
Computers & Industrial Engineering 169 (2022) 108244

Available online 14 May 2022
0360-8352/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

A centralized matching scheme to solve the role-partner allocation problem
in collaborative networks

Javier Andrade-Garda a, Juan Ares-Casal a, Marta Hidalgo-Lorenzo a, Juan-Alfonso Lara b,
David Lizcano b, Sonia Suárez-Garaboa a,*

a Grupo ISLA, Dep. Ciencias da Computación e Tecnoloxías da Información, Fac. Informática, Universidade da Coruña, 15071 A Coruña, Spain
b Universidad a Distancia de Madrid, Vía de Servicio 15, 28400 Collado-Villalba, Spain

A R T I C L E I N F O

Keywords:
Centralized matching scheme
Collaborative network
Matching problem
Partner
Role

A B S T R A C T

In the current constantly changing business and economic environment, partners (i.e., individuals and/or en
terprises) create Collaborative Networks to join efforts and undertake new projects together, thus allowing them
to face business opportunities that would not be possible if attempted by them individually. In this situation, an
assignment problem arises, since these projects involve the performance of a group of tasks or processes (named
roles) that have to be distributed among the partners. Specifically, this problem, called the Role-Partner Allo
cation (RPA) problem in Collaborative Networks is a two-sided matching problem with lower and upper quotas
on the partner’s side, and incomplete and partially ordered preference lists on both sides. A matching problem,
and thus also the RPA problem, should be solved by a centralized matching scheme. However, allocations in
Collaborative Networks continue to be mainly created by ad hoc arrangements, which takes a long time and is
hard work. Looking for a reliable and faster way of distributing roles among partners in a Collaborative Network,
the existing centralized matching schemes expected to solve the RPA problem (e.g., DA algorithm, SOSM, CA-QL
algorithm, and EADAM) are studied in this paper, concluding that none of them obtain a matching that properly
meets the requirement of the RPA problem. Therefore, a new centralized matching scheme to solve the RPA
problem is proposed, discussed and exemplified.

1. Introduction

As defined in Camarinha-Matos, Afsarmanesh, Galeano, and Molina
(2009), a collaborative network (CN) is a network consisting of a variety
of entities (e.g., organizations and people) that are largely autonomous,
geographically distributed, and heterogeneous in terms of their oper
ating environment, culture, social capital, and goals, but that collabo
rate to better achieve common or compatible goals, thus jointly
generating value, and whose interactions are supported by computer
network.

CNs born as a way of facing the significant challenges arising from
the rapidly changing and ever more globalized business environments
(Appio, Martini, Massa, & Testa, 2017) that have become increasingly
volatile, uncertain, complex, and ambiguous (vom Brocke et al., 2018).
Dealing with the new challenges requires organizations and people to
increase their flexibility, agility, and speed. To do this, in an inter
connected world thanks to the advances in the information and

communication technologies (ICT) where the barriers of time and dis
tance disappear, new ways of working and new forms of dividing labor
arise (Brynjolfsson & McAfee, 2014). ICT have allowed enterprises to
move from highly data-driven environments to more cooperative
information/knowledge-driven environments (Camarinha-Matos et al.,
2009).

In this business atmosphere, CNs have increasingly become a main
stay of business operations (Camarinha-Matos, Fornasiero, Ramezani, &
Ferrada, 2019; Camarinha-Matos, 2014; Durugbo, 2016). It shows the
growth trend in enterprises and professionals in seeking joint activities
to allow them to participate in competitive business opportunities for
innovative developments.

In CNs, partners seek to undertake a business opportunity together in
a given field that would not be possible or would have a higher cost if
attempted by them individually. Typically, there are one or more ini
tiators—that is the partner who initially detects the business opportu
nity—and one or more partners interested in participating in the project

* Corresponding author.
E-mail addresses: javier.andrade@udc.es (J. Andrade-Garda), juan.ares@udc.es (J. Ares-Casal), marta.hidalgo@udc.es (M. Hidalgo-Lorenzo), juanalfonso.lara@

udima.es (J.-A. Lara), david.lizcano@udima.es (D. Lizcano), sonia.suarez@udc.es (S. Suárez-Garaboa).

Contents lists available at ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier.com/locate/caie

https://doi.org/10.1016/j.cie.2022.108244
Received 23 October 2019; Received in revised form 27 January 2022; Accepted 10 May 2022

mailto:javier.andrade@udc.es
mailto:juan.ares@udc.es
mailto:marta.hidalgo@udc.es
mailto:juanalfonso.lara@udima.es
mailto:juanalfonso.lara@udima.es
mailto:david.lizcano@udima.es
mailto:sonia.suarez@udc.es
www.sciencedirect.com/science/journal/03608352
https://www.elsevier.com/locate/caie
https://doi.org/10.1016/j.cie.2022.108244
https://doi.org/10.1016/j.cie.2022.108244
https://doi.org/10.1016/j.cie.2022.108244
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2022.108244&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Computers & Industrial Engineering 169 (2022) 108244

2

by joining the CN. Usually, the CN initiator configures the project (i.e., it
decomposes the entire process into sub-processes) and the parties
interact somehow in order to specify the operational requirements of the
CN and to create it. Process decomposition is a complex task that can be
approached in multiple ways. See, for example, Milani, Dumas, Matu
levičius, Ahmed, and Kasela (2016) for detailed information about
decomposition heuristics, as well as about criteria and associated met
rics to assess the “goodness” of a given decomposition.

Hence, facing a business opportunity by creating a CN implies un
dertaking a new project that involves the performance of a group of
processes or activities (here referred to as roles) that have to be
distributed among the partners, thus an assignment problem arises. As
indicated in Malaguti and Medina Durán (2019), assignment problems
are about the best way of assigning a first set of n elements to a second
set of n elements, where each element of the first set has to be assigned to
exactly one element of the second set, and vice versa, each element of
the second set has assigned exactly one element of the first set. When the
cardinality n of the first set is larger than the cardinality of the second
set, let us denote it by m, then we are facing a Semi-Assignment problem
(SAP), where each element i of the first set has to be assigned to exactly
one element j of the second set, while each element j of the second set
has assigned a given number qj ≥ 1 of elements of the first. In the CNs
environment, such first set is the set of n roles and such second set is the
set of m partners (n ≥ m). As the total number of roles to be assigned
usually exceeds that of the partners, a SAP arises in most cases.

In particular, the SAP of allocating roles among partners in a CN is an
example of the so-called two-sided matching problem (Gale, 2001).
Following the definition in Abraham, Irving, and Manlove (2007), in this
type of assignment problems the input entities (in this case, the roles and
the partners) are partitioned into two disjoint sets (in this case, the set of
roles and the set of partners), and the aim is to pair elements of one set
with elements of the other set subject to various criteria such as capacity
constraints and preference lists.

The assignment of roles to partners is commonly addressed in real
life in CNs by negotiation between the partners. This takes a long time
and is hard work. Partners have to present their arguments (i.e.,
knowledge, capabilities, personal preferences, availability, etc.) and
discuss the situation in order to reach an agreement regarding the dis
tribution of the roles of the project among them.

Even if certain information about the partners is stored, the above-
mentioned process is complex because it implies human beings, each
one with its own personality, requirements, tastes, etc. In the current
changing, globalized and competitive business environment, a reliable
and faster way of assigning roles to partners is required to minimize the
risk of losing the business opportunity. However, there is no such pro
posal in CNs, where allocations continue to be mainly created by ad hoc
arrangements. This is despite, as Abraham, Irving, and Manlove (2003)
indicate, both historical evidence and economic analysis show that
participants involved in matching problems should not be allowed to
construct an allocation by approaching one another directly in order to
make ad hoc arrangements. Instead, the allocation process should be
automated by means of a centralized matching scheme, which is an al
gorithm to solve a matching problem. A centralized matching scheme
will greatly contribute to the progress of CNs by solving the SAP of
distributing roles among partners, since it will allow the process to be
sped up and simplified, thus preventing the complications that occur
when constructing an allocation by partners approaching one another
directly. The SAP to be solved and its core components have been
formally defined in Andrade-Garda et al. (2018) under the name of Role-
Partner Allocation (RPA) problem.

Taking this formal definition into account, we firstly looked for an
algorithm to solve the RPA problem among the main existing centralized
matching schemes that had been successfully applied to solve other two-
sided matching problems. However, as discussed below, the current
centralized matching schemes do not fulfil the requirements of the RPA
problem in a comprehensive manner. Thus, they cannot therefore be

directly applied to solve it. Because of this, it is necessary to propose a
new scheme (algorithm) for distributing roles among partners in a CN (i.
e., for solving the RPA problem).

The remainder of this paper is structured as follows. Section 2 briefly
presents and discusses the formal definition of the RPA problem and its
core components. Section 3 analyses the different existing approaches
expected to solve it, concluding that none of them properly satisfy the
specified conditions. As a first step towards the definition of the new
algorithm, Section 4 presents the three main properties that must be
considered for a matching algorithm, and after which Section 5 presents
the new algorithm to find a stable matching giving an instance of the
RPA problem and considering the previous three properties. Section 6
presents an example to illustrate its applicability and, finally, Section 7
presents the most relevant conclusions and future work.

