listing 5.17).

DriverManager.getConnection(arguments)

Listing 5.16: Captured original code

84 Chapter 5. Mutation Testing for Geographic Information Systems

public class CantConnectPostgreSQL extends Operator {

@Override
public String getOperatorCode(String code) {

code="throw new SQLException(Connection cannot be established)";
return code;

}
}

Listing 5.17: Operator CantConnectPostgreSQL

5.2.3.2 ForceQueryTimeout:

When sending a query to the spatial database, this operator introduces an excessive
waiting time, which simulates a complex query that can force a timeout. The way in
which the operator replicates this error is by capturing the query launch using the method
s.executeQuery (SQL), where "s" is an object of the class Statement or one of its subclasses.
Once this method is captured, the operator adds the statement s.setQueryTimeout(1) after
the execution of the captured method (Listing 5.19).

statement.executeQuery(query);

Listing 5.18: Captured original code

public class ForceQueryTimeout extends Operator {

@Override
public String getOperatorCode(String code) {

code="java.sql.Statement statement=(java.sql.Statement) joinPoint;\n";
code="statement.setQueryTimeout(1);\n";
return code;

}
}

Listing 5.19: Operator ForceQueryTimeout

5.3 Mutation operator generation process
To generate the mutation operators we define an approach, which we present in Figure 5.1.
This approach is composed of two processes represented as gray rectangles: (1) formalization
of operators from the identified errors an (2) creation of operators as aspects files. The
files on which these two processes work or that are obtained as a result are represented as
rectangles of white color. This approach has been implemented in a prototype, shown in
Figure 5.2.

Formalization of mutation operators: The first step to apply the mutation is to
define the mutation operators that you want to use to generate the mutants. For the
creation of the operators, it will be based on the identification and definition of the errors

5.3. Mutation operator generation process 85

Figure 5.1: Business Process Workflow, generation of mutation operators

Figure 5.2: Prototype Interface, generation of mutation operators

86 Chapter 5. Mutation Testing for Geographic Information Systems

Figure 5.3: Aspect file structure

to subsequently define the elements that make up the operator based on this information.
These operators will be used to generate the aspects file.

Creation of mutation operators: In this stage, the physical creation of the mutation
operator is performed. The operator is physically represented by a file of aspects. This
aspect file will contain as many poincuts as methods to be mutated (Figure 5.3) and will be
generated from a template containing tokens or special marks. These tokens are replaced
by code snippets that correspond to two elements: (1) the information of the methods
of the SUT, captured by the Java Reflection API and (2) the definition of the mutation
operators that have already been formalized in the previous stage. The file of aspects that
is generated from this information (SUT source code and operators), is possible through the
use of AspectJ libraries to interweave it with the original SUT and generate the mutated
versions of the system.

The implementation of these operators is focused on the way in which the change is
introduced in the SUT. The definition of the mutation operator will be used to create the
physical operator as an aspect file, which will capture the call to a particular method of
the SUT and alter its behavior. These operators are specializations of the abstract class
Operator (Figure 5.4). Some of the methods more relevant that structure the Operator are:

• getName: Mutation operator name.
• getDescription:Description of the function performed by the mutation operator.
• getCode: Code that modifies the behavior of the SUT method to mutate.

5.3. Mutation operator generation process 87

Figure 5.4: The Operator Class

The code fragments 5.20 and 5.21 show at a conceptual level the template to generate
the aspect files and the Fragment 5.22 we show how this template is applied to an example
of source code. The symbols between sharp (#) represent the tokens that must be replaced
to generate the aspect. The following tokens are defined in the templates:

• IMPORTS, This token will be replaced by the corresponding import statements for
the aspect to compile.

• CLASS_NAME, This token will be replaced by the class name for which the aspect
is being created.

• POINTCUTS, This token will be replaced by the syntax of a poincuts AspectJ. A
poincuts will allow you to capture the source code and modify its behavior.

• MOMENT, This token will be replaced by before, after or around as appropriate.
• CAPTURE_TYPE. This token will be replaced by one of the keywords call or

execution.
• OBJECT_NAME. This token will be replaced by the name of the method to be

captured.
• ARGUMENTS. This token will be replaced by arguments name of the method to be

captured.
• PROCEED. This token will be replaced by the original code of the method on which

the pointcut intervenes.
• OPERATORS. This token will be replaced by the error code that will modify the

method.

#IMPORTS#

public aspect Operadores#CLASS_NAME# {
#POINTCUTS#
}

Listing 5.20: Aspect pointcut template

#RETURN_TYPE# #MOMENT# (#TARGET_TYPE# obj #PARAMETERS_TYPE_AND_NAME_LIST#) : target(obj)
&&args(# PARAMETERS_LIST_NAMES_FOR_ARGS#) && #CAPTURE_TYPE# (#RETURN_TYPE#
#TARGET_TYPE#.#OPERATION# (# PARAMETERS_LIST_TYPES#)){

int operadorActual = director.getCurrentOperator();

88 Chapter 5. Mutation Testing for Geographic Information Systems

if (operadorActual == ORIGINAL) {
#PROCEED#

}
if (director.getCurrentJoinpoint()!=this)

#PROCEED#
else {

#OPERADORES#
}

}

Listing 5.21: Aspect file template

#RETURN_TYPE# #MOMENT# (#TARGET_TYPE# obj #PARAMETERS_TYPE_AND_NAME_LIST#) : target(obj) &&
args(#PARAMETERS_LIST_NAMES_FOR_ARGS#) && #CAPTURE_TYPE# (#RETURN_TYPE#
#TARGET_TYPE#.#OPERATION#(#PARAMETERS_LIST_TYPES#))

--
void around(mypackage.MyClass object, double parameter) : target(object) && args(parameter) &&

call(void mypackage.MyClass.MyMethod(double))

Listing 5.22: Header of poincuts, example of replacement of tokens
To generate the mutation operator, which is physically an aspect file, we have defined

an algorithm, which we present as a pseudocode in the Algorithm 1.

1 for each mutable class C do
2 aspectsTemplate = read template aspects file;
3 aspectCode = replaceTokens(aspectsTemplate, C);
4 for each method m ∈ C do
5 pointcutTemplate = read template pointcut file;
6 poincutCode = replaceTokens(pointcutTemplate, m);
7 for each mutation operator op do
8 if op is applicable to m then
9 errorTemplate = read error template;

10 operatorCode = replaceTokens(errorTemplate, op);
11 poincutCode = poincutCode U operatorCode;
12 end
13 end
14 aspectCode = aspectCode U poincutCode;
15 end
16 saveFile(aspectCode);

17 end
Algorithm 1: Pseudocode algorithm to generate the mutation operator.

5.4 Application examples
To test the mutation operators, two real-use GIS were used. These applications (Figures
5.5 and 5.7) were applied to different layers of their architectures by operators to simulate
errors that could have occurred during their development process. Below is a case for each
application that describes the errors that simulate the operators BooleanPolygonConstraint
and ChangeCoordSys.

5.4. Application examples 89

Figure 5.5: Land Reparcelling App

Figure 5.6: Original and mutant application.

