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Abstract
While there exist many bandwidth selectors for estimation, bandwidth selection for
statistical matching and prediction has hardly been studied so far.We introduce a com-
putationally attractive selector for nonparametric out-of-sample prediction problems
like data matching, impact evaluation, scenario simulations or imputing missings.
Even though the method is bootstrap based, we can derive closed expressions for the
criterion function which avoids the need of Monte Carlo approximations. We study
both, asymptotic and finite sample performance. The derived consistency, convergence
rate and extensive simulation studies show the successful operation of the selector. The
method is illustrated by applying it to real data for studying the gender wage gap in
Spain. Specifically, the salary of Spanish women is predicted nonparametrically by
the wage equation estimated for men while conditioned on their own (i.e., women’s)
characteristics. An important discrepancy between observed and predicted wages is
found, exhibiting a serious gender wage gap.
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I. Barbeito et al.

1 Introduction

While there exists a considerable literature on bandwidth selection for kernel based
nonparametric densities and regression, the problem of bandwidth selection for non-
parametric prediction has largely been ignored. To our knowledge, such selection
methods do not exist despite the relevance and frequency of such prediction problems
in practice. Examples are statistical matching or data matching (see Eurostat 2013,
and references therein), problems of imputation of missing data (for recent compendia
see, Rubin 2004; Su et al. 2010, and van Buuren 2018), and the simulation of sce-
narios such as those mentioned below. Another prominent example is the prediction
of counterfactuals like in treatment effect estimation, see the recent compendium of
Frölich and Sperlich (2019). This relates our selection problem also to Vansteelandt
et al. (2012) who look more generally on model selection for causal inference. We
are not thinking of extrapolation outside of the support of observed covariates (Li and
Heckman 2003), a problem that would go beyond the here described one. We neither
refer to the bandwidth selection problem for doing forecasting with time series, see
the review of Antoniadis et al. (2009) or Tschernig and Yang (2000).

To be more specific, the situations we are thinking of have the following features
in common: one has two samples referring to potentially different populations, say
the source and the target group. In the source group one has observed the response Y ,
being the variable of interest, and some auxiliary information X , i.e., some observed
covariates. However, for the target group the (potential) response Y is not observed—
or the actually observed response is not the wanted counterpart of what we observed
in the source group. If one is willing to assume (Y |X)target ∼ (Y |X)source one can use
the source sample to predict Y for the target in order to calculate some parameter of
interest like the treatment effect in causal analysis. Consider the following examples:
In counterfactual exercises one typically has a response Y also observed for the target
sample, but under a different situation, say, under ‘treatment,’ and needs therefore
to predict it under ‘no treatment.’ The average difference between the observed and
imputed Y gives the so-called ‘treatment effect for the treated.’ In data matching,
response Y is not sampled in the target sample but in different sources. Similarly,
when facing missing values where one assumes that they are missing at random when
conditioning on X , one may consider as target sample the part of your data set that
contains Y , and as source sample the rest. Finally, one can imagine scenarios where
the explanatory random variable X of the target refers to an artificial, maybe future,
population, for which we still cannot observe Y . In most of these examples, and
especially for the first and the last one, the distribution of X in the targetwill be different
from the one in the source. For being so-called ‘confounders’ in causal inference, this
is even a requirement. However, one needs either to suppose that support(X)target ⊆
support(X)source, or to use methods made for extrapolating to obtain predictions of Y
for the entire support(X)target. For simplicity, one can simply think of both a common
support (for source and target).

In this article, we concentrate on the mean functions, so that the underlying hypoth-
esis is not to have (Y |X)target ∼ (Y |X)source but the same regression function, say
E[Y |X = x], in both groups. For example, in our application, Y is salary, and we
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estimate for men (source population) E[Y |X ] containing education, sector and pro-
fessional experience. This is used then to predict the corresponding expected wages
of women (target population) to compare those predictions with the women’s real-
ized wages. The difference gives an estimate of the gender wage gap. Evidently, this
strategy can be used in many different contexts, also for artificial populations like
in scenarios. This describes a quite relevant statistical problem for which we need a
regularization parameter like a bandwidth for kernel smoothing. In treatment effect,
estimation via matching this type of a bandwidth selection problem has been studied
by Frölich (2005), Häggström and Luna (2014) and Galdo et al. (2008). The former
two were not interested in the nonparametric estimators but only the total averages.
Only the latter considered a problem similar to ours, but proposed weighted cross-
validation (CV). Moreover, Frölich (2005) only studied if the use of standard selectors
for regression yield acceptable results but did not propose a problem-specific alterna-
tive. Also for flexible methods for imputing missings this seems still to be an open
problem, see van Buuren (2018). For scenario calculations, we could not even find a
profound discussion of this problem in the existing literature.

However, there certainly exists a vast literature on bandwidth selection, see the
reviews ofHeidenreich et al. (2013) andKöhler et al. (2014).As the prediction problem
we discuss is regression based, we should first recall the existing bandwidth selection
procedures for regression. As outlined in the above reviews, they can essentially be
divided into two groups: cross-validation (CV) and plug-in methods. Likewise one
may distinguish between those that try to minimize the integrated or averaged squared
error (ISE or ASE) on the one side, and those that try to minimize the expected ISE
or ASE, known as MISE and MASE, on the other side. Without pronouncing in favor
of one or the other in general, in many regression problems there are good reasons to
be more interested in minimizing the ASE (rather than the MASE) as people want to
get the best bandwidth for their specific sample fit. Also the implementation seems
to be simpler for CV methods; both together explains most of their popularity. In our
case, however, the first argument is no longer valid as we may want to get predictions
for different samples, and then would prefer the MASE criterion. Also the second
argument does no longer hold as adapting CV to our problem is not easy as can be
seen from Galdo et al. (2008). Our proposal relies onMASEminimization via smooth
bootstrap (Cao and González-Manteiga 1993).

Next, we concentrate on global bandwidths as this is the most popular approach in
practice. We call a bandwidth global if it is supposed to be applied over the whole sup-
port of the regressor, and is therefore supposed to minimize some global loss function.
Local bandwidths are optimal for (just) one point of the support and had therefore
to be calculated for all regressor values at which one wants to estimate (or predict).
It is therefore hardly ever used. We further limit our presentation to so-called local
constant prediction, i.e., based on the classical Nadaraya–Watson estimator. For an
extension to local linear methods, see the thesis of Barbeito (2020). While local linear
estimators have doubtless their advantages, she showed that for bandwidth selection
in our context they render the method much more cumbersome and computationally
quite unattractive. Note finally that, although the theory for our method is developed
along the problem of a particular bandwidth choice, it also applies more generally to
model selection for prediction.
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Smooth bootstrap aims to draw bootstrap samples from a nonparametric pilot esti-
mate of the joint distribution of (X , Y ). For the source and each bootstrap sample
m(x) := E[Y |X ] is estimated. The estimates allowus to approximate themean squared
error of m̂(x). These errors are averaged over the xi observed in the target sample. It
can be shown that there exists a closed analytical form for the resulting MASE boot-
strap estimate. This simplifies the procedure importantly making it quite attractive.
One may argue that the exactness of this MASE approximation hinges on the pilot
estimate. Yet, in order to find the optimal bandwidth or model, it suffices that the
MASE approximations take their minimum at the same point as the true, unknown
MASE. Our simulations show that this is indeed the case.

In Sect. 2, we introduce the prediction problem and bandwidth selector considered,
introduced for the case with one explanatory variable. Assumptions and asymptotic
properties are also provided in that section. The simulations in Sect. 3 demonstrate
an excellent performance of this method. Section 4 extends our approach to situations
with one continuous explanatory variable and several categorical ones and illustrates
the method along a study of the gender wage gap in Spain. Section 5 concludes and
discusses further extensions like the one to boundary kernels, multivariate continuous
covariates and local linear estimation.Asymptotic theory on the pilot choice is deferred
to the Appendix, and technical proofs to the Supplementary Material.

