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A B S T R A C T   

In the current constantly changing business and economic environment, partners (i.e., individuals and/or en
terprises) create Collaborative Networks to join efforts and undertake new projects together, thus allowing them 
to face business opportunities that would not be possible if attempted by them individually. In this situation, an 
assignment problem arises, since these projects involve the performance of a group of tasks or processes (named 
roles) that have to be distributed among the partners. Specifically, this problem, called the Role-Partner Allo
cation (RPA) problem in Collaborative Networks is a two-sided matching problem with lower and upper quotas 
on the partner’s side, and incomplete and partially ordered preference lists on both sides. A matching problem, 
and thus also the RPA problem, should be solved by a centralized matching scheme. However, allocations in 
Collaborative Networks continue to be mainly created by ad hoc arrangements, which takes a long time and is 
hard work. Looking for a reliable and faster way of distributing roles among partners in a Collaborative Network, 
the existing centralized matching schemes expected to solve the RPA problem (e.g., DA algorithm, SOSM, CA-QL 
algorithm, and EADAM) are studied in this paper, concluding that none of them obtain a matching that properly 
meets the requirement of the RPA problem. Therefore, a new centralized matching scheme to solve the RPA 
problem is proposed, discussed and exemplified.   

1. Introduction 

As defined in Camarinha-Matos, Afsarmanesh, Galeano, and Molina 
(2009), a collaborative network (CN) is a network consisting of a variety 
of entities (e.g., organizations and people) that are largely autonomous, 
geographically distributed, and heterogeneous in terms of their oper
ating environment, culture, social capital, and goals, but that collabo
rate to better achieve common or compatible goals, thus jointly 
generating value, and whose interactions are supported by computer 
network. 

CNs born as a way of facing the significant challenges arising from 
the rapidly changing and ever more globalized business environments 
(Appio, Martini, Massa, & Testa, 2017) that have become increasingly 
volatile, uncertain, complex, and ambiguous (vom Brocke et al., 2018). 
Dealing with the new challenges requires organizations and people to 
increase their flexibility, agility, and speed. To do this, in an inter
connected world thanks to the advances in the information and 

communication technologies (ICT) where the barriers of time and dis
tance disappear, new ways of working and new forms of dividing labor 
arise (Brynjolfsson & McAfee, 2014). ICT have allowed enterprises to 
move from highly data-driven environments to more cooperative 
information/knowledge-driven environments (Camarinha-Matos et al., 
2009). 

In this business atmosphere, CNs have increasingly become a main
stay of business operations (Camarinha-Matos, Fornasiero, Ramezani, & 
Ferrada, 2019; Camarinha-Matos, 2014; Durugbo, 2016). It shows the 
growth trend in enterprises and professionals in seeking joint activities 
to allow them to participate in competitive business opportunities for 
innovative developments. 

In CNs, partners seek to undertake a business opportunity together in 
a given field that would not be possible or would have a higher cost if 
attempted by them individually. Typically, there are one or more ini
tiators—that is the partner who initially detects the business opportu
nity—and one or more partners interested in participating in the project 
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by joining the CN. Usually, the CN initiator configures the project (i.e., it 
decomposes the entire process into sub-processes) and the parties 
interact somehow in order to specify the operational requirements of the 
CN and to create it. Process decomposition is a complex task that can be 
approached in multiple ways. See, for example, Milani, Dumas, Matu
levičius, Ahmed, and Kasela (2016) for detailed information about 
decomposition heuristics, as well as about criteria and associated met
rics to assess the “goodness” of a given decomposition. 

Hence, facing a business opportunity by creating a CN implies un
dertaking a new project that involves the performance of a group of 
processes or activities (here referred to as roles) that have to be 
distributed among the partners, thus an assignment problem arises. As 
indicated in Malaguti and Medina Durán (2019), assignment problems 
are about the best way of assigning a first set of n elements to a second 
set of n elements, where each element of the first set has to be assigned to 
exactly one element of the second set, and vice versa, each element of 
the second set has assigned exactly one element of the first set. When the 
cardinality n of the first set is larger than the cardinality of the second 
set, let us denote it by m, then we are facing a Semi-Assignment problem 
(SAP), where each element i of the first set has to be assigned to exactly 
one element j of the second set, while each element j of the second set 
has assigned a given number qj ≥ 1 of elements of the first. In the CNs 
environment, such first set is the set of n roles and such second set is the 
set of m partners (n ≥ m). As the total number of roles to be assigned 
usually exceeds that of the partners, a SAP arises in most cases. 

In particular, the SAP of allocating roles among partners in a CN is an 
example of the so-called two-sided matching problem (Gale, 2001). 
Following the definition in Abraham, Irving, and Manlove (2007), in this 
type of assignment problems the input entities (in this case, the roles and 
the partners) are partitioned into two disjoint sets (in this case, the set of 
roles and the set of partners), and the aim is to pair elements of one set 
with elements of the other set subject to various criteria such as capacity 
constraints and preference lists. 

The assignment of roles to partners is commonly addressed in real 
life in CNs by negotiation between the partners. This takes a long time 
and is hard work. Partners have to present their arguments (i.e., 
knowledge, capabilities, personal preferences, availability, etc.) and 
discuss the situation in order to reach an agreement regarding the dis
tribution of the roles of the project among them. 

Even if certain information about the partners is stored, the above- 
mentioned process is complex because it implies human beings, each 
one with its own personality, requirements, tastes, etc. In the current 
changing, globalized and competitive business environment, a reliable 
and faster way of assigning roles to partners is required to minimize the 
risk of losing the business opportunity. However, there is no such pro
posal in CNs, where allocations continue to be mainly created by ad hoc 
arrangements. This is despite, as Abraham, Irving, and Manlove (2003) 
indicate, both historical evidence and economic analysis show that 
participants involved in matching problems should not be allowed to 
construct an allocation by approaching one another directly in order to 
make ad hoc arrangements. Instead, the allocation process should be 
automated by means of a centralized matching scheme, which is an al
gorithm to solve a matching problem. A centralized matching scheme 
will greatly contribute to the progress of CNs by solving the SAP of 
distributing roles among partners, since it will allow the process to be 
sped up and simplified, thus preventing the complications that occur 
when constructing an allocation by partners approaching one another 
directly. The SAP to be solved and its core components have been 
formally defined in Andrade-Garda et al. (2018) under the name of Role- 
Partner Allocation (RPA) problem. 

Taking this formal definition into account, we firstly looked for an 
algorithm to solve the RPA problem among the main existing centralized 
matching schemes that had been successfully applied to solve other two- 
sided matching problems. However, as discussed below, the current 
centralized matching schemes do not fulfil the requirements of the RPA 
problem in a comprehensive manner. Thus, they cannot therefore be 

directly applied to solve it. Because of this, it is necessary to propose a 
new scheme (algorithm) for distributing roles among partners in a CN (i. 
e., for solving the RPA problem). 

The remainder of this paper is structured as follows. Section 2 briefly 
presents and discusses the formal definition of the RPA problem and its 
core components. Section 3 analyses the different existing approaches 
expected to solve it, concluding that none of them properly satisfy the 
specified conditions. As a first step towards the definition of the new 
algorithm, Section 4 presents the three main properties that must be 
considered for a matching algorithm, and after which Section 5 presents 
the new algorithm to find a stable matching giving an instance of the 
RPA problem and considering the previous three properties. Section 6 
presents an example to illustrate its applicability and, finally, Section 7 
presents the most relevant conclusions and future work. 

2. RPA problem overview 

As defined in Andrade-Garda et al. (2018), the RPA problem is an 
example of the two-sided matching problem that, according to Gale 
(2001) and Abraham et al. (2007), is a class of problems in which the 
input set of entities can be partitioned into two disjoint sets A and B, and 
the aim is to find a matching M of members of A to members of B subject 
to various criteria. These criteria usually involve preference lists and 
capacity constraints, such is the case with the RPA problem. A brief 
summary of the RPA problem and its core components is presented in 
the following paragraphs in order to make this paper self-contained. 

In this case, the two characteristic disjoint sets (generically denoted 
as A and B in the above-mentioned definition) of the two-sided matching 
problems are the set of partners and the set of roles. Specifically, let I ≡

{i0, i1, ⋯, in−1} with |I| ≥ 2 denote the finite set of partners and R ≡ {r0,

r1, ⋯, rm−1} the finite set of roles. A generic element in I is denoted by i 
and a generic element in R is denoted by r. 

