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Abstract: The present work develops a methodology for the detection of outliers in functional data,
taking into account both their shape and magnitude. Specifically, the multivariate method of anomaly
detection called Local Correlation Integral (LOCI) has been extended and adapted to be applied
to the particular case of functional data, using the calculation of distances in Hilbert spaces. This
methodology has been validated with a simulation study and its application to real data. The
simulation study has taken into account scenarios with functional data or curves with different
degrees of dependence, as is usual in cases of continuously monitored data versus time. The results
of the simulation study show that the functional approach of the LOCI method performs well in
scenarios with inter-curve dependence, especially when the outliers are due to the magnitude of the
curves. These results are supported by applying the present procedure to the meteorological database
of the Alternative Energy and Environment Group in Ecuador, specifically to the humidity curves,
presenting better performance than other competitive methods.
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1. Introduction

The present work is framed in the thematic related to the detection of anomalies or
outliers, in terms of the purpose and, with respect to, the statistical methodology in the
area of Functional Data Analysis (FDA). In fact, FDA is a branch of statistics of growing
importance in recent years [1], and although it is a relatively new field of study (compared
to multivariate data analysis), it has a great scientific activity, with high production in
many different fields of science. Thus, in the last 5 years, more than 5000 documents have
been published in the Web of Science (core collection, SCI-EXPANDED, SCI, and AHCT)
that include, in either their title or keywords, the terms “Functional Data Analysis” or
FDA. These documents belong to very diverse scientific areas including health sciences,
chemistry, engineering, and of course, statistics, among many others. The field of anomaly
detection is even more productive, with more than 5700 papers published in the last
5 years (in the WoS core collection, SC-EXPANDED, SCI, and AHCI, containing the words
“Anomaly detection” or “Outlier detection” in keywords or title), mainly in areas related
to engineering and computer science. In both FDA and anomaly detection, the number
of publications is growing year by year, as is the number of citations (more than 37,000 in
FDA and more than 47,000 in the anomaly detection domain, corresponding to articles
published in the last 5 years), which is an indicator of the growing impact and visibility of
the two domains.
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In this work, we propose a new extension of a multivariate outlier detection method
to the specific case of functional data, increasingly common due to recent advances in
sensing and IoT [2]. The ever-increasing computational capacity to take and handle this
type of data has promoted the current development of the FDA. Using FDA, we can
perform descriptive statistics [3,4], classification [5-9], and regression modeling [10-14], also
including techniques to develop an analysis of variance [15,16], time series modeling [17,18],
process control [19-21], or outlier detection methods [22-25] that allow us to work with
time or frequency dependent curves or surfaces [25-27]. The seminal works of Ramsay
and Silverman [25] and Ferraty and Vieu [26], among others, have significantly helped
to popularize FDA to solve problems in many different domains apart from the statistics
area. In this way, FDA is currently applied in domains ranging from material science,
chemometrics [16,28,29], and engineering [20,21,30,31] to geosciences [32], medicine [33,34],
genetics [35], or environmental sciences [20,36-38], among others.

In the last years, new monographs have appeared that have significantly enriched the
FDA field with new knowledge and methods. Of particular note, in the methodological
domain, are the works by Horvath and Kokoszka [39] and Hsing and Eubank [40], while of
particular relevance for presenting and defining the new approach to Elastic Functional
Data Analysis is the monograph developed by Srivastava and Klassen [41]. Most of the
FDA literature is focused on the L? norm, but there are some concerns about its application
in all possible scenarios. Namely, the distances under the L? metric could be larger than
they should be, i.e., a possible misalignment between curves or phase variability can be
incorrectly interpreted as actual variability in terms of amplitude [42]. Therefore, the func-
tional means and other statistics calculated under the L2 norm could be not representative
in these cases defined by phase variation between curves, leading to the subsequent error
in tasks such as outlier detection, classification, regression, or analysis of variance, among
others. This can be amended by applying elastic registration of curves [43] that takes
into account both the vertical and horizontal variability (L? registration only considers
vertical variability). In this regard, we can also highlight the work of Kurtek et al. [44]
and Marron et al. [45]. Based on the above works, anomaly detection methods based
on elastic distance have been proposed in recent years. In fact, Xie et al. [46] proposed
a box plot based on elastic distance, while Harris et al. [47] defined a method to detect
anomalous curves, considering their shape, from an elastic depth (itself based on elastic
distance). In the present work, our proposal is compared with the latter method based on
elastic depth; moreover, this elastic depth is also incorporated in the present methodology
by replacing the L? metric. In addition to the elastic FDA approach, the monographs by
Mateu and Giraldo [48], which combines the current state of the art in temporal and spatial
dependence, as well as the monograph by Moretin et al. [49] dedicated to the application of
wavelets in FDA, are also worth mentioning. Because of this intense activity, there are a
very large number of libraries of functions, implemented in R software, that present these
techniques to a broad number of possible users. To mention one example, we refer to the
fda.usc [50] package.

