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Filtration of biopolymer PHB particles loaded with synthetic musks does 
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A B S T R A C T   

The role of the biopolymer polyhydroxybutyrate (PHB, <250 µm) as a vehicle of a synthetic musks mixture 
(celestolide, galaxolide, tonalide, musk xylene, musk moskene and musk ketone) to Mytilus galloprovincialis was 
investigated. For 30 days, virgin PHB, virgin PHB+musks (6.82 µg g-1) and weathered PHB+musks, were daily 
spiked into tanks containing mussels, followed by a 10-day depuration period. Water and tissues samples were 
collected to measure exposure concentrations and accumulation in tissues. Mussels were able to actively filter 
microplastics in suspension but the concentration of the musks found in tissues (celestolide, galaxolide, tonalide) 
were markedly lower than the spiked concentration. Estimated Trophic Transfer Factors suggest that PHB will 
only play a minor role on musks accumulation in marine mussels, even if our results suggest a slightly extended 
persistence in tissues of musks loaded to weathered PHB.   

1. Introduction 

Nowadays, submillimetre plastic particles termed microplastics (MP) 
are one of the main environmental concerns for marine, freshwater and 
terrestrial ecosystems (Huerta Lwanga et al., 2016). Ingestion of those 
particles was proposed as a mechanism to concentrate and transfer hy-
drophobic organic compounds (HOC) to aquatic organisms otherwise 
scarcely bioavailable due to their low water solubility (Andrady, 2011). 
Despite thermodynamic constraints (Gouin et al., 2011), MPs were 
assumed to transfer sorbed HOC to the tissues of the organisms during 
gut passage time (Bakir et al., 2014). The HOC-vector hypothesis 
currently achieved the status of paradigm, although empirical testing 
has shown contrasting results (reviewed by Tourinho et al., 2019), with 
studies supporting increased availability of HOCs in presence of MP 
(Bellas and Gil, 2020; Besseling et al., 2013; Browne et al., 2013; Oli-
veira et al., 2013), lack of relevant effects (Almeda et al., 2021; Beiras 
and Tato, 2019; Herzke et al., 2016; Horton et al., 2018; Koelmans et al., 
2016; Lohmann, 2017; Ziccardi et al., 2016) and reduced bioavailability 
in presence of MP (Beckingham and Ghosh, 2017; Beiras et al., 2019; 
Rehse et al., 2018). 

The desorption kinetics of HOC from the hydrophobic matrix of 
polymers depends on diffusivity of the chemical within the polymeric 

matrix (intraparticle diffusion) and aqueous boundary layer diffusion 
(Endo et al., 2013; Seidensticker et al., 2017). Therefore, desorption 
depends on multiple properties of the sorbent (polymer crystallinity, 
particle size, surface properties) and the sorbate (molecular volume, 
Kow), which may help to explain contrasting experimental results. In the 
present study, we used the biodegradable plastic polyhydroxybutyrate 
(PHB) and as models HOCs, the most common synthetic musks. 

Synthetic musks are used as fragrance additives in a wide range of 
scented consumer goods, such as personal care (e.g., perfumes, soaps, 
deodorants, shampoo) and household products (e.g., air fresheners, 
cleaning agents or detergents). Among the predominant compounds in 
these products are the polycyclic musks (galaxolide - HHCB and tonalide 
- AHTN), macrocyclic musks and nitromusks (musk ketone -MK and 
musk xylene - MX) (Nakata et al., 2007; Rimkus, 1999). Since they were 
first reported in aquatic environment (Yamagishi et al., 1981), synthetic 
musks have been widely reported in environmental matrixes (Gate-
rmann et al., 1999; Nakata et al., 2007; Schlumpf et al., 2010; Yamagishi 
et al., 1983) and frequently associated with wastewater discharges 
(Chase et al., 2012; Homem et al., 2015; Peck and Hornbuckle, 2004; 
Stevens et al., 2003). Synthetic musks have been detected in waters 
(typically ng L-1) of all continents, including surface waters, ground-
water, and even in the Antarctic region, with special mention to the 
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polycyclic musk galaxolide, considered an ubiquitous contaminant, 
which has been detected in a broad range of water samples. These 
compounds are only partially biodegradable, so they are not eliminated 
by wastewater treatment plants (WWTPs) (Celeiro et al., 2019; 
Montes-Grajales et al., 2017). Moreover, these substances were found to 
potentially cause deleterious effects and act as endocrine disruptors 
(Luckenbach and Epel, 2005; Parolini et al., 2015; Van Der Burg et al., 
2008) being, therefore, extremely important to understand their bio-
accumulation patterns in biota. 