Each partner i defines an incomplete and partially ordered prefer
ence list β(i) ⊆ [r0, r1, ⋯, rk] with the roles that it is willing to perform in 
the project (k ≤ m −1), and each role r also defines an incomplete and 
partially ordered preference list α(r) ⊆ [i0, i1, ⋯, it ] with the partners 
appropriate to perform the role (t ≤ n −1). Note that a role is not a 
human being, so it has no personal preferences or individual tastes. 
Thus, the preference list of each role is created using objective criteria (i. 
e., the partner with most knowledge or capabilities for the role will be on 
the top of the list). However, partners are human beings (or sets of 
human beings, like enterprises), so that besides their knowledge and 
capabilities they may also have personal preferences and individual 
tastes, which will be reflected in their preference lists. 

Preference lists on both sides are incomplete because not all partners 
have to be empowered to perform all roles (i.e., to do any kind of ac
tivity), and similarly not all partners have to want to or be able to 
perform all roles (e.g., because of a lack of knowledge or different per
sonal preferences and individual tastes). In addition, lists are partially 
ordered because they include ties. That is to say, partner i strictly prefers 
β(i)[x] to β(i)[x +1](x = 0..|β(i) | ) or is indifferent between them (the 
same applies to roles). 

Each partner i defines l(i) as the number of roles that i requires at 
least in order to join the project and u(i) as the maximum number of 
roles that i is willing to perform in the project. It doesn’t mean that the 
aim of i is to play u(i) roles. The aim of i is to play at least l(i) roles (it 
meets its needs) and by no means will accept to play more than u(i) roles 
(it is more work than the partner can handle). Note that only if the total 
number of roles is no less than the minimum total number of roles 
required by the partners (i.e., |R| ≥

∑
i∈I l(i)) can a feasible allocation 

exist. Similarly, only if 
∑

i∈Iu(i) ≥ |R| a solution is possible. 
Let M(i) be the set of roles assigned to partner i after the allocation 

process, then 0 < l(i) ≤ |M(i) | ≤ u(i) ≤ |R| −
∑

j∈I l(j),j ∕= i. That is to say, 
each partner has to take the responsibility of a minimum of l(i) roles 
(with l(i) at least 1; that is, a piece of the project) and a maximum of roles 
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such that each other partner j has the possibility to play a minimum of 
l(j) roles. Finally, each role has to be played by only one partner (i.e., 
|M(r) | = 1 for all roles). 

3. Centralized matching schemes 

There are multiple matching mechanisms to solve a two-sided 
matching problem and are, therefore, potentially applicable to solve 
the RPA problem. The simplest approach could be a first-come-first- 
served (FCFS) allocation mechanism. This way, and respecting the 
lower and upper bounds, the first acceptable partner (role) that asks for 
a role (partner) is the one that will obtain it. However, as Diebold, Aziz, 
Bichler, Matthes, and Schneider (2014) conclude in the case of course 
allocation problems, FCFS doesn’t care about equity and preferences can 
be violated, so another type of mechanism is needed. 

Gale and Shapley (1962) presented the central bipartite matching 
problem with two-sided preferences: The Stable Marriage (SM) problem. 
An instance of this problem comprises of a set of men and women, and 
each person ranks each member of the opposite sex in strict order of 
preference. They suggested the Gale-Shapley deferred acceptance (DA) 
algorithm to find a stable matching of single men to single women (one- 
to-one). In the CN context, making an analogy between men and women 
and roles and partners, this approach is not valid “as it is” as a solution to 
the RPA problem, basically because (i) not all the partners are valid for 
playing all the roles, (ii) not all the partners might want to play all the 
roles, and (iii) a one-to-one matching is not always possible either 
because the number of roles is greater than the number of partners or 
because of quota constraints. The classical SM problem with incomplete 
lists (SMI) (Gusfield & Irving, 1989) allows to tackle (i) and (ii), but (iii) 
remains unsolved. 

The many-to-one generalization of SM was firstly defined by Gale 
and Shapley under the name College Admissions problem (Gale & 
Shapley, 1962), where each man corresponds to a student and each 
woman corresponds to a college which can potentially be assigned 
multiple students up to a fixed capacity. As indicated in Abdulkadiroglu 
and Sönmez (2003), the many-to-one version of the DA algorithm, 
where students are proposing to the colleges, is also referred to as Stu
dent Optimal Stable mechanism (SOSM). Likewise, where colleges are 
proposing to the students, it can be also referred to as College Optimal 
Stable mechanism. The College Admission problem has been extensively 
studied—see e.g., Roth and Sotomayor (2008), and Roth (2008) for a 
survey—, being the most influential application the assignment of res
idents or students to hospitals by the Hospitals/Residents problem (HR) 
(Roth, 1986; Roth & Peranson, 1997; Manlove, 2008). In this case, each 
student corresponds to a resident and each college corresponds to a 
hospital. A reduction of HR to SMI using the method of “cloning” hos
pitals exists. That is, replacing each hospital h with capacity ×, with ×
hospitals denoted h1, …, hx. However, in practice direct algorithms are 
applied to HR instances because the cloning technique increases the 
number of hospitals in a given HR instance by a potentially significant 
factor (Abraham et al., 2003). 

Other SM related problems in different research areas are: the School 
Choice problem (Abdulkadiroglu & Sönmez, 2003; Chen & Sönmez, 
2006), the Course Allocation problem (Diebold et al., 2014; Sönmez & 
Ünver, 2010), the Student–Project Allocation (SPA) problem (Abraham 
et al., 2007; Chen & Sönmez, 2006), the Trainee-Project Allocation 
problem (Gharote, Patil, Lodha, & Raman, 2015), the finding of men
tor–mentee matches (Haas & Hall, 2019; Haas, Hall, & Vlasnik, 2018), 
the spectrum resource allocation problem (Li, Ma, Xu, & Shankaran, 
2020), the matching between core nodes and edge nodes for content 
providers (Qin, Xue, Li, Sun, & Lu, 2021), and, of course, the well-known 
case with patient-donor pairs (Roth, Sönmez, & Ünver, 2004) — a pa
tient in need of a kidney and a donor (family, friend) who is willing to 
donate one. Proof of the importance of this field of study is that in 2012 
Alvin E. Roth and Lloyd S. Shapley were awarded with the Nobel Prize in 
Economics for the theory of stable allocations and the practice of market 

design. 
The SM related problems that allow an element of the first set (e.g., 

hospitals) to has assigned more than one element of the second set (e.g., 
residents) are more similar to the RPA problem and match with the need 
of managing upper quotas. However, the management of lower quotas is 
also required. Lower quotas appear with the College Admission with 
Lower Quotas (CA-LQ) problem (Biró, Fleiner, Irving, & Manlove, 
2010). In a given instance of that problem, each college c has the clas
sical (upper) quota of many-to-one type problems, denoted by u(c), and 
a lower quota l(c). A matching of applicants to colleges in this context 
requires every college c satisfying |M(c) | = 0 or l(c) ≤ |M(c) | ≤ u(c). 
The authors say that c is closed if |M(c) | = 0, and open otherwise. Note 
that, despite having similar purposes, this algorithm is not directly 
applicable to the RPA problem. This is because in the case of the RPA 
problem “closed partners” are entirely unacceptable. An algorithm that 
solves the RPA problem has to be defined in such a way that a feasible 
matching involves all partners participating in the project and lower 
quotas are respected for all partners. Otherwise, the algorithm must 
return that no solution meets the requirements of the RPA problem. In 
this regard, Hamada, Iwama, and Miyazaki (2011) also studied the HR 
problem with lower quota bounds; that is a CA-LQ related problem with 
similar motivations. In this case, they require the matching to satisfy all 
lower quotas (i.e., no hospital can be closed in their model). However, 
they assume that each applicant has a complete preference list (i.e., the 
underlying bipartite graph is complete), that is not the case in the RPA 
problem. In addition, they define a feasible matching as an assignment 
of residents to hospitals satisfying the upper and lower quotas but 
possibly, leaving some residents unassigned. This is not valid for the RPA 
problem since no role can remain unassigned in a feasible matching. 
Additionally, the matching admits blocking pairs (i.e., two participants 
that are not partners in the matching and prefer each other to its 
assigned partner), and they proved that the problem of finding a 
matching with the minimum number of blocking pairs is NP-hard. 
Nevertheless, as later discussed, for CN purposes a matching with 
blocking pairs is not acceptable. It is preferable that the partners on their 
own initiative modify their requirements and/or preferences in order to 
obtain a comprehensive agreement on how to undertake the project and 
to ensure that none of them does feel (rightly or mistakenly) discrimi
nated against. 