On the other hand, the automatic detection of outliers and anomalies are increasingly
demanded tasks in the context of digitization and Industry 4.0 since they help in predictive
maintenance and continuous improvement of services and processes [51]. Moreover, their
application is essential at the beginning of any data analysis since the existence of outliers
can significantly condition the results and lead to erroneous conclusions [51]. In this work,
outliers are defined as extreme values with respect to a set, while anomalies are data
generated with a different distribution (another process) than the one that generates the
rest of the observations. In the specific case of FDA, several methods have emerged to
detect outliers using functional data, most of them being based on the concept of functional
depth [23,52,53]. An example of these methodologies is the proposal by Sun and Genton [4]
for the construction of a boxplot using functional data, by means of which outliers can
be identified in a similar way to the classical boxplots, relying on depth bands and the
calculation of functional quantiles. Procedures based on bootstrap resampling, such as the
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one proposed by Febrero et al. [23], are also very popular. There are also the alternatives
of control charts for functional data for outlier and anomaly detection, such as the one
proposed by Flores et al. [21], which include a Phase I control chart based on the calculation
of data depth, in addition to a nonparametric Phase II chart based on the calculation of
ranges. It is important to note that, at present, outlier detection methods based on functional
depth are usually not specifically designed to find outliers based on their shape [54], making
outliers more difficult to detect. In this regard, Kuhnt and Rehage [54], on the one hand,
and Arias-Gil and Romo [55], on the other hand, propose two alternatives for outlier
detection due to changes in the shape of the data. In addition, outlier detection can also
be approached from the calculation of distances between curves and the application of
bootstrap procedures to estimate their distribution, a procedure used in interlaboratory
studies [56]. The works of Yu et al. [57] and Lei et al. [58] also present alternative methods
that are not based on functional depth.

This study provides a new FDA alternative for the identification of outliers not only
in magnitude but also attending to the shape of the data. Specifically, a new approach of
the Local Correlation Integral (LOCI) method is proposed for the case of functional data,
supported by the good performance of the LOCI procedure with multivariate data (in terms
of computational efficiency and speed), which has made it a very popular alternative in the
area of artificial intelligence [53,59]. Therefore, a different and novel approach for outlier
detection from functional data is proposed, including a complete study of its performance
with the design of different simulation scenarios (including the analysis of the influence of
the dependence between curves, either positive or negative) and its validation through its
application on real meteorological data, specifically ambient humidity level curves.

Next, we summarize the main innovations and contributions of the proposed methodology:

e  Extension of the multivariate anomaly detection LOCI method to the context of func-
tional data. This method allows the detection of anomalous curves (functional data)
by applying the LOCI method, where all statistics are estimated in a functional way
and using the L2 distance.

e  The present algorithm provides a method to detect anomalies both in terms of magni-
tude and shape.

e A comprehensive simulation study is provided, from which we propose values of
LOCI parameters, such as r and 6, in order to optimize the results of classification
between anomalies and normal observations.

e Inaddition, the present Bootstrap-LOCI proposal is a competitive method (in terms of
accuracy, sensitivity, and specificity) with respect to benchmark functional anomaly
detection procedures such as those based on data depth.

e Itisa flexible methodology that allows us to incorporate alternative metrics to L2, such
as the benchmarking elastic distance, suitable for the detection of shape anomalies.

e [tis also important to note that this method could be easily combined with visual-
ization tools, from the fact of its simplicity (similar to the concept of control charts)
in addition to its implementation in R statistical software, one of the more flexible
software to display data.

e  We would like also to stress that the motivation for this work breaks from the necessity,
in the academy, industry, and companies, such as those that provide and manage IoT
platforms fed by highly dependent continuously monitored data, i.e., functional data.