Hence, this study aims to understand the role of a MP, in this case 
PHB, as a vector of synthetic fragrances to Mytilus galloprovincialis ma-
rine mussel, which is widely used in experiments that follow the same 
premises (Álvarez-Ruiz et al., 2021; Pittura et al., 2018) as well as an 
ubiquitous environmental monitoring species (Beiras et al., 2003; Picot 
Groz et al., 2014; Salgueiro-González et al., 2016; Vidal-Liñán et al., 
2018). Besides, the biopolymer PHB has been lately found to cause 
deleterious effects to aquatic biota (Beiras et al., 2021; González-Pleiter 
et al., 2019; Magara et al., 2019; Straub et al., 2017). Nevertheless, no 
data are available on the potential of PHB to act as a vector of substances 
to marine biota. 

2. Material and methods 

2.1. Experimental solutions and materials 

Non additives resins of PHB were produced by extrusion following 
common industrial procedures by the Plastics Technology Centre AIM-
PLAS (Spain), ground by means of an ultracentrifuge mill (ZM200, 
Retsch), and sieved to particle size < 250 µm. To test the potential effect 
of environmental weathering, PHB in powder form, in 12 cm diameter 
petri dishes, was weathered for 9 months in a low-cost pilot system 
under standardized, controlled conditions simulating dry environments. 
The system was designed to simulate solar irradiation at medium lati-
tude, exposed to two HQI-TS 2510 W/NDL metal-halide bulbs in 
zenithal and ground level positions (illuminance: 12,200 lumen/m2, 
irradiance on air 60 ×10–2 W/m2). The content of each Petri dish was 
mixed every day and the locations of the dishes were interchanged each 
three days. More specific details are presented elsewhere (Andrade et al., 
2019). Aliquots of these setups were withdrawn each fortnight to 
monitor weathering through FTIR spectroscopy and SEM microscopy. 
FTIR measurements were done using a 400 FT-IR/FT-NIR PerkinElmer 
Spectrometer (4000–650 cm-1, 4 cm-1 nominal resolution, Beer-Norton 
strong apodization, 50 scans per spectrum, background-, 
depth-penetration- and baseline-corrected) equipped with a horizontal 
one-bounce diamond crystal (Miracle ATR, Pike). SEM microscopy was 
done by means of a JEOL JSM 6400 device, after coating the PHB par-
ticles surface with a layer of gold. Comparisons among the surface tex-
tures of virgin and weathered PHB were done. Further characterization 
of virgin and weathered MPs can be found in supplementary material, 
with spectral profile of MPs (Fig. S1) and SEM microscopy images 
(Fig. S2) that indicate chemical and physical changes during the 
weathering process. 

A stock standard solution of musks mixture (celestolide (ADBI), 
galaxolide (HHCB), tonalide (AHTN), musk xylene (MX), musk moskene 
(MM) and musk ketone (MK)) containing 1000 µg mL-1 of each sub-
stance, deuterated tonalide-d3 (100 µg mL-1) and musk xylene-d15 (100 
µg mL-1) in acetone were purchased from Techno Spec (Barcelona, 
Spain). Stock solutions of musks mixture (100 µg mL-1) and AHTN-d3 
and MX-d15 (20 µg mL-1) were prepared in methanol. The first solu-
tion was used for the experimental assay while the last two were used for 
chemical analysis. Standard working solutions at different concentra-
tions levels were prepared in ethyl acetate. All stock solutions were 
stored in the dark at − 4ºC. 