Therefore, a new proposal is required to solve the RPA problem. This 
is because the RPA problem accepts upper and lower quotas in the 
partners’ side, and incomplete preference lists with ties in both sides; in 
addition to fulfilling the properties and constraints defined for the RPA 
problem in Andrade-Garda et al. (2018) and summarized in Section 2. 

4. Stability, pareto-efficiency and strategy-proofness 

As stated above, the RPA problem is an example of the two-sided 
matching problem. Therefore, the three main properties of this type of 
matching problems—namely stability, Pareto-efficiency and strategy- 
proofness (Kesten, 2010)—have to be taking into account when 
defining the mechanism for constructing a matching M of roles to 
partners. 

As indicated in Gale and Shapley (1962), a matching M is unstable if 
there is a pair (a, b) that are not partners in M and prefer each other to its 
partner in the matching. Such a pair is said to block, or to be a blocking 
pair for, the matching. Naturally, a matching for which there is no 
blocking pair is said to be stable. A mechanism is stable if it always 
produces a stable matching. This is the general definition of stability. 
However, if ties are allowed in the participants’ preference lists, as is the 
case of the RPA problem, the following three different stability defini
tions are possible (Irving, Manlove, & Scott, 2003; Irving, 1994):  

1. A matching will be called weakly stable unless there is a couple each 
of whom strictly prefers the other to its partner in the matching. It is 
not hard to see that if ties in preference lists are broken arbitrarily, 
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any matching that is stable in the resulting (strict) instance is weakly 
stable in the original instance.  

2. A matching is strongly stable if there is no couple (a, b) such that a 
strictly prefers b to its partner, and b either strictly prefers a to its 
partner or is indifferent between them.  

3. A matching is super-stable if there is no couple each of whom either 
strictly prefers the other to its partner or is indifferent between them. 

A matching M is Pareto-efficient if there is no other matching for 
which all participants (i.e., roles/partners in this case) are at least as well 
off, and at least one participant better off. A mechanism is Pareto- 
efficient if it always produces a Pareto-efficient matching. 

Finally, if a mechanism is strategy-proof, then no participant can 
benefit by lying, irrespective of its beliefs regarding the announcements 
of other participants. 

Although these three properties (stability, Pareto-efficiency, and 
strategy-proofness) are important, unfortunately no mechanism exists to 
satisfy all of them. There are Pareto-efficient and strategy-proof (but not 
stable) mechanisms (Abdulkadiroglu & Sönmez, 2003), which are based 
on the top trading cycle algorithm (Shapley & Scarf, 1974); there are 
stable and strategy-proof (but not Pareto-efficient) mechanisms like the 
Gale–Shapley SOSM and—as indicated in Diebold et al. (2014)—Kesten 
(2010) demonstrates that there cannot exist a mechanism that always 
returns a Pareto optimal and stable matching (i.e., no stable and Pareto- 
efficient mechanism can exist). 

Knowing this, it is necessary to determine which properties are 
essential in the context of the RPA problem in order to develop a 
matching scheme to satisfy them. Thus, as stated in Roth (2002), the 
empirical evidence is clear that stability is important to the success of 
matches in practice. Stable mechanisms have mostly (but not always) 
succeeded, and unstable mechanisms have mostly (but not always) 
failed. Moreover, as indicated in Abraham et al. (2007), and accordingly 
to Roth (1984), it has been convincingly agreed that, when preference 
lists exist on both sides, the key property that a matching constructed by 
a matching scheme should satisfy is that of stability. In fact, in the CN 
domain stability is an essential need: if partners cannot be confident that 
their priorities will not be violated, then the advantages of a central 
mechanism over making ad hoc arrangements disappear. Likewise, if the 
CN initiator cannot be confident that the role’s priorities—that are 
objective priorities—will be met then it could not trust the mechanism. 
Thus, as stability is required, one of the three stability options has to be 
selected for the RPA problem. In the CN domain, the goal is to achieve a 
matching that makes it possible to address the business opportunity 
respecting the needs of each part (roles and partners). That is to say, 
avoiding strict preference violation. A weakly stable matching is, there
fore, enough in the context presented in this paper and this is the type of 
stability that will be intended in the following. Thus, ties in preference 
lists will be broken via a random draw since any matching that is stable 
in the resulting strict instance is weakly stable in the original instance. 
Consequently, in a weakly stable matching M for an RPA instance there is 
no r′

∕∈ M(i) such that i strictly prefers r ́ to all roles in M(i) and r ́ strictly 
prefers i to M(r’). At worst, i equally prefers the roles in M(i) to any other 
role, and each role in M(i) equally prefers i to any other partner. 

Therefore, as mentioned above, if stability is required then Pareto- 
efficiency has to be given up. In this situation, the idea behind SOSM 
may provide the basis for developing the new algorithm required for 
solving the RPA problem. In doing so, it will be stable but not Pareto- 
efficient. Nonetheless, as Kesten (2010) states, the fact of caring about 
equity (stability) should not mean that the welfare (efficiency) aspects of 
the problem can be totally neglected. This raises a question about the 
price one needs to pay for achieving stability. In the School Choice 
problem, Kesten (2010) illustrates with an example a striking situation 
in which every student is unsatisfied at the most favorable stable 
matching (for students) that one can possibly find by the application of 
SOSM. In general, it is possible to arbitrarily construct problems for 

which a stable mechanism results in high welfare losses. Even more 
when, as in the case of the CN domain, weak stability is considered as 
sufficient and ties in preference lists are broken via some random draw. 

In view of this, Kesten (2010) proposed the Efficiency Adjusted De
ferred Acceptance Mechanism (EADAM). The central idea in EADAM is 
that of identifying interrupter students—those who interrupt desirable 
settlements among other students at no gain to themselves—and 
neutralizing their adverse effect on the outcome by asking them for 
consent to waive their priorities for crucial schools. Thus, EADAM 
closely mimics SOSM and makes adjustments to recover artificial wel
fare losses caused only by those interrupters who give consent to priority 
waiving. EADAM Pareto dominates SOSM; that is, no student is ever 
worse off under EADAM than for his/her assignment under SOSM and, 
when all students consent, the EADAM outcome is Pareto-efficient. With 
respect to stability, a student’s priority for a particular school may be 
violated but this is the case only if he/she consents so it’s no longer 
considered a priority violation in practice. Moreover, a consenting stu
dent is never hurt by consenting: no interrupter student ever gains 
anything by choosing not to consent. He/she can at best prevent others 
from improving. In addition, EADAM eliminates welfare losses due to 
randomly breaking ties in priorities. All of this is gained at the expense of 
strategy-proofness. However, trust telling of students is a Bayesian Nash 
equilibrium in this mechanism (Diebold et al., 2014). Even if there are 
no dominant strategies, possibilities to strategically misrepresent pref
erences are minimal in most applications. This is in line with the 
working philosophy in CNs, where the aim is not so much the individual 
but the collective success, since partners come together to address 
business opportunities that they could not undertake individually. The 
success of the project (through the success of the collaborative work) is 
the success of everybody, so strategic behavior is not the expected 
behavior. On the face of it, EADAM is taken as the basis for the definition 
of the new algorithm for solving the RPA problem. 

5. Proposed centralized matching scheme 

5.1. Preconditions 

For the RPA problem, in summary, the following is true: (i) there are 
objective preferences over the partners most appropriate to play each 
role (e.g., on the basis of its knowledge), (ii) each partner has also 
preferences over the roles that it is willing to perform (on the basis of its 
knowledge, individual tastes, and/or personal preferences), (iii) pref
erence lists are incomplete and partially ordered (with ties) on both sides 
(partners and roles), (iv) ties in preference lists are arbitrary broken 
since a weakly stable matching is enough, (v) there are upper bounds on 
the number of roles that can be assigned to a particular partner, and (vi) 
there are also lower bounds on the number of roles that a given partner is 
willing to perform. 