5.4.1 Land Reparcelling App
This application is a simplified version of a Land reparcelling system. Land reparcelling
processes are applied in regions where land ownership is very fragmented among different
owners. The objective of the land consolidation is to reunify the lands of an owner to
facilitate their exploitation. This application was developed using JTS tool for processing
spatial objects, and PostgreSQL with PostGIS as a spatial database management system.

Figure 5.6 shows a screenshot of two selected adjacent parcels that meet conditions
to be merged. In this case, the mutation operator BooleanPolygonConstraint was applied.
This operator introduces errors in the processing of geometries in the service layer of the
application, manipulating the result of operations that contemplate checking different
topological constraints between geometries such as intersection or overlap. Specifically,
the result of the merge operation between the two polygons has been affected. This error
causes the user to incorrectly visualize the resulting geometry that should be drawn on the

90 Chapter 5. Mutation Testing for Geographic Information Systems

Figure 5.7: Interest Point App.

interface after the operation applied to the two initial geometries.

5.4.2 Interest Point App
This is a mobile technology GIS application that allows you to register places of interest for
the user and track their entry/exit points. From this information, the application records
the routes through which the user has traveled and generates a visit plan. For its operation,
it uses Google’s Localization Service. Figure 5.8 shows the different interaction screens
(Activities) of this application.

A fundamental aspect in the development of mobile applications is the ability of the
application to geolocate the user’s position through the phone’s resources. This technology
allows applications to always know the user’s position, adapting their behavior accordingly.
Search sites Interest or nearby users are very common examples of the use of geolocation
technology.

The Android operating system allows application developers to get notifications of when
a user enters or leaves an area of interest. These areas of interest are called Geofences. A
Geofence is determined by a geographical location expressed in terms of latitude and length,
and a radius around said location. Thus, any application with the necessary permissions
can request the operating system to notify the moment in which the person enters or
leaves one of those areas of interest. These functionalities are mainly used for presence
control. Although creating Geofences and receiving notifications is relatively simple, it is
also a bug-prone code. By creating a Geofence with an erroneous location from its central
location, the device will receive incorrect location notifications regarding the user’s location
and will move it to erroneous input/output zones. To simulate this error, the mutation

5.4. Application examples 91

Figure 5.8: Original and mutant application.

92 Chapter 5. Mutation Testing for Geographic Information Systems

operator ChangeCoordSys has been applied, which exchanges the location coordinates of
the Geofences. As a result, the user will see the Geofences drawn in incorrect areas in the
application’s map viewer.

5.5 Conclusions
Based on a review of the state of the art on mutation operators, the existence of mutation
operators both general purpose and specific to some technologies and languages has been
verified, however, when simulating errors in particular domains is required, these operators
are not adequate. We objective has been to define new mutation operators specific to the
domain of GIS-based applications, which currently have no history in the scientific literature.
We have also proposed a way to generate them and we have tested their applicability on
two GIS systems of real use.

Chapter 6

Conclusions and Future
Work

The implementation of GIS applications does not start strictly from scratch but is built in
most cases applying techniques that cover in a sequential way the different stages of the
traditional software development life cycle. There are various technologies and tools that
support this process for all components of your architecture. Apart from these technologies,
if it is required to develop applications for specific domains, it is necessary to write source
code from scratch, which fits its functional scope. Although there can be great domain
differences between these types of applications, there are a set of common elements that
make them similar. In this research we have focused on these common characteristics, so
the main contribution of this thesis focuses on the investigation of automated software
development techniques applicable to the GIS domain.

We have researched about a definition of a declarative domain-specific language for the
development of GIS. This language allows a user without deep programming knowledge
can specify and generate a basic system, only specifying the system by defining its entities,
with their properties and relationships, maps, and layers. We have developed a case study
in which we use two sample projects of different sizes (application for the management of
points of interest and application for the management of civil infrastructures) to evaluate
the software products generated from the specifications in GIS- DSL. From our analysis
we have concluded that the amount of LOC that is generated is high, therefore this gives
us an idea of the rate of code generation that we can achieve, and the savings in terms
of productivity that we could obtain in larger projects, with tens or hundreds of entities.
As future work we propose to be carried out a more extensive evaluation, involving the
generation of real applications.

On the other hand, we have research how to apply the multilevel modeling approach to
GIS-based applications in different real-world scenarios. In each of these scenarios, we have
shown how typical elements and structures present in many GIS applications can be modeled
in abstract levels to be refined and instantiated at lower levels. We have identifies several
benefits in terms of simplicity, expressiveness, and flexibility versus two-level modeling. As

93

94 Chapter 6. Conclusions and Future Work

future work, it is proposed to include aspects related to the transformation of models, code
generation or other implementation aspects.

Finally, our lasted contribution is on the application and automation of the mutation
testing technique in the GIS domain. In the scientific literature, there are definitions of
mutation operators both general purpose and specific for some technologies and languages,
however, when it is required to simulate errors in particular domains, these operators
are not suitable. We have defined a set of mutation operators specific to the domain of
GIS-based applications. We have also proposed a workflow to generate it and generate the
mutated system versions. Finally, we have tested their applicability on two GIS systems of
real use. The approach we have proposed to specify and generate mutation operators is
dependent on a language of aspects related to the language of the SUT. As future work, it
is proposed to carry out a generic specification that can be independent of the technology.

Appendix A

Publications and other
research results

Publications
Journals

• Alvarado, S. H., Cortiñas, A., Luaces, M. R., Pedreira, O., Places, A. S. (2022).
Multilevel modeling of geographic information systems based on international
standards. Software and Systems Modeling, 21(2), 623-666.

• Alvarado, S. H., Cortiñas, A., Luaces, M. R., Pedreira, O., Places, Á. S. (2020).
Developing Web-based Geographic Information Systems with a DSL: Proposal and
Case Study. J. Web Eng., 19(2), 167-194.

International conferences

• Alvarado, S., Cortiñas, A., Luaces, M., Pedreira, O., Places, A. (2019, September).
A Domain Specific Language for Web-based GIS. In Proceedings of the 15th
International Conference on Web Information Systems and Technologies (pp. 462-
469).

• Alvarado, S. H., Cortinas, A., Luaces, M. R., Pedreira, O., Places, A. S. (2019,
September). Applying multilevel modeling to the development of geographic
information systems. In 2019 ACM/IEEE 22nd International Conference on Model
Driven Engineering Languages and Systems Companion (MODELS-C) (pp. 128-133).
IEEE.

• Usaola, M. P., Rojas, G., Rodriguez, I., Hernandez, S. (2017, March). An architecture
for the development of mutation operators. In 2017 IEEE International Conference
on Software Testing, Verification and Validation Workshops (ICSTW) (pp. 143-148).
IEEE.

National conferences

95

96 Appendix A. Publications and other research results

• Alvarado, S. H. (2019). Design of Mutation Operators for Testing Geographic
Information Systems. Multidisciplinary Digital Publishing Institute Proceedings,
21(1), 43.

• Alvarado, S. H., de Guzmán, I. G. R., Luaces, M. R., Pedreira, O., Places, Á. S., Polo,
M. Definición de Operadores de Mutación para Sistemas de Información Geográfica.