To obtain the fragrance-spiked samples, 11 g of MPs were accurately 
weighed and spiked with 25 mL of 3 µg mL-1 mixed standard solution 
(6.82 µg g-1), mixing carefully for a few minutes to ensure the 

homogeneity of the spiking. Samples were kept in a dry place during 12 
h until the solvent was completely evaporated. 

2.2. Biological material 

Mussels (Mytilus galloprovincialis) between 35 and 45 mm long were 
collected from a location in the outer part of Ria de Vigo (NW Iberian 
coast) (Vidal-Liñán et al., 2010), cleaned from epibionts, and acclimated 
to incubation conditions in the laboratory for one week prior to exper-
iments. Acclimatization was made in running seawater inside an 
isothermal room at 16ºC in the dark, and mussels were fed as in the 
exposure period (see below). 

2.3. Exposure conditions 

Over 180 mussels were exposed for 30 d to experimental solutions 
containing 1.5 mg L-1 of MPs, followed by a 10 d depuration period. 
Exposure was made in 30 L glass tanks, with 12 mussels per tank and 
three tanks per treatment, using 1 µm filtered seawater (FSW) with 
oceanic characteristics (salinity 34 ± 0.5‰, dissolved oxygen > 90% of 
saturation, DOC 11.5 ± 2.1 μM). Incubations were made at constant 
temperature (16ºC), in darkness. Exposure tanks were continuously 
aerated with 0.22 µm filtered air and were allowed to equilibrate for 1 h 
before introducing the mussels. Water was renewed three times per 
week after mussels feeding for 1 h with a mixed diet of Isochrysis galbana, 
Tetraselmis suecica and Chaetoceros gracilis. 

Mussels were exposed to 3 different treatments virgin PHB, virgin 
PHB + musks and weathered PHB + musks. Tanks were daily spiked 
with a stock solution of 450 mg L-1 MP, with musk concentration of 6.82 
µg g-1, dispersed in FSW and 0.2 mg L-1 Tween-20 (v/v) stock solutions 
to obtain a MPs concentration of 1.5 mg L-1 in seawater. After 30 days of 
exposure, 6 mussels per tank were removed from the tanks for chemical 
analysis of body tissues. The remaining mussels were transferred to 
tanks with clean water, in same conditions as previously described, for 
10 days depuration period, and 6 mussels per tank were later collected 
for chemical analysis. 

2.4. Filtering rates and data treatment 

To record mussel’s filtering rates (FR), a separate experiment was 
conducted, 3 conditions were tested in tanks with 15 L of FSW: virgin 
PHB + musks without mussels (control), and with 6 mussels per tank, 
virgin PHB + musks and weathered PHB + musks. Triplicate samples of 
water were collected immediately after treatments spiking and particle 
density was recorded using a Multisizer 3 Coulter Counter (Beckman). 
The same process was repeated 2 h later. FR (mL min-1) were calculated 
from the reduction of suspended particles in the water according to the 
expression (Beiras and Tato, 2019; Coughlan, 1969): 

FR =
(Ln CCt − Ln  Ct) × V

t  

Where V is the volume of the incubation vessels (mL), t is the incubation 
time (h), Ct is the particle concentrations at the end of the incubation 
period, and Cct is the control particle concentrations at the end of the 
incubation period. 

Also, the concept of Trophic Transfer Factor (TTF), defined as the 
ratio of a substance concentration in an organism’s tissue to its con-
centration in the organism’s food item (DeForest et al., 2007), was used 
to understand substances uptake by mussels from ingested MPs. The 
following equation was used: 

TTF =
(CMt − CMct)

CPHB  

where CMt is the substance concentration in mussels of both PHB 
+ musks treatments, CMct the substance concentration in mussels from 
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the control (virgin PHB treatment) and CPHB the concentration of a 
substance on the spiked MPs. 