2 The bandwidth selectionmethod

2.1 Closed-expression for the criterion functions

Suppose a complete sample {(X0
i , Y 0

i )}n0
i=1 from the source population is provided,

with X0 ∼ f 0, and (re-)define m(x) := E
(
Y 0|X0 = x

)
. For the target population,

we are provided with observations {X1
i }n1

i=1 from density f 1 which is potentially
different from f 0, and we assume E

[
Y 1|X1 = x

] = m(x). Then, we may consider
two different, though related problems: (a) predicting the unobserved

{
Y 1

i

}n1
i=1, or

(b) estimating E
[
Y 1
] = E

[
E
[

Y 1
∣∣ X1

]] = E
[
m(X1)

]
.1 Recall, if some outcome is

observed for the target group, its conditional expectation might nonetheless seriously
differ from m(·), like in our study in which we observe women’s wages but want to
predict their wages as if they were paid like men.

We estimate m(·) by a Nadaraya–Watson estimator m̂h with bandwidth, h. Let
us suppress for a moment the upper index and concentrate on the source sample. The
challenge is tofind abandwidth, h,which is optimal for problems (a) and (b). The point-
wise MSE, and afterward the MASE are approximated by their bootstrap versions.
Similarly as Cao and González-Manteiga (1993), consider two pilot bandwidths gX ,
gY . They propose to obtain the bootstrap resamples either sampling from:

SB1 F̂g(x, y) = n−1
n∑

i=1
1{Yi ≤y}

x∫

−∞
Kg(t − Xi ) dt , or

1 Our notation differs from the one used in the treatment literature: There, Y 1 refers to outcome under
treatment, Y 0 to outcome under control. In contrast, we use the upper index to indicate the group.
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SB2 F̃gX ,gY (x, y) = n−1∑n
=1 K

(
x − Xi

gX

)
K

(
y − Yi

gY

)
.

The latter is equivalent to resampling from the bivariate density f̂gX ,gY (x, y) =
n−1∑n

i=1 KgX (x − Xi )KgY (y − Yi ). In the following, only SB2 will be consid-
ered because SB1 is just the limit case of SB2 when gY → 0+, for fixed n.
Denote m̂h(x) = �̂h(x)/ f̂h(x), where f̂h(x) = n−1∑n

i=1 Kh(x − Xi ) and �̂h(x) =
n−1∑n

i=1 Kh(x − Xi )Yi . For �(x) := f (x)m(x),

m̂h(x) − m(x) = �̂h(x)

f̂h(x)
− �(x)

f (x)
=
(

�̂h(x)

f̂h(x)
− �(x)

f (x)

)[
f̂h(x)

f (x)
+
(

1 − f̂h(x)

f (x)

)]

= �̂h(x) − m(x) f̂h(x)

f (x)
+
(
m̂h(x) − m(x)

) (
f (x) − f̂h(x)

)

f (x)
, (1)

since �̂h(x)−m(x) f̂h(x) = �̂h(x)−�(x)+m(x)
(

f (x) − f̂h(x)
)
. The second term

on the right hand side of (1) is negligible. So it suffices to consider a proxy estimator
of m(x) that corresponds to considering only the first term, and we get

m̃h(x) − m(x) = 1

n f (x)

n∑

i=1

Kh(x − Xi )(Yi − m(x)) . (2)

Given thatE∗ (Y ∗| X∗ = x) = m̂gX ,gY (x), the bootstrap analog of the proxy estimator
is

m̃∗
h(x) − m̂gX (x) = 1

n f̂gX (x)

n∑

i=1

Kh(x − X∗
i )(Y ∗

i − m̂gX (x)), (3)

where X∗ has bootstrap marginal density f̂gX . Using convolution (Kh ∗ qx ) (x) :=∫
Kh(x − y)qx (y) dy, the point-wise MSE and its bootstrap analog are in Theorem 1,

assuming

(A1) K is a bounded symmetric density function

Theorem 1 If (A1) holds, x is an interior point of the support of X, {Xi }n
i=1 an i.i.d.

sample, and f (x) �= 0, then the point-wise mean squared error of m̃h can be expressed
as

MSEx (h) := E

[
(m̃h(x) − m(x))2

]
= n − 1

n f (x)2
(Kh ∗ qx )2(x) + 1

n f (x)2

[
(Kh)2 ∗ px

]
(x), (4)

where px (z) :=
(
σ 2(z) + (m(z) − m(x))2

)
f (z), qx (z) := (m(z) − m(x)) f (z) and σ 2(x) :=

V ar ( Y | X = x) stands for the volatility function.
If further f̂gX (x) �= 0, then the smoothed bootstrap version of MSEx (h) is

MSE∗
x (h) = 1

n f̂ 2gX (x)

⎡

⎣ g2Y μ2(K )

n

n∑

i=1

[
(Kh)2 ∗ KgX

]
(x − Xi ) +

[
(Kh)2 ∗ p̂x,gX

]
(x)

⎤

⎦

123



I. Barbeito et al.

+ n − 1

n f̂ 2gX (x)

(
Kh ∗ q̂x,gX

)2
(x),with (5)

p̂x,gX (z) =
(
σ̂ 2

gX
(z) + (m̃gX (z) − m̃gX (x))2

)
f̂gX (z), q̂x,gX (z) = (m̃gX (z) − m̃gX (x)) f̂gX (z),

μr (K ) = ∫ tr K (t) dt, σ̂ 2
gX

(z) = m̃2,gX (z) − m̃2
gX

(z), m̃2,gX (z) =
∑n

i=1 KgX (z − Xi ) Y 2
i∑n

i=1 KgX (z − Xi )
.

The proof of Theorem 1 is provided in the Supplementary Material. It is to be
emphasized that (5) is exact and not just an approximation. In other words, there is no
need to draw bootstrap resamples as (5) can be calculated directly.

The next step is notationally cumbersome because for the MASE, we need to
carefully distinguish between source and target sample. Therefore, we use the upper
indices again. As said in the introduction, for the sake of presentation suppose f 0

and f 1 have common support. In order to select an optimal bandwidth, our aim is to
minimize

E

[(∫ (
m̂h(x) − m(x)

)
d F1(x)

)2
]

. (6)

However, thanks to Proposition 1, where an upper bound is obtained, we minimize

expression E

[∫ (
m̂h(x) − m(x)

)2
d F1(x)

]
instead. Let us define now our objective

function and then give its upper bound:

Definition 1 Denote Y 1
1 , . . . , Y 1

n1 the unobserved values of Y for the target population.
Taking m̂

(
X1

i

)
as a prediction of Y 1

i , i = 1, . . . , n1, the average prediction error is

E

[
1

n1

n1∑

i=1

(
Y 1

i − m̂h

(
X1

i

))2
]

.

Proposition 1 If F1 is the distribution function of the target population, and m̂h the
estimated regression function. Then, an upper bound for expression (6) is given by

E

[(∫ (
m̂h(x) − m(x)

)
d F1(x)

)2
]

≤ E

[∫ (
m̂h(x) − m(x)

)2
d F1(x)

]
.

On the other hand, the average prediction error is given by

E

[
1

n1

n1∑

i=1

(
Y 1

i − m̂h

(
X1

i

))2
]

=
∫

σ 2(x) d F1(x) + E

[∫ (
m̂h(x) − m(x)

)2
d F1(x)

]
.