Before presenting the algorithm, let us suppose that a matching is, at 
least in theory, possible. That is to say, in addition to the constraints 
previously presented, (i) there is no role that is unacceptable for all 
partners, and (ii) each partner i is acceptable for at least l(i) roles. 
Otherwise a matching is not possible. Also, in order to minimize the 
number of useless computations, it is recommended to prune preference 
lists if necessary to achieve consistency. That is, if partner i is not 
acceptable for role r then r must not be in i’s preference list and vice 
versa, since no matching will pair i and r. Analogously, if partner i 
doesn’t want to play role r then i must not be in r’s preference list. 

5.2. Proposing side 

As stated above, for the definition of this algorithm, EADAM is used 
as a reference. It is also well known that EADAM applies SOSM at its 
heart, that is the generalization of the Shapley-Gale student proposing 
DA algorithm to solve the College Admission Problem. In the College 
Admission problem, each student is assigned to one college and each 
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college can receive many students. Making an analogy between this 
problem and the RPA problem, each role corresponds to a student and 
each partner corresponds to a college since each role is assigned to one 
partner and each partner can receive many roles (i.e., pieces of project). 
In this regard, the Shapley-Gale algorithm (Gale & Shapley, 1962) 
showed that when students (colleges) are proposing, the resulting 
matching M is student (college) optimal in the sense that every student 
(college) is at least as well off under M as it is under any other stable 
matching. Unfortunately, the student (college) optimal matching is 
college (student) pessimal in the sense that no college (student) is worse 
off in any other stable matching. Consequently, if the student optimal 
solution is the same as the college optimal solution, the solution is 
unique. 

In referring to which side must be the proposing one in the RPA 
problem, as stated above, in the CN domain partners create alliances to 
face business opportunities that would not be possible or would have a 
higher cost if attempted by them individually. In this context, the suc
cess of the joint project is the success for all partners and the best way to 
ensure the success of the project is obtaining a matching in which each 
piece of project (i.e., role) is performed by the most appropriate worker 
(i.e., partner). Thus, it is expected that a role optimal matching might be 
the best option since it is the best matching for roles and hence for the 
project. For this reason, a role proposing algorithm is presented by 
default. However, if a partner optimal solution is required it would be 
enough to use the college optimal stable matching algorithm (instead of 
SOSM) as the core of EADAM and to ask partners instead of roles to 
consent for recovering welfare losses. 

In the role proposing algorithm, interrupter roles are detected and 
asked for consent to waive their priorities for certain partners. In this 
case, it is assumed that all interrupter roles consent. A non-consenting 
role can only harm other roles preventing them from being performed 
by a better partner, which is not a collaborative work philosophy and 
makes no sense when looking for the best for the project. Also, note that 
roles are not human beings so role consenting actually means that the 
partners consent to seek the best for the project and not for themselves as 
individuals. 

5.3. Algorithm 

The first step of the matching process may be informally expressed in 
terms of a sequence of proposals from the roles to the partners. In brief, 
whilst a role r that is unmatched exists, r makes a proposal to each 
partner i on its preference list until it becomes provisionally assigned to a 
partner or its preference list has been exhausted. Partners only accept 
proposals if they are currently undersubscribed or if they are fully 
subscribed and strictly prefer the proposing role to their least favored 
assignee. 

Note that what has been indicated up to now is the direct execution 
of SOSM. However, remember that the new algorithm must ensure that 
no partner i remains without playing l(i) roles (lower bound) at the end 
of the allocation process. For example, consider a problem with three 
roles (r0, r1, r2), and two partners (i0, i1), with l(i) = 1 and u(i) = 3 for all 
partners. In this case, if 3 roles are assigned to i0 (or i1) then i1 (or i0) will 
remain totally unsubscribed, which would not be acceptable. In order to 
avoid this type of situations, the proposal in this paper is to reduce the 
partners’ upper quotas following certain criteria. This is to ensure that 
all partners meet their participation requirements by finding a matching 
in which each partner i plays at least l(i) roles. Remember that the 
meaning of l(i) and u(i) is that the aim of i is to play at least l(i) roles (it 
meets its needs) and by no means will accept to play more than u(i) roles. 
Thus, reducing u(i) does not harm the interests of partner i as long as l(i)
is guaranteed. If such a matching doesn’t exist, partners must be asked in 
order to modify their preference lists and/or upper and lower bounds if 
they want to try to form an alliance to undertake the business oppor
tunity. If they agree, the algorithm must be applied again. Otherwise, it 
would not be possible to reach an agreement in order to take advantage 

of the business opportunity. 
Once a matching satisfying all lower quotas is obtained, EADAM 

extension to recover welfare losses (due both to SOSM and to random tie 
breaking in preference lists) is applied. This is necessary because, as 
previously indicated, when roles are proposing, the resulting matching 
M is role optimal in the sense that every role is at least as well off under 
M as it is under any other stable matching. However, as indicated in 
(Kesten, 2010) it is possible to arbitrarily construct problems for which a 
stable mechanism results in high welfare losses, in which every role is 
unsatisfied at the most favorable stable matching for roles that one can 
possibly find by the application of SOSM. That is to say, a matching 
where roles are played by partners in low or very low positions on their 
preference lists, which are not the most appropriate partners since the 
preference list of each role is created using objective criteria (i.e., the 
partner with the most knowledge or capabilities for the role will be on 
the top of the list). Such practices could have detrimental effects for the 
success of the project since, as previously indicated, the best for the 
project would be for roles to be played by the best, or next best, partners. 
Therefore, the welfare of the roles must not be neglected. Applying 
EADAM for recovering the welfare losses of the roles provides this 
important benefit in exchange for asking roles to waive their priorities 
for certain partners (thus possibly losing stability). However, no con
senting role is ever worse off under EADAM than it is for its assignment 
under SOSM. That is, no piece of a project will be played by a less 
appropriate partner, so roles, and therefore the project, are not nega
tively affected in practice by consent. 

Thus, interrupting roles are asked to consent and, as stated above, all 
of them do, so the outcome is Pareto-efficient. The new algorithm can be 
viewed therefore as an upper bound reduction mechanism (UBReM in 
the following) that applies EADAM at its heart. UBReM is synthesized in 
Fig. 1, and operates as follows with an RPA problem instance A: 

1. Run SOSM to obtain a matching M. This matching must involve all 
roles, since it is not possible to undertake a project in which there are 
project pieces that will not be carried out by anyone. Thus, to 
continue with the next step of UBReM, no role can be unassigned in 
M. Otherwise, a stable matching for the RPA problem instance A is 
not possible even when applying the rest of the steps in the pro
cedure. This directly derives from the condition 

∑
i∈Iu(i) ≥ |R| above 

presented in Section 2. In other words, partners have capacity for at 
least all roles (|R| roles), but at least one role r is unassigned in the 
resulting matching M. When this happens after applying SOSM, this 
means that no partner in a stable matching can play this role. If r is 
“unplayable” with the original upper bounds, it will continue to be 
“unplayable” with smaller upper bounds, as preference lists do not 
change. 
2. If all roles are matched but M doesn’t satisfy all lower quotas, then 
obtain A’ by reducing upper quotas. The aim is to balance the 
assignation of roles to partners respecting priorities and quotas. For 
this: 

2.1. Considering that no partner by no means will play more than 
u(i) roles, the partner with the highest “margin” is the partner 
with the highest value of u(i) −l(i) (henceforth referred to as gap). 
Thus, obtain the partner i with the highest gap and set u(i) =

u(i) −1. 
2.2. If there is more than one partner with the same (maximum) 
gap, then obtain the “less preferred” one among them and set 
u(i) = u(i) −1. Partner i is preferred over partner j if it is a better 
option for more roles. If a partner is highly preferred, then it is 
better for the project not to reduce its upper quota in order to 
make it possible for it to obtain more roles. Even knowing this, 
note that in step 2.1 the upper bound of a highly preferred partner 
could be reduced because of its gap. This is done to prevent most 
preferred partners to “pre-empt the market” and generate highly 
imbalanced outcomes harming the alliance interests. 
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2.3. If several partners are equally less preferred, then randomly 
choose a partner i among them and set u(i) = u(i) −1. 