2.5. Chemical analysis of seawater 

In order to understand the presence of fragrances in water 
throughout the experiment, water samples (250 mL) were taken prior to 
spiking, after 2 and finally 24 h. Water was filtered through steel filters 
FM 200, with 200 µm pore size (Filter lab) and frozen until analysis. 
Fragrances from seawater samples (spiked with 10 µl of the deuterated 
standards working solution) were extracted by vortex assisted liquid- 
liquid microextraction (VALLME) in an agitation plate Vibrax-VXR by 
IKA (Staufen, Germany) with 1.5 mL of ethyl acetate. 0.5 g of sodium 
chloride salt were added to improve the extraction. The determination 
was performed by gas chromatography tandem mass spectrometry (GC- 
Qq-MS/MS) using a Thermo-Finnigan Trace GC chromatograph and 
coupled to a triple quadrupole mass spectrometer (TSQ Quantum XLS) 
and equipped with a Triplus autosampler and PTV injector. Separation 
was carried out on a DB-XLB column (60 m × 0.25 mm × 0.25 µm) 
(J&W Scientific, Folsom, CA, USA). Recovery percentages of this method 
are between 76% and 100%, with a good precision (RSD <10%) and the 
limit of quantification of the method were 0.03 µg L-1, 0.14 µg L-1, 
0.05 µg L-1, 0.13 µg L-1, 0.01 µg L-1 and 0.01 µg L-1 for celestolide, gal-
axolide, tonalide, musk xylene, musk moskene and musk ketone 
respectively. 

2.6. Chemical analysis of mussel tissues 

Samples of 6 individuals were taken initially, after 30 d exposure, 
and after further 10 d depuration. Soft tissues were dissected, thor-
oughly rinsed with FSW (to eliminate to the best extent particles added 
to tissues) and freeze-dried for analysis. For the analysis of fragrances in 
mussels, 1 g of sample, spiked with 50 µl of the deuterated standards 
working solution, were performed by a QuEChERS (Quick, Easy, Cheap, 
Effective, Rugged, and Safe) extraction method followed by GC-QqQ-MS 
/ MS. The QuEChERS extract tubes were obtained from Agilent Tech-
nologies (Santa Clara, United States). The extraction kit contains 6 g 
MgSO4 and 1.5 g Na Acetate and a dispersive kit contains 400 mg PSA, 
400 mg C18EC and 1200 mg MgSO4. The determination was performed 
using a Thermo-Finnigan Trace GC chromatograph and coupled to a 
triple quadrupole mass spectrometer (TSQ Quantum XLS) and equipped 
with a Triplus autosampler and PTV injector. Separation was carried out 
on a DB-XLB column (60 m × 0.25 mm × 0.25 µm) (J&W Scientific, 
Folsom, CA, USA). Recovery percentages of this method are between 
74% and 120%, with a good precision (RSD <10%) and the limit of 
quantification of the method were 7.60 ng g-1, 3.30 ng g-1, 11.1 ng g-1, 
125 ng g-1, 43.8 ng g-1 and 33.3 ng g-1 for celestolide, galaxolide, tona-
lide, musk xylene, musk moskene and musk ketone respectively. 

3. Results 

Filtering rates recorded show that mussels were able to actively filter 

MP in suspension. After 2 h, particles in suspension decreased in orders 
of 18% in mussels exposed to virgin PHB + musks and 30% in weathered 
PHB + musks. This is reflected on the obtained FRs, 2.0 mL min-1 for 
Virgin PHB + musks and 5.4 mL min-1 for Weathered PHB + musks. 
Despite not being statistically different (t-test, p = 0.075), a 2.7-fold FR 
between treatments suggests the mussel preference for weathered PHB. 