This work is structured as follows. Section 2 presents the concepts, definitions, and
characteristics of this new methodology, as well as the description of the LOCI algorithm
applicable to functional data. Section 3 measures the performance of the new method using
Monte Carlo simulation, considering different scenarios defined by different sample sizes
and different levels of dependence between functional data. Section 4 evaluates the perfor-
mance of the functional LOCI method from its application to a real data set, specifically
to average ambient humidity curves, while Section 5 presents the main conclusions of the
present study.
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2. Methodology

A functional random variable is defined as a variable X(t) taking values in the Hilbert
space L?(T), where T = [a,b] C R, while functional data would be realizations of this
variable [11]. One can also consider functional data as trajectories of stochastic processes
defined in a given infinite dimensional space [60]. These ideas allow us to extend the
concepts of the LOCI algorithm [59,61], starting from the definition of distance in a Hilbert
space (let d(-) be such a distance [62]) to define neighborhoods in the functional space,

aiming to obtain a density measure with the Multigranular Deviation Factor (MDEF) from
which we can label outliers. With this scheme in mind, the adaptation of the LOCI method
to be applied to functional data is presented below. More information about the LOCI
method for multivariate data can be found in the work of Papadimitriou et al. [59]. The
present FDA approach is based on the aforementioned LOCI version for multivariate data.
Let P = {x(t),....,xn(t);t € T} be one sample of functional data and r € R be a
radius. Thus, we can define a neighborhood of each functional datum x;(t) € P by:

M(xi(t),r) = {x(t) e Prd(xi(t), x(t)) < r}
which cardinality is given by:
m(x;(t) ‘M x;i(t )‘

The building of the sub-neighborhoods can be carried out using the definition of the
parameter 6 € (0,1], as a function of M (x(t),?), with # = 0-r for x(t) € M (x;(t),r).

The mean mean(x;(t),r,0), standard deviation 7 (x;(t),7,0), MDEF, and normalized
standard deviation 0y, (x;(t), 7, 0) are defined following the schemes of the LOCI methods
for multivariate data [59,61]. Therefore, the mean is defined as the sum of observations
within each sub-neighborhood M (x(t), #) in ii(x;(t),7), as shown in:

Zx(t)E./Vl(x,-(t),r) ﬁ(x(t)/ ?)
m(x;(t),r) '

mean(x;(t),r,0) =

whereas the standard deviation is defined by the expression:

M #) — mean(x;(t),r, 2
7 (x;( ),r,e)_$Zx(t>ewxim,n( <x((f);>) . ean(x;(t),r,0))

Moreover, the MDEF and the normalized standard deviation are given, respectively, by:

B m(xi(t),r
MDEF(x;(t),7,8) = 1 — W

and:
5'(xi(t),1’,9)

aor (xi(8),1.8) = e (0,7, 6)

More information of LOCI parameters can be retrieved from Papadimitriou et al. [59].
The radius varies from a minimum value (#,;,,), defined as containing at least 20 obser-
vations, and a maximum value (*y,4y), containing the whole sample [61]. Finally, a functional

data x; € Pis classified as an anomaly if for any 7 € [Fyin, Tmax), the value of MDEF is large
enough, that is,

MDEF > kaor (xi(t),7,9),
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with k > 0. To perform the classifications, k = 3 is usually set taking into account the
Chevyshev inequality, defined by:

—_~—

P(MDEF > kayoy(x;(t),7,8)) < P(|IMDEE | > kanor(x;(t),7,6))

Tuor (xi(t),1,0)* 1
kO (xi(1), 1, 0)2 2
There is no single perspective for the application of the LOCI algorithm; in fact, all the
different possibilities are detailed in Papadimitriou et al. [59]. Specifically, in this work, we
explore the alternative in which practitioners choose to use a single value for the radius or,
failing that, to handle a limited range of them. Therefore, given the sample I’ and a radius r,
for each x;(t) € P, the Functional Data—Local Correlation Integral (FD-LOCI) algorithm is
defined as follows:
1. Select6 € (0,1].
Develop the neighborhoods M (x;(t), r) and sub-neighborhoods M (x(t), #).