3. Rerun SOSM over the new RPA problem instance A’. Prior to 
performing this step, it is necessary to check if A’ satisfies the min
imal conditions for an existing matching. These are: (i) |R| ≥

∑
i∈I l(i), 

(ii) 
∑

i∈Iu(i) ≥ |R|, (iii) there is no role that is unacceptable for all 
partners, and (iv) each partner i is acceptable for at least l(i) roles. As 
mentioned above, this does not guarantee that a solution to the RPA 
problem exists, but it makes it possible (i.e., a necessary but not 
sufficient condition). 
4. The process is repeated until: (i) M satisfies all lower quotas, or (ii) 
M doesn’t satisfy all lower quotas and there is no partner with actual 
gap greater than 0. In the first case, EADAM extension to recover 
welfare losses must be applied if there are interrupter roles. In the 
second case, a stable matching satisfying lower and upper quotas 
doesn’t exist and the process finishes. 

Note that in steps 2.1 to 2.3, if |M(i) | ≤ u(i) being i the partner 
reducing upper quota, then running SOSM again will not produce a 
different outcome. This is because each partner is assigned the same 
number of roles in any stable matching (Gale & Sotomayor, 1985) and, 
therefore, any partner that is under-subscribed in one stable matching is 
assigned precisely the same set of roles in all stable matching (Roth, 
1986). Thus, for example, let A be an RPA instance with two partners i0 
and i1 (l(i0) = 1, l(i1) = 2, u(i0) = u(i1) = 3) and three roles, with 
|M(i0) | = 2 and |M(i1) | = 1 after step 1. The partner with the highest gap 
is i0 so it reduces the upper bound in one unit. Running again SOSM with 
the new upper bounds will produce exactly the same solution. Thus, 
steps 2.1 to 2.3 have to be repeated until new upper bounds are reached 

making it possible to obtain a different matching (i.e., |M(i) |〉u(i) for 
partner i reducing u(i)). This way, new role allocations are possible only 
when partners reducing their upper bounds lose their less preferable 
assigned roles that are now free to be assigned to other partners. Also, 
note that partner i reducing its upper quota continue to be guaranteed to 
receive at least l(i) roles. This is because preference lists do not change, 
so if it is a preferable partner for at least l(i) roles it will continue to be so. 

In order to clarify the proposed algorithm, the data structures and the 
main functions defined for UBReM are presented below in pseudocode 
(Pseudocode 1 to 3) followed by their explanation. 

Data Structures  
partner: record 

id: integer 
l: integer 
u: integer 
gap: integer 
beta: list 
M: list 

role: record 
id: integer 
alpha: list 
M: integer 

partners: list of n elements of type partner 
roles: list of m elements of type role  

Pseudocode 1 UBReM (Main procedure)  

1 Input: partners 
2 Output: partners with upper bound reduced 

(continued on next page) 

Fig. 1. Flowchart for UBReM algorithm.  

J. Andrade-Garda et al.                                                                                                                                                                                                                       



Computers & Industrial Engineering 169 (2022) 108244

7

(continued ) 

3 Variables /*counting variables are omitted*/ 
4 stop /*true if new upper bounds allowing a new matching are reached*/ 
5 mgp /*subset of partners with the maximum gap value*/ 
6 lpp /*subset of partners with the less preferred partners*/ 
7 Begin procedure 
8 stop = false  

/*Partners not exceeding l assigned roles will not reduce upper bound, gap 
must be 0 instead of u-l*/ 

9 for i=0 to (size of partners – 1) do 
10 if size of (partners[i].M) ≤ partners[i].l then 
11 partners[i].gap = 0 
12 while stop is false do 
13 mgp = partners with maximum gap /*pseudocode omitted for simplicity*/ 
14 if size of mgp = 1 then 
15 stop = reduce(partners[mgp[0]].id) 
16 else 
17 lpp = lessPreferredPartners(mgp) 
18 if size of lpp = 1 then 
19 stop = reduce(partners[lpp[0]].id) 
20 else 
21 stop = reduce(randomly choose a partner in lpp) 
22 End Procedure  

Pseudocode 2 reduce  

1 Input: p /*the id of the partner reducing upper bound*/ 
2 Output: false if it is needed to continue reducing upper bounds   

true otherwise 
3 Begin procedure 
4 partners[p].u = partners[p]-u - 1 
5 if partners[p].u < size of (partners[p].M) then 
6 return true 
7 else 
8 return false 
9 End procedure  

Pseudocode 3 lessPreferredPartners  

1 Input: mgp /*list of partners satisfying lower quotas with maximum gap*/ 
2 Output: the list of less preferred partners 
3 Variables /*counting and control variables are omitted*/ 
4 v /*partners at position x in the alpha list of each role*/ 
5 oc /*occurrences of a list item*/ 
6 min /*the elements of the list with minimum value*/ 
7 lpp /*list of less preferred partners*/ 
8 Begin procedure 
9 stop = false 
10 i = 0 
11 while stop is false and i < size of partners do 
12 k = 0 
13 lpp = empty list 
14 for j=0 to (size of roles - 1) do 
15 if i < size of (roles[j].alpha) then  

/*preference lists are incomplete*/ 
16 v[k] = roles[j].alpha[i] 
17 k = k + 1 
18 for j=0 to (size of mgp – 1) do 
19 oc[j] = occurrences(mgp[j].v) /*pseudocode omitted for simplicity*/ 
20 min = minValue(oc)/*pseudocode omitted for simplicity*/ 
21 t = 0 
22 for j=0 to (size of oc – 1) do 
23 if oc[j] = min then 
24 lpp[t] = mgp[j] 
25 t = t + 1 
26 if size of lpp = 1 then 
27 stop = true 
28 else 
29 i = i + 1 
30 return lpp 
31 End procedure  

The data structures for partners and roles are defined as records with a 
series of elements. In the case of partners, these elements are the id (e.g., 
0 to represent i0), the value of l (i.e., the lower quota), the value of u (i.e., 

the upper quota), the value of gap (i.e.,u −l), the preference list beta of 
roles’ ids, and the list M with the ids of the roles assigned to the partner in 
the final matching. Likewise, the data structure for roles is composed of 
id, the preference list alpha of partners’ ids, and M as the id of partner 
assigned to the role in the final matching. Thus, the final matching M is 
represented by the two elements M in the previous records. Finally, a list 
of n elements of type partner (namely partners) and a list of m elements of 
type role (namely roles) are defined to represent the RPA problem par
ticipants. Note that beta and alpha are represented as strict preference 
lists because ties are broken arbitrary since weak stability is enough in 
the CN domain. 

Regarding the functions, after running SOSM (step 1 of UBReM), if a 
matching involving all roles is obtained but lower quotas are not satis
fied, the UBReM procedure starts (see Pseudocode 1). It represents the 
new functionality proposed in this paper for solving the RPA problem. 
Upper quota reduction is needed, so the partners with the highest gap 
have to be obtained (step 2.1 of UBReM). If there is only one partner 
with the highest gap, then this is the partner reducing the upper quota, 
which is done through the function reduce (see Pseudocode 2). Other
wise, the less preferred partner among the partners with maximum gap 
have to be calculated (step 2.2 of UBReM). This is done by the function 
lessPreferredPartners (see Pseudocode 3). Again, if there is only one less 
preferred partner then this is the one reducing the upper quota. Other
wise, as indicated at the end of the UBReM main procedure, the partner 
reducing the upper quota is randomly chosen from the list of less 
preferred partners (step 2.3 of UBReM). After upper bound reduction, if 
the new instance of the RPA problem satisfies the minimal conditions for 
an existing matching (pseudocode omitted for simplicity), the process is 
repeated (step 3 of UBReM). This continues until a matching satisfying 
all lower bounds is obtained. After that, the EADAM extension to recover 
welfare loses must be applied as indicated in (Kesten, 2010). Otherwise, 
a matching satisfying all lower quotas is not possible. 