Then, for finding a globally optimal bandwidth h we minimize

MASEm̃h ,X1(h) = 1

n1

n1∑

j=1

[
E0

[(
m̃h(X1

j ) − m(X1
j )
)2]]

, (7)
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where, for any random variable Z , E0 [Z ] = E

[
Z | X1

j ,∀ j ∈ {1, . . . , n1}
]
refers to

the expectation in the source population conditioned on the target sample. Similarly
to Theorem 1, we can state for the MASE and its bootstrap analog:

Theorem 2 Assume (A1) and let {(X0
i , Y 0

i )}n0
i=1 be a simple random sample coming

from the source population, and {X1
i }n1

i=1 a simple random sample coming from the
target population. Then, the MASE prediction error is

MASEm̃h ,X1(h) = 1

n1

n1∑

j=1

1

f 0(X1
j )
2

[(
1 − 1

n0

)
·
[

Kh ∗ q0
X1

j

]2
(X1

j )

+ 1

n0

[
(Kh)2 ∗ p0

X1
j

]
(X1

j )

]
, (8)

where q0
x (z) := (m(z)−m(x)) f 0(z) and p0x (z) := (σ 2

0 (z) + (m(z) − m(x))2
)

f 0(z).
Similarly,

MASE∗
m̃h ,X1(h) = 1

n1

n1∑

j=1

1

f̂ 0gX
(X1

j )
2

[(
1 − 1

n0

)
·
[

Kh ∗ q̂0
X1

j ,gX

]2
(X1

j ) (9)

+ 1

n0

[
(Kh)2 ∗ p̂0

X1
j ,gX

]
(X1

j ) + g2
Y μ2(K )

n0

[
(Kh)2 ∗ f̂ 0gX

]
(X1

j )

]

,

with p̂0x,gX
(z) =

(
σ̂ 2
0,gX

(z) + (m̂gX (z) − m̂gX (x))2
)

f̂ 0gX
(z), q̂0

x,gX
(z) = (m̂gX (z) −

m̂gX (x)) f̂ 0gX
(z) and σ̂ 2

0,gX
(z) = m̃2,gX (z) − m̃2

gX
(z) with m̃2,gX (z) =

∑n
i=1 KgX

(
z − X0

i

) (
Y 0

i

)2
∑n

i=1 KgX

(
z − X0

i

) .

Furthermore, working out the convolutions in expression (9) we get

Corollary 1 If K is a Gaussian kernel, then expression (9) can be rewritten as follows:

MASE∗
m̃h ,X1 (h) = 1

n1

n1∑

j=1

1

f̂ 0g
(

X1
j

)2

⎡

⎢
⎣

n0 − 1

n30
·
⎡

⎣
n0∑

i=1

Kh ∗ KgX

(
X1

j − X0
i

)
·
(

Y 0
i − m̂gX

(
X1

j

))
⎤

⎦

2

+ 1

n20

n0∑

i=1

[
(Kh)2 ∗ KgX

]
(X1

j − X0
i ) ·

[
Y 0

i − m̂gX

(
X1

j

)]2

+ g2μ2(K )

n20

n0∑

i=1

[
(Kh)2 ∗ Kg

] (
X1

j − X0
i

)
⎤

⎦ .

In the special case of considering SB1, that is, if gY = 0, one gets
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Corollary 2 If gY = 0, then expression (9) for MASE∗
m̃h ,X1(h) becomes

1

n1

n1∑

j=1

1

f̂ 0gX

(
X1

j

)2

[(
1− 1

n0

)[
Kh ∗ q̂0

X1
j ,gX

]2 (
X1

j

)
+ 1

n0

[
(Kh)2 ∗ p̂0

X1
j ,gX

](
X1

j

)]

.

(10)

Proofs of Theorem 2 and Corollary 1 are in the Supplementary Material, whereas
the proof of Corollary 2 is immediate. For the sake of simplicity, we consider g =
gX = gY . A bootstrap bandwidth selector for prediction can now be defined as

hBOOT = h∗
MASEm̃h ,X1

= argmin
h>0

MASE∗
m̃h ,X1(h).

As we could see, computation of hBO OT does not require the use of Monte Carlo
approximation nor the nonparametric estimation of the density f 1 of the target
population.

In order to verify whether this procedure works, we have first to answer two ques-
tions: Is the MASE of approximation (2), i.e., when m̃h substitutes m̂h , a useful
approximation for the MASE of m̂h? And if so, is the MASE bootstrap analog a use-
ful approximation for the former? Figure 1 reveals that the optimal bandwidths for
both estimators are very close. It also shows that the first approximation is much more
sensitive to the bandwidth than the original one which makes it numerically even eas-
ier to find the minimum. Furthermore, for almost all simulations the minimizer in the
bootstrap world is very close to the true one. This answers both questions with a clear
‘yes.’

2.2 Asymptotic theory

Wenowderive the asymptotic rate of convergence for the bandwidth selector. To do this
we have to look at the asymptotic analogs ofMASEm̃h ,X1 and its bootstrap version, say
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30

Fig. 1 Left: MASE of the Nadaraya–Watson estimator usingMonte Carlo (black line) and its approximated
version (9) (red line). Right: MASE of the approximation (7) (black line) and its bootstrap version (9) for
100 different samples (gray lines) {X0, Y 0} of size n0 = n1 = 100. Specifically, X0 is β(2, 4) distributed,
Y 0 = m(X0) + 0.4ε, where m(x) = 2x1/2, and ε standard normal. X1 is β(4, 2) distributed (color figure
online)
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at MISEa(h) := E

[∫
(m̃h(x) − m(x))2 dF1(x)

]
and its bootstrap version. Note that

MISEa is the MISE but with the proxy estimator (2). The proof of theorems, lemmas,
propositions and corollaries of this section are in the Supplementary Material.

2.2.1 Asymptotic expression for the criterion function

We need some regularity conditions for the kernel, source density and regression
function:

(B1) K is a positive second order kernel.
(B2) f 0 is four times differentiable and f 0(x) �= 0, ∀x ∈ support

(
X1
)
.

(B3) m is four times differentiable.
(B4) σ 2 is two times differentiable.

Using a Taylor expansion and a change of variable, we obtain for the MISEa(h):

Lemma 1 Under the regularity conditions (B1)-(B4), the MISEa can be expressed as

MISEa(h) = R(K )

n0 h

∫
γ (x)dx + h4μ2(K )2

4

∫
β(x) dx + O(h6) + O

(
h

n0

)
, (11)

β(x) =
[

m′′(x)2 + 4m′(x)m′′(x)
(

f 0
)′

(x)

f 0(x)
+ 4m′(x)2

(
f 0
)′

(x)2

f 0(x)2

]

f 1(x) and

γ (x) = σ 2(x) f 1(x)

f 0(x)
. The asymptotic version of expression (11) is given by:

AMISEa(h) = R(K )

n0 h

∫
γ (x)dx + h4

4
μ2(K )2

∫
β(x) dx . (12)

Minimizing expression (12), we obtain the AMISEa bandwidth, namely

hAMISEa =
(

R(K )
∫

σ 2(x) f 1(x)
(

f 0(x)
)−1

dx

μ2(K )2
∫

β(x) f 1(x) dx

)1/5

· n−1/5
0 . (13)

With (11) and (13), the MISEa of hAMISEa becomes

MISEa (hAMISEa ) = R(K )

n4/5
0 c0

∫
γ (x)dx + c40 μ2(K )2

4 n4/5
0

∫
β(x) f 1(x) dx + O

(
n−6/5
0

)
,

which tends to zero at the rate n−4/5
0 as n0 −→ ∞. From this we can conclude:

Theorem 3 Under the regularity conditions (B1)–(B3), the bandwidth which mini-
mizes MISEa has the asymptotic expression:

hMISEa =
(

R(K )
∫

σ 2(x) f 1(x)
(

f 0(x)
)−1

dx

μ2(K )2
∫

β(x) f 1(x) dx

)1/5

n−1/5
0 + O

(
n−2/5
0

)
. (14)
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It remains to study how accurate the approximation MISEa for the MISE is. As M
refers to the ‘mean,’ we have to study the difference between ISEa and ISE. For this
we need some conditions on the kernel (C1) and density function (C2), cf. Silverman
(1978); as well as conditions for the regression function (C3), cf. Mack and Silverman
(1982):

(C1) (a) K is uniformly continuous with modulus of continuity wK and bounded
variation V (K ). K is absolutely integrable with respect to the Lebesgue
measure.

(b) K (x) −→ 0 as |x | −→ ∞.
(c)

∫ |x log |x ||1/2 |dK (x)| < ∞.
(C2) (a) f 0 is uniformly continuous.
(C3) (a) E (Y )s < ∞ and sup

x

∫ |y|s fXY (x, y) dy < ∞, s ≥ 2, where fXY is the

joint density.
(b) The marginal density of X0, f 0, the joint density function, fXY , and

m(x) f 0(x), the theoretical analog of �̂h , are continuous in an open interval
containing J , where J is a bounded interval in which f 0 is bounded away
from zero.