Appendix B

Complete models of
Multilevel Modeling Chapter

97

98 Appendix B. Complete models of Multilevel Modeling Chapter

@6
GM_Object

GM_Primitive GM_Complex GM_Aggregate

GM_MultiSurface

GM_Point GM_MultiPrimitive

GM_Curve

GM_OrientableCurve

GM_OrientablePrimitive

GM_OrientableSurface

GM_Surface

GM_MultiPoint GM_MultiCurve

SpatialEntity

geometry: GM_Object

N Figure B.1: ISO 19107: Geographic Information - Spatial Schema

@5 Geometry:
GM_Object

GeometryCollection:
GM_MultiPrimitive

Point:
GM_Point

Curve:
GM_Curve

Surface:
GM_Surface

MultiLineString

Polygon

0..* SpatialReferenceSystem

MultiPoint:
GM_MultiPoint

MultiCurve:
GM_MultiCurve

1..*

LineString
MultiSurface:

GM_MultiSurface

MultiPolygon
Line

1..*

LinearRing

1..*

1..*

2..*

N Figure B.2: OGC Simple Feature Access (OGC SFA)

99

N Figure B.3: INSPIRE Network Base Model and Common Transport
Elements Overview, from https://inspire.ec.europa.eu/data-model/
approved/r4618-ir/html/index.htm?goto=2:1:9:6:7590

https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:1:9:6:7590
https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:1:9:6:7590

100 Appendix B. Complete models of Multilevel Modeling Chapter

@3

INSPIRE
includes many
more network
properties
ommited here for
clarity

TransportProperty:
NetworkProperty

inspireId: Identifier

<<voidable>>

validFrom: DateTime

validTo: DateTime [0..1]

MaintenanceAuthority

authority: CI_Citation

TrafficFlowDirection

direction: LinkDirectionValue

OwnerAuthority

authority: CI_Citation

<<enumeration>>
TransportTypeValue

air

cable

rail

road

water

TransportNetwork: Network

inspireId: Identifier

typeOfTransport@1: TransportTypeValue

<<voidable, lifeCycleInfo>>

beginLifespanVersion: DateTime

endLifespanVersion: DateTime [0..1]

<<voidable>>

geographicalName: GeographicalName [0..*]

TransportArea: Area

<<voidable>>

validFrom: DateTime

validTo: DateTime [0..1]

TransportNode: Node

<<voidable>>

validFrom: DateTime

validTo: DateTime [0..1]

TransportLink: Link

geometry: GM_Curve

ficticious: Boolean

<<voidable>>

validFrom: DateTime

validTo: DateTime [0..1]

TransportLinkSet: LinkSet

<<voidable>>

validFrom: DateTime

validTo: DateTime [0..1]

TransportObject

<<voidable>>

geographicalName: GeographicalName [0..1]

TransportLinkSequence:
LinkSequence

<<voidable>>

validFrom: DateTime

validTo: DateTime [0..1]

N Figure B.4: Modeling multilevel Spatial Networks - Meta-level @3 for
transportation networks

101

N Figure B.5: INSPIRE Road Transport Network, from
https://inspire.ec.europa.eu/data-model/approved/r4618-ir/
html/index.htm?goto=2:1:9:7:7627

https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:1:9:7:7627
https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:1:9:7:7627

102 Appendix B. Complete models of Multilevel Modeling Chapter

@2

INSPIRE
includes many
more transport
properties
ommited here for
clarity

RoadName: TransportProperty

inspireId: Identifier

name: GeographicalName

<<voidable>>

validFrom: DateTime

validTo: DateTime [0..1]

RoadWidth: TransportProperty

inspireId: Identifier

width: Measure

<<voidable>>

validFrom: DateTime

validTo: DateTime [0..1]

RoadNetwork: Network

inspireId: Identifier

typeOfTransport = road

<<voidable, lifeCycleInfo>>

beginLifespanVersion: DateTime

endLifespanVersion: DateTime [0..1]

<<voidable>>

geographicalName: GeographicalName [0..*]

Road: TransportLinkSet

<<voidable>>

validFrom: DateTime

validTo: DateTime [0..1]

localRoadCode: CharacterString [0..1]

nationalRoadCode: CharacterString [0..1]

ERoad: TransportLinkSet

<<voidable>>

validFrom: DateTime

validTo: DateTime [0..1]

europeanRouteNumber: CharacterString [0..1]

RoadArea: TransportArea

<<voidable>>

validFrom: DateTime

validTo: DateTime [0..1]

RoadLink: TransportLink

<<voidable>>

validFrom: DateTime

validTo: DateTime [0..1]

RoadLinkSequence:
TransportLinkSequence

<<voidable>>

validFrom: DateTime

validTo: DateTime [0..1]

RoadNode: TransportNode

<<voidable>>

validFrom: DateTime

validTo: DateTime [0..1]

N Figure B.6: Modeling multilevel Spatial Networks - Meta-level @2 for
roads networks

103

N Figure B.7: INSPIRE Railway Transport Network, from
https://inspire.ec.europa.eu/data-model/approved/r4618-ir/
html/index.htm?goto=2:1:9:4:7508

https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:1:9:4:7508
https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:1:9:4:7508

104 Appendix B. Complete models of Multilevel Modeling Chapter

@2
INSPIRE
includes many
more transport
properties
ommited here for
clarity

RailwayUse:
TransportProperty

inspireId: Identifier

use@1: RailwayUseValue

<<voidable>>

validFrom: DateTime

validTo: DateTime [0..1]

RailwayLinkSequence:
TransportLinkSequence

<<voidable>>

validFrom: DateTime

validTo: DateTime [0..1]

RailwayLink: TransportLink

<<voidable>>

validFrom: DateTime

validTo: DateTime [0..1]

RailwayYardNode: TransportNode

RailwayStationNode: TransportNode

numberOfPlatforms: Integer

RailwayArea: TransportArea

<<voidable>>

validFrom: DateTime

validTo: DateTime [0..1]

RailwayYardArea:
TransportArea

<<voidable>>

validFrom: DateTime

validTo: DateTime [0..1]

RailwayStationArea:
TransportArea

<<voidable>>

validFrom: DateTime

validTo: DateTime [0..1]

RailwayLine: TransportLinkSet

<<voidable>>

railwayLineCode: CharacterString

RailwayNetwork: Network

inspireId: Identifier

typeOfTransport = rail

<<voidable, lifeCycleInfo>>

beginLifespanVersion: DateTime

endLifespanVersion: DateTime [0..1]

<<voidable>>

geographicalName: GeographicalName [0..*]

RailwayType:
TransportProperty

inspireId: Identifier

type@1: RailwayTypeValue

<<voidable>>

validFrom: DateTime

validTo: DateTime [0..1]

RailwayNode: TransportNode

formOfNode: FormOfRailwayNodeValue

<<voidable>>

validFrom: DateTime

validTo: DateTime [0..1]

N Figure B.8: Modeling multilevel Spatial Networks - Meta-level @2 for
railway networks