2
3.  Calculate mean(x;(t),r,0) and AZB_E/F(xi(t), r,0).
4. If MDEF > 3-0y0r(xi(t),1,0), identify x;(¢) as an outlier.

The performance of the FD-LOCI method is also compared with new benchmark alterna-
tives both in the simulation scenarios and in the real dataset, in order to assess its scope and
usability. Specifically, the following anomaly detection procedures have been compared:

1. FD-LOCI method implementing the L? distance (our original proposal).

2. FD-LOCI method but replacing the L? distance with the so-called elastic distance [47].

3. Elastic Depth Method [47], specifically designed to better detect anomalies taking into
account their shape.

4. Outlier detection method based on data depth as defined by Febrero et al. [23].

The first option is the present proposal, whereas the second is our proposal where
the L? distance is replaced with the elastic distance defined in Harris et al. (2021). This
type of distance has demonstrated the best performance in the cases in which there are
phase variations in original data; thus, this distance and the corresponding depth defini-
tions are now a reference to differentiate curves and shapes in terms of shape. Namely,
Harris et al. [47] developed a recent anomaly detection method based on the concept of
elastic depth (specially defined for detecting anomalies due to their different shape), which
is also applied in the present study (third method). Finally, the application of a traditional
outlier detection method based on functional data depth is also included [23].

The performance of the anomaly detection methods is assessed with the calculation

of accuracy = %, sensitivity = TPZ%, specificity = %, and kappa index

2x(TPxTN—FNxFP)
(TP+FP)x (EP+TN)+(TP+FN)x(EN+TN)
negatives, TP the true positives, FP the false positives, and TN the true negatives in the
framework of a confusion matrix of two classes. The closer to 1 the indices are, the better

the classification performance.

K =

. Whereby FN accounts for the number of false

3. Simulation Study

In this section, the performance of the new methodology is studied by estimating the
Type I error (x) and the power (1 — ), where S is the Type 1II error, using a simulation
performed with the Monte Carlo procedure. The different scenarios are defined by varying
the values of the different parameters of the FD-LOCI algorithm in addition to the degree
of dependence between curves. For the simulation of curves, the study of Febrero et al. [23]
is taken as a basis in which x;(t),..., x,(t) functional data are considered, which are
realizations of a stochastic process in the t € T = [0, 1] interval. The assumed stochastic
process is Gaussian, following the X(t) = 30¢(1 — t)3/2 + o(t)-e(t) model, with o(t) = 0.5,
whereas €(t) is also Gaussian process distributed, e(t) ~ GP(0,X), with zero mean and
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Table 2 shows the results of the different simulation scenarios considering 6 = 0.78
and the same values of the parameters n, and 8 as those shown in Table 1. The results
of the power calculation evidence that the FD-LOCI algorithm is all the more capable of
detecting changes in shape or magnitude as the values of the parameters § and 7 in-
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Table 1. Proportion of false alarms (Type I error) for various scenarios in which independence
between curves has been assumed, defined also by different values of #, 1y, and 6 = 0.78.

n
ng (%) 50 100
50 0.011 0.014
70 0.028 0.032
90 0.041 0.043

Table 2 shows the results of the different simulation scenarios considering 6 = 0.78
and the same values of the parameters 1y and 6 as those shown in Table 1. The results of the
power calculation evidence that the FD-LOCI algorithm is all the more capable of detecting
changes in shape or magnitude as the values of the parameters  and # increase, having a
very similar performance for detecting the two types of outliers. Specifically, significantly
high power is observed to detect changes in magnitude corresponding to 1 > 0.6, almost
for any value of n and ny, fixing 8 = 0.78. The power will be higher the higher 8, n, and ng
are. Regarding shape, also the power of FD-LOCI tends to be higher with larger 6, n, and
ny, being relatively high to detect changes corresponding to 4 > 1.2 for almost any value of
n and ng.