2. RPA problem overview

As defined in Andrade-Garda et al. (2018), the RPA problem is an
example of the two-sided matching problem that, according to Gale
(2001) and Abraham et al. (2007), is a class of problems in which the
input set of entities can be partitioned into two disjoint sets A and B, and
the aim is to find a matching M of members of A to members of B subject
to various criteria. These criteria usually involve preference lists and
capacity constraints, such is the case with the RPA problem. A brief
summary of the RPA problem and its core components is presented in
the following paragraphs in order to make this paper self-contained.

In this case, the two characteristic disjoint sets (generically denoted
as A and B in the above-mentioned definition) of the two-sided matching
problems are the set of partners and the set of roles. Specifically, let I ≡

{i0, i1, ⋯, in−1} with |I| ≥ 2 denote the finite set of partners and R ≡ {r0,

r1, ⋯, rm−1} the finite set of roles. A generic element in I is denoted by i
and a generic element in R is denoted by r.

Each partner i defines an incomplete and partially ordered prefer
ence list β(i) ⊆ [r0, r1, ⋯, rk] with the roles that it is willing to perform in
the project (k ≤ m −1), and each role r also defines an incomplete and
partially ordered preference list α(r) ⊆ [i0, i1, ⋯, it] with the partners
appropriate to perform the role (t ≤ n −1). Note that a role is not a
human being, so it has no personal preferences or individual tastes.
Thus, the preference list of each role is created using objective criteria (i.
e., the partner with most knowledge or capabilities for the role will be on
the top of the list). However, partners are human beings (or sets of
human beings, like enterprises), so that besides their knowledge and
capabilities they may also have personal preferences and individual
tastes, which will be reflected in their preference lists.

Preference lists on both sides are incomplete because not all partners
have to be empowered to perform all roles (i.e., to do any kind of ac
tivity), and similarly not all partners have to want to or be able to
perform all roles (e.g., because of a lack of knowledge or different per
sonal preferences and individual tastes). In addition, lists are partially
ordered because they include ties. That is to say, partner i strictly prefers
β(i)[x] to β(i)[x +1](x = 0..|β(i) |) or is indifferent between them (the
same applies to roles).

Each partner i defines l(i) as the number of roles that i requires at
least in order to join the project and u(i) as the maximum number of
roles that i is willing to perform in the project. It doesn’t mean that the
aim of i is to play u(i) roles. The aim of i is to play at least l(i) roles (it
meets its needs) and by no means will accept to play more than u(i) roles
(it is more work than the partner can handle). Note that only if the total
number of roles is no less than the minimum total number of roles
required by the partners (i.e., |R| ≥

∑
i∈I l(i)) can a feasible allocation

exist. Similarly, only if
∑

i∈Iu(i) ≥ |R| a solution is possible.
Let M(i) be the set of roles assigned to partner i after the allocation

process, then 0 < l(i) ≤ |M(i) | ≤ u(i) ≤ |R| −
∑

j∈I l(j),j ∕= i. That is to say,
each partner has to take the responsibility of a minimum of l(i) roles
(with l(i) at least 1; that is, a piece of the project) and a maximum of roles

J. Andrade-Garda et al.

Computers & Industrial Engineering 169 (2022) 108244

3

such that each other partner j has the possibility to play a minimum of
l(j) roles. Finally, each role has to be played by only one partner (i.e.,
|M(r) | = 1 for all roles).

3. Centralized matching schemes

There are multiple matching mechanisms to solve a two-sided
matching problem and are, therefore, potentially applicable to solve
the RPA problem. The simplest approach could be a first-come-first-
served (FCFS) allocation mechanism. This way, and respecting the
lower and upper bounds, the first acceptable partner (role) that asks for
a role (partner) is the one that will obtain it. However, as Diebold, Aziz,
Bichler, Matthes, and Schneider (2014) conclude in the case of course
allocation problems, FCFS doesn’t care about equity and preferences can
be violated, so another type of mechanism is needed.

Gale and Shapley (1962) presented the central bipartite matching
problem with two-sided preferences: The Stable Marriage (SM) problem.
An instance of this problem comprises of a set of men and women, and
each person ranks each member of the opposite sex in strict order of
preference. They suggested the Gale-Shapley deferred acceptance (DA)
algorithm to find a stable matching of single men to single women (one-
to-one). In the CN context, making an analogy between men and women
and roles and partners, this approach is not valid “as it is” as a solution to
the RPA problem, basically because (i) not all the partners are valid for
playing all the roles, (ii) not all the partners might want to play all the
roles, and (iii) a one-to-one matching is not always possible either
because the number of roles is greater than the number of partners or
because of quota constraints. The classical SM problem with incomplete
lists (SMI) (Gusfield & Irving, 1989) allows to tackle (i) and (ii), but (iii)
remains unsolved.

The many-to-one generalization of SM was firstly defined by Gale
and Shapley under the name College Admissions problem (Gale &
Shapley, 1962), where each man corresponds to a student and each
woman corresponds to a college which can potentially be assigned
multiple students up to a fixed capacity. As indicated in Abdulkadiroglu
and Sönmez (2003), the many-to-one version of the DA algorithm,
where students are proposing to the colleges, is also referred to as Stu
dent Optimal Stable mechanism (SOSM). Likewise, where colleges are
proposing to the students, it can be also referred to as College Optimal
Stable mechanism. The College Admission problem has been extensively
studied—see e.g., Roth and Sotomayor (2008), and Roth (2008) for a
survey—, being the most influential application the assignment of res
idents or students to hospitals by the Hospitals/Residents problem (HR)
(Roth, 1986; Roth & Peranson, 1997; Manlove, 2008). In this case, each
student corresponds to a resident and each college corresponds to a
hospital. A reduction of HR to SMI using the method of “cloning” hos
pitals exists. That is, replacing each hospital h with capacity ×, with ×
hospitals denoted h1, …, hx. However, in practice direct algorithms are
applied to HR instances because the cloning technique increases the
number of hospitals in a given HR instance by a potentially significant
factor (Abraham et al., 2003).

Other SM related problems in different research areas are: the School
Choice problem (Abdulkadiroglu & Sönmez, 2003; Chen & Sönmez,
2006), the Course Allocation problem (Diebold et al., 2014; Sönmez &
Ünver, 2010), the Student–Project Allocation (SPA) problem (Abraham
et al., 2007; Chen & Sönmez, 2006), the Trainee-Project Allocation
problem (Gharote, Patil, Lodha, & Raman, 2015), the finding of men
tor–mentee matches (Haas & Hall, 2019; Haas, Hall, & Vlasnik, 2018),
the spectrum resource allocation problem (Li, Ma, Xu, & Shankaran,
2020), the matching between core nodes and edge nodes for content
providers (Qin, Xue, Li, Sun, & Lu, 2021), and, of course, the well-known
case with patient-donor pairs (Roth, Sönmez, & Ünver, 2004) — a pa
tient in need of a kidney and a donor (family, friend) who is willing to
donate one. Proof of the importance of this field of study is that in 2012
Alvin E. Roth and Lloyd S. Shapley were awarded with the Nobel Prize in
Economics for the theory of stable allocations and the practice of market

design.
The SM related problems that allow an element of the first set (e.g.,

hospitals) to has assigned more than one element of the second set (e.g.,
residents) are more similar to the RPA problem and match with the need
of managing upper quotas. However, the management of lower quotas is
also required. Lower quotas appear with the College Admission with
Lower Quotas (CA-LQ) problem (Biró, Fleiner, Irving, & Manlove,
2010). In a given instance of that problem, each college c has the clas
sical (upper) quota of many-to-one type problems, denoted by u(c), and
a lower quota l(c). A matching of applicants to colleges in this context
requires every college c satisfying |M(c) | = 0 or l(c) ≤ |M(c) | ≤ u(c).
The authors say that c is closed if |M(c) | = 0, and open otherwise. Note
that, despite having similar purposes, this algorithm is not directly
applicable to the RPA problem. This is because in the case of the RPA
problem “closed partners” are entirely unacceptable. An algorithm that
solves the RPA problem has to be defined in such a way that a feasible
matching involves all partners participating in the project and lower
quotas are respected for all partners. Otherwise, the algorithm must
return that no solution meets the requirements of the RPA problem. In
this regard, Hamada, Iwama, and Miyazaki (2011) also studied the HR
problem with lower quota bounds; that is a CA-LQ related problem with
similar motivations. In this case, they require the matching to satisfy all
lower quotas (i.e., no hospital can be closed in their model). However,
they assume that each applicant has a complete preference list (i.e., the
underlying bipartite graph is complete), that is not the case in the RPA
problem. In addition, they define a feasible matching as an assignment
of residents to hospitals satisfying the upper and lower quotas but
possibly, leaving some residents unassigned. This is not valid for the RPA
problem since no role can remain unassigned in a feasible matching.
Additionally, the matching admits blocking pairs (i.e., two participants
that are not partners in the matching and prefer each other to its
assigned partner), and they proved that the problem of finding a
matching with the minimum number of blocking pairs is NP-hard.
Nevertheless, as later discussed, for CN purposes a matching with
blocking pairs is not acceptable. It is preferable that the partners on their
own initiative modify their requirements and/or preferences in order to
obtain a comprehensive agreement on how to undertake the project and
to ensure that none of them does feel (rightly or mistakenly) discrimi
nated against.