105

N Figure B.9: INSPIRE Common Utility Network Elements,
from https://inspire.ec.europa.eu/data-model/approved/r4618-ir/
html/index.htm?goto=2:3:20:3:1:8887

https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:3:20:3:1:8887
https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:3:20:3:1:8887

106 Appendix B. Complete models of Multilevel Modeling Chapter

@3

0..* 0..*

pipescables

Cable
Duct

<<voidable>>

ductWidth: Length

0..*ducts

<<enumeration>>
AppurtenanceTypeValue

UtilityLinkSet: LinkSet

inspireId: Identifier [0..1]

<<voidable, lifeCycleInfo>>

beginLifespanVersion: DateTime

endLifespanVersion: DateTime [0..1]

<<voidable>>

utilityDeliveryType: UtilityDeliveryTypeValue [0..1]

warningType: WarningTypeValue

Pipe

<<voidable>>

pipeDiameter: Measure

presure: Measure [0..1]

pipes 0..*

UtilityNetwork: Network

inspireId: Identifier

utilityNetworkType@1: UtilityNetworkTypeValue

authorityRole: RelatedParty [1..*]

<<voidable>>

geographicalName: GeographicalName [0..*]

utilityFacilityReference: ActivitiyComplex [0..*]

disclaimer: PT_FreeText [0..*]

Appurtenance: Node

inspireId: Identifier [0..1]

<<voidable, lifeCycleInfo>>

beginLifespanVersion: DateTime

endLifespanVersion: DateTime [0..1]

<<voidable>>

validFrom: DateTime

validTo: DateTime [0..1]

appurtenanceType: AppurtenanceTypeValue

specificAppurtenanceType: SpecificAppurtenanceTypeValue [0..1]

N Figure B.10: Modeling multilevel Spatial Networks - Meta-level @3 for
utility networks

107

N Figure B.11: INSPIRE Water Network, from https://inspire.ec.
europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:3:
20:3:7:8933

https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:3:20:3:7:8933
https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:3:20:3:7:8933
https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:3:20:3:7:8933

108 Appendix B. Complete models of Multilevel Modeling Chapter

@2

WaterPipe: Pipe

inspireId: Identifier [0..1]

<<voidable, lifeCycleInfo>>

beginLifespanVersion: DateTime

endLifespanVersion: DateTime [0..1]

<<voidable>>

utilityDeliveryType: UtilityDeliveryTypeValue [0..1]

warningType: WarningTypeValue

pipeDiameter: Measure

presure: Measure [0..1]

waterType: WaterTypeValue

WaterAppurtenance: Appurtenance

inspireId: Identifier [0..1]

<<voidable, lifeCycleInfo>>

beginLifespanVersion: DateTime

endLifespanVersion: DateTime [0..1]

<<voidable>>

validFrom: DateTime

validTo: DateTime [0..1]

appurtenanceType: WaterAppurtenanceTypeValue

specificAppurtenanceType: SpecificAppurtenanceTypeValue [0..1]

<<enumeration>>
WaterAppurtenanceTypeValue:

AppurtenanceTypeValue

anode

clearWell

controlValve

many more types ommited for clarity

N Figure B.12: Modeling multilevel Spatial Networks - Meta-level @2 for
water pipes networks

109

N Figure B.13: INSPIRE Electricity Network, from https://inspire.ec.
europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:3:
20:3:2:8910

https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:3:20:3:2:8910
https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:3:20:3:2:8910
https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:3:20:3:2:8910

110 Appendix B. Complete models of Multilevel Modeling Chapter

@2

ElectricityCable: Cable

inspireId: Identifier [0..1]

<<voidable, lifeCycleInfo>>

beginLifespanVersion: DateTime

endLifespanVersion: DateTime [0..1]

<<voidable>>

utilityDeliveryType: UtilityDeliveryTypeValue [0..1]

warningType: WarningTypeValue

operatingVoltage: Measure

nominalVoltage: Measure

ElectricAppurtenance: Appurtenance

inspireId: Identifier [0..1]

<<voidable, lifeCycleInfo>>

beginLifespanVersion: DateTime

endLifespanVersion: DateTime [0..1]

<<voidable>>

validFrom: DateTime

validTo: DateTime [0..1]

appurtenanceType: ElectricAppurtenanceTypeValue

specificAppurtenanceType: SpecificAppurtenanceTypeValue [0..1]

<<enumeration>>
ElectricAppurtenanceTypeValue:

AppurtenanceTypeValue

capacitorControl

connectionBox

correctingEquipment

many more types ommited for clarity

N Figure B.14: Modeling multilevel Spatial Networks - Meta-level @2 for
electricity networks

111

N Figure B.15: INSPIRE Activity Complex Base Model, from
https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/
index.htm?goto=3:1:4:1:8990

https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=3:1:4:1:8990
https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=3:1:4:1:8990

112 Appendix B. Complete models of Multilevel Modeling Chapter

N Figure B.16: INSPIRE Environmental Management Facilities,
from https://inspire.ec.europa.eu/data-model/approved/r4618-ir/
html/index.htm?goto=2:3:20:2:8857

https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:3:20:2:8857
https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:3:20:2:8857

113

@2

1..*

:parent

:children

EnvironmentalManagementFacility:
ComplexFacility

inspireId: Identifier

thematicId: ThematicIdentifier [0..1]

geometry: GM_Object

function: Function [1..*]

<<voidable>>

name: CharacterString [0..1]

validFrom: DateTime

validTo: DateTime [0..1]

<<voidable, lifeCycleInfo>>

beginLifespanVersion: DateTime

endLifespanVersion: DateTime [0..1]

<<voidable>>

type: EnvironmentalManagementFacilityTypeValue [0..*]

serviceHours: PT_FreeText [0..1]

facilityDescription: ActivityComplexDescription [0..1]

physicalCapacity: Capacity [0..*]

permission: Permission [0..*]

status: ConditionOfFacilityValue

N Figure B.17: Modeling multilevel Facilities Management - Meta-level @2
for environmental management facilities.

114 Appendix B. Complete models of Multilevel Modeling Chapter

N Figure B.18: INSPIRE Agricultural and Aquaculture Facilities,
from https://inspire.ec.europa.eu/data-model/approved/r4618-ir/
html/index.htm?goto=2:3:3:1:7925

https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:3:3:1:7925
https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:3:3:1:7925

115

@2

1..*

:parent :children

Holding: ComplexFacility

inspireId: Identifier

thematicId: ThematicIdentifier [0..1]

geometry: GM_Object

function: Function [1..*]

<<voidable>>

name: CharacterString [0..1]

validFrom: DateTime

validTo: DateTime [0..1]

<<voidable, lifeCycleInfo>>

beginLifespanVersion: DateTime

endLifespanVersion: DateTime [0..1]

Site: SimpleFacility

inspireId: Identifier

thematicId: ThematicIdentifier [0..1]

geometry: GM_Object

function: Function [1..*]

activity: EconomicActivityNACEValue [1..*]

<<voidable>>

name: CharacterString [0..1]

validFrom: DateTime

validTo: DateTime [0..1]

includesAnimal: FarmAnimalSpecies [0..*]

<<voidable, lifeCycleInfo>>

beginLifespanVersion: DateTime

endLifespanVersion: DateTime [0..1]

N Figure B.19: Modeling multilevel Facilities Management - Meta-level @2
for agricultural facilities.