Table 2. Results of power estimates (1-Type II error) for variation in shape () and magnitude (9), in
the case of independence between curves and considering 8 = 0.78.

Ul )
n ng (%) 0.2 0.4 0.6 0.8 1 0.4 0.8 1.2 1.6 2
50 0.037 0.187 0.601 0.917 0.995 0.046 0.253 0.684 0.927 0.994
50 70 0.083 0.296 0.726 0.96 0.995 0.114 0.409 0.817 0.972 1
90 0.088 0.319 0.714 0.963 0.997 0.159 0.499 0.866 0.981 1
50 0.035 0.262 0.704 0.957 0.998 0.068 0.346 0.727 0.969 0.998
100 70 0.07 0.342 0.786 0.977 0.999 0.134 0.478 0.83 0.989 0.999
90 0.086 0.34 0.776 0.974 0.999 0.16 0.534 0.865 0.993 1

3.2. Simulation Scenarios with Dependent Curves

In the IoT framework, functional data resulting from continuous monitoring per-
formed with sensors usually present autocorrelation [21]; thus, the study of the role of
dependence between curves is important to see the real applicability of method. Conse-
quently, in this simulation study, the dependence factor p is also considered, varying in the
[—0.7,0.7] interval. Specifically, different values for p are fixed in order to define scenarios
with different degrees of dependence, from weak to strong and from negative to positive:
p1 = —0.7,0,=-0.3,p3 =03and py = 0.7.

Table 3 shows that the estimates of a (proportion of false alarms) are closer to the
theoretical value equal to 0.05 the higher the values of the parameters 6, , and ny, although
good estimates are obtained with 8 = 0.78, even though the sample is relatively small, n = 50,
and ny is relatively high, ny = 45, accounting for the 90% of the data. It is important to note
that the performance of the FD-LOCI method is little affected by the level of dependence
between curves, either negative or positive. While it is true that the estimation results are
slightly better (for lower values of 1) under low dependence conditions (p, and p3).
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Table 3. Type I error estimation results for the case of dependent curves and 6 = 0.78.
n 50 100
ng (%) P1 P2 P3 Pa p1 P2 Pa
50 0.012 0.015 0.015 0.010 0.017 0.019 0.016
70 0.029 0.033 0.033 0.028 0.034 0.037 0.034
90 0.044 0.046 0.047 0.043 0.046 0.047 0.046
We can also observe that there are slight differences in the power estimation of the FD-
LOCI method depending on whether the dependence between curves is negative. Specifically,
Tables 4-7 show that when 1 (anomalies by different magnitude) and 6 (shape anomalies)
increase, the power growth tends to be faster for cases with positive dependence, as is the
case for the comparison between the powers of the scenarios defined by p; = —0.7 (Table 4)
and p4 = 0.7 (Table 7). When there is positive dependence, the power curves are of a similar
level and growth rate to those corresponding to scenarios with independent curves.
Table 4. Results of power estimates (1-Type II error) for variation in shape (1) and magnitude (5) for
the case of inter-curve dependence (p = —0.7), considering 6 = 0.78.
n 5
n ng (%) 0.2 0.4 0.6 0.8 1 0.4 0.8 1.2 1.6 2
50 0.027 0.051 0.179 0.416 0.704 0.018 0.087 0.275 0.495 0.741
50 70 0.052 0.119 0.28 0.544 0.813 0.04 0.161 0.418 0.657 0.86
90 0.065 0.132 0.289 0.541 0.808 0.064 0.23 0.489 0.713 0.897
50 0.031 0.099 0.265 0.534 0.793 0.038 0.107 0.325 0.592 0.814
100 70 0.051 0.142 0.364 0.637 0.853 0.075 0.192 0.435 0.707 0.893
90 0.052 0.144 0.351 0.627 0.822 0.1 0.234 0.499 0.756 0.922
Table 5. Results of power estimates (1-Type II error) for variation in shape (1) and magnitude (5) for
the case of inter-curve dependence (p3 = —0.3), considering 6 = 0.78.
n 5
n ng (%) 0.2 0.4 0.6 0.8 1 0.4 0.8 1.2 1.6 2
50 0.023 0.128 0.413 0.764 0.952 0.033 0.163 0.49 0.801 0.965
50 70 0.056 0.222 0.559 0.864 0.981 0.073 0.301 0.644 0.895 0.989
90 0.082 0.225 0.561 0.866 0.971 0.108 0.358 0.719 0.92 0.996
50 0.032 0.165 0.523 0.87 0.984 0.059 0.227 0.548 0.873 0.974
100 70 0.061 0.25 0.619 0.908 0.995 0.096 0.355 0.682 0.936 0.992
90 0.074 0.248 0.603 0.889 0.991 0.127 0.41 0.753 0.948 0.994
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Table 6. Results of power estimates (1-Type II error) for variation in shape (1) and magnitude (3) for
the case of inter-curve dependence (p3 = 0.3), considering 6 = 0.78.