Proposition 2 Suppose (C1) to (C3) are fulfilled. Consider a sequence of bandwidths
hn0 such that

∑

n0
hλ

n0 < ∞ for someλ > 0and that nη
0hn0 −→ ∞ for someη < 1−s−1.

Assume (n0 h)−1/2 log
(
h−1
) −→ 0, h −→ 0 and n0 h −→ ∞ as n0 −→ ∞. Then,

ISE(h) = ISEa(h) + OP

(
h6
)

+ OP

(
h

n0
log

1

h

)
+ OP

(
h7/2

n1/2
0

)

+OP

⎛

⎜
⎝

log
1

h
n3/2
0 h3/2

⎞

⎟
⎠ , (15)

where ISE(h) = ∫ (
m̂h(x) − m(x)

)2 dF1(x) and ISEa(h) =∫
(m̃h(x) − m(x))2 dF1(x).

This proposition tells us that the difference rapidly vanishes.

2.2.2 Asymptotic expressions for the bootstrap criterion functions

Next, the smoothed bootstrap version of MISEa is to be studied. We start by com-
puting MISEa∗(h) := E

∗ [∫ (m̃∗
h(x) − m̂g(x)

)
dF1
]
, i.e., the theoretical analog of

MASE∗
m̃h ,X1 . For studying MISEa∗, i.e., the bootstrap MISE of m̃h , given in (2),

define Âg = ∫ γ̂g(x) dx , B̂g = ∫ β̂g(x) dx , A = ∫ γ (x) dx and B = ∫ β(x) dx , with
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γ̂g(x) = σ̂ 2
g (x) f̂ 1g (x)/ f̂ 0g (x) and

β̂g(x) =
⎡

⎢
⎣m̂′′

g(x)2 +
4m̂′

g(x)m̂′′
g(x)

(
f̂ 0g
)′

(x)

f̂ 0g (x)
+

4m̂′
g(x)2

(
f̂ 0g
)′

(x)2

f̂ 0g (x)2

⎤

⎥
⎦ f̂ 1g (x)

Lemma 2 Under the regularity conditions (B1)–(B4), the function MISEa∗ is

MISEa∗(h) = R(K )

n0 h
Âg + h4

4
μ2(K )2 B̂g + OP

(
h6 n−1

1 g−7
(

g−2 + g−1 + 1
))

+OP (h8 n−1
1 g−9) + OP

(
h−1 g2 n−1

1

)

+OP

(
h n−1

1

(
1 + g−1 + g−2

))
. (16)

Thus, the dominant part of expression (16), namely AMISEa∗(h), is given by:

AMISEa∗(h) = R(K )

n0 h
Âg + h4

4
μ2(K )2 B̂g. (17)

By minimizing expression (17), we can state an AMISEa∗ bandwidth, namely

h∗
AMISEa =

(
R(K ) Âg

μ2(K )2 B̂g

)1/5

n−1/5
0 . (18)

Next, similarly as in the non-bootstrap context, it remains to check the accuracy of
the theoretical approximation we have considered for MISE∗, i.e., our MISEa∗. Again
we can show that this approximation is appropriate in terms of ISE∗.

Proposition 3 Assume conditions (C1) to (C3), and suppose further n0 −→ ∞,
h −→ 0 and n0 h −→ ∞. Consider a sequence of bandwidths hn0 such that∑

n0
hλ

n0 < ∞ for some λ > 0, and nη
0hn0 −→ ∞ for some η < 1 − s−1. Assume

also (n0 h)−1/2 log
(
h−1
) −→ 0. Then,

ISE∗(h) = ISEa∗(h) + OP∗
(

h6
)

+ OP∗
(

h

n0
log

1

h

)
+ OP∗

(
h7/2

n1/2
0

)

+OP∗

⎛

⎜
⎝

log
1

h
n3/2
0 h3/2

⎞

⎟
⎠ , (19)

almost sure with respect to P, where

ISE∗(h) =
∫ (

m̂ N W∗
h (x) − m̂g(x)

)2
dF̂1

g (x), and ISEa∗(h)
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=
∫ (

m̃ N W∗
h (x) − m̂g(x)

)2
dF̂1

g (x).

We can also establish the convergence rate for (hMISEa∗ − hMISEa ) /hMISEa , using
expressions (16), (18) and (36) in the Appendix.

Theorem 4 Consider hMISEa , its bootstrap version h∗
MISEa , and hAMISEa , which are

the minimizers of expressions (11), (16) and (17), respectively. Under the regularity
conditions (B1)–(B4) and assuming that g is of order n−1/2

0 , it holds that

h∗
MISEa − hMISEa = OP

(
n−7/10
0

)
, and

h∗
MISEa − hMISEa

hMISEa
= OP

(
n−1/2
0

)
. (20)

It remains to discuss the selection of g. Expression (16) reveals that this pilot
bandwidth should be selected tominimize the error produced by estimating expression
(12) via (17). So one should minimize the expected squared δ̂g(h) := AMISEa∗(h)−
AMISEa(h), i.e.,

gOPT := argmin
g>0

E

[
δ̂2g(h)

]
. (21)

It is easy to see that

δ̂g(h) = R(K )

n0 h

(
Âg − A

)
+ h4

4
μ2(K )2

(
B̂g − B

)
, (22)

implying that gOPT depends in turn on bandwidth h. This suggests to consider

gOPT := argmin
g>0

E

[
δ̂2g(hAMISEa )

]
, (23)

where hAMISEa was defined in (13). It can be shown that

E

[
δ̂2g(hAMISEa )

]
= μ2(K )4/5R(K )8/5B2/5

n8/5
0 A2/5

E

{[(
Âg − A

)
+ A

4 B
·
(

B̂g − B
)]2}

,

(24)

which leads us to

gOPT = argmin
g>0

{
E

[
α2

g

]
+ A2

16B
E

[
ξ2g

]
+ A

2B
E
[
αg · ξg

]
}

, (25)

where ξg = B̂g − B and αg = Âg − A. Denote �̂�,g(x) = n−1
0

n0∑

i=1
Kg
(
x − X0

i

) (
Y 0

i

)�

and��(x) = m�(x) f 0(x), ∀� ∈ {0, 1, 2}, wherem�(x) = E
(

Y 0�
∣
∣

X0=x

)
if � ∈ {1, 2},

and m� = 1 if � = 0. Unfortunately, the computation of the expectations in (25) is
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extremely tedious, implying the calculation of more than three hundred U -statistics
of order n0 · n1. An alternative is to find an upper bound for expression (24), say

E

[
δ̂2g(hAMISEa )

]
≤ 2E

[(
Âg − A

)2]+ A2

8 B2 E

[(
B̂g − B

)2]
.

This requires to work with Âg − A and B̂g − B. Some technical results concerning
the quantification of the error of both approximations are collected in Lemmas 3, 4
and Corollary 3 in the Appendix. As can be seen in the Supplementary Material, the
optimal g for the upper bounds obtained for the terms Âg − A and B̂g − B happens

to be n−1/2
0 .

3 Simulation study of performance

Ourmethod is not only, but particularly interesting for the so-called matchingmethods
and scenarios. Both are applied in many different situations. Although we certainly
studiedmanymore simulation designs, we found out that they could all be decomposed
and/or classified into the following three different situations.

Scenario 1 In the source population, the distribution of X0 is a β(2, 4) and Y 0 =
m(X0) + 0.3ε, where m(x) = sin(πx) and ε is drawn from a standard normal
distribution. The target population, X1, has distribution β(4, 2).
Scenario 2 In the source population, X0 has distributionβ(2, 5) andY 0 = m(X0)+
0.3ε, where m(x) = sin

(
1 +

(πx

2

)4)
and ε is drawn from a standard normal

distribution. The target population, X1, has distribution β(5, 2).
Scenario 3 In the source population, X0 has distributionβ(5, 2) andY 0 = m(X0)+
0.3ε, where m(x) = sin

(
1 +

(πx

2

)4)
and ε is drawn from a standard normal

distribution. The target population X1 has distribution β(2, 5).