116 Appendix B. Complete models of Multilevel Modeling Chapter

N Figure B.20: INSPIRE Production and Industrial Facilities,
from https://inspire.ec.europa.eu/data-model/approved/r4618-ir/
html/index.htm?goto=2:3:15:1:8641

https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:3:15:1:8641
https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:3:15:1:8641

117

@2

1..*

:parent

:children

1..*

:parent

:children

1..*

:parent

:children

1..*

:parent

:children

1..*

:parent

:children

ProductionSite: ComplexFacility

inspireId: Identifier

thematicId: ThematicIdentifier [0..1]

geometry: GM_Multisurface [0..1] {redefines geometry}

function: Function [1..*]

<<voidable>>

name: CharacterString [0..1]

validFrom: DateTime

validTo: DateTime [0..1]

<<voidable, lifeCycleInfo>>

beginLifespanVersion: DateTime

endLifespanVersion: DateTime [0..1]

<<voidable>>

sitePlan: DocumentCitation [0..1]

description: CharacterString [0..1]

status: StatusType [0..1]

ProductionFacility: ComplexFacility

inspireId: Identifier

thematicId: ThematicIdentifier [0..1]

geometry: GM_Surface [0..1] {redefines geometry}

function: Function [1..*]

riverBasinDistrict: RiverBasinDistricValue [0..1]

<<voidable>>

name: CharacterString [0..1]

validFrom: DateTime

validTo: DateTime [0..1]

<<voidable, lifeCycleInfo>>

beginLifespanVersion: DateTime

endLifespanVersion: DateTime [0..1]

<<voidable>>

status: StatusType [0..1]

ProductionBuilding: SimpleFacility

inspireId: Identifier

thematicId: ThematicIdentifier [0..*]

geometry: GM_Object [0..1]

function: Function [1..*]

<<voidable>>

name: CharacterString [0..1]

validFrom: DateTime

validTo: DateTime [0..1]

<<voidable, lifeCycleInfo>>

beginLifespanVersion: DateTime

endLifespanVersion: DateTime [0..1]

<<voidable>>

typeOfBuilding: TypeOfProductionBuildingValue [0..1]

status: StatusType [0..1]

ProductionPlot: SimpleFacility

inspireId: Identifier

thematicId: ThematicIdentifier [0..1]

geometry: GM_Surface [0..1] {redefines geometry}

function: Function [1..*]

<<voidable>>

name: CharacterString [0..1]

validFrom: DateTime

validTo: DateTime [0..1]

<<voidable, lifeCycleInfo>>

beginLifespanVersion: DateTime

endLifespanVersion: DateTime [0..1]

<<voidable>>

status: StatusType [0..1]

ProductionInstallation: ComplexFacility

inspireId: Identifier

thematicId: ThematicIdentifier [0..1]

geometry: GM_Surface [0..1] {redefines geometry}

function: Function [1..*]

pointGeometry: GM_Point [0..1]

<<voidable>>

name: CharacterString [0..1]

validFrom: DateTime

validTo: DateTime [0..1]

<<voidable, lifeCycleInfo>>

beginLifespanVersion: DateTime

endLifespanVersion: DateTime [0..1]

<<voidable>>

description: CharacterString [0..1]

status: StatusType [0..1]

type: InstallationTypeValue

ProductionInstallationPart: SimpleFacility

inspireId: Identifier

thematicId: ThematicIdentifier [0..*]

geometry: GM_Surface [0..1] {redefines geometry}

function: Function [1..*]

pointGeometry: GM_Point [0..1]

<<voidable>>

name: CharacterString [0..1]

validFrom: DateTime

validTo: DateTime [0..1]

<<voidable, lifeCycleInfo>>

beginLifespanVersion: DateTime

endLifespanVersion: DateTime [0..1]

<<voidable>>

description: CharacterString [0..1]

status: StatusType [0..1]

type: InstallationPartTypeValue

technique: PollutionAbatementTechniqueValue

N Figure B.21: Modeling multilevel Facilities Management - Meta-level @2
for production and industrial facilities.

118 Appendix B. Complete models of Multilevel Modeling Chapter

N Figure B.22: INSPIRE Buildings Base and Core 2D, from
https://inspire.ec.europa.eu/data-model/approved/r4618-ir/
html/index.htm?goto=2:3:2:2:7911

https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:3:2:2:7911
https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:3:2:2:7911

119

@3

1..*

:parent :children

AbstractConstruction: ActivityComplex

inspireId: Identifier

thematicId: ThematicIdentifier [0..1]

geometry: GM_Object

function: Function [1..*]

<<voidable>>

name: GeographicalName [0..*] {redefines name}

validFrom: DateTime

validTo: DateTime [0..1]

<<voidable, lifeCycleInfo>>

beginLifespanVersion: DateTime

endLifespanVersion: DateTime [0..1]

<<voidable>>

conditionOfConstruction: ConditionOfConstructionValue

dateOfConstruction: DateOfEvent [0..1]

dateOfDemolition: DateOfEvent [0..1]

dateOfRenovation: DateOfEvent [0..1]

elevation: Elevation [0..*]

heightAboveGround: HeightAboveGround [0..*]

Building: ComplexFacility BuildingPart: SimpleFacility

AbstractBuilding: Facility

<<voidable>>

buildingNature: BuildingNatureValue [0..*]

currentUse: CurrentUse [0..*]

numberOfDwellings: Integer [0..1]

numberOfBuildingUnits: Integer [0..1]

numberOfFloorsAboveGround: Integer [0..1]

N Figure B.23: Modeling multilevel Facilities Management - Meta-level @3
for building facilities.

@2

1..*

:parent :children

1

geometry2D1

1

geometry2D1..*

BuildingGeometry2D: SpatialEntity

geometry: GM_Object

referenceGeometry: Boolean

horizontalGeometryReference: HorizontalGeometryReferenceValue

verticalGeometryReference: ElevationReferenceValue [0..1]

<<voidable>>

horizontalGeometryEstimatedAccuracy: Length

verticalGeometryEstimatedAccuracy: Length [0..1]

Building2D: Building BuildingPart2D:
BuildingPart

N Figure B.24: Modeling multilevel Facilities Management - Meta-level @2
for building facilities.

120 Appendix B. Complete models of Multilevel Modeling Chapter

Bibliography

[ACL+19] Suilen Hernández Alvarado, Alejandro Cortiñas, Miguel R. Luaces, Oscar
Pedreira, and Ángeles Saavedra Places. A domain specific language for
web-based GIS. In Procs. of the 15th International Conference on Web
Information Systems and Technologies (WEBIST 2019), pages 462–469.
ScitePress, 2019.

[ACL+20] S. H. Alvarado, A. Cortiñas, M. R. Luaces, O. Pedreira, and A. S. Places.
Developing web-based geographic information systems with a dsl: Proposal
and case study. Journal of Web Engineering, 19:167–194, 2020.