3.1. Synthetic musks in seawater 

Results presented in Table 1 show that only celestolide, galaxolide 
and tonalide were present above their detection limits. The same sub-
stances were detected in FSW (prior to any spiking) at higher mean 
concentrations than those registered after 2 h and 24 h. For the quan-
tified substances at 2 h, celestolide concentrations were the lowest, 
ranging 0.04–0.09 µg L-1 while galaxolide and tonalide were found at 
higher concentrations in all samples ranging 4.44–7.62 and 
11.35–22.80 µg L-1, respectively. After 24 h, tanks with mussels suffered 
a statistically significant decrease in water concentrations when 
compared to the values registered at 2 h (Fig. 1-A). The different con-
ditions tested have direct influence on the decrease of these substances, 
with higher fragrance concentration decrease in tanks with weathered 
PHB (88% for galaxolide and 98% for tonalide) compared with tanks 
with virgin PHB (60% and 89% for galaxolide and tonalide, respec-
tively). On the other hand, water concentrations of the detected musks 
seem to maintain steady throughout the 24 h period in the tank without 
mussels and spiked to Virgin PHB + musks. 

3.2. Fragrances in mussel tissues 

In tissue samples, again only celestolide, galaxolide and tonalide 
were present above limits of quantification (Table 2). Mussels sampled 
from the acclimatized mussel stock shown a galaxolide baseline level of 
24.3 ng g-1 (T0). After 30 days, celestolide was quantified in both PHB 
+ musks treatments while galaxolide and tonalide were ubiquitous 
among all MPs treatments. After the depuration period galaxolide and 
tonalide were still detected in organisms but variations in the concen-
trations are clearly depicted (Fig. 1-B) while celestolide was no longer 
detected. Statistically significant decrease in concentrations of galax-
olide and tonalide, ranging 72% and 80% decrease, in mussels previ-
ously exposed to virgin PHB + musks. Opposing, we observed a minor 
decrease in weathered PHB + musks treatment for galaxolide (5% 
decrease) and tonalide (36%), this last being statistically significant. 
Only a slightly decrease in galaxolide and tonalide concentrations was 
registered in control organisms 8% and 19%, respectively. 

Based on chemical data, TTFs were calculated for treatments with 
both PHB + musks correcting the values by subtracting musk levels 
recorded in control (Table 2). After 30 days exposure values obtained 
were quite low, ranging 0.002–0.005 being very similar among both 
MPs treatments. 

Table 1 
Mean musks concentration in water (µg L-1) obtained after exposure and depuration. nd: not detected.   

Celestolide Galaxolide Tonalide Musk xylene Musk moskene Musk ketone 

Water (µg L-1)       
FSW 0.09 11.0 32.2 nd nd nd 
2 h after spike       
Virgin Phb + Musks 0.09 7.62 22.80 nd nd nd 
Weathered PHB + Musks 0.04 7.29 21.85 nd nd nd 
Virgin Phb + Musks (Without Mussels) nd 4.44 11.35 nd nd nd 
24 h after spike       
Virgin Phb + Musks nd 3.09 2.52 nd nd nd 
Weathered PHB + Musks nd 0.86 0.51 nd nd nd 
Virgin Phb + Musks (Without Mussels) 0.04 6.55 20.28 nd nd nd  
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4. Discussion 

In recent years, plastic debris turned out to be a scientific and social 
concern due to its environmental presence and accumulation in marine 
ecosystems. Despite the great concern, scientific research faces several 
challenges and uncertainties as MP impact depends on the combination 
of several factors like plastic properties, exposure conditions, biological 
parameters or contaminants transported by MP (Lusher et al., 2021). 
This last point is particularly relevant, not only because of additives used 
in plastic formulations but also due to the hydrophobic nature of plastic 
debris which might accumulate other hydrophobic compounds (Engler, 
2012; Rochman, 2015). Using mussel as model species, several labora-
tory studies demonstrated that hydrophobic chemicals sorbed to 
microplastics could be partially transferred to mussel tissues such as 