Therefore, a new proposal is required to solve the RPA problem. This
is because the RPA problem accepts upper and lower quotas in the
partners’ side, and incomplete preference lists with ties in both sides; in
addition to fulfilling the properties and constraints defined for the RPA
problem in Andrade-Garda et al. (2018) and summarized in Section 2.

4. Stability, pareto-efficiency and strategy-proofness

As stated above, the RPA problem is an example of the two-sided
matching problem. Therefore, the three main properties of this type of
matching problems—namely stability, Pareto-efficiency and strategy-
proofness (Kesten, 2010)—have to be taking into account when
defining the mechanism for constructing a matching M of roles to
partners.

As indicated in Gale and Shapley (1962), a matching M is unstable if
there is a pair (a, b) that are not partners in M and prefer each other to its
partner in the matching. Such a pair is said to block, or to be a blocking
pair for, the matching. Naturally, a matching for which there is no
blocking pair is said to be stable. A mechanism is stable if it always
produces a stable matching. This is the general definition of stability.
However, if ties are allowed in the participants’ preference lists, as is the
case of the RPA problem, the following three different stability defini
tions are possible (Irving, Manlove, & Scott, 2003; Irving, 1994):

1. A matching will be called weakly stable unless there is a couple each
of whom strictly prefers the other to its partner in the matching. It is
not hard to see that if ties in preference lists are broken arbitrarily,

J. Andrade-Garda et al.

Computers & Industrial Engineering 169 (2022) 108244

4

any matching that is stable in the resulting (strict) instance is weakly
stable in the original instance.

2. A matching is strongly stable if there is no couple (a, b) such that a
strictly prefers b to its partner, and b either strictly prefers a to its
partner or is indifferent between them.

3. A matching is super-stable if there is no couple each of whom either
strictly prefers the other to its partner or is indifferent between them.

A matching M is Pareto-efficient if there is no other matching for
which all participants (i.e., roles/partners in this case) are at least as well
off, and at least one participant better off. A mechanism is Pareto-
efficient if it always produces a Pareto-efficient matching.

Finally, if a mechanism is strategy-proof, then no participant can
benefit by lying, irrespective of its beliefs regarding the announcements
of other participants.

Although these three properties (stability, Pareto-efficiency, and
strategy-proofness) are important, unfortunately no mechanism exists to
satisfy all of them. There are Pareto-efficient and strategy-proof (but not
stable) mechanisms (Abdulkadiroglu & Sönmez, 2003), which are based
on the top trading cycle algorithm (Shapley & Scarf, 1974); there are
stable and strategy-proof (but not Pareto-efficient) mechanisms like the
Gale–Shapley SOSM and—as indicated in Diebold et al. (2014)—Kesten
(2010) demonstrates that there cannot exist a mechanism that always
returns a Pareto optimal and stable matching (i.e., no stable and Pareto-
efficient mechanism can exist).

Knowing this, it is necessary to determine which properties are
essential in the context of the RPA problem in order to develop a
matching scheme to satisfy them. Thus, as stated in Roth (2002), the
empirical evidence is clear that stability is important to the success of
matches in practice. Stable mechanisms have mostly (but not always)
succeeded, and unstable mechanisms have mostly (but not always)
failed. Moreover, as indicated in Abraham et al. (2007), and accordingly
to Roth (1984), it has been convincingly agreed that, when preference
lists exist on both sides, the key property that a matching constructed by
a matching scheme should satisfy is that of stability. In fact, in the CN
domain stability is an essential need: if partners cannot be confident that
their priorities will not be violated, then the advantages of a central
mechanism over making ad hoc arrangements disappear. Likewise, if the
CN initiator cannot be confident that the role’s priorities—that are
objective priorities—will be met then it could not trust the mechanism.
Thus, as stability is required, one of the three stability options has to be
selected for the RPA problem. In the CN domain, the goal is to achieve a
matching that makes it possible to address the business opportunity
respecting the needs of each part (roles and partners). That is to say,
avoiding strict preference violation. A weakly stable matching is, there
fore, enough in the context presented in this paper and this is the type of
stability that will be intended in the following. Thus, ties in preference
lists will be broken via a random draw since any matching that is stable
in the resulting strict instance is weakly stable in the original instance.
Consequently, in a weakly stable matching M for an RPA instance there is
no r′

∕∈ M(i) such that i strictly prefers r ́ to all roles in M(i) and r ́ strictly
prefers i to M(r’). At worst, i equally prefers the roles in M(i) to any other
role, and each role in M(i) equally prefers i to any other partner.

Therefore, as mentioned above, if stability is required then Pareto-
efficiency has to be given up. In this situation, the idea behind SOSM
may provide the basis for developing the new algorithm required for
solving the RPA problem. In doing so, it will be stable but not Pareto-
efficient. Nonetheless, as Kesten (2010) states, the fact of caring about
equity (stability) should not mean that the welfare (efficiency) aspects of
the problem can be totally neglected. This raises a question about the
price one needs to pay for achieving stability. In the School Choice
problem, Kesten (2010) illustrates with an example a striking situation
in which every student is unsatisfied at the most favorable stable
matching (for students) that one can possibly find by the application of
SOSM. In general, it is possible to arbitrarily construct problems for

which a stable mechanism results in high welfare losses. Even more
when, as in the case of the CN domain, weak stability is considered as
sufficient and ties in preference lists are broken via some random draw.

In view of this, Kesten (2010) proposed the Efficiency Adjusted De
ferred Acceptance Mechanism (EADAM). The central idea in EADAM is
that of identifying interrupter students—those who interrupt desirable
settlements among other students at no gain to themselves—and
neutralizing their adverse effect on the outcome by asking them for
consent to waive their priorities for crucial schools. Thus, EADAM
closely mimics SOSM and makes adjustments to recover artificial wel
fare losses caused only by those interrupters who give consent to priority
waiving. EADAM Pareto dominates SOSM; that is, no student is ever
worse off under EADAM than for his/her assignment under SOSM and,
when all students consent, the EADAM outcome is Pareto-efficient. With
respect to stability, a student’s priority for a particular school may be
violated but this is the case only if he/she consents so it’s no longer
considered a priority violation in practice. Moreover, a consenting stu
dent is never hurt by consenting: no interrupter student ever gains
anything by choosing not to consent. He/she can at best prevent others
from improving. In addition, EADAM eliminates welfare losses due to
randomly breaking ties in priorities. All of this is gained at the expense of
strategy-proofness. However, trust telling of students is a Bayesian Nash
equilibrium in this mechanism (Diebold et al., 2014). Even if there are
no dominant strategies, possibilities to strategically misrepresent pref
erences are minimal in most applications. This is in line with the
working philosophy in CNs, where the aim is not so much the individual
but the collective success, since partners come together to address
business opportunities that they could not undertake individually. The
success of the project (through the success of the collaborative work) is
the success of everybody, so strategic behavior is not the expected
behavior. On the face of it, EADAM is taken as the basis for the definition
of the new algorithm for solving the RPA problem.

5. Proposed centralized matching scheme

5.1. Preconditions

For the RPA problem, in summary, the following is true: (i) there are
objective preferences over the partners most appropriate to play each
role (e.g., on the basis of its knowledge), (ii) each partner has also
preferences over the roles that it is willing to perform (on the basis of its
knowledge, individual tastes, and/or personal preferences), (iii) pref
erence lists are incomplete and partially ordered (with ties) on both sides
(partners and roles), (iv) ties in preference lists are arbitrary broken
since a weakly stable matching is enough, (v) there are upper bounds on
the number of roles that can be assigned to a particular partner, and (vi)
there are also lower bounds on the number of roles that a given partner is
willing to perform.

Before presenting the algorithm, let us suppose that a matching is, at
least in theory, possible. That is to say, in addition to the constraints
previously presented, (i) there is no role that is unacceptable for all
partners, and (ii) each partner i is acceptable for at least l(i) roles.
Otherwise a matching is not possible. Also, in order to minimize the
number of useless computations, it is recommended to prune preference
lists if necessary to achieve consistency. That is, if partner i is not
acceptable for role r then r must not be in i’s preference list and vice
versa, since no matching will pair i and r. Analogously, if partner i
doesn’t want to play role r then i must not be in r’s preference list.