[ADH+89] Hiralal Agrawal, Richard DeMillo, R_ Hathaway, William Hsu, Wynne
Hsu, Edward Krauser, Rhonda J. Martin, Aditya Mathur, and Eugene
Spafford. Design of mutant operators for the C programming language.
Technical report, Technical Report SERC-TR-41-P, Software Engineering
Research Center, Department of Computer Science, Purdue University,
Indiana, 1989.

[AHJK+14] Samir Al-Hilank, Martin Jung, Detlef Kips, Dirk Husemann, and Michael
Philippsen. Using multi level-modeling techniques for managing mapping
information. In Procs. of International Workshop on Muli-Level modelling
(MULTI’14) - MODELS Workshops, 2014.

[AK01] Colin Atkinson and Thomas Kühne. The Essence of Multilevel
Metamodeling. In International Conference on the Unified Modeling
Language, pages 19–33. Springer, 2001.

[AK02] Colin Atkinson and Thomas Kühne. Rearchitecting the uml infrastructure.
ACM Trans. Model. Comput. Simul., 12(4):290–321, October 2002.

[AK03] C. Atkinson and T. Kuhne. Model-driven development: a metamodeling
foundation. IEEE Software, 20(5), September 2003.

[AK08] Colin Atkinson and Thomas Kühne. Reducing accidental complexity in
domain models. Software & Systems Modeling, 7(3), July 2008.

[Atk97] C. Atkinson. Meta-modelling for distributed object environments. In
Proceedings First International Enterprise Distributed Object Computing
Workshop, pages 90–101, 1997.

121

122 Bibliography

[BCW17a] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-driven
software engineering in practice. Synthesis lectures on software engineering,
3(1):1–207, 2017.

[BCW17b] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-driven
software engineering in practice. Synthesis Lectures on Software
Engineering, 1(1):1–182, 2017.

[BCW17c] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven
Software Engineering in Practice: Second Edition. Morgan & Claypool
Publishers, March 2017.

[Ben17] Björn Benner. A multi-level approach for model-based user interface
development. In Procs. of 4th International Workshop on Muli-Level
modelling (MULTI’17) - MODELS Workshops, 2017.

[BSRC10a] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. Automated
analysis of feature models 20 years later: A literature review. Information
Systems, 35(6):615–636, 2010.

[BSRC10b] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. Automated
analysis of feature models 20 years later: A literature review. Information
systems, 35(6):615–636, 2010.

[Bud80] Timothy Alan Budd. Mutation Analysis of Program Test Data. PhD thesis,
Yale University, New Haven, CT, USA, 1980.

[BW06a] Bartosz Bogacki and Bartosz Walter. Aspect-oriented Response Injection:
an Alternative to Classical Mutation Testing. In Software Engineering
Techniques: Design for Quality, pages 273–282. Springer, Boston, MA,
2006.

[BW06b] Bartosz Bogacki and Bartosz Walter. Evaluation of Test Code Quality with
Aspect-Oriented Mutations. In Extreme Programming and Agile Processes
in Software Engineering, pages 202–204. Springer, Berlin, Heidelberg, June
2006.

[BZR16] Maicon Bernardino, Avelino F Zorzo, and Elder M Rodrigues. Canopus:
A domain-specific language for modeling performance testing. In Procs. of
the IEEE International Conference on Software Testing, Verification and
Validation (ICST 2016), pages 157–167. IEEE, 2016.

[CLP+17] Alejandro Cortiñas, Miguel R Luaces, Oscar Pedreira, Ángeles S Places, and
Jennifer Pérez. Web-based geographic information systems sple: Domain
analysis and experience report. In Procs. of the 21st International Systems
and Software Product Line Conference-Volume A, pages 190–194. ACM,
2017.

[CLPP17] Alejandro Cortiñas, Miguel R Luaces, Oscar Pedreira, and Ángeles S
Places. Scaffolding and in-browser generation of web-based gis applications
in a spl tool. In Procs. of the 21st International Systems and Software
Product Line Conference-Volume B, pages 46–49. ACM, 2017.

[CN15] P Clements and L Northrop. Software product lines: Practices and patterns:
Practices and patterns, 2015.

Bibliography 123

[CNM18] Pablo C. Cañizares, Alberto Núñez, and Mercedes G. Merayo. Mutomvo:
Mutation testing framework for simulated cloud and hpc environments.
Journal of Systems and Software, 143:187 – 207, 2018.

[Der06] Anna Derezińska. Advanced mutation operators applicable in C# programs.
In Software Engineering Techniques: Design for Quality, pages 283–288.
Springer, 2006.

[DH14] Anna Derezińska and Konrad Ha\las. Analysis of mutation operators for the
python language. In Proceedings of the Ninth International Conference on
Dependability and Complex Systems DepCoS-RELCOMEX. June 30–July
4, 2014, Brunów, Poland, pages 155–164. Springer, 2014.

[dLG10] Juan de Lara and Esther Guerra. Deep meta-modelling with metadepth.
In Jan Vitek, editor, Objects, Models, Components, Patterns, pages 1–20,
Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[dLGC14] Juan de Lara, Esther Guerra, and Jesús Sánchez Cuadrado. When and
How to Use Multilevel Modelling. ACM Trans. Softw. Eng. Methodol.,
24(2):12:1–12:46, December 2014.

[DLS78] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on Test Data
Selection: Help for the Practicing Programmer. volume 11, pages 34–41,
April 1978.

[DOAM17] Lin Deng, Jeff Offutt, Paul Ammann, and Nariman Mirzaei. Mutation
operators for testing android apps. Information and Software Technology,
81:154–168, 2017.

[DPMBDJ+15] Pedro Delgado-Pérez, Inmaculada Medina-Bulo, Juan José Domínguez-
Jiménez, Antonio García-Domínguez, and Francisco Palomo-Lozano. Class
mutation operators for C++ object-oriented systems. volume 70, pages
137–148, 2015.

[DSDS16] Luís Moreira De Sousa and Alberto Rodrigues Da Silva. A domain specific
language for spatial simulation scenarios. GeoInformatica, 20(1):117–149,
2016.

[Fow10] Martin Fowler. Domain-specific languages. Pearson Education, 2010.
[Fra13] Ulrich Frank. Domain-specific modeling languages: Requirements analysis

and design guidelines. In Reinhartz-Berger I., Sturm A., Clark T., Cohen
S., and Bettin J., editors, Domain Engineering. Springer, 2013.

[Fra16] Ulrich Frank. Designing models and systems to support it management:
A case for multilevel modeling. In Procs. of 2nd International Workshop
on Muli-Level modelling (MULTI’16) - MODELS Workshops, 2016.

[Fra18] Ulrich Frank. Toward a unified conception of multi-level modelling:
advanced requirements. In Procs. of the 5th International Workshop on
Multi-level Modelling (MULTI’2018), pages 718–727, 2018.

[FRM13] Fabiano Cutigi Ferrari, Awais Rashid, and José Carlos Maldonado. Towards
the practical mutation testing of aspectj programs. Science of Computer
Programming, 78(9):1639 – 1662, 2013.