fluoranthene (Stollberg et al., 2021), pyrene (Avio et al., 2015), benzo 
(a)pyrene (Pittura et al., 2018). Our work indicates that HOC like cel-
estolide (log Kow = 5.7), galaxolide (log Kow = 5.9) and tonalide (log 
kow = 5.7) (Wong et al., 2019; PubChem, 2022) can only be transferred 
from MPs to mussel tissues to a very limited extent, since after 30 
d exposed to MPs spiked at concentrations in the order of 10,000 ng g-1 

the concentration in the mussel tissues was always lower than 
100 ng g-1, as reflected by the markedly lower TTF values (see Table 2). 
This is expected from the thermodynamic preference of HOCs for a 
synthetic hydrophobic matrix such as PHB polymer rather than the 
mussel tissues (Gouin et al., 2011). Some authors mention that is diffi-
cult to differentiate between bioaccumulated and adhered MPs to 
bivalve tissues (Kolandhasamy et al., 2018; Kuehr et al., 2022a). We try 
to avoid this bias by thoroughly rinsing mussel tissues with FSW but is 

Fig. 1. Variation in time of quantified musks concentration. A) Musks concentration (µg L-1) water samples during 24 h period. B) Musks concentration (ng g-1) in 
mussel tissues at the end of bioaccumulation (30 days) and depuration (10 days) periods. Asterisks (*p < 0.05, **p < 0.01, ***p < 0.001,) indicate results of ANOVA 
post-hoc test. 

Table 2 
Mean musks concentration in mussels (ng g-1) and Trophic transfer factor obtained after exposure and depuration. nd: not detected.   

Celestolide Galaxolide Tonalide Musk xylene Musk moskene Musk ketone 

Mussel (ng g-1)       
T0 nd 24.3 nd nd nd nd 
Bioaccumulation (30d)       
Virgin PHB (control) nd 43.60 33.70 nd nd nd 
Virgin PHB + Musks 12.20 75.57 65.57 nd nd nd 
Weathered PHB + Musks 13.40 71.03 70.8 nd nd nd 
Depuration (10d)       
Virgin PHB (control) nd 40.26 27.27 nd nd nd 
Virgin PHB + Musks nd 21.42 12.90 nd nd nd 
Weathered PHB + Musks nd 67.67 45.37 nd nd nd 
Trophic transfer factor (30 d)       
Virgin Phb + Musks 0.002 0.005 0.005 - - - 
Weathered Phb + Musks 0.002 0.004 0.005 - - -  
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not possible to overcome a possible overestimation of musks accumu-
lation due to MPs still retained in intestine. Therefore, these results 
should be carefully interpreted but if some, musks loaded to PHB par-
ticles are only accumulated in tissues to a very limited extent. Moreover, 
some studies, point out that MPs can work as depurators and this way 
decrease levels of HOC in mussels (Granby et al., 2018; Koelmans et al., 
2016; Rios-Fuster et al., 2021), which could partially explain the musks 
concentration below control levels in Virgin PHB+musks treatment 
(Fig. 1-B), after depuration. Although, it is very difficult to corroborate 
this hypothesis with our experimental setup. What seems clear is that 
PHB will only play a minor role on the bioaccumulation of musks in 
marine mussel as assumed by the low TTF values obtained. This shows 
that the use of TTFs, seem in fact, a good option when trying to un-
derstand the role of MPs on the bioaccumulation of HOCs in opposition 
to the classic analysis of variance between the treatments and control in 
common experimental designs. Even if a significance is obtained be-
tween treatment and control, the HOC concentrations quantified in the 
target organism are considerably lower than those to which they were 
exposed. 