5.2. Proposing side

As stated above, for the definition of this algorithm, EADAM is used
as a reference. It is also well known that EADAM applies SOSM at its
heart, that is the generalization of the Shapley-Gale student proposing
DA algorithm to solve the College Admission Problem. In the College
Admission problem, each student is assigned to one college and each

J. Andrade-Garda et al.

Computers & Industrial Engineering 169 (2022) 108244

5

college can receive many students. Making an analogy between this
problem and the RPA problem, each role corresponds to a student and
each partner corresponds to a college since each role is assigned to one
partner and each partner can receive many roles (i.e., pieces of project).
In this regard, the Shapley-Gale algorithm (Gale & Shapley, 1962)
showed that when students (colleges) are proposing, the resulting
matching M is student (college) optimal in the sense that every student
(college) is at least as well off under M as it is under any other stable
matching. Unfortunately, the student (college) optimal matching is
college (student) pessimal in the sense that no college (student) is worse
off in any other stable matching. Consequently, if the student optimal
solution is the same as the college optimal solution, the solution is
unique.

In referring to which side must be the proposing one in the RPA
problem, as stated above, in the CN domain partners create alliances to
face business opportunities that would not be possible or would have a
higher cost if attempted by them individually. In this context, the suc
cess of the joint project is the success for all partners and the best way to
ensure the success of the project is obtaining a matching in which each
piece of project (i.e., role) is performed by the most appropriate worker
(i.e., partner). Thus, it is expected that a role optimal matching might be
the best option since it is the best matching for roles and hence for the
project. For this reason, a role proposing algorithm is presented by
default. However, if a partner optimal solution is required it would be
enough to use the college optimal stable matching algorithm (instead of
SOSM) as the core of EADAM and to ask partners instead of roles to
consent for recovering welfare losses.

In the role proposing algorithm, interrupter roles are detected and
asked for consent to waive their priorities for certain partners. In this
case, it is assumed that all interrupter roles consent. A non-consenting
role can only harm other roles preventing them from being performed
by a better partner, which is not a collaborative work philosophy and
makes no sense when looking for the best for the project. Also, note that
roles are not human beings so role consenting actually means that the
partners consent to seek the best for the project and not for themselves as
individuals.

5.3. Algorithm

The first step of the matching process may be informally expressed in
terms of a sequence of proposals from the roles to the partners. In brief,
whilst a role r that is unmatched exists, r makes a proposal to each
partner i on its preference list until it becomes provisionally assigned to a
partner or its preference list has been exhausted. Partners only accept
proposals if they are currently undersubscribed or if they are fully
subscribed and strictly prefer the proposing role to their least favored
assignee.

Note that what has been indicated up to now is the direct execution
of SOSM. However, remember that the new algorithm must ensure that
no partner i remains without playing l(i) roles (lower bound) at the end
of the allocation process. For example, consider a problem with three
roles (r0, r1, r2), and two partners (i0, i1), with l(i) = 1 and u(i) = 3 for all
partners. In this case, if 3 roles are assigned to i0 (or i1) then i1 (or i0) will
remain totally unsubscribed, which would not be acceptable. In order to
avoid this type of situations, the proposal in this paper is to reduce the
partners’ upper quotas following certain criteria. This is to ensure that
all partners meet their participation requirements by finding a matching
in which each partner i plays at least l(i) roles. Remember that the
meaning of l(i) and u(i) is that the aim of i is to play at least l(i) roles (it
meets its needs) and by no means will accept to play more than u(i) roles.
Thus, reducing u(i) does not harm the interests of partner i as long as l(i)
is guaranteed. If such a matching doesn’t exist, partners must be asked in
order to modify their preference lists and/or upper and lower bounds if
they want to try to form an alliance to undertake the business oppor
tunity. If they agree, the algorithm must be applied again. Otherwise, it
would not be possible to reach an agreement in order to take advantage

of the business opportunity.
Once a matching satisfying all lower quotas is obtained, EADAM

extension to recover welfare losses (due both to SOSM and to random tie
breaking in preference lists) is applied. This is necessary because, as
previously indicated, when roles are proposing, the resulting matching
M is role optimal in the sense that every role is at least as well off under
M as it is under any other stable matching. However, as indicated in
(Kesten, 2010) it is possible to arbitrarily construct problems for which a
stable mechanism results in high welfare losses, in which every role is
unsatisfied at the most favorable stable matching for roles that one can
possibly find by the application of SOSM. That is to say, a matching
where roles are played by partners in low or very low positions on their
preference lists, which are not the most appropriate partners since the
preference list of each role is created using objective criteria (i.e., the
partner with the most knowledge or capabilities for the role will be on
the top of the list). Such practices could have detrimental effects for the
success of the project since, as previously indicated, the best for the
project would be for roles to be played by the best, or next best, partners.
Therefore, the welfare of the roles must not be neglected. Applying
EADAM for recovering the welfare losses of the roles provides this
important benefit in exchange for asking roles to waive their priorities
for certain partners (thus possibly losing stability). However, no con
senting role is ever worse off under EADAM than it is for its assignment
under SOSM. That is, no piece of a project will be played by a less
appropriate partner, so roles, and therefore the project, are not nega
tively affected in practice by consent.

Thus, interrupting roles are asked to consent and, as stated above, all
of them do, so the outcome is Pareto-efficient. The new algorithm can be
viewed therefore as an upper bound reduction mechanism (UBReM in
the following) that applies EADAM at its heart. UBReM is synthesized in
Fig. 1, and operates as follows with an RPA problem instance A:

1. Run SOSM to obtain a matching M. This matching must involve all
roles, since it is not possible to undertake a project in which there are
project pieces that will not be carried out by anyone. Thus, to
continue with the next step of UBReM, no role can be unassigned in
M. Otherwise, a stable matching for the RPA problem instance A is
not possible even when applying the rest of the steps in the pro
cedure. This directly derives from the condition

∑
i∈Iu(i) ≥ |R| above

presented in Section 2. In other words, partners have capacity for at
least all roles (|R| roles), but at least one role r is unassigned in the
resulting matching M. When this happens after applying SOSM, this
means that no partner in a stable matching can play this role. If r is
“unplayable” with the original upper bounds, it will continue to be
“unplayable” with smaller upper bounds, as preference lists do not
change.
2. If all roles are matched but M doesn’t satisfy all lower quotas, then
obtain A’ by reducing upper quotas. The aim is to balance the
assignation of roles to partners respecting priorities and quotas. For
this:

2.1. Considering that no partner by no means will play more than
u(i) roles, the partner with the highest “margin” is the partner
with the highest value of u(i) −l(i) (henceforth referred to as gap).
Thus, obtain the partner i with the highest gap and set u(i) =

u(i) −1.
2.2. If there is more than one partner with the same (maximum)
gap, then obtain the “less preferred” one among them and set
u(i) = u(i) −1. Partner i is preferred over partner j if it is a better
option for more roles. If a partner is highly preferred, then it is
better for the project not to reduce its upper quota in order to
make it possible for it to obtain more roles. Even knowing this,
note that in step 2.1 the upper bound of a highly preferred partner
could be reduced because of its gap. This is done to prevent most
preferred partners to “pre-empt the market” and generate highly
imbalanced outcomes harming the alliance interests.

J. Andrade-Garda et al.

Computers & Industrial Engineering 169 (2022) 108244

6

2.3. If several partners are equally less preferred, then randomly
choose a partner i among them and set u(i) = u(i) −1.

3. Rerun SOSM over the new RPA problem instance A’. Prior to
performing this step, it is necessary to check if A’ satisfies the min
imal conditions for an existing matching. These are: (i) |R| ≥

∑
i∈I l(i),

(ii)
∑

i∈Iu(i) ≥ |R|, (iii) there is no role that is unacceptable for all
partners, and (iv) each partner i is acceptable for at least l(i) roles. As
mentioned above, this does not guarantee that a solution to the RPA
problem exists, but it makes it possible (i.e., a necessary but not
sufficient condition).
4. The process is repeated until: (i) M satisfies all lower quotas, or (ii)
M doesn’t satisfy all lower quotas and there is no partner with actual
gap greater than 0. In the first case, EADAM extension to recover
welfare losses must be applied if there are interrupter roles. In the
second case, a stable matching satisfying lower and upper quotas
doesn’t exist and the process finishes.

Note that in steps 2.1 to 2.3, if |M(i) | ≤ u(i) being i the partner
reducing upper quota, then running SOSM again will not produce a
different outcome. This is because each partner is assigned the same
number of roles in any stable matching (Gale & Sotomayor, 1985) and,
therefore, any partner that is under-subscribed in one stable matching is
assigned precisely the same set of roles in all stable matching (Roth,
1986). Thus, for example, let A be an RPA instance with two partners i0
and i1 (l(i0) = 1, l(i1) = 2, u(i0) = u(i1) = 3) and three roles, with
|M(i0) | = 2 and |M(i1) | = 1 after step 1. The partner with the highest gap
is i0 so it reduces the upper bound in one unit. Running again SOSM with
the new upper bounds will produce exactly the same solution. Thus,
steps 2.1 to 2.3 have to be repeated until new upper bounds are reached

making it possible to obtain a different matching (i.e., |M(i) |〉u(i) for
partner i reducing u(i)). This way, new role allocations are possible only
when partners reducing their upper bounds lose their less preferable
assigned roles that are now free to be assigned to other partners. Also,
note that partner i reducing its upper quota continue to be guaranteed to
receive at least l(i) roles. This is because preference lists do not change,
so if it is a preferable partner for at least l(i) roles it will continue to be so.