124 Bibliography

[G9̈4] Ralf Hartmut Güting. Graphdb: Modeling and querying graphs in
databases. In Proceedings of the 20th International Conference on Very
Large Data Bases, VLDB ’94, page 297–308, San Francisco, CA, USA,
1994. Morgan Kaufmann Publishers Inc.

[Inta] International Organization for Standardization. Iso 19107:2003 - geographic
information: Spatial schema. https://www.iso.org/standard/26012.html.
visited on 2019-07-02.

[Intb] International Organization for Standardization. Iso 19119:2016 - geographic
information: Services. https://www.iso.org/standard/59221.html. visited
on 2019-07-02.

[Intc] International Organization for Standardization. Iso 19125:2004 - geographic
information — simple feature access — part 1: Common architecture.
https://www.iso.org/standard/40114.html. visited on 2020-06-21.

[IPT+07] Sean A. Irvine, Tin Pavlinic, Leonard Trigg, John G. Cleary, Stuart Inglis,
and Mark Utting. Jumble java byte code to measure the effectiveness of
unit tests. In Testing: Academic and industrial conference practice and
research techniques-MUTATION, 2007. TAICPART-MUTATION 2007,
pages 169–175. IEEE, 2007.

[JFD+13] Lisboa-Filho J., Nalon F.R., Peixoto D.A., Sampaio G.B., and
de Vasconcelos Borges K.A. Domain and model driven geographic database
design. In Reinhartz-Berger I., Sturm A., Clark T., Cohen S., and Bettin
J., editors, Domain Engineering. Springer, 2013.

[JH11] Yue Jia and Mark Harman. An analysis and survey of the development of
mutation testing. volume 37, pages 649–678, 2011.

[JSK11] Rene Just, Franz Schweiggert, and Gregory M. Kapfhammer. MAJOR:
An efficient and extensible tool for mutation analysis in a Java compiler.
In Proceedings of the 2011 26th IEEE/ACM International Conference on
Automated Software Engineering, pages 612–615. IEEE Computer Society,
2011.

[Jus14] René Just. The Major Mutation Framework: Efficient and Scalable
Mutation Analysis for Java. In Proceedings of the 2014 International
Symposium on Software Testing and Analysis, ISSTA 2014, pages 433–436,
New York, NY, USA, 2014. ACM.

[KBM16] Tomaž Kosar, Sudev Bohra, and Marjan Mernik. Domain-specific
languages: A systematic mapping study. Information and Software
Technology, 71:77–91, 2016.

[KCH+90] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and
A. Spencer Peterson. Feature-oriented domain analysis (foda) feasibility
study. Technical report, Carnegie-Mellon University - Software Engineering
Institute, 1990.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming.
In ECOOP’97 — Object-Oriented Programming, pages 220–242. Springer,
Berlin, Heidelberg, June 1997.

Bibliography 125

[Kut16] Tatjana Kutzner. Geospatial Data Modelling and Model-driven
Transformation of Geospatial Data based on UML Profiles. PhD thesis,
Technical University of Munich, 2016.

[LFSNdVB10] Jugurta Lisboa-Filho, Gustavo Breder Sampaio, Filipe Ribeiro Nalon,
and Karla A. de V. Borges. A uml profile for conceptual modeling in
gis domain. In Procs. of DE Workshop at International Conference on
Advanced Information Systems Engineering (CAISE 2010), pages 18–31,
2010.

[LK11] Steven Lolong and Achmad I Kistijantoro. Domain specific language (dsl)
development for desktop-based database application generator. In Procs.
of the International Conference on Electrical Engineering and Informatics,
pages 1–6. IEEE, 2011.

[LVBT+17] Mario Linares-Vásquez, Gabriele Bavota, Michele Tufano, Kevin Moran,
Massimiliano Di Penta, Christopher Vendome, Carlos Bernal-Cárdenas,
and Denys Poshyvanyk. Enabling mutation testing for android apps. In
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, pages 233–244, 2017.

[MHS05] Marjan Mernik, Jan Heering, and Anthony M Sloane. When and how
to develop domain-specific languages. ACM Computing Surveys (CSUR),
37(4):316–344, 2005.

[MO05a] Yu-Seung Ma and Jeff Offutt. Description of class mutation operators for
java. Electronics and Telecommunications Research Institute, Korea, Tech.
Rep., 2005.

[MO05b] Yu-Seung Ma and Jeff Offutt. Description of method-level mutation
operators for java. Electronics and Telecommunications Research Institute,
Korea, Tech. Rep., 2005.

[MOK05] Yu-Seung Ma, Jeff Offutt, and Yong Rae Kwon. MuJava: An automated
class mutation system. volume 15, pages 97–133, 2005.

[MOK06] Yu-Seung Ma, Jeff Offutt, and Yong-Rae Kwon. MuJava: A Mutation
System for Java. In Proceedings of the 28th International Conference on
Software Engineering, ICSE ’06, pages 827–830, New York, NY, USA, 2006.
ACM.

[MR10] L. Madeyski and N. Radyk. Judy - a mutation testing tool for java.
volume 4, pages 32–42, February 2010.

[MU12] Pedro Reales Mateo and Macario Polo Usaola. Bacterio: Java mutation
testing tool: A framework to evaluate quality of tests cases. In 28th IEEE
International Conference on Software Maintenance, (ICSM 2012), pages
646–649, 2012.

[NN17] Damir Nesic and Mattias Nyberg. Applying multi-level modeling to data
integration in product line engineering. In Procs. of 4th International
Workshop on Muli-Level modelling (MULTI’17) - MODELS Workshops,
2017.

126 Bibliography

[NWH+15] Jay Nanavati, Fan Wu, Mark Harman, Yue Jia, and Jens Krinke. Mutation
testing of memory-related operators. In 2015 IEEE Eighth International
Conference on Software Testing, Verification and Validation Workshops
(ICSTW), pages 1–10. IEEE, 2015.

[OLR+96] A. Jefferson Offutt, Ammei Lee, Gregg Rothermel, Roland H. Untch,
and Christian Zapf. An experimental determination of sufficient mutant
operators. volume 5, pages 99–118, 1996.

[PM07a] Oscar Pastor and Juan Carlos Molina. Model-driven architecture in practice:
a software production environment based on conceptual modeling. Springer,
2007.

[PM07b] Oscar Pastor and Juan Carlos Molina. Model-Driven Architecture in
Practice: A Software Production Environment Based on Conceptual
Modeling. Springer, 2007.

[Pol14] Macario Polo. Using aspect-oriented programming for mutation testing
of third-party components. In CIBSE 2014: Proceedings of the 17th
Ibero-American Conference Software Engineering, pages 247–260, 01 2014.

[PURT21] Macario Polo-Usaola and Isyed Rodríguez-Trujillo. Analysing the
combination of cost reduction techniques in android mutation testing.
Software Testing, Verification and Reliability, page e1769, 2021.

[RDIR19] M. T. Rossi, M. De Sanctis, L. Iovino, and A. Rutle. A multilevel
modelling approach for tourism flows detection. In 2019 ACM/IEEE
22nd International Conference on Model Driven Engineering Languages
and Systems Companion (MODELS-C), pages 103–112. IEEE Press, 2019.