We therefore decided to limit our presentation to these exemplifying situations which
can furthermore be motivated by the following examples.

Imagine an impact evaluation problem with unbalanced treatment vs control group
in which one has to estimate the effect of an IT training course for unemployed on
their chance to find a job within the next 4 months (after the training) or on their next
salary. As these courses are not compulsory, the age of participants may have a right
skewed distribution, whereas the one of the nonparticipants may have a left-skewed
one. It is well known that the likelihood to find a job and the next salary plotted on
age are inverted U-shaped curves. This situation is well reflected in Scenario 1.

For many poverty or inequality as well as for health studies, one needs to perform
datamatching or imputingmissing values as in themain data set the variable of interest
is simply not observed or exhibits many missing values but one believes these can be
’explained’ (not necessarily in the causal but a stochastic sense) by observed X (see,
e.g., Dai et al. (2016) for related problems we consider). For certain tax interventions
on luxury goods, one may expect most variation of the regression curve in the areas

123



I. Barbeito et al.

of higher expenditures. However, in surveys regarding income (X ) and expenditures
(say for luxury goods, Y ), lower- and middle income groups have much less missing
values. Here, the source is the subsample with, the target the subsample without Y .
This gives scenario 2.

Similarly, for scenarios and ex-ante evaluation one considers the present society
versus a potential future one. Imagine the regression function in Scenarios 2 and 3 had
an upward bump (what for the simulation outcome does not make any difference). We
are not only concerned about the pension system but also look at other aspects like the
health system. Most of the variation in doctor visits and health expenditures happens
(a) for people above 65, mainly men, and (b) young women. Thinking only of men,
for a strongly aging society one has a similar scenario as in 2 but with an upward bump
instead of a downward one in the regression function. In contrast, when looking only
on men and heavy road accidents, in many countries one has an important upward
bump between the age of 18 and 28, followed by a relatively flat curve. Then, one has
to flip the source and target group and end up in a (numerically) equivalent situation
as in Scenario 3.

Next, think of a counterfactual exercise to study discrimination in wages by gender
or race.Todo soonemaywant to estimate thewagegap controlling for (by conditioning
on) certain factors like sector, studies and years of experience or age. Such conditioning
is not only important for a fair comparison, but also to understand better channels of
wage differences and discrimination. Notice that again, the distributions of the three
mentioned covariates differ a lot between gender. We do, however, not know if the
regression is equally smooth on the main support of both distributions (Scenario 1), or
if we are in Scenarios 2 or 3. So it is clear that we should apply therefore our bandwidth
selection method. This is the situation we face in the next section, but is covered by
these three simulation scenarios.

It is important to notice that Scenario 1 is equivalent to a situation where the distri-
butions f 0, f 1 are quite similar, independently of the functional form of the regression
function. In such situation, the density-weighted smoothness of the regression function
is the same in both groups as it is in Scenario 1. It is clear that in such situation our
bandwidth selector cannot do better than the corresponding counterpart for regression
in the source sample. Unless one has done some prior studies about equality of dis-
tributions or smoothness of the regression, in practice one does not know if one is in
such a special situation. However, our Scenario 1 will show that even then our method
does not much worse, and Scenarios 2 and 3 will show that else one does much better
with our method.

3.1 Description of the study

For each scenario, 100 random samples of size n0 = n1 = 500 are drawn. The
Gaussian kernel is used to avoid divisions by zero. Recall that the bandwidth selector
is the minimizer of an empirical function. As it does not have an explicit expression,
numerical methods are used to approximate it. The algorithm is as follows:

Step 1Consider a grid of 50values of h in the [0.01, 0.2], equispacedon logarithmic
scale.
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Step 2 hOPT1 is the value that minimizes the MASE∗
m̃h

, given in expression (10).
Selection of gX is discussed in Sect. 3.2.
Step 3 From the bandwidth grid take the previous and the next one to hOPT1 , and
construct an equally spaced grid of five values in logarithmic scale between them.
Step 4 Steps 2 and 3 are repeated three times, retaining the optimal bandwidth
value in the last stage. That is taken as our numerical approximate of the optimal
hBOOT.

Recall from Fig. 1 that for numerical reasons, the calculated MASE∗
m̃h

might
decrease for very large h. In order to avoid oversmoothing due to this phenomenon,
hBOOT is considered as the local minimizer of MASE∗

m̃h
closest to but larger than zero.

Weare interested in the performanceof our bandwidth selector in termsof prediction
or data matching. To this aim, we compare our hBOOT, made for prediction, (h1 in
the following) with a bandwidth selector made for regression, say h0. Clearly, there
exist many bandwidth selectors for regression. To make it comparable to h1, notice
that a different way to look at the bandwidth selection problem for nonparametric
regression is to minimize the MASE in the source population. Then, h0 is the result
of minimizing

MASE∗
m̃h ,X0′ (h) = 1

n0

n0∑

j=1

1

f̂ 0gX

(
X0′

j

)2

[(
1 − 1

n0

)
·
([

Kh ∗ q̂0
X0′

j ,gX

] (
X0′

j

))2

+ 1

n0

[
(Kh)2 ∗ p̂0

X0′
j ,gX

] (
X0′

j

)

+g2
Y μ2(K )

n2
0

n0∑

i=1

[
(Kh)2 ∗ KgX

] (
X0′

j − X0
i

)
]

. (26)

As before, estimators in (26) are calculated with the original sample
{(

X0
j , Y 0

j

)}n0

j=1
,

but evaluated on a different source sample
{(

X0′
j , Y 0′

j

)}n0

j=1
. The selector is

h0 = hMASE∗
m̃h ,X0′ = argmin

h>0
MASE∗

m̃h ,X0′ (h). (27)

Certainly, if one wanted to use our method to select a bandwidth for regression in prac-

tice, one would set
{(

X0′
j , Y 0′

j

)}n0

j=1
:=
{(

X0
j , Y 0

j

)}n0

j=1
. This, however, produces an

additional bias which disadvantages the resulting selector compared to h1. One might
conclude then in favor of h1 only because of this bias. Notice that by construction,
h0 ≈ h1 if source and target population are very similar. Bandwidths h0 and h1 are
compared by means of

1

n1

n1∑

i=1

[
m(X1

i ) − m̂hN W
j

(X1
i )
]2

, j = 1, 2 and (28)
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∫ [
m(x) − m̂hN W

j
(x)
]2

dF1(x) , j = 1, 2, (29)

where m̂hN W
j

stands for the Nadaraya–Watson regression estimator obtained with

source sample
(
X0, Y 0

)
. The results of are presented in Figs. 2, 3and 4.

3.2 Selection of g

The pilot bandwidth, setting g = gX = gY , was g = hSJn
4/45
0 , where hSJ is the plug-in

bandwidth selector proposed by Sheather and Jones (1991) for kernel density estima-
tion. Accordingly, g has order n−1/9

0 , being the optimal rate for smoothed bootstrap,
see Cao and González-Manteiga (1993). Nonetheless, an additional simulation study

was carried out for this pilot bandwidth g. Consider g = hC n1/5−α
0 with α ∈

{
1

5
,
1

9

}
,

where hC = hSJ, hCV, the latter being the cross-validation bandwidth for regression.
Our criteria are for θ = E[Y 1].

MSE
[
θ̃
]

= E

[(
θ̃ − θ

)2]
, with θ̃ = 1

n1

n1∑

i=1

m̂h j

(
X1

i

)
, j = 0, 1 (30)
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Fig. 2 Boxplots obtained for Scenario 1. Top left: regression function considered in black, density functions
of the source (blue) and target (red) population. Top right: bandwidths obtained. Bottom: realized values
for ASE and ISE, i.e., expressions (28) (left) and (29) (right). Red points indicate the mean, i.e., MASE and
MISE in the lower panel (color figure online)
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Fig. 3 Boxplots obtained for Scenario 2. Top left: regression function considered in black, density functions
of the source (blue) and target (red) population. Top right: bandwidths obtained. Bottom: realized values
for ASE and ISE, i.e., expressions (28) (left) and (29) (right). Red points indicate the mean, i.e., MASE and
MISE in the lower panel (color figure online)

and MeSE
[
θ̃
]

= Median

[(
θ̃ − θ

)2]
, (31)

where m̂h j is the Nadaraya–Watson estimator computed with the source sample. The
results in Table 1suggest that α and hC do not have a great impact on the performance
of h1. The values for (30) and (31) in Table 1 suggest to choose α = 1/9 and hC = hSJ.