In order to clarify the proposed algorithm, the data structures and the
main functions defined for UBReM are presented below in pseudocode
(Pseudocode 1 to 3) followed by their explanation.

Data Structures
partner: record

id: integer
l: integer
u: integer
gap: integer
beta: list
M: list

role: record
id: integer
alpha: list
M: integer

partners: list of n elements of type partner
roles: list of m elements of type role

Pseudocode 1 UBReM (Main procedure)

1 Input: partners
2 Output: partners with upper bound reduced

(continued on next page)

Fig. 1. Flowchart for UBReM algorithm.

J. Andrade-Garda et al.

Computers & Industrial Engineering 169 (2022) 108244

7

(continued)

3 Variables /*counting variables are omitted*/
4 stop /*true if new upper bounds allowing a new matching are reached*/
5 mgp /*subset of partners with the maximum gap value*/
6 lpp /*subset of partners with the less preferred partners*/
7 Begin procedure
8 stop = false

/*Partners not exceeding l assigned roles will not reduce upper bound, gap
must be 0 instead of u-l*/

9 for i=0 to (size of partners – 1) do
10 if size of (partners[i].M) ≤ partners[i].l then
11 partners[i].gap = 0
12 while stop is false do
13 mgp = partners with maximum gap /*pseudocode omitted for simplicity*/
14 if size of mgp = 1 then
15 stop = reduce(partners[mgp[0]].id)
16 else
17 lpp = lessPreferredPartners(mgp)
18 if size of lpp = 1 then
19 stop = reduce(partners[lpp[0]].id)
20 else
21 stop = reduce(randomly choose a partner in lpp)
22 End Procedure

Pseudocode 2 reduce

1 Input: p /*the id of the partner reducing upper bound*/
2 Output: false if it is needed to continue reducing upper bounds

true otherwise
3 Begin procedure
4 partners[p].u = partners[p]-u - 1
5 if partners[p].u < size of (partners[p].M) then
6 return true
7 else
8 return false
9 End procedure

Pseudocode 3 lessPreferredPartners

1 Input: mgp /*list of partners satisfying lower quotas with maximum gap*/
2 Output: the list of less preferred partners
3 Variables /*counting and control variables are omitted*/
4 v /*partners at position x in the alpha list of each role*/
5 oc /*occurrences of a list item*/
6 min /*the elements of the list with minimum value*/
7 lpp /*list of less preferred partners*/
8 Begin procedure
9 stop = false
10 i = 0
11 while stop is false and i < size of partners do
12 k = 0
13 lpp = empty list
14 for j=0 to (size of roles - 1) do
15 if i < size of (roles[j].alpha) then

/*preference lists are incomplete*/
16 v[k] = roles[j].alpha[i]
17 k = k + 1
18 for j=0 to (size of mgp – 1) do
19 oc[j] = occurrences(mgp[j].v) /*pseudocode omitted for simplicity*/
20 min = minValue(oc)/*pseudocode omitted for simplicity*/
21 t = 0
22 for j=0 to (size of oc – 1) do
23 if oc[j] = min then
24 lpp[t] = mgp[j]
25 t = t + 1
26 if size of lpp = 1 then
27 stop = true
28 else
29 i = i + 1
30 return lpp
31 End procedure

The data structures for partners and roles are defined as records with a
series of elements. In the case of partners, these elements are the id (e.g.,
0 to represent i0), the value of l (i.e., the lower quota), the value of u (i.e.,

the upper quota), the value of gap (i.e.,u −l), the preference list beta of
roles’ ids, and the list M with the ids of the roles assigned to the partner in
the final matching. Likewise, the data structure for roles is composed of
id, the preference list alpha of partners’ ids, and M as the id of partner
assigned to the role in the final matching. Thus, the final matching M is
represented by the two elements M in the previous records. Finally, a list
of n elements of type partner (namely partners) and a list of m elements of
type role (namely roles) are defined to represent the RPA problem par
ticipants. Note that beta and alpha are represented as strict preference
lists because ties are broken arbitrary since weak stability is enough in
the CN domain.

Regarding the functions, after running SOSM (step 1 of UBReM), if a
matching involving all roles is obtained but lower quotas are not satis
fied, the UBReM procedure starts (see Pseudocode 1). It represents the
new functionality proposed in this paper for solving the RPA problem.
Upper quota reduction is needed, so the partners with the highest gap
have to be obtained (step 2.1 of UBReM). If there is only one partner
with the highest gap, then this is the partner reducing the upper quota,
which is done through the function reduce (see Pseudocode 2). Other
wise, the less preferred partner among the partners with maximum gap
have to be calculated (step 2.2 of UBReM). This is done by the function
lessPreferredPartners (see Pseudocode 3). Again, if there is only one less
preferred partner then this is the one reducing the upper quota. Other
wise, as indicated at the end of the UBReM main procedure, the partner
reducing the upper quota is randomly chosen from the list of less
preferred partners (step 2.3 of UBReM). After upper bound reduction, if
the new instance of the RPA problem satisfies the minimal conditions for
an existing matching (pseudocode omitted for simplicity), the process is
repeated (step 3 of UBReM). This continues until a matching satisfying
all lower bounds is obtained. After that, the EADAM extension to recover
welfare loses must be applied as indicated in (Kesten, 2010). Otherwise,
a matching satisfying all lower quotas is not possible.

Regarding the complexity of UBReM, it firstly consists of a running of
SOSM, which is a polynomial procedure (see e.g., Gusfield & Irving,
1989). After that, the UBReM procedure is applied. As may be deduced
from the previous pseudocodes presented, in the worst of cases it runs in
quadratic time. Finally, the EADAM extension to recover welfare losses
is applied, that is a computationally simple polynomial-time algorithm
(Kesten, 2010). Therefore, the computational complexity of the entire
matching mechanism continues to be polynomial (i.e., UBReM runs in
polynomial time).

6. Illustrative example

In order to illustrate UBReM, a representative example is presented
below. Mathematical instead of algorithmic notation will be used to
make the example more readable.

Example. Consider an instance of the RPA problem with twelve roles R =

{r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11}, and five partners I =

{i0, i1, i2, i3, i4}, with l(i) = 2 for all partners, u(i0) = u(i2) = 4, and
u(i1) = u(i3) = u(i4) = 5. This is an adaptation of the Example 2 used by
Kesten (2010) to show the inefficiency of SOSM. The preference lists (α(r)

for role r, and β(i) for partner i) are as indicated in Tables 1 and 2.

In this case, i0 is indifferent between r9 and r7; i1 is indifferent be
tween r1 and r9; r2 is indifferent between i3 and i4; and r0 is indifferent
between i0 and i1. Random tie breaking produces the preference lists α(r)

and β(i) in Tables 1 and 2. The following tables illustrate the steps of
SOSM (step 1 of UBReM) applied to this problem. The columns of the
tables represent the partners, and the rows represent the steps of the
algorithm. Any role tentatively placed at a partner at a particular step is
shown underlined at the corresponding entry of corresponding table.
Table 3 shows the first matching obtained from SOSM in a single step.

The resulting matching doesn’t satisfy lower quotas for i4. Let s(i) be
the gap of partner i. Thus, s(i0) = s(i2) = 2 and s(i1) = s(i3) = 3. Partner
i4 is the deficit partner, so its upper quota is not reduced (it would be

J. Andrade-Garda et al.

Computers & Industrial Engineering 169 (2022) 108244

8

futile since partner i4 will never obtain more than l(i4) roles in any stable
matching). Both i1 and i3 are the partners with the highest gap, but i3 is
the preferred partner (it is the first option for more roles) so that u(i1) =

u(i1) −1 = 4. Before rerunning SOSM with the new upper bounds the
possible production of a different outcome must be checked. In this case,
|M(i1) | = 4 ≥ u(i1) so that the resulting matching will not change. That
is, it is possible for i1 to obtain the same roles again—the same as to i3
because its upper bound has not been reduced—and, as a consequence,
i4 will remain unmatched. Therefore, the quota reduction process has to
be repeated. This will continue until upper bounds allowing a new
matching are reached, going through the following steps:

1. i3 reduces its upper bound as the partner with the highest gap.
2. The new gap of all partners is 2. i1 reduces its upper bound as the less

preferred partner.
3. Randomly choose i3 to reduce the upper bound (i2 and i3 are equally

less preferred partners).
4. i2 reduces its upper bound as the less preferred partner with the

highest gap.
5. i0 reduces its upper bound as the partner with the highest gap.

The upper bounds u(i0) = u(i1) = u(i2) = u(i3) = 3 are achieved,
which allows to generate a different matching. This is because |M(i0) | =

4 > u(i0) = 3 so that i0 will lose its less preferred assigned role. The new
matching obtained by rerunning SOSM is M = {(i0, r0), (i0, r1), (i0, r9), (i1,
r4), (i1, r5), (i2, r2), (i2, r3), (i2, r6), (i2, r7), (i3, r8), (i3, r10}, (i3, r11)}.