Regarding the complexity of UBReM, it firstly consists of a running of 
SOSM, which is a polynomial procedure (see e.g., Gusfield & Irving, 
1989). After that, the UBReM procedure is applied. As may be deduced 
from the previous pseudocodes presented, in the worst of cases it runs in 
quadratic time. Finally, the EADAM extension to recover welfare losses 
is applied, that is a computationally simple polynomial-time algorithm 
(Kesten, 2010). Therefore, the computational complexity of the entire 
matching mechanism continues to be polynomial (i.e., UBReM runs in 
polynomial time). 

6. Illustrative example 

In order to illustrate UBReM, a representative example is presented 
below. Mathematical instead of algorithmic notation will be used to 
make the example more readable. 

Example. Consider an instance of the RPA problem with twelve roles R =

{r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11}, and five partners I =

{i0, i1, i2, i3, i4}, with l(i) = 2 for all partners, u(i0) = u(i2) = 4, and 
u(i1) = u(i3) = u(i4) = 5. This is an adaptation of the Example 2 used by 
Kesten (2010) to show the inefficiency of SOSM. The preference lists (α(r)

for role r, and β(i) for partner i) are as indicated in Tables 1 and 2. 

In this case, i0 is indifferent between r9 and r7; i1 is indifferent be
tween r1 and r9; r2 is indifferent between i3 and i4; and r0 is indifferent 
between i0 and i1. Random tie breaking produces the preference lists α(r)

and β(i) in Tables 1 and 2. The following tables illustrate the steps of 
SOSM (step 1 of UBReM) applied to this problem. The columns of the 
tables represent the partners, and the rows represent the steps of the 
algorithm. Any role tentatively placed at a partner at a particular step is 
shown underlined at the corresponding entry of corresponding table. 
Table 3 shows the first matching obtained from SOSM in a single step. 

The resulting matching doesn’t satisfy lower quotas for i4. Let s(i) be 
the gap of partner i. Thus, s(i0) = s(i2) = 2 and s(i1) = s(i3) = 3. Partner 
i4 is the deficit partner, so its upper quota is not reduced (it would be 
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futile since partner i4 will never obtain more than l(i4) roles in any stable 
matching). Both i1 and i3 are the partners with the highest gap, but i3 is 
the preferred partner (it is the first option for more roles) so that u(i1) =

u(i1) −1 = 4. Before rerunning SOSM with the new upper bounds the 
possible production of a different outcome must be checked. In this case, 
|M(i1) | = 4 ≥ u(i1) so that the resulting matching will not change. That 
is, it is possible for i1 to obtain the same roles again—the same as to i3 
because its upper bound has not been reduced—and, as a consequence, 
i4 will remain unmatched. Therefore, the quota reduction process has to 
be repeated. This will continue until upper bounds allowing a new 
matching are reached, going through the following steps:  

1. i3 reduces its upper bound as the partner with the highest gap.  
2. The new gap of all partners is 2. i1 reduces its upper bound as the less 

preferred partner.  
3. Randomly choose i3 to reduce the upper bound (i2 and i3 are equally 

less preferred partners).  
4. i2 reduces its upper bound as the less preferred partner with the 

highest gap.  
5. i0 reduces its upper bound as the partner with the highest gap. 

The upper bounds u(i0) = u(i1) = u(i2) = u(i3) = 3 are achieved, 
which allows to generate a different matching. This is because |M(i0) | =

4 > u(i0) = 3 so that i0 will lose its less preferred assigned role. The new 
matching obtained by rerunning SOSM is M = {(i0, r0), (i0, r1), (i0, r9), (i1, 
r4), (i1, r5), (i2, r2), (i2, r3), (i2, r6), (i2, r7), (i3, r8), (i3, r10}, (i3, r11)}. 

Again, M doesn’t satisfy lower quotas for i4 as it remains with 
0 assigned roles. The application of the upper bounds reduction process 
results in u(i1) = u(i1) – 1 = 2 and a new matching M = {(i0, r4), (i0, r6), 
(i0, r11), (i1, r9), (i1, r8), (i2, r10), (i2, r0), (i2, r5), (i3, r3), (i3, r2), (i3, r1}, (i4, 
r7)} is obtained by rerunning SOSM. In this example it would have been 
possible to know without running SOSM again that the new matching 
was not going to satisfy lower quotas for i4. This is because the quota 
reduction process frees only one role to be reassigned (being assigned to 
i4 in the best case) but i4 needs two roles to satisfy its lower quota. 
Therefore, without changes in the preference lists, the selected partners 
have to reduce their upper bounds in such quantities that the deficit 

partners can achieve their minimums due to the free roles reallocation. 
Randomly choosing i3 to reduce the upper bound (i2 and i3 are now 

equally less preferred partners with highest gap) the solution M = {(i0, 
r4), (i0, r6), (i0, r11), (i1, r9), (i1, r8), (i2, r10), (i2, r0), (i3, r3), (i3, r2), (i3, r1}, 
(i4, r7), (i4, r5)} shown in Table 4 arises. 

The resulting matching is a stable matching satisfying all lower 
quotas. It is stable because it is the result of running SOSM, which 
returns a stable matching. Lower quotas are satisfied thanks to the upper 
bound reduction process presented in UBReM. That is, if after running 
SOSM the resulting matching doesn’t satisfy all lower quotas, a new 
instance A’ of the RPA problem is obtained by reducing upper quotas 
(step 2 of UBReM) and SOSM is applied again with A’ (step 3 of UBReM). 
Only when all lower quotas are satisfied will the corresponding 
matching be accepted. Otherwise, UBReM returns that no matching 
exists satisfying the RPA problem instance requirements. 

In the resulting matching the preferred partners (i.e., i0 and i3) 
receive an extra role (l(i) + 1). However, note that i0 is the most pref
erable partner. Thus, if i0 doesn’t reduce its upper bound (by eliminating 
the gap checking from UBReM, and then with u(i0) = 4 and u(i1) =

u(i2) = u(i3) = 2) it will obtain four roles (i.e., u(i0)) and the solution M 
= {(i0, r4), (i0, r6), (i0, r11), (i0, r7), (i1, r9), (i1, r1), (i2, r10), (i2, r0), (i3, r3), 
(i3, r2), (i4, r8), (i4, r5)} arises. 

In this case, r7 gets better off, but by making r1 and r8 worse off. Thus, 
this alternative solution doesn’t Pareto-dominate the first one. More
over, and also very important, it floods partner i0 by assigning to it the 
maximum possible number of partners (presumably u(i0)) since it al
ways maintains the upper bound, and leaves the rest of partners with 
few roles (presumably l(i)). It may be counter-productive to reach an 
agreement on creating the alliance and undertaking the business op
portunity since in the context of CNs the “common good” is the 
achievement of a solution in which all partners get a number of roles 
between l(i) and u(i) in an equitable distribution. Knowing that highly 
imbalanced outcomes can arise from the centralized allocation mecha
nism could predispose partners to not participate the process. The gap 
criterion has the intention of preventing such situations. 

The stable matching M in Table 4 is the solution to the RPA problem 
in the example. However, it is clearly Pareto-inefficient since it places 
each role at either its last choice or its next to last choice. In a role- 
proposing algorithm this should not occur. It is easy to see that in this 
case there are interrupter roles, so the application of the EADAM 
extension to recover welfare losses is required. Thus, the last 

Table 1 
Preference lists for partners.  

α(r0) α(r1) α(r2) α(r3) α(r4) α(r5) α(r6) α(r7) α(r8) α(r9) α(r10) α(r11)

i0 i0 i0 i2 i1 i1 i2 i2 i3 i0 i3 i3 

i1 i2 i1 i3 i2 i2 i1 i1 i1 i2 i2 i0 

i2 i3 i3 i4 i0 i4 i0 i0 i4 i1 i4 i4 

i4 i1 i4    i4 i4      

Table 2 
Preference lists for roles.  

β(i0) β(i1) β(i2) β(i3) β(i4)

r4 r1 r10 r3 r11 

r6 r9 r0 r2 r8 

r11 r8 r5 r1 r5 

r7 r6 r9 r8 r2 

r9 r2 r4 r10 r0 

r0 r0 r3 r11 r3 

r1 r7 r1  r7 

r2 r4 r6  r10  

r5 r7  r6  

Table 3 
First execution of SOSM.  

Step i0 i1 i2 i3 i4 

0 r0, r1, r2, r9 r4, r5 r3, r6, r7, r8, r10, r11   

Table 4 
Fourth execution of SOSM.  