n )
n no(%) 0.2 0.4 0.6 0.8 1 0.4 0.8 1.2 1.6 2
50 0.059 0.333 0.783 0.988 1 0.087 0.412 0.821 0.991 1
50 70 0.116 0.482 0.88 0.997 1 0.168 0.582 0.908 0.999 1
90 0.116 0.471 0.878 0.995 1 0.213 0.661 0.936 0.999 1
50 0.094 0.408 0.848 0.996 1 0.094 0.488 0.886 0.995 1
100 70 0.137 0.509 0.906 0.999 1 0.164 0.612 0.94 0.998 1
90 0.151 0.495 0.885 0.996 1 0.208 0.685 0.953 0.999 1
Table 7. Results of power estimates (1-Type II error) for variation in shape () and magnitude (3) for
the case of inter-curve dependence (p = 0.7), considering 6 = 0.78.
n )
n 1y(%) 0.2 0.4 0.6 0.8 0.4 0.8 1.2 1.6 2
50 0.14 0.692 0.986 1 0.201 0.734 0.991 0.999 1
50 70 0.22 0.801 0.994 1 0.31 0.852 1 1 1
90 0.23 0.797 0.996 1 0.36 0.893 1 1 1
50 0.18 0.763 0.994 1 0.217 0.796 0.992 1 1
100 70 0.24 0.829 0.996 1 0.303 0.875 0.996 1 1
90 0.24 0.797 0.994 1 0.353 0.91 0.996 1 1

In order to simplify the analysis and to compare our methodology under adverse
conditions (with respect to reference methods just under such conditions), two scenarios
have been chosen. Both are defined by the existence of shape anomalies (more difficult to
identify with traditional methods based on the L? norm). For this purpose, a parameter
1 (which establishes the difference in shape with respect to the original curves) equal to
1 has been defined. In the first scenario, independence between curves is assumed, while
in the second scenario, strong positive dependence is assumed (defined by p = 0.7). The
curve simulation procedure is the same as that proposed in Harris et al. [47], i.e., 100 curves
are simulated of which 10 are anomalous, for which performance measures (proportion of
correct classification, kappa) are calculated. This procedure is performed 1000 times, then
plotting the performance indices using boxplots.