3.3 Discussion of simulation results

Recall that for Scenario 1 is equivalent to a situation where both densities are the same,
as densities and regression function are just mirrored; one would therefore expect h0
to perform at least as good as h1. For all other cases, we expect h1 to outperform h0
(if our method works in practice). And indeed, Figs. 2, 3 and 4 reveal that in Scenario
1, h0 is at least as good as h1, but else h1 clearly beats h0. Not unexpected we find the
following situations:

1. h0 is much larger than h1 (Scenario 2, Fig. 3). This is because the regression
function considered is almost flat in the main support of the source population, but
oscillates in the main support of the target population.
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Fig. 4 Boxplots obtained for Scenario 3. Top left: regression function considered in black, density functions
of the source (blue) and target (red) population. Top right: bandwidths obtained. Bottom: realized values
for ASE and ISE, i.e., expressions (28) (left) and (29) (right). Red points indicate the mean, i.e., MASE and
MISE in the lower panel (color figure online)

Table 1 Mean and median of ASE (28), and ISE (29), as well as expressions (30) and (31) for α = 1/5
and α = 1/9

Scenario Expression (28) Expression (29) Expr. (30) Expr. (31)

Mean Median Mean Median – –

α = 1/5

hCVn1/5−α
0 1 0.0168 0.0129 0.0194 0.0151 0.0065 0.0045

2 0.0419 0.0365 0.0434 0.0375 0.0103 0.0064

3 0.0133 0.0078 0.0144 0.0078 0.0126 0.0119

hSJn
1/5−α
0 1 0.0163 0.0124 0.0189 0.0142 0.0073 0.0046

2 0.0202 0.0113 0.0215 0.0119 0.0234 0.0229

3 0.0149 0.0079 0.0162 0.0082 0.0127 0.0120

α = 1/9

hCVn1/5−α
0 1 0.0318 0.0317 0.0361 0.0355 0.0030 0.0010

2 0.0776 0.0903 0.0809 0.0939 0.0027 0.0016

3 0.0176 0.0072 0.0161 0.0079 0.0116 0.0111

hSJn
1/5−α
0 1 0.0157 0.0118 0.0181 0.0128 0.0075 0.0044

2 0.0206 0.0113 0.0219 0.0119 0.0234 0.0023

3 0.0161 0.0080 0.0174 0.0089 0.0128 0.0121
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Table 2 CPU times (in seconds) obtained using Scenario 2, n0 = n1 = 100 and 500, for the Nadaraya–
Watson regression estimator, where h∗

MSE is the bandwidth selector that minimizes (5) and h∗
MASE the one

that minimizes (9)

Trials n0 = n1 = 100 n0 = n1 = 500

h∗
MSE h∗

MASE h∗
MSE h∗

MASE

1 0.75 0.71 18.01 17.47

100 72.19 79.36 1784.98 1758.63

Table 3 Medians of expressions (28) and (29) obtained from 100 runs, considering h∗
MASE minimizing (9)

for different sample sizes in Scenario 3, n0 referring to the source, n1 to the target sample

n1 n0

25 50 100 1000

Expression (28) (29) (28) (29) (28) (29) (28) (29)

25 0.0438 0.0337 0.0416 0.0337 0.0401 0.0393 – –

50 0.0279 0.0215 0.0354 0.0276 0.0287 0.0299 – –

100 0.0218 0.0173 0.0206 0.0161 0.0177 0.0179 – –

200 0.0165 0.0136 0.0120 0.0112 0.0101 0.0103 – –

1000 – – – – – – 0.0038 0.0030

2. h0 is smaller than h1 (Scenario 3, Fig. 4). This is the opposite situation to the
one mentioned before. Now m(x) is quite flat in the main support of the target
population, but oscillates a lot in the main support of the source population.

3. h0 and h1 are close (Scenario 1, Fig. 2). As discussed, this is expected because
m(·) is just mirrored for the main supports of the respective populations.

Results of CPU times are collected in Table 2. This shows the practical behavior
of the closed expression obtained for MASE∗

m̃h ,X1 of the Nadaraya–Watson estimator
given in expression (9) in terms of computer time. The order of computational com-
plexity of this method isO(n0 ·n1), as shown in Table 2. This is empirically compared
with the efficiency in terms of computer time of expression (5), which is the closed
expression ofMSE∗

x . Packages parallel and Bolstad of the free software R have
been used. Notice that selecting our global bandwidth is about as fast as calculating
oneMSE-based local one. Finally, as said in the introduction and in Sect. 5, when using
our selection method for the local linear estimator, see Barbeito (2020), computation
time increases by a factor > 60.

In Table 3 , we study the performance of h∗
MASE for Scenario 3 (calculated from

100 random samples) over different sample sizes, namely n0 ∈ {25, 50, 100, 200}
combined with n1 ∈ {25, 50, 100}, as well as the case of n0 = n1 = 1000 (for
computational reasons without combinations). As expected, the performance of the
bandwidth selector clearly improves as n0 increases, while the target sample size, n1,
does not matter much.
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Table 4 Mean and Median of expressions (28) and (29) obtained for 100 runs with n0 = n1 = 100 in
Scenario 3, when using h∗

MASE compared to hCV

h∗
MASE hCV Expression(28) Expression (29)

Mean Median Mean Median Mean Median Mean Median

0.0855 0.0824 – – 0.0231 0.0177 0.0248 0.0179

– – 0.0069 0.0068 0.0892 0.0733 0.0838 0.0748

If we consider a classic approach such as the cross-validation bandwidth (as pre-
sented in Marron 1985), we have for Scenario 3, 100 runs and n0 = n1 = 100 a very
small median for the values obtained for the bandwidths selected, but large values for
expressions (28) and (29), see Table 4, i.e., our method beats the classical CV selector
by far.

4 Estimating the gender wage gap in Spain

Consider the problem of estimating the gender wage gap based on a 2014 survey
in Spain, i.e., after its recovery from the financial crisis. Wage gaps have been of
long-standing political concern as an indicator of discrimination. Yet, the fact that
women are paid lower wages than men may well be due to differences in education,
experience and/or the sector they work in. The challenge is then to account for factors
X that might explain differences in wages. Until today, gender wage gap studies that
account for those characteristics are mainly based on fully parametric models. Often
they separate the male and female populations for looking at the Blinder–Oaxaca
decomposition, see Blau andKahn (2017) for a recent review.Moral-Arce et al. (2012)
introduced a semiparametric version of this decomposition and extended it to quantiles
to study the heterogeneity of the gap. They studied the genderwage gap in Spain before
the economic crisis, specifically the development around the millennium. For more
references consult these two articles.

Our approach is different in several aspects. First, it is fully nonparametric. Having
done all nonparametrically, any found difference cannot be explained by the choice
of the (semi-)parametric wage model. One may argue that we missed other impor-
tant factors. However, as gender is externally given, such objection only shifts the
discussion to the definition of the gender wage gap. Second, instead of deriving a
nonparametric Blinder–Oaxaca decomposition, we explore the heterogeneity of the
wage gap over sectors and education. Third, we calculate the counterfactual wages of
women as if they were paid like men, to compare these with their realized wages. One
may say that in the parametric approach one could do something similar but with the
simpler linear model. However, apart from the fact that this can be a poor predictor,
its parameters are the result of least square projections inside one population. That
means, the coefficients of the linear approximation of men’s wages are not made for
predicting the counterfactual wages of women. Consequently, they are inappropriate,
except if the characteristics of women and their jobs were the same as for men.
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The data set used is the EPA of 2014 of the National Institute for Statistics (INE)
in Spain, provided at webpage http://www.ine.es. It consists of 64383 observations
for women, and 108134 for men, giving the gross annual wage, which is our response
variable Y . We only consider full-time employees, being aware that already the dis-
tribution of full- and part-time jobs might be discriminatory; that is, our findings are
conditioned on the full-time employed population.We are provided with the following
covariates:

– Years and months of service, which is a quantitative variable that indicates the
professional experience of the individual.