Again, M doesn’t satisfy lower quotas for i4 as it remains with
0 assigned roles. The application of the upper bounds reduction process
results in u(i1) = u(i1) – 1 = 2 and a new matching M = {(i0, r4), (i0, r6),
(i0, r11), (i1, r9), (i1, r8), (i2, r10), (i2, r0), (i2, r5), (i3, r3), (i3, r2), (i3, r1}, (i4,
r7)} is obtained by rerunning SOSM. In this example it would have been
possible to know without running SOSM again that the new matching
was not going to satisfy lower quotas for i4. This is because the quota
reduction process frees only one role to be reassigned (being assigned to
i4 in the best case) but i4 needs two roles to satisfy its lower quota.
Therefore, without changes in the preference lists, the selected partners
have to reduce their upper bounds in such quantities that the deficit

partners can achieve their minimums due to the free roles reallocation.
Randomly choosing i3 to reduce the upper bound (i2 and i3 are now

equally less preferred partners with highest gap) the solution M = {(i0,
r4), (i0, r6), (i0, r11), (i1, r9), (i1, r8), (i2, r10), (i2, r0), (i3, r3), (i3, r2), (i3, r1},
(i4, r7), (i4, r5)} shown in Table 4 arises.

The resulting matching is a stable matching satisfying all lower
quotas. It is stable because it is the result of running SOSM, which
returns a stable matching. Lower quotas are satisfied thanks to the upper
bound reduction process presented in UBReM. That is, if after running
SOSM the resulting matching doesn’t satisfy all lower quotas, a new
instance A’ of the RPA problem is obtained by reducing upper quotas
(step 2 of UBReM) and SOSM is applied again with A’ (step 3 of UBReM).
Only when all lower quotas are satisfied will the corresponding
matching be accepted. Otherwise, UBReM returns that no matching
exists satisfying the RPA problem instance requirements.

In the resulting matching the preferred partners (i.e., i0 and i3)
receive an extra role (l(i) + 1). However, note that i0 is the most pref
erable partner. Thus, if i0 doesn’t reduce its upper bound (by eliminating
the gap checking from UBReM, and then with u(i0) = 4 and u(i1) =

u(i2) = u(i3) = 2) it will obtain four roles (i.e., u(i0)) and the solution M
= {(i0, r4), (i0, r6), (i0, r11), (i0, r7), (i1, r9), (i1, r1), (i2, r10), (i2, r0), (i3, r3),
(i3, r2), (i4, r8), (i4, r5)} arises.

In this case, r7 gets better off, but by making r1 and r8 worse off. Thus,
this alternative solution doesn’t Pareto-dominate the first one. More
over, and also very important, it floods partner i0 by assigning to it the
maximum possible number of partners (presumably u(i0)) since it al
ways maintains the upper bound, and leaves the rest of partners with
few roles (presumably l(i)). It may be counter-productive to reach an
agreement on creating the alliance and undertaking the business op
portunity since in the context of CNs the “common good” is the
achievement of a solution in which all partners get a number of roles
between l(i) and u(i) in an equitable distribution. Knowing that highly
imbalanced outcomes can arise from the centralized allocation mecha
nism could predispose partners to not participate the process. The gap
criterion has the intention of preventing such situations.

The stable matching M in Table 4 is the solution to the RPA problem
in the example. However, it is clearly Pareto-inefficient since it places
each role at either its last choice or its next to last choice. In a role-
proposing algorithm this should not occur. It is easy to see that in this
case there are interrupter roles, so the application of the EADAM
extension to recover welfare losses is required. Thus, the last

Table 1
Preference lists for partners.

α(r0) α(r1) α(r2) α(r3) α(r4) α(r5) α(r6) α(r7) α(r8) α(r9) α(r10) α(r11)

i0 i0 i0 i2 i1 i1 i2 i2 i3 i0 i3 i3

i1 i2 i1 i3 i2 i2 i1 i1 i1 i2 i2 i0

i2 i3 i3 i4 i0 i4 i0 i0 i4 i1 i4 i4

i4 i1 i4 i4 i4

Table 2
Preference lists for roles.

β(i0) β(i1) β(i2) β(i3) β(i4)

r4 r1 r10 r3 r11

r6 r9 r0 r2 r8

r11 r8 r5 r1 r5

r7 r6 r9 r8 r2

r9 r2 r4 r10 r0

r0 r0 r3 r11 r3

r1 r7 r1 r7

r2 r4 r6 r10

r5 r7 r6

Table 3
First execution of SOSM.

Step i0 i1 i2 i3 i4

0 r0, r1, r2, r9 r4, r5 r3, r6, r7, r8, r10, r11

Table 4
Fourth execution of SOSM.

Step i0 i1 i2 i3 i4

0 r0, r1, r2, r9 r4, r5 r3, r6, r7 r8, r10, r11

1 r0, r1, r9 r5, r4, r2, r7 r3, r6 r8, r10, r11

2 r0, r1, r9 r2, r7 r3, r6, r5, r4 r8, r10, r11

3 r0, r1, r9 r6, r2, r7 r4, r5 r8, r10, r11, r3

4 r0, r1, r9, r7, r11 r6, r2 r4, r5 r8, r10, r3

5 r9, r7, r11 r6, r2 r4, r5, r0 r8, r10, r3, r1

6 r9, r7, r11, r4 r6, r2 r5, r0, r10 r8, r3, r1

7 r7, r11, r4 r6, r9, r2 r0, r10 r8, r3, r1 r5

8 r7, r11, r4 r9, r6 r0, r10 r8, r3, r1, r2 r5

9 r7, r11, r4 r9, r6, r8 r0, r10 r3, r1, r2 r5

10 r7, r11, r4 r9, r8 r0, r10 r3, r1, r2 r5

11 r7, r11, r4, r6 r9, r8 r0, r10 r3, r1, r2 r5

12 r11, r4, r6 r9, r8 r0, r10 r3, r1, r2 r5, r7

J. Andrade-Garda et al.

Computers & Industrial Engineering 169 (2022) 108244

9

interrupting pair is (r7, i0) at step 11. This is because role r7 is tentatively
placed at i0 at step 4 and rejected from it at step 11. Role r9 is rejected by
i0 while role r7 is tentatively placed at it. Assuming that r7 is a consenting
role, partner i0 is removed from the preference list of role r7 and, in order
to maintain consistency in preference lists, role r7 is removed from the
preference list of i0.

The matching obtained after the application of SOSM with the new
preference lists is M’ = {(i0, r1), (i0, r9), (i0, r4), (i1, r2), (i1, r6), (i2, r10), (i2,
r0), (i3, r8), (i3, r11), (i3, r3}, (i4, r7), (i4, r5)}, where the consenting role r7
continues to be assigned to i4 (it is not adversely affected) while r1, r2, r6,
r8, r9, and r11 get better off. The full execution of the EADAM extension
results in the matching (marked in bold in Tables 5 and 6) M’ = {(i0, r1),
(i0, r9), (i0, r0), (i1, r2), (i1, r4), (i2, r3), (i2, r6), (i3, r8), (i3, r10), (i3, r11), (i4,
r7), (i4, r5)} that clearly Pareto-dominates M (underlined in Tables 5 and
6). M’ places each role at either its first choice or its next to first choice.
Only r5 and r7 continue to be assigned to i4 (their last choice). Thus, the
preference lists of these two roles were preventing other roles to be
assigned to their first or its next to first choice by no gain for r5 and r7.
The solution M’ is not stable from a theoretical point of view, but all
blocking pairs involve consenting roles and no role is adversely affected,
so it is no longer considered a priority violation in practice.

7. Conclusion and future research

This paper has proposed a computationally polynomial-time
matching algorithm called UBReM to solve the RPA problem, which is
an example of the two-sided matching problem. This is an inherent
problem in CNs, since it addresses the distribution of roles among the
partners in a CN when they want to start a new project together. Due to
the specific characteristics of the RPA problem, it cannot be directly
solved by the existing matching mechanisms used to solve other exam
ples of the two-sided matching problem.

To face these specific requirements, UBReM manages lower and
upper quotas on the partners’ side correctly, finding for a stable
matching outcome satisfying all quotas, if it exists. To do so, it is
assumed that when a partner sets a lower quota it means that it needs to
play at least this amount of roles, so a matching that doesn’t satisfy that
requirement is not valid. Likewise, when a partner specifies an upper
quota it doesn’t mean that it wants to play this amount of roles, but it
represents that by no means will it accept to play more than this amount
of roles. This way, a solution satisfying lower quotas in which each
partner receives a number of roles less than or equal to its upper quota is
an acceptable solution. Knowing this, UBReM starts running SOSM to
obtain a role-optimal outcome (i.e., roles are proposing to partners) and,
if the outcome doesn’t satisfy lower quotas, an upper quota reduction
process begins for those partners exceeding lower quotas. It doesn’t
damage partners as lower quotas are not changed; it only implies that
some partners will not receive as many roles as if lower quotas did not
have to be satisfied for all partners, but still will receive a number of
roles greater than or equal to their lower quota.