Step i0 i1 i2 i3 i4 

0 r0, r1, r2, r9 r4, r5 r3, r6, r7 r8, r10, r11  

1 r0, r1, r9 r5, r4, r2, r7 r3, r6 r8, r10, r11  

2 r0, r1, r9 r2, r7 r3, r6, r5, r4 r8, r10, r11  

3 r0, r1, r9 r6, r2, r7 r4, r5 r8, r10, r11, r3  

4 r0, r1, r9, r7, r11 r6, r2 r4, r5 r8, r10, r3  

5 r9, r7, r11 r6, r2 r4, r5, r0 r8, r10, r3, r1  

6 r9, r7, r11, r4 r6, r2 r5, r0, r10 r8, r3, r1  

7 r7, r11, r4 r6, r9, r2 r0, r10 r8, r3, r1 r5 

8 r7, r11, r4 r9, r6 r0, r10 r8, r3, r1, r2 r5 

9 r7, r11, r4 r9, r6, r8 r0, r10 r3, r1, r2 r5 

10 r7, r11, r4 r9, r8 r0, r10 r3, r1, r2 r5 

11 r7, r11, r4, r6 r9, r8 r0, r10 r3, r1, r2 r5 

12 r11, r4, r6 r9, r8 r0, r10 r3, r1, r2 r5, r7  
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interrupting pair is (r7, i0) at step 11. This is because role r7 is tentatively 
placed at i0 at step 4 and rejected from it at step 11. Role r9 is rejected by 
i0 while role r7 is tentatively placed at it. Assuming that r7 is a consenting 
role, partner i0 is removed from the preference list of role r7 and, in order 
to maintain consistency in preference lists, role r7 is removed from the 
preference list of i0. 

The matching obtained after the application of SOSM with the new 
preference lists is M’ = {(i0, r1), (i0, r9), (i0, r4), (i1, r2), (i1, r6), (i2, r10), (i2, 
r0), (i3, r8), (i3, r11), (i3, r3}, (i4, r7), (i4, r5)}, where the consenting role r7 
continues to be assigned to i4 (it is not adversely affected) while r1, r2, r6, 
r8, r9, and r11 get better off. The full execution of the EADAM extension 
results in the matching (marked in bold in Tables 5 and 6) M’ = {(i0, r1), 
(i0, r9), (i0, r0), (i1, r2), (i1, r4), (i2, r3), (i2, r6), (i3, r8), (i3, r10), (i3, r11), (i4, 
r7), (i4, r5)} that clearly Pareto-dominates M (underlined in Tables 5 and 
6). M’ places each role at either its first choice or its next to first choice. 
Only r5 and r7 continue to be assigned to i4 (their last choice). Thus, the 
preference lists of these two roles were preventing other roles to be 
assigned to their first or its next to first choice by no gain for r5 and r7. 
The solution M’ is not stable from a theoretical point of view, but all 
blocking pairs involve consenting roles and no role is adversely affected, 
so it is no longer considered a priority violation in practice. 

7. Conclusion and future research 

This paper has proposed a computationally polynomial-time 
matching algorithm called UBReM to solve the RPA problem, which is 
an example of the two-sided matching problem. This is an inherent 
problem in CNs, since it addresses the distribution of roles among the 
partners in a CN when they want to start a new project together. Due to 
the specific characteristics of the RPA problem, it cannot be directly 
solved by the existing matching mechanisms used to solve other exam
ples of the two-sided matching problem. 

To face these specific requirements, UBReM manages lower and 
upper quotas on the partners’ side correctly, finding for a stable 
matching outcome satisfying all quotas, if it exists. To do so, it is 
assumed that when a partner sets a lower quota it means that it needs to 
play at least this amount of roles, so a matching that doesn’t satisfy that 
requirement is not valid. Likewise, when a partner specifies an upper 
quota it doesn’t mean that it wants to play this amount of roles, but it 
represents that by no means will it accept to play more than this amount 
of roles. This way, a solution satisfying lower quotas in which each 
partner receives a number of roles less than or equal to its upper quota is 
an acceptable solution. Knowing this, UBReM starts running SOSM to 
obtain a role-optimal outcome (i.e., roles are proposing to partners) and, 
if the outcome doesn’t satisfy lower quotas, an upper quota reduction 
process begins for those partners exceeding lower quotas. It doesn’t 
damage partners as lower quotas are not changed; it only implies that 
some partners will not receive as many roles as if lower quotas did not 
have to be satisfied for all partners, but still will receive a number of 
roles greater than or equal to their lower quota. 

Once a solution satisfying all lower quotas is obtained, and knowing 
that it can be highly inefficient, the EADAM extension to recover welfare 
losses is applied assuming that all interrupter roles consent. It also al
lows to recover welfare losses due to random tie breaking in preference 
lists, as preference lists in the RPA problem are incomplete and partially 
ordered (with ties). Thus, UBReM is a Pareto-efficient mechanism in 
which a role’s priority for a particular partner may be violated (i.e., the 

mechanism is theoretically non stable), but this is the case only if roles 
consent. It is known that no role is ever worse off under EADAM than for 
its assignment under SOSM, so it is assumed that roles consent and it’s 
no longer considered a priority violation in practice. 

Finally, the mechanism is not strategy-proof, but strategic behavior is 
not the expected behavior in the RPA context, that is the CN domain. 

Therefore, UBReM satisfies the requirements of the RPA problem and 
can be used to solve that problem in CNs. 

Thus, as EADAM closely mimics SOSM and makes adjustments to 
recover artificial welfare losses, UBReM closely mimics SOSM and 
makes adjustments to find a matching satisfying lower and upper quotas. 

The innovative idea of addressing role allocation in CNs by means of 
a centralized matching scheme will simplify the difficult and time 
consuming task of making ad hoc arrangements by partners approaching 
one another directly, thus minimizing the risk of losing the business 
opportunity. 

The authors are also working on how to address the case in which the 
UBReM outcome is that a matching satisfying the RPA problem re
quirements doesn’t exist. The aforementioned would lead to think that 
the partners in the CN are not able to play the roles defined for the new 
project that they want to undertake together (e.g., due to lack of 
knowledge). However, this might not necessarily be the case. The 
trouble may lie in the way in which the CN initiator defines the set of 
roles to be performed by the partners. If the characteristics and con
straints of the partners are not taken into account when defining those 
roles, the business opportunity might be unnecessarily lost (e.g., there is 
no partner that satisfies all the requirements of a role, but by splitting the 
role into sub-roles there is at least one partner able to perform each sub- 
role). For this reason, an approach (possibly in the form of a decision 
support system) is being researched to help the CN initiator to configure 
the roles of the project that the partners in the CN want to undertake 
together. Alternatively, if the UBReM outcome is that a matching 
doesn’t exist it could be because the partners are not able to play the 
defined roles in a many-to-one allocation (e.g., no partner alone has the 
required knowledge to play a given role). However, roles could be 
properly performed in a many-to-many allocation. That is to say, 
allowing partners to join efforts to play the roles instead of requiring 
roles to be performed only by individual partners. Thus, the definition 
and resolution of the many-to-many generalization of the RPA problem 
is something the authors are currently researching. 

Finally, the authors are also working on the next step required to 
allow partners in the CN to take advantage of a business opportunity. 
That is, once a matching of roles to partners satisfying the RPA problem 
requirements is obtained, the new project that partners will undertake 

Table 5 
UBReM resulting matching of partners to roles.  

α(r0) α(r1) α(r2) α(r3) α(r4) α(r5) α(r6) α(r7) α(r8) α(r9) α(r10) α(r11)

i0 i0 i0 i2 i1 i1 i2 i2 i3 i0 i3 i3 

i1 i2 i1 i3 i2 i2 i1 i1 i1 i2 i2 i0 

i2 i3 i3 i4 i0 i4 i0 i0 i4 i1 i4 i4 

i4 i1 i4    i4 i4      

Table 6 
UBReM resulting matching of roles to partners.  