Analysis on FSW used throughout the experiment confirmed the 
presence of some musks (Table 1). The water is collected directly from 
the Vigo bay to the laboratory facilities, thus make it impossible to 
control the environmental levels of these substances, which are reported 
to have an ubiquitous presence in coastal environment (Aminot et al., 
2021; Castro et al., 2018; Lee et al., 2014, 2010). Galaxolide and tona-
lide have been reported in marine water samples (Aminot et al., 2019; 
Andresen et al., 2007; Sumner et al., 2010) and galaxolide even reported 
in sediments of Vigo area (León et al., 2020). Therefore, is reasonable to 
assume that previously and/or during the experiment, mussels were 
exposed to these compounds through water, which can explain the levels 
of some musks in control treatment with virgin PHB. Nevertheless, 
chemical analysis shows a decrease of musks concentration, after 2 and 
24 h of the spiking (Table 1), indicating that loaded MPs will not in-
crease the musks concentration in the seawater. Therefore, is reasonable 
to assume that musks concentration observed in mussels of control, after 
30d exposure, are due to the contaminated waterborne exposure while 
on the other treatments, the slightly higher concentrations are also 
explained by the loaded MPs, and thus validating the TTFs obtained. 

It is important to note that mussels seem to have preference to filter 
weathered PHB with a 2.7-fold filtering rate compared to virgin PHB, 
which is in agreement with previous findings on the preference by 
mussels and copepods to ingest weathered MPs (Bråte et al., 2018; 
Vroom et al., 2017). Even if this doesn’t seem to affect musks accumu-
lation by mussels, given by similar musks concentrations after 30 days, 
differences among treatments are then clearly spotted after the 10 days 
depuration period. A significant decrease of musks concentrations in 
mussels exposed to virgin PHB + musks is observed while, on the other 
hand, a low concentration variation observed on the other treatment (no 
decrease for galaxolide and slight decrease for tonalide) might indicate a 
different pattern of musks accumulation from weathered PHB particles. 
Works with freshwater bivalve Corbicula fluminea have shown that vir-
gin micro and nanoparticles would be rapidly egested from the bivalve 
(Kuehr et al., 2022a, 2022b). This might explain the observed results 
with virgin PHB that most likely were rapidly egested and possibly 
indicate that musks levels measured after 30 days could be due to PHB in 
digestive tract. The same pattern might not happen to weathered PHB as 
levels did not rapidly decreased after 10 days. This reinforces the need to 
apply environmentally relevant conditions, as weathering, when making 
experiment with MPs (Beiras and Schönemann, 2020; Pannetier et al., 
2019a, 2019b). 

In conclusion, our results show for the first time the potential role of 
the biopolymer PHB as a vector of highly hydrophobic compounds 
accumulation in mussels although, most likely it will not play an 
important role on the accumulation of synthetic musks in environment. 
Nevertheless, further studies are certainly necessary to be carried out 
with other HOC or other experimental designs as still few information is 

available on this polymer. Moreover, the difference in results obtained 
when using weathered MPs in ecotoxicological assays vs pristine com-
mercial products, is here demonstrated to reinforces the need to use the 
firsts to achieve a greater ecological significance of the findings re-
ported. Finally, the use of the TTFs is suggested to be used in bio-
accumulation experiments of MPs and HOC to properly understand the 
accumulation patterns in target organisms and therefore identify critical 
issues or problematic substances. 
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Andrade, J., Fernández-González, V., López-Mahía, P., Muniategui, S., 2019. A low-cost 
system to simulate environmental microplastic weathering. Mar. Pollut. Bull. 149, 
110663 https://doi.org/10.1016/j.marpolbul.2019.110663. 

Andrady, A.L., 2011. Microplastics in the marine environment. Mar. Pollut. Bull. 62, 
1596–1605. https://doi.org/10.1016/j.marpolbul.2011.05.030. 

Andresen, J.A., Muir, D., Ueno, D., Darling, C., Theobald, N., Bester, K., 2007. Emerging 
pollutants in the North Sea in comparison to Lake Ontario, Canada, data. Environ. 
Toxicol. Chem. 26, 1081–1089. https://doi.org/10.1897/06-416R.1. 
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