[RP14] Moisés Rodríguez and Mario Piattini. Software product quality evaluation
using ISO/IEC 25000. ERCIM News, 2014(99), 2014.

[RRD+18] Alejandro Rodríguez, Adrian Rutle, Francisco Durán, Lars Michael
Kristensen, and Fernando Macías. Multilevel modelling of coloured petri
nets. In Procs. of 5th International Workshop on Muli-Level modelling
(MULTI’18) - MODELS Workshops, 2018.

[SA20] Ahmad A. Saifan and Adnan Alzyoud. Mutation testing to evaluate
android applications. International Journal of Open Source Software and
Processes (IJOSSP), 11:23–40, 2020.

[Seb16] Robert W. Sebesta. Concepts of Programming Languages. Pearson, 2016.
[SHTB07] Pierre-Yves Schobbens, Patrick Heymans, Jean-Christophe Trigaux, and

Yves Bontemps. Generic semantics of feature diagrams. Computer Networks,
51(2):456–479, 2007.

[SN14] Iman Saleh and Khaled Nagi. Hadoopmutator: A cloud-based mutation
testing framework. In Procs. of the ICSR 2015: International Conference
on Software Reuse for Dynamic Systems in the Cloud and Beyond, pages
172–187, Cham, 2014. Springer International Publishing.

[SNF10] Gustavo Breder Sampaio, Filipe Ribeiro Nalon, and Jugurta Lisboa Filho.
Geoprofile - UML profile for conceptual modeling of geographic databases.

Bibliography 127

In Procs. of the 12th International Conference on Enterprise Information
Systems (ICEIS 2010), pages 409–412, 2010.

[SZ09a] Hossain Shahriar and Mohammad Zulkernine. Mutec: Mutation-based
testing of cross site scripting. In Proceedings of the 2009 ICSE Workshop
on Software Engineering for Secure Systems, pages 47–53. IEEE Computer
Society, 2009.

[SZ09b] Mark Strembeck and Uwe Zdun. An approach for the systematic
development of domain-specific languages. Software: Practice and
Experience, 39(15):1253–1292, 2009.

[TA19] Bedir Tekinerdogan and Ethem Arkin. Pardsl: a domain-specific language
framework for supporting deployment of parallel algorithms. Software &
Systems Modeling, 18(5):2907–2935, 2019.

[Thea] The Open Geospatial Consortium. OpenGIS Simple Feature Access - Part
1: Common Architecture. http://www.opengeospatial.org/standards/sfa.
visited on 2020-06-21.

[Theb] The Open Geospatial Consortium. OpenGIS Web Feature Service 2.0
Interface Standard. http://www.opengeospatial.org/standards/wfs. visited
on 2019-07-02.

[Thec] The Open Geospatial Consortium. OpenGIS Web Map Server Implementa-
tion Specification. http://www.opengeospatial.org/standards/wms. visited
on 2019-07-02.

[Tom69] R.F. Tomlinson. A geographic information system for regional planning.
Journal of Geography, 78(1):45–48, 1969.

[TSCDLR07] Javier Tuya, Ma José Suárez-Cabal, and Claudio De La Riva. Mutating
database queries. Information and Software Technology, 49(4):398–417,
2007.

[URRH17] M. P. Usaola, G. Rojas, I. Rodríguez, and S. Hernández. An Architecture
for the Development of Mutation Operators. In 2017 IEEE International
Conference on Software Testing, Verification and Validation Workshops
(ICSTW), pages 143–148, March 2017.

[VBD+19] Markus Völter, Sebastian Benz, Christian Dietrich, Birgit Engelmann, Mats
Helander, Lennart CL Kats, Eelco Visser, and Guido Wachsmuth. Dsl
engineering-designing, implementing and using domain-specific languages.
2013. URL: http://voelter. de/dslbook/markusvoelter-dslengineering-1.0.
pdf, http://dslbook. org, 2019.

[VDE+] Markus Völter, Christian Dietrich, Birgit Engelmann, Mats Helander,
Lennart Kats, and Eelco Visser. Wachsmuth. 2013. dsl engineering:
Designing, implementing and using domain-specific languages.

[WD04] Michael F Worboys and Matt Duckham. GIS: a computing perspective.
CRC press, 2004.

[WNH+17] Fan Wu, Jay Nanavati, Mark Harman, Yue Jia, and Jens Krinke. Memory
mutation testing. Information and Software Technology, 81:97 – 111, 2017.

128 Bibliography

[Woo93] Martin R Woodward. Mutation testing—its origin and evolution.
Information and Software Technology, 35(3):163–169, 1993.

[ZF09] C. Zhou and P. Frankl. Mutation testing for java database applications.
In 2009 International Conference on Software Testing Verification and
Validation, pages 396–405, 2009.

	Introduction
	Motivation
	Contributions
	Thesis Outline

	Background and state of the art
	An overview of GIS
	GIS Architecture
	GIS Technologies

	Model-driven software engineering and Donamin Specific Languages
	Automated Testing
	Developing GIS with SPL

	A Domain Specific Language for Web-based GIS
	Background and Related Work
	A Domain-specific Language for Web GIS
	GIS Architecture and Main Constructs
	GIS-DSL
	CREATE GIS and USE sentence
	CREATE ENTITY sentence
	CREATE LAYER sentence
	CREATE MAP sentence
	GENERATE GIS sentence

	Use Example
	Administrative office
	Point of interest

	Implementation of the DSL
	GIS-DSL Parser
	Code Generation Engine
	Generated Code

	Case Study and Evaluation
	Sample Project 1: Points of Interest
	Sample Project 2: Local Civil Infrastructure Management
	Results

	Conclusions

	Multilevel Modeling of Geographic Information Systems
	Background and Related Work
	Multilevel modeling and its applications
	Applications of MDE to GIS

	Conceptualizing GIS with a Multilevel Modelling Approach
	Multilevel notation and patterns
	Bridging the gap between conceptual and implementation standards in GIS
	Overview
	Multilevel modeling solution
	Discussion

	Ensuring interoperability in spatial data infrastructures
	Overview
	Multilevel modeling solution
	Discussion

	Modeling common GIS structures
	Overview
	Multilevel modeling solution
	Discussion

	Using common structures in unrelated domains
	Overview
	Multilevel modeling solution
	Discussion

	Discussion and evaluation
	Conclusions

	Mutation Testing for Geographic Information Systems
	Fundamentals concepts
	Mutation
	Mutation Operator
	Aspect-Oriented Programming
	Mutation Operators with Aspects

	A collection of mutation operators for GIS
	Operators on connectivity between user interface and service layer
	ChangeCoordSys:
	ExpandVisualRange:
	WMSDoesntRespond:
	CostlyWFS:

	Internal processing errors
	BooleanPolygonConstraint
	RESTToGeometry:

	Interaction with the spatial database:
	CantConnectPostgreSQL:
	ForceQueryTimeout:

	Mutation operator generation process
	Application examples
	Land Reparcelling App
	Interest Point App

	Conclusions

	Conclusions and Future Work
	Publications and other research results
	Complete models of Multilevel Modeling Chapter
	Bibliography