Once a solution satisfying all lower quotas is obtained, and knowing
that it can be highly inefficient, the EADAM extension to recover welfare
losses is applied assuming that all interrupter roles consent. It also al
lows to recover welfare losses due to random tie breaking in preference
lists, as preference lists in the RPA problem are incomplete and partially
ordered (with ties). Thus, UBReM is a Pareto-efficient mechanism in
which a role’s priority for a particular partner may be violated (i.e., the

mechanism is theoretically non stable), but this is the case only if roles
consent. It is known that no role is ever worse off under EADAM than for
its assignment under SOSM, so it is assumed that roles consent and it’s
no longer considered a priority violation in practice.

Finally, the mechanism is not strategy-proof, but strategic behavior is
not the expected behavior in the RPA context, that is the CN domain.

Therefore, UBReM satisfies the requirements of the RPA problem and
can be used to solve that problem in CNs.

Thus, as EADAM closely mimics SOSM and makes adjustments to
recover artificial welfare losses, UBReM closely mimics SOSM and
makes adjustments to find a matching satisfying lower and upper quotas.

The innovative idea of addressing role allocation in CNs by means of
a centralized matching scheme will simplify the difficult and time
consuming task of making ad hoc arrangements by partners approaching
one another directly, thus minimizing the risk of losing the business
opportunity.

The authors are also working on how to address the case in which the
UBReM outcome is that a matching satisfying the RPA problem re
quirements doesn’t exist. The aforementioned would lead to think that
the partners in the CN are not able to play the roles defined for the new
project that they want to undertake together (e.g., due to lack of
knowledge). However, this might not necessarily be the case. The
trouble may lie in the way in which the CN initiator defines the set of
roles to be performed by the partners. If the characteristics and con
straints of the partners are not taken into account when defining those
roles, the business opportunity might be unnecessarily lost (e.g., there is
no partner that satisfies all the requirements of a role, but by splitting the
role into sub-roles there is at least one partner able to perform each sub-
role). For this reason, an approach (possibly in the form of a decision
support system) is being researched to help the CN initiator to configure
the roles of the project that the partners in the CN want to undertake
together. Alternatively, if the UBReM outcome is that a matching
doesn’t exist it could be because the partners are not able to play the
defined roles in a many-to-one allocation (e.g., no partner alone has the
required knowledge to play a given role). However, roles could be
properly performed in a many-to-many allocation. That is to say,
allowing partners to join efforts to play the roles instead of requiring
roles to be performed only by individual partners. Thus, the definition
and resolution of the many-to-many generalization of the RPA problem
is something the authors are currently researching.

Finally, the authors are also working on the next step required to
allow partners in the CN to take advantage of a business opportunity.
That is, once a matching of roles to partners satisfying the RPA problem
requirements is obtained, the new project that partners will undertake

Table 5
UBReM resulting matching of partners to roles.

α(r0) α(r1) α(r2) α(r3) α(r4) α(r5) α(r6) α(r7) α(r8) α(r9) α(r10) α(r11)

i0 i0 i0 i2 i1 i1 i2 i2 i3 i0 i3 i3

i1 i2 i1 i3 i2 i2 i1 i1 i1 i2 i2 i0

i2 i3 i3 i4 i0 i4 i0 i0 i4 i1 i4 i4

i4 i1 i4 i4 i4

Table 6
UBReM resulting matching of roles to partners.

β(i0) β(i1) β(i2) β(i3) β(i4)

r4 r1 r10 r3 r11

r6 r9 r0 r2 r8

r11 r8 r5 r1 r5

r7 r6 r9 r8 r2

r9 r2 r4 r10 r0

r0 r0 r3 r11 r3

r1 r7 r1 r7

r2 r4 r6 r10

r5 r7 r6

J. Andrade-Garda et al.

Computers & Industrial Engineering 169 (2022) 108244

10

together must be planned. This means first to create a project schedule.
In this case, the aim would mainly be to minimize the project time
subject to certain restrictions (task dependences, milestones, partners’
time availability, market requirements, etc.). For that purpose, various
approaches such as branch and bound methods (see e.g., Ross & Soland,
1975; Brucker, Jurisch, & Sievers, 1994) and argumentation techniques
(see e.g., Rahwan, Ramchurn, & Jennings, 2004) are being considered.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

References

Abdulkadiroglu, A., & Sönmez, T. (2003). School choice: A mechanism design approach.
American Economic Review, 93(3), 729–747. https://doi.org/10.7916/D8WS95FB

Abraham, D. J., Irving, R. W., & Manlove, D. F. (2003). The student-project allocation
problem. Lecture Notes in Computer Science, 2906, 474–484. https://doi.org/
10.1007/978-3-540-24587-2_49

Abraham, D. J., Irving, R. W., & Manlove, D. F. (2007). Two algorithms for the student-
project allocation problem. Journal of Discrete Algorithms, 5(1), 73–90. https://doi.
org/10.1016/j.jda.2006.03.006

Andrade-Garda, J., Anguera, A., Ares-Casal, J., Hidalgo-Lorenzo, M., Lara, J. A.,
Lizcano, D., & Suárez-Garaboa, S. (2018). Definition and core components of the
role-partner allocation problem in collaborative networks. International Journal of
Economics and Management Engineering, 12(1), 96–100. https://doi.org/10.5281/
zenodo.1315585

Appio, F. P., Martini, A., Massa, S., & Testa, S. (2017). Collaborative network of firms:
Antecedents and state-of-the-art properties. International Journal of Production
Research, 55(7), 2121–2134. https://doi.org/10.1080/00207543.2016.1262083

Biró, P., Fleiner, T., Irving, R. W., & Manlove, D. F. (2010). The college admissions
problem with lower and common quotas. Theoretical Computer Science, 411(34–36),
3136–3153. https://doi.org/10.1016/j.tcs.2010.05.005

Brynjolfsson, E., & McAfee, A. (2014). The second machine age: Work, progress, and
prosperity in a time of brilliant technologies. New York: Norton.

Brucker, P., Jurisch, B., & Sievers, B. (1994). A branch and bound algorithm for the job-
shop scheduling problem. Discrete Applied Mathematics, 49(1–3), 107–127. https://
doi.org/10.1016/0166-218X(94)90204-6

Camarinha-Matos, L. M. (2014). Collaborative Networks: A Mechanism for Enterprise
Agility and Resilience. In K. Mertins, F. Bénaben, R. Poler, & J. P. Bourrières (Eds),
Enterprise Interoperability VI (pp. 3-11). Springer. https://doi.org/10.1007/978-3-
319-04948-9_1.

Camarinha-Matos, L. M., Afsarmanesh, H., Galeano, N., & Molina, A. (2009).
Collaborative networked organizations – Concepts and practice in manufacturing
enterprises. Computers & Industrial Engineering, 57, 46–60. https://doi.org/10.1016/
j.cie.2008.11.024

Camarinha-Matos, L. M., Fornasiero, R., Ramezani, J., & Ferrada, F. (2019).
Collaborative networks: A pillar of digital transformation. Applied Sciences, 9(24),
5431. https://doi.org/10.3390/app924543

Chen, Y., & Sönmez, T. (2006). School choice: An experimental study. Journal of
Economic Theory, 127(1), 202–231. https://doi.org/10.1016/j.jet.2004.10.006

Diebold, F., Aziz, H., Bichler, M., Matthes, F., & Schneider, A. (2014). Course Allocation
via Stable. Matching. Business & Information Systems Engineering 6(2), 97–110.
https://doi.org/10.1007/s12599-014-0316-6.

Durugbo, C. (2016). Collaborative networks: A systematic review and multi-level
framework. International Journal of Production Research, 54(12), 3749–3776. https://
doi.org/10.1080/00207543.2015.1122249

Gale, D. (2001). The two-sided matching problem: Origin, development and current
issues. International Game Theory Review, 3(2–3), 237–252. https://doi.org/10.1142/
S0219198901000373

Gale, D., & Shapley, L. S. (1962). College admissions and the stability of marriage. The
American Mathematical Monthly, 69(1), 9–15. https://doi.org/10.2307/2312726

Gale, D., & Sotomayor, M. (1985). Some remarks on the stable matching problem.
Discrete Applied Mathematics, 11, 223–232. https://doi.org/10.1016/0166-218X(85)
90074-5

Gharote, M., Patil, R., Lodha, S., & Raman, R. (2015). Assignment of trainees to software
project requirements: A stable matching based approach. Computers & Industrial
Engineering, 87, 228–237. https://doi.org/10.1016/j.cie.2015.05.017

Gusfield, D., & Irving, R. W. (1989). The stable marriage problem: Structure and algorithms.
Cambridge: MIT Press.

Haas, C., & Hall, M. (2019). Two-Sided Matching for mentor-mentee
allocations—Algorithms and manipulation strategies. PLoS ONE, 14(3), e0213323.