– CNAE, which stands for the National Classification of Economics Activities. It
is a qualitative variable that splits the active population into eighteen groups: (B)
Extractive industry (anthracite, oil, coal and lignite extraction), (C)Manufacturing
industry, (D) Electricity and gas supply, (E) Water supply, (F) Construction, (G)
Wholesale and retail trade activities, (H) Transport and storage, (I) Hotel indus-
try, (J) Information and communication, (K) Financial activities and insurances,
(L) Real-estate sector, (M) Professional, scientific and technical activities, (N)
Administrative activities, (O) Public, defense and social security administration,
(P) Education, (Q) Health care system activities, (R) Arts and (S) Other services
(computer repair…)

– Studies, a qualitative ordinal variable that divides the population into: (1) Primary
education, (2) First stage of secondary education, (3) Second stage of it, (4) Voca-
tional training (FP), (5) Bachelor’s degree, (6) Masters degree and/or Ph.D. (7) No
studies

Consider the two different populations; men (source) and women (target). We have
one (pseudo-)continuous covariate (Years and months of service, denoted as X0 in
the source with density f 0, X1 in the target with density f 1). The other variables are
categorical and denoted as Z0 and Z1, respectively.We observe the men’s Y 0 such that
we can estimate their m(·). Under the hypothesis of no wage discrimination, women
are paid by the same wage function, such that m(·) can be used to predict their wages
Y 1. Therefore, we are not interested in the optimal bandwidth for predicting men’s
mean wage function, but for predicting women’s counterfactual wages, i.e., we need
h1.

In order to account for the categorical variables CNAE and education nonparamet-
rically, and because we want to explore the heterogeneity of the wage gap over these
variables, we split the sample into the eighteen times seven subsamples. However,
those with no studies were tiny; and it is not always clear what ‘no studies’ actually
means. Therefore, these were not further considered. One may ask if this is necessary
or whether educational levels may have similar distributions for men and women once
we fixed the sector. Figure 5shows the differences in distribution of Studies between
men and women for the examples of sectors F and R. Indeed, in some sectors like R
the distributions looks somewhat more similar; but in most sectors they clearly do not.
Therefore, we keep all information and split along sector and education. Notice that
such split is equivalent to a nonparametric estimation with the full sample, and setting
the smoothing parameter for these two variables to zero.
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Fig. 5 Distribution of Studies in sectorF (upper) andR (lower) formen (left) andwomen (right), respectively

We are left now in each subsample with wage and professional experience. For
the overall average wage gap, one can still integrate over Z . Expressing all this in
formulas looks as follows: Say Z is the categorical variablewith r modes,

(
X0, Z0, Y 0

)

is observed in the source population,
(
X1, Z1

)
in the target population. We want

E[Y 1|x, z] = m(x, z) for all observed (X1
i , Z1

i ) with m(x, z) := E[Y 0|x, z] being
estimated from the source population. Then, one predicts the average counterfactual
wage of women by

θ̂ = ̂
E
[
Y 1
] = 1

n1

n1∑

j=1

m̃h

(
X1

j , Z1
j

)
.

Denote mz(x) = E
[

Y 0
∣∣ X0 = x, Z0 = z

]
. In other words, mz is obtained from the

regression of Y 0
∣∣ Z0 = z on X0

∣∣ Z0 = z. Define for indicator function I{·}

n0,z =
n0∑

i=1

I{Z0
i =z

} = #
{
i ∈ {1, . . . , n0} |Z0

i = z
}
,

n1,z =
n1∑

j=1

I{
Z1

j =z
} = #

{
j ∈ {1, . . . , n1} |Z1

j = z
}

,
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m̃h(x, z) = m̂z,h(x) =
1

n0,z

∑n0
i=1 Kh

(
x − X0

i

)
Y 0

i I{Z0
i =z

}

1

n0,z

n0∑

i=1
Kh
(
x − X0

i

)
I{Z0

i =z
}

, and

θ̂z = 1

n1,z

∑n1

j=1
m̃h(X1

j , Z1
j )I
{

Z1
j = z

}
= 1

n1,z

n1∑

j=1

∑n0
i=1 Kh

(
X1

j − X0
i

)
Y 0

i I{
Z0

i =Z1
j

}

∑n0
i=1 Kh

(
X1

j − X0
i

)
I{

Z0
i =Z1

j

}
I{

Z1
j =z

}

being the average counterfactual wage ofwomen given z, i.e., for a specific educational
level in a given sector. The estimator of θ̂ is a weighted average of the θ̂z

θ̂ = 1

n1

n1∑

j=1

m̃h

(
X1

j , Z1
j

)
= 1

n1

∑

z∈I

n1∑

j=1

m̃h

(
X1

j , Z1
j

)
I{

Z1
j =z

}

= 1

n1

∑

z∈I

n1,z · 1

n1,z

n1∑

j=1

m̃h

(
X1

j , Z1
j

)
I{

Z1
j =z

} =
∑

z∈I

n1,z

n1
θ̂z . (32)

Certainly, it is up to the practitioner which of the r dimensions of Z (s)he wants to
integrate out and which to keep. In our case study, we looked at all combinations
but present here only the results of all θ̂z to explore the heterogeneity of the wage
gap over educational level and sectors, see Figs. 6 and 7 . We plotted the absolute
and relative wage gap, calculated as the (absolute and relative) difference between
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Fig. 6 Plot of
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− θ̂z (with ȳ1z being the average of observed wages of women for z) for the 18 sectors

and 6 levels of studies (1: red, 2: blue, 3: green, 4: black, 5: orange, 6: purple). Results obtained from our
method (color figure online)
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from our method (color figure online)

the average realized minus predicted wages per sector and educational level. In the
Supplementary Material and in Barbeito (2020) are given many more details like all
numerical numbers together with n0,z , n1,z and MSE estimates. Note that for each
mode z (i.e., all combinations of sectors and education) one may want to calculate the
optimal hBO OT ,z . So we did, and the values are given in Table 6 in the Supplementary

Material. We used the Gaussian kernel and gz = hSJn
4/45
0,z . We have compared these

results to those provided by h0, given in expression (27), and a plug-in bandwidth
minimizing the MASE (namely, hPI). The bandwidths obtained were quite different.
For instance, considering sector F (Construction) and level of studies 3, h0 = 2.01,
h1 = 0.17, hPI = 5.26. Considering sector P (Education) and level of studies 5,
h0 = 2.96, h1 = 8.05, hPI = 3.62. Not surprisingly, they suggest for those sectors
accordingly different wage gaps compared to our method. Recalling the findings of
the simulation study, we then trust more in the results provided by our method.

From Figs. 6 and 7, we see that for most of the educational levels and sectors, the
observed salaries of women are between 10 and 30% lower than the wage equation
obtained from men’s salaries would predict. This calculus does not account for poten-
tial discrimination by gender regarding equal opportunities, for instance, whether it is
harder for women to get into better paying sectors. The same holds for equal oppor-
tunities in education and professional experience, e.g., due to maternal leaves. That
is, we only study the monetary discrimination in a given sector, once a certain educa-
tional level and professional experience was achieved. Discrimination in opportunities
comes on top, but is harder to measure and often not translated into monetary terms.
This limitation applies in general, and is not particular to our method.
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Finally, a reviewer suggested to compare our results with those one
obtains using the gam command from package mgcv in R calling
Y=Z1+Z2+Z1Z2+s(x,by=Z1Z2), i.e., using continuous variable X and two fac-
tors (Z1,Z2). This was done using the estimated weights f̂ 1

(
X0

i

)
/ f̂ 0

(
X0

i

)
with both

densities being estimated by kernel density estimation with their optimal bandwidths
along Sheather and Jones (1991). This weighting tries to optimize the prediction
similar to the CV modification in Galdo et al. (2008). As can be seen in Fig. 8, this
gives by far a larger variability over sectors and education with little credible results
like ‘positive wage discrimination’ of up to 40% and many cases of negative wage
discrimination between 40 to almost 60%. Strangely, when we rerun this exercise
without weights, these extremes remained but some figures changed. Note also that
for these estimates, especially in the case of using estimated weights, we do not
know how to obtain confidence intervals or standard errors. We guess that some boot-
strap methods could be developed. A check of the manual reveals that the simulated
confidence bands provided in R are not helpful here.