It is very important to note that we decided to show the performance of our method in
very unfavorable starting scenarios (shape anomalies, horizontal variability more important
than vertical variability). In addition, we have chosen to compare the present methodology
with reference tools and proven performance in these scenarios, such as the elastic depth
method developed by Harris et al. [47] and, also, the method based on the measurement
of data depth proposed by Febrero et al. [23]. In order to correct this disadvantage (to be
observed in simulation scenarios), a modification of our FD-LOCI methodology has been
proposed (see Figure 3). In fact, the use of the L? distance has been replaced with the elastic
distance application [41,43,47]. As a tentative approach, its amplitude component [47] has
been used, but not the phase component, which is expected to be incorporated in future
work and whose potential is promising for cases where the differences between anomalies
are larger in the horizontal than in the vertical direction.
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In general terms, the limitations of the FD-LOCI method for detecting shape anomalous
curves are noted. However, its performance is greatly increased when replacing the L?
distance with the elastic distance (amplitude). Its performance can also be improved by
modifying parameters of the FD-LOCI algorithm such as the k parameter. Figure 3 shows
the correct classification ratio (accuracy) of the LOCI-L2 and LOCI_EP methods, assuming
dependence between curves. It is observed that the LOCI_EP method performs better
in this scenario, for any value of k, being optimal for k > 2. The LOCI-L2 method has
a moderate median accuracy (0.75) for k = 3. Therefore, the usefulness of incorporating
the elastic distance into the FD-LOCI method when trying to detect shape anomalies has
been demonstrated.

The next step is to compare our proposed methodology (using different metrics)
with those benchmark alternatives to detect shape anomalies, such as e.depth (using the
amplitude component), and other traditional and contrasted methods, such as fdqcs.depth
(see Figure 4).

Consequently, Figure 4 shows the accuracy and kappa indices corresponding to the
scenarios with independent curves (A,B) and with dependent curves (C,D). The FD-LOCI
alternatives were performed by fixing k = 2. The methods that incorporate the elastic
depth provide more or less the same performance working with dependent or independent
curves. The e.depth and fdqcs.depth provide higher accuracies, but that corresponding
to LOCI_ED (that also incorporates the elastic distance) is also high and similar. The four
methods are defined by relatively low kappa indices. In addition, considering the accuracy
values, this means that the methods have difficulties identifying the anomalies correctly.
Regarding kappa indices, the best performance in the independence framework is provided
by the fdqcs.depth, whereas the LOCI_ED procedure is the better method to detect the
anomalies in the scenario with dependence. In all the cases, the LOCI_L2 does not have a
good performance. This is partly due to the fact that k = 2 has been chosen (it performs
better for k = 3) and that it presents more difficulties in detecting anomalies when the
differences are set more horizontally than vertically. It is also important to note that the
benchmark e.depth method has a kappa index of about 0.75 and an accuracy close to 1
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located in Rioba (Ecuador) he database contains information in the interval between
2014 and 2019, with overall 52,560 records (hours) corresponding to 2190 days (curves).
Figure 5 shows that the mean hourly humidity variable has a functional nature,
considering its behavior over the course of a day. Since the data are collected in a discrete
manner, with hourly observations, smoothing methods are applied in order to process the
daily mean humidity curves as observations of a functional variable. For this purpose, each
day is considered as a function obtained from 24 measurements corresponding to the value
of the mean humidity in each hour. Because of the high possibility of periodicity in the
data, the smoothing is performed using Fourier basis fitting, as shown in Figure 5. This plot
corresponds to the curve for 1 January 2014. On the other hand, it is important to highlight
that the anomalous daily humidity curves have been previously identified by experts of
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Figure 5. Smoothed curve (using a Fourier basis fit) of the daily average humidity corresponding to
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labeling of the anomalous curves, the performance of the FD-LOCI method is evaluate
by constructing the confusion matrix, in which the class corresponding to non-anomalous
curves is labeled with 0 and those corresponding to anomalies with 1 (see Table 8).

Table 8. Confusion matrix corresponding to the FD-LOCI application, assuming 6 = 0.78 and a
sampling radius that accounts for 50% of the observations (neighbors), ny = 1095 observations.