Haas, C., Hall, M., & Vlasnik, S. (2018). Finding optimal mentor-mentee matches: A case
study in applied two-sided matching. Heliyon, 4(6), e00634.

Hamada, K., Iwama, K., & Miyazaki, S. (2011). The Hospitals/Residents problem with
quota lower bounds. Lecture Notes in Computer Science, 6942, 180–191. https://doi.
org/10.1007/978-3-642-23719-5_16

Irving, R. W. (1994). Stable marriage and indifference. Discrete Applied Mathematics, 48
(3), 261–272. https://doi.org/10.1016/0166-218X(92)00179-P

Irving, R. W., Manlove, D. F., & Scott, S. (2003). Strong stability in the hospitals/
residents problem. Lecture Notes in Computer Science, 2607, 439–450. https://doi.
org/10.1007/3-540-36494-3_39

Kesten, O. (2010). School choice with consent. The Quarterly Journal of Economics, 125
(3), 1297–1348. https://doi.org/10.1162/qjec.2010.125.3.1297

Li, X., Ma, L., Xu, Y., & Shankaran, R. (2020). Resource allocation for D2D-based V2X
communication with imperfect CSI. IEEE Internet of Things Journal, 7(4), 3545–3558.
https://doi.org/10.1109/JIOT.2020.2973267

Malaguti, E., & Medina Durán, R. (2019). Computing k different solutions to the
assignment problem. Computers & Industrial Engineering, 135, 528–536. https://doi.
org/10.1016/j.cie.2019.06.025

Manlove, D. F. (2008). Hospitals/residents problem. In M. Y. Kao (Ed.), Encyclopedia of
Algorithms (pp. 390–394). New York: Springer.

Milani, F., Dumas, M., Matulevičius, R., Ahmed, N., & Kasela, S. (2016). Criteria and
heuristics for business process model decomposition: review and comparative
evaluation. Business & Information Systems Engineering, 58(1), 7–17. https://doi.org/
10.1007/s12599-015-0413-1

Qin, J., Xue, K., Li, J., Sun, Q., & Lu, J. (2021). Service prioritization in information
centric networking with heterogeneous content providers. IEEE Transactions on
Network and Service Management, 18(4), 476–4488. https://doi.org/10.1109/
TNSM.2021.3105198

Rahwan, I., Ramchurn, S. D., & Jennings, N. R. (2004). Argumentation-based
negotiation. The Knowledge Engineering Review, 18(4), 343–375. https://doi.org/
10.1017/S0269888904000098

Ross, G. T., & Soland, R. M. (1975). A branch and bound algorithm for the generalized
assignment problem. Mathematical Programming, 8, 91–103. https://doi.org/
10.1007/BF01580430

Roth, A. E. (1984). The evolution of the labor market for medical interns and residents: A
case study in game theory. Journal of Political Economy, 92(6), 991–1016. https://
doi.org/10.1086/261272

Roth, A. E. (1986). On the allocation of residents to rural hospitals: A general property of
two-sided matching markets. Econometrica, 54(2), 425–427. https://doi.org/
10.2307/1913160

Roth, A. E. (2002). The economist as engineer: game theory, experimentation, and
computation as tools for design economics. Econometrica, 70(4), 1341–1378. https://
doi.org/10.1111/1468-0262.00335

Roth, A. E. (2008). Deferred acceptance algorithms: History, theory, practice, and open
questions. A Collection of Papers Dedicated to David Gale on the Occasion of His 85th
Birthday, Special Issue, International Journal of Game Theory 36(3-4), 537-569.
https://doi.org/10.3386/w13225.

Roth, A. E., & Peranson, E. (1997). The effects of a change in the NRMP matching
algorithm. Journal of the American Medical Association, 278(9), 729–732. https://doi.
org/10.1001/jama.1997.03550090053032

Roth, A. E., & Sotomayor, M. (2008). Two-sided matching: A study in game theoretic
modeling and analysis. New York: Cambridge University Press.

Roth, A. E., Sönmez, T., & Ünver, M. U. (2004). Kidney exchange. The Quarterly Journal of
Economics, 119, 457–488. https://doi.org/10.1162/0033553041382157

Shapley, L. S., & Scarf, H. (1974). On cores and indivisibility. Journal of Mathematical
Economics, 1, 23–28. https://doi.org/10.1016/0304-4068(74)90033-0

Sönmez, T., & Ünver, M. U. (2010). Course bidding at business schools. International
Economic Review, 51(1), 99–123. https://doi.org/10.1111/j.1468-2354.2009.00572.
x

vom Brocke, J., Maaß, W., Buxmann, P., Maedche, A., Leimeister, J. M., & Pecht, G.
(2018). Future work and enterprise systems. Business & Information Systems
Engineering, 60(4), 357–366. https://doi.org/10.1007/s12599-018-0544-2

J. Andrade-Garda et al.

https://doi.org/10.7916/D8WS95FB
https://doi.org/10.1007/978-3-540-24587-2_49
https://doi.org/10.1007/978-3-540-24587-2_49
https://doi.org/10.1016/j.jda.2006.03.006
https://doi.org/10.1016/j.jda.2006.03.006
https://doi.org/10.5281/zenodo.1315585
https://doi.org/10.5281/zenodo.1315585
https://doi.org/10.1080/00207543.2016.1262083
https://doi.org/10.1016/j.tcs.2010.05.005
http://refhub.elsevier.com/S0360-8352(22)00314-X/h0035
http://refhub.elsevier.com/S0360-8352(22)00314-X/h0035
https://doi.org/10.1016/0166-218X(94)90204-6
https://doi.org/10.1016/0166-218X(94)90204-6
https://doi.org/10.1016/j.cie.2008.11.024
https://doi.org/10.1016/j.cie.2008.11.024
https://doi.org/10.3390/app924543
https://doi.org/10.1016/j.jet.2004.10.006
https://doi.org/10.1080/00207543.2015.1122249
https://doi.org/10.1080/00207543.2015.1122249
https://doi.org/10.1142/S0219198901000373
https://doi.org/10.1142/S0219198901000373
https://doi.org/10.2307/2312726
https://doi.org/10.1016/0166-218X(85)90074-5
https://doi.org/10.1016/0166-218X(85)90074-5
https://doi.org/10.1016/j.cie.2015.05.017
http://refhub.elsevier.com/S0360-8352(22)00314-X/h0095
http://refhub.elsevier.com/S0360-8352(22)00314-X/h0095
http://refhub.elsevier.com/S0360-8352(22)00314-X/h0100
http://refhub.elsevier.com/S0360-8352(22)00314-X/h0100
http://refhub.elsevier.com/S0360-8352(22)00314-X/h0105
http://refhub.elsevier.com/S0360-8352(22)00314-X/h0105
https://doi.org/10.1007/978-3-642-23719-5_16
https://doi.org/10.1007/978-3-642-23719-5_16
https://doi.org/10.1016/0166-218X(92)00179-P
https://doi.org/10.1007/3-540-36494-3_39
https://doi.org/10.1007/3-540-36494-3_39
https://doi.org/10.1162/qjec.2010.125.3.1297
https://doi.org/10.1109/JIOT.2020.2973267
https://doi.org/10.1016/j.cie.2019.06.025
https://doi.org/10.1016/j.cie.2019.06.025
http://refhub.elsevier.com/S0360-8352(22)00314-X/h0140
http://refhub.elsevier.com/S0360-8352(22)00314-X/h0140
https://doi.org/10.1007/s12599-015-0413-1
https://doi.org/10.1007/s12599-015-0413-1
https://doi.org/10.1109/TNSM.2021.3105198
https://doi.org/10.1109/TNSM.2021.3105198
https://doi.org/10.1017/S0269888904000098
https://doi.org/10.1017/S0269888904000098
https://doi.org/10.1007/BF01580430
https://doi.org/10.1007/BF01580430
https://doi.org/10.1086/261272
https://doi.org/10.1086/261272
https://doi.org/10.2307/1913160
https://doi.org/10.2307/1913160
https://doi.org/10.1111/1468-0262.00335
https://doi.org/10.1111/1468-0262.00335
https://doi.org/10.1001/jama.1997.03550090053032
https://doi.org/10.1001/jama.1997.03550090053032
http://refhub.elsevier.com/S0360-8352(22)00314-X/h0190
http://refhub.elsevier.com/S0360-8352(22)00314-X/h0190
https://doi.org/10.1162/0033553041382157
https://doi.org/10.1016/0304-4068(74)90033-0
https://doi.org/10.1111/j.1468-2354.2009.00572.x
https://doi.org/10.1111/j.1468-2354.2009.00572.x
https://doi.org/10.1007/s12599-018-0544-2

	A centralized matching scheme to solve the role-partner allocation problem in collaborative networks
	1 Introduction
	2 RPA problem overview
	3 Centralized matching schemes
	4 Stability, pareto-efficiency and strategy-proofness
	5 Proposed centralized matching scheme
	5.1 Preconditions
	5.2 Proposing side
	5.3 Algorithm

	6 Illustrative example
	7 Conclusion and future research
	Declaration of Competing Interest
	References