5 Conclusions and discussion

This paper contributes to the existing, large literature on bandwidth selection, by
providing a selector designed for prediction and data-matching problems when the
distribution of the covariates, X , in the target population is potentially different from
the one in the source population. This is a standard problem in counterfactual exercises
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like causal analysis and studies on discrimination, but also quite frequent for the
calculus of scenarios. It offers thereby an interesting alternative to Häggström and
Luna (2014) and Galdo et al. (2008) which seem to be the only existing contributions
in this direction so far. Our method has a closed form, is computationally attractive,
asymptotically well understood and shows a very satisfying behavior in simulations,
even for moderate and small sample sizes.

Along the quite exemplifying problem of studying the gender wage gap in Spain
after the last big economic crises,we do not onlymotivate ourmethod but also illustrate
its usefulness and application for such a highly relevant issue. Moreover, we show a
first extension toward its use in a multivariate context. We succeed to carve out the
heterogeneity and depth of this wage gap over different sectors and education levels.
This application study is completed with some comparisons using alternative selectors
or estimation methods.

There are certainly several interesting extensions thinkable, most of them having
already been mentioned at some point in this paper. First note that the proposed
selection procedure could be interesting for more general model selection problems in
the context of prediction and data matching, not only for finding the bandwidth. Recall
that modified cross-validation is frequently used for all kind of features selection, in
classical kernel regression as well as in various recent machine learning procedures.

A second extension would be to explicitly account for potential boundary effects.
Certainly, if the support of f 0 covers the support of f 1 such that all observations xi

made in the target sample are interior points of f 0 or if the conditional expectation is
relatively flat at the boundaries, such correction is not needed. Also, unless many xi

of the target sample suffer strongly from boundary effects, the selector itself should
hardly be affected as it just searches the minimum of the MASE which in turn is
calculated from a comparison of two estimates that would both suffer from the same
boundary effects. However, especially for the final estimate, an obvious remedy would
be to use boundary kernels like the local linear (or ‘equivalent’) one of Jones (1993).
For our selector, we had then to replace assumption (B1) by (B1’) K is a second order
kernel, a density for interior points, else a left, respectively, right boundary kernel. A
careful check of the proof suggests that this would not change our results but make our
presentation and implementation somewhat more cumbersome. For our application,
we realized that it had hardly any impact for the above mentioned reasons ( f 0 spans
typically over f 1, etc.).

A third extension has already been studied in the thesis of Barbeito (2020), namely
the one toward local linear estimators (Fan and Gijbels 1992). While the empirical
results turned out to be alike to the simulation results for the Nadaraya–Watson, the
expressions for the bootstrap version of theMASEbecomeextremely complex, leading
to a quite important loss of efficiency in the computation of the bandwidth selector.

A fourth extension would be allow for various continuous covariate simultaneously.
In practice one could follow then the suggestion of Köhler et al. (2014) and use a
multivariate kernel with a bandwidth matrix proportional to �

−1/2
X with �X being the

variance–covariance matrix of X in the source group, times a constant to be chosen
along our criterion. This approach, however, needs some deeper examinations.
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A fifth extension would be to use our selector if one wants to reveal the distribution
of the unobserved Y for the target group similar to Dai et al. (2016). This is not
only interesting for analyzing poverty and vulnerability; we noticed that also in our
discrimination study, in some sectors the residual variance was still pretty large. For
those sectors, one would like to compare real with counterfactual distributions, not
just the mean.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s11749-022-00838-7.
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Appendix

A Asymptotics for the selection of prior bandwidth g

Because of the tedious computations required to find an analytical expression for
the expectations involved in expression (25), especially for E

(
ξ2
)
, we present some

asymptotic upper bounds for Âg − A and B̂g − B. We analyze the closeness of Âg to A,
and B̂g to B. Proofs of Lemmas 3 and 4 are deferred to the Supplementary Material.

Definition 2 In order to analyze the MSE of Âg and B̂g , consider the following
expression:

C [s]
ν,�,r :=

∫
ν(x)

(
�̂

(r)
s,�(x) − �

(r)
s,�(x)

)
dx, (33)

where ν(x) is a function ν : R → R, � ∈ Z
+, r ∈ Z

+, s ∈ {0, 1}, �̂
(r)
s,�(x) =

1

ns gr+1

ns∑

i=1
K (r)

(
x − Xs

i

g

)
Y s�

i and �
(r)
s,�(x) := ∂r (m�(x) f s(x))

∂xr
.

We can state a lemma concerning an approximation for Âg − A.
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Lemma 3 Consider the expressions for Âg and A. Then,

Âg − A =
k0∑

i=1

ai C
[si ]
νi ,�i ,ri

+ A1, (34)

where k0 = 6, a1 = 1, a2 = −1, a3 = 1, a4 = −1, a5 = −2, a6 = −2, ν1(x) =
σ 2(x)

f 0(x)
, ν2(x) = σ 2(x) f 1(x)

f 0(x)2
, ν3(x) = f 1(x)

f 0(x)2
, ν4(x) = f 1(x)�2(x)

f 0(x)3
, ν5(x) =

f 1(x)�1(x)

f 0(x)3
, ν6(x) = f 1(x)�2

1 (x)

f 0(x)4
, �1 = 0, �2 = 0, �3 = 2, �4 = 0, �5 = 1, �6 = 0,

r1 = 0, r2 = 0, r3 = 0, r4 = 0, r5 = 0, r6 = 0, [s1] = 1, [s2] = 0, [s3] = 0, [s4] = 0,
[s5] = 0, [s6] = 0 and A1 = O (r0,n0

)
, with

r0,n0 =
∫ (

f̂ 0g (x) − f 0(x)
)2

dx +
∫ (

f̂ 0g (x) − f 0(x)
)

·
(
�̂2,g(x) − �2(x)

)
dx

+
∫ (

f̂ 0g (x) − f 0(x)
)

·
(
σ̂ 2

g (x) f̂ 1g (x) − σ 2(x) f 1(x)
)

dx

+
∫ (

f̂ 0g (x)2 − f 0(x)2
)

·
(
�̂2

1,g(x) − �2
1 (x)

)
dx +

∫ (
�̂1,g(x) − �1(x)

)2
dx

+
∫ (

σ̂ 2
g (x) − σ 2(x)

)
·
(

f̂ 1g (x) − f 1(x)
)

dx +
∫ (

f̂ 0g (x)2 − f 0(x)2
)2

dx .

Similarly, we can state a result for the difference B̂g − B.

Lemma 4 Given the expressions for B̂g and B, then B̂g − B consists of a sum of 60
terms similar to those in expression (34). Specifically,

B̂g − B =
k1∑

i=7

ai C
[si ]
νi ,�i ,ri

+ B1, (35)

where k1 = 66. The functions ν(x) and the values of r , �, a and [s] are collected in
Tables 1–4 in the Supplementary Material. Additionally, term B1 is of order O (r1,n0

)

with r1,n0 being also given in the Supplementary Material.

As an immediate consequence of the Tchebycheff inequality, we can conclude:

Corollary 3 An upper bound for expressions Âg − A and B̂g − B, under regularity

conditions (B1)–(B4) and considering a g of order n−1/2
0 , is given by:

Âg − A = OP

(
n−1/2
0

)
, and B̂g − B = OP

(
n−1/2
0

)
. (36)
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