0 1
0 2120 22
1 13 35

In order to evaluate the FD-LOCI approach, its performance has been compared
with that of two competitive methods within the FDA that are based on the calculation
of the depth of each functional data. Specifically, a Functional Boxplot (F. Boxplot) has
been constructed, using the functions available in the fda package, using the modified
band depth (MBD) method [65]. In addition, the Phase I control chart for functional
data described in Flores et al. [21] has been applied, based on the procedure defined by
Febrero et al. [23] and implemented using the fdqcs.depth function of the gcr package [66]
for the 2190 average moisture curves. The results provided by each of the methods,
including the present proposal, the FD-LOCI (6 = 0.78 and ny = 1095), expressed in terms
of the number of detected outliers (D.A.) and correctly detected anomalies (C.D.A.), in
addition to other goodness-of-classification measures such as the proportion of correct
classification (accuracy), sensitivity (ability to detect anomalies), specificity (ability to
detect non-anomalies), and the kappa index, can be seen in Table 9. Following Landis and
Koch [67], in absolute terms, the kappa corresponding to the FD-LOCI method indicates
that the rating is substantially good (negative values account for no agreement in the rating,
0-0.20 slight, 0.21-0.40 fair, 0.41-0.60 moderate, 0.61-0.80 substantial, and 0.81-1 means
almost perfect agreement). If the Fleiss criterion is followed, the classification obtained is
fair to good (0.4-0.75). Considering the accuracy index, the best classification is obtained
with the FD-LOCI using the L? metric with k = 3. Comparable values are obtained with
the FD-LOCI (with elastic depth and k = 4), the F. Boxplot, Elastic Depth, and fdqcs.depth
methods. In terms of specificity (ability to detect non-anomalies), all the methods have a
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very high and similar performance. Regarding the sensibility (ability to detect anomalies),
the best method is FD-LOCI (L?) with k = 4 and FD-LOCI (elastic depth) with k = 3. In the
case of kappa, the highest values are obtained for FD-LOCI (L?). Thus, the method with a
best balance to detect anomalies and non-anomalies in this specific case is the proposed
FD-LOCI (L?) procedure.

Table 9. Performance measures of the methods used to detect anomalies (57 actual anomalies
detected by a group of experts). The proportion of correct classification (accuracy), the kappa index,
the specificity, the sensibility, and the number of true alarms detected are included.

Method k Parameter D.A. C.D.A. Accuracy Kappa Specificity Sensitivity
3 47 36 0.9854 0.6849 0.9948 0.6316
FD-LOCI (L?) 4 129 42 0.9534 0.4311 0.9592 0.7368
4.5 35 28 0.9836 0.6008 0.9967 0.4912
FD-LOCI 3 325 41 0.863 0.1783 0.8669 0.7193
(elastic 4 32 17 0.9749 0.3702 0.993 0.2982
distance) 4.5 18 12 0.9767 0.3114 0.9972 0.2105
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sizes (n € [50, 100]), moderate to high values for 6 (greater than or equal to 0.78) and radii
covering around 70% of the data onwards (being also acceptable with 50% coverages). It is
also important to note that the FD-LOCI method has similar power to detect outliers both
due to their magnitude and also due to their different shape. Specifically, significantly high
power is observed to detect changes in magnitude corresponding to 7 > 0.6 and of § > 1.2
in shape, for almost any value of # and ny.

The simulation study also shows that the FD-LOCI method is robust against the
existence of autocorrelation between the various functional data (dependence between
curves), a very common situation in data continuously monitored with respect to time,
whether this dependence is negative or positive. In any case, the estimates of the false
alarm ratio and the power are slightly better (for lower values of 1) under low dependence
conditions. The power of the FD-LOCI model tends to be higher in scenarios with positive
dependence than in scenarios defined by negative dependence. It is also noteworthy that
the power curves when there is positive dependence are of a similar level and speed of
growth to those corresponding to scenarios with independent curves.

In order to improve the performance of the FD-LOCI method in those scenarios defined
by shape anomalous curves, the L? distance is replaced with the elastic distance. The use
of FD-LOCI (using elastic distance) improves the performance of the FD-LOCI method to
detect anomalies depending on the shape, as the benchmark methods based on the elastic
distance such as that labeled as e.depth.

Regarding the application to real data, it is observed that the FD-LOCI algorithm is
a very useful tool for the detection of outliers and may present advantages in terms of
the number of true anomalies detected, number of false alarms, accuracy, specificity, and
sensitivity with respect to other FDA methods of outlier detection based on the calculation
of data depth. In fact, we observe that the highest values for accuracy, kappa, sensitivity, and
specificity are obtained using the LOCI_L2 method, providing a very good performance.
Thus, we can see that there are scenarios where this present approach presents better
performance than the other benchmark methodologies.
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