β(i0) β(i1) β(i2) β(i3) β(i4)

r4 r1 r10 r3 r11 

r6 r9 r0 r2 r8 

r11 r8 r5 r1 r5 

r7 r6 r9 r8 r2 

r9 r2 r4 r10 r0 

r0 r0 r3 r11 r3 

r1 r7 r1  r7 

r2 r4 r6  r10  

r5 r7  r6  
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together must be planned. This means first to create a project schedule. 
In this case, the aim would mainly be to minimize the project time 
subject to certain restrictions (task dependences, milestones, partners’ 
time availability, market requirements, etc.). For that purpose, various 
approaches such as branch and bound methods (see e.g., Ross & Soland, 
1975; Brucker, Jurisch, & Sievers, 1994) and argumentation techniques 
(see e.g., Rahwan, Ramchurn, & Jennings, 2004) are being considered. 
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Milani, F., Dumas, M., Matulevičius, R., Ahmed, N., & Kasela, S. (2016). Criteria and 
heuristics for business process model decomposition: review and comparative 
evaluation. Business & Information Systems Engineering, 58(1), 7–17. https://doi.org/ 
10.1007/s12599-015-0413-1 

Qin, J., Xue, K., Li, J., Sun, Q., & Lu, J. (2021). Service prioritization in information 
centric networking with heterogeneous content providers. IEEE Transactions on 
Network and Service Management, 18(4), 476–4488. https://doi.org/10.1109/ 
TNSM.2021.3105198 

Rahwan, I., Ramchurn, S. D., & Jennings, N. R. (2004). Argumentation-based 
negotiation. The Knowledge Engineering Review, 18(4), 343–375. https://doi.org/ 
10.1017/S0269888904000098 

Ross, G. T., & Soland, R. M. (1975). A branch and bound algorithm for the generalized 
assignment problem. Mathematical Programming, 8, 91–103. https://doi.org/ 
10.1007/BF01580430 

Roth, A. E. (1984). The evolution of the labor market for medical interns and residents: A 
case study in game theory. Journal of Political Economy, 92(6), 991–1016. https:// 
doi.org/10.1086/261272 

Roth, A. E. (1986). On the allocation of residents to rural hospitals: A general property of 
two-sided matching markets. Econometrica, 54(2), 425–427. https://doi.org/ 
10.2307/1913160 

Roth, A. E. (2002). The economist as engineer: game theory, experimentation, and 
computation as tools for design economics. Econometrica, 70(4), 1341–1378. https:// 
doi.org/10.1111/1468-0262.00335 

Roth, A. E. (2008). Deferred acceptance algorithms: History, theory, practice, and open 
questions. A Collection of Papers Dedicated to David Gale on the Occasion of His 85th 
Birthday, Special Issue, International Journal of Game Theory 36(3-4), 537-569. 
https://doi.org/10.3386/w13225. 

Roth, A. E., & Peranson, E. (1997). The effects of a change in the NRMP matching 
algorithm. Journal of the American Medical Association, 278(9), 729–732. https://doi. 
org/10.1001/jama.1997.03550090053032 

Roth, A. E., & Sotomayor, M. (2008). Two-sided matching: A study in game theoretic 
modeling and analysis. New York: Cambridge University Press.  

Roth, A. E., Sönmez, T., & Ünver, M. U. (2004). Kidney exchange. The Quarterly Journal of 
Economics, 119, 457–488. https://doi.org/10.1162/0033553041382157 

Shapley, L. S., & Scarf, H. (1974). On cores and indivisibility. Journal of Mathematical 
Economics, 1, 23–28. https://doi.org/10.1016/0304-4068(74)90033-0 

Sönmez, T., & Ünver, M. U. (2010). Course bidding at business schools. International 
Economic Review, 51(1), 99–123. https://doi.org/10.1111/j.1468-2354.2009.00572. 
x 

vom Brocke, J., Maaß, W., Buxmann, P., Maedche, A., Leimeister, J. M., & Pecht, G. 
(2018). Future work and enterprise systems. Business & Information Systems 
Engineering, 60(4), 357–366. https://doi.org/10.1007/s12599-018-0544-2 

J. Andrade-Garda et al.                                                                                                                                                                                                                       

https://doi.org/10.7916/D8WS95FB
https://doi.org/10.1007/978-3-540-24587-2_49
https://doi.org/10.1007/978-3-540-24587-2_49
https://doi.org/10.1016/j.jda.2006.03.006
https://doi.org/10.1016/j.jda.2006.03.006
https://doi.org/10.5281/zenodo.1315585
https://doi.org/10.5281/zenodo.1315585
https://doi.org/10.1080/00207543.2016.1262083
https://doi.org/10.1016/j.tcs.2010.05.005
http://refhub.elsevier.com/S0360-8352(22)00314-X/h0035
http://refhub.elsevier.com/S0360-8352(22)00314-X/h0035
https://doi.org/10.1016/0166-218X(94)90204-6
https://doi.org/10.1016/0166-218X(94)90204-6
https://doi.org/10.1016/j.cie.2008.11.024
https://doi.org/10.1016/j.cie.2008.11.024
https://doi.org/10.3390/app924543
https://doi.org/10.1016/j.jet.2004.10.006
https://doi.org/10.1080/00207543.2015.1122249
https://doi.org/10.1080/00207543.2015.1122249
https://doi.org/10.1142/S0219198901000373
https://doi.org/10.1142/S0219198901000373
https://doi.org/10.2307/2312726
https://doi.org/10.1016/0166-218X(85)90074-5
https://doi.org/10.1016/0166-218X(85)90074-5
https://doi.org/10.1016/j.cie.2015.05.017
http://refhub.elsevier.com/S0360-8352(22)00314-X/h0095
http://refhub.elsevier.com/S0360-8352(22)00314-X/h0095
http://refhub.elsevier.com/S0360-8352(22)00314-X/h0100
http://refhub.elsevier.com/S0360-8352(22)00314-X/h0100
http://refhub.elsevier.com/S0360-8352(22)00314-X/h0105
http://refhub.elsevier.com/S0360-8352(22)00314-X/h0105
https://doi.org/10.1007/978-3-642-23719-5_16
https://doi.org/10.1007/978-3-642-23719-5_16
https://doi.org/10.1016/0166-218X(92)00179-P
https://doi.org/10.1007/3-540-36494-3_39
https://doi.org/10.1007/3-540-36494-3_39
https://doi.org/10.1162/qjec.2010.125.3.1297
https://doi.org/10.1109/JIOT.2020.2973267
https://doi.org/10.1016/j.cie.2019.06.025
https://doi.org/10.1016/j.cie.2019.06.025
http://refhub.elsevier.com/S0360-8352(22)00314-X/h0140
http://refhub.elsevier.com/S0360-8352(22)00314-X/h0140
https://doi.org/10.1007/s12599-015-0413-1
https://doi.org/10.1007/s12599-015-0413-1
https://doi.org/10.1109/TNSM.2021.3105198
https://doi.org/10.1109/TNSM.2021.3105198
https://doi.org/10.1017/S0269888904000098
https://doi.org/10.1017/S0269888904000098
https://doi.org/10.1007/BF01580430
https://doi.org/10.1007/BF01580430
https://doi.org/10.1086/261272
https://doi.org/10.1086/261272
https://doi.org/10.2307/1913160
https://doi.org/10.2307/1913160
https://doi.org/10.1111/1468-0262.00335
https://doi.org/10.1111/1468-0262.00335
https://doi.org/10.1001/jama.1997.03550090053032
https://doi.org/10.1001/jama.1997.03550090053032
http://refhub.elsevier.com/S0360-8352(22)00314-X/h0190
http://refhub.elsevier.com/S0360-8352(22)00314-X/h0190
https://doi.org/10.1162/0033553041382157
https://doi.org/10.1016/0304-4068(74)90033-0
https://doi.org/10.1111/j.1468-2354.2009.00572.x
https://doi.org/10.1111/j.1468-2354.2009.00572.x
https://doi.org/10.1007/s12599-018-0544-2

	A centralized matching scheme to solve the role-partner allocation problem in collaborative networks
	1 Introduction
	2 RPA problem overview
	3 Centralized matching schemes
	4 Stability, pareto-efficiency and strategy-proofness
	5 Proposed centralized matching scheme
	5.1 Preconditions
	5.2 Proposing side
	5.3 Algorithm

	6 Illustrative example
	7 Conclusion and future research
	Declaration of Competing Interest
	References


