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“No es una poesía gota a gota pensada.

No es un bello producto. No es un fruto perfecto.”

Gabriel Celaya, “Cantos íberos”, 1955.
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Abstract

Financial institutions are interested in knowing the probability that their clients

declare themselves unable to pay the debts incurred by granting a credit. The aim

of this work is to propose models to estimate this probability, called probability of

default (PD), using the information provided by the credit scoring.

The PD conditional on the credit scoring can be written as a transformation of

the conditional survival function of the variable “time to default”. This property

is used to propose new PD estimators, based on nonparametric estimators of the

survival function. The time to default faces a right-censoring problem, since in

the study of a set of loans, it is not possible to observe default for all of them.

Consequently, censored data techniques and survival analysis are used. Given the

possible existence of individuals not susceptible to default, mixture cure models are

also discussed in this work.

The asymptotic expression for the mean squared error and the asymptotic nor-

mality of the proposed estimators are obtained. Automatic bootstrap selectors are

proposed for the smoothing parameters on which the estimators depend. The per-

formance of the proposed techniques is analysed and compared with existing semi-

parametric approaches through simulation studies and illustrated by analysing bank

loan data.





Resumen

A las entidades financieras les interesa conocer la probabilidad de que sus clientes

se declaren incapaces de hacer frente a las deudas contraídas con la concesión de

un crédito. El objetivo de este trabajo es proponer modelos para estimar esta

probabilidad, denominada probabilidad de mora (PD), utilizando la información

proporcionada por la puntuación crediticia.

La PD condicionada a la puntuación crediticia puede escribirse como una trans-

formación de la función de supervivencia condicional de la variable “tiempo hasta

la mora”. Esta propiedad se utiliza para proponer nuevos estimadores de la PD,

basados en estimadores no paramétricos de la función de supervivencia. El tiempo

hasta el impago se enfrenta a un problema de censura por la derecha, pues en el

estudio de un conjunto de créditos, no es posible observar la mora para todos ellos.

Consecuentemente, se utilizan técnicas de datos censurados y análisis de superviven-

cia. Ante la posible existencia de individuos no susceptibles a la mora, los modelos

de curación de tipo mixtura también se discuten en este trabajo.

Se obtiene la expresión asintótica para el error cuadrático medio y la normali-

dad asintótica de los estimadores propuestos. Se proponen selectores automáticos

bootstrap para los parámetros de suavizado de los que dependen los estimadores.

El comportamiento de las técnicas propuestas se analiza y se compara con enfoques

semiparamétricos existentes mediante estudios de simulación y se ilustra mediante

el análisis de datos de préstamos bancarios.





Resumo

Ás entidades financeiras interesalles coñecer a probabilidade de que os seus clientes

declárense incapaces de facer fronte ás débedas contraídas coa concesión dun crédito.

O obxectivo deste traballo é propoñer modelos para estimar esta probabilidade,

denominada probabilidade de morosidade (PD), utilizando a información propor-

cionada pola puntuación crediticia.

A PD condicionada á puntuación crediticia pode escribirse como unha transfor-

mación da función de supervivencia condicional da variable “tempo ata a morosi-

dade”. Esta propiedade utilízase para propoñer novos estimadores da PD, baseados

en estimadores non paramétricos da función de supervivencia. O tempo ata a falta

de pagamento enfróntase a un problema de censura pola dereita, pois no estudo

dun conxunto de créditos, non é posible observar a falta de pagamento para todos

eles. Consecuentemente, utilízanse técnicas de datos censurados e análise de super-

vivencia. Ante a posible existencia de individuos non susceptibles á morosidade, os

modelos de curación de tipo mestura tamén se discuten neste traballo.

Obtense a expresión asintótica para o erro cuadrático medio e a normalidade

asintótica dos estimadores propostos. Propóñense selectores automáticos bootstrap

para os parámetros de suavizado dos que dependen os estimadores. O comporta-

mento das técnicas propostas analízase e compárase con enfoques semiparamétricos

existentes mediante estudos de simulación e ilústrase mediante a análise de datos de

préstamos bancarios.
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Introduction

Credit risk is the possibility of economic loss arising from the default on obligations

assumed by the counterparties of a contract due to insolvency or inability to pay.

The concept is associated with financial institutions and banks, but may be extended

to companies, financial markets and organisations in other sectors. The granting of

credits, both individual and corporate, is one of the main activities of banks and

financial institutions, so there is a clear interest in preventing financial loss as a

consequence of the debtor defaulting on debt and interest payments. Therefore,

banks often require certain guarantees or impose additional clauses depending on

the client’s risk profile. For example, they may charge higher interest rates to riskier

customers or impose a debt limit on companies to which they have granted a credit.

The financial crisis that began to surface in 2007 and then spread to the world

economy as a whole is a clear example of the fundamental role played by risk man-

agement in the financial sector. The so-called subprime or junk mortgages that had

been granted in the United States in the preceding years were the initial focal point

of the crisis. These loans were granted mainly for the purchase of housing, with high

bank fees. They were granted to people with insufficient solvency and, therefore,

with a higher level of risk of default than the average for other loans. Debtors ac-

cepted the conditions hoping that house prices would continue to increase and that

they would be able to refinance the initial mortgage on better terms. When interest

rates began to rise and, as a consequence, house prices began to go down, subprime

defaults began to spread and many institutions did not have enough reserves to cope

with a liquidity crisis.
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This mortgage crisis resulted in a number of financial collapses, bank nation-

alisations, interventions by the central banks of the main developed economies, a

fall in stock market prices and a worldwide economic downturn. It is considered to

have triggered the Great Recession internationally, including the Spanish property

bubble.

The reasons why financial institutions would have offered and granted these sub-

prime mortgages are complex, but root of this crisis, and similar crises throughout

history, lies in inadequate regulation and imperfect supervision. Avoiding recessions

of this type therefore requires accurate risk measurement and adequate supervision

as the starting point.

The Basel Committee on Banking Supervision is a benchmark in this field, as it

has been responsible for the prudential regulation of banks and their solvency world-

wide since the 1980s (Basel Committee on Banking Supervision (1999, 2001b,a, 2004,

2005b,a)). The committee was established in 1975 by the central bank presidents of

the eleven member countries of the Group of Ten (G10) at that time. It is currently

formed by the G10 countries together with Luxembourg and Spain. The recommen-

dations on banking regulation issued by this committee from its birth to date are

collected in the so-called Basel Accords: Basel I, Basel II and Basel III.

The constant internationalisation of banking, the globalisation of the financial

markets of the most advanced countries and the lack of financial regulation led banks

from different countries to compete with each other under different operating rules

and often insufficient solvency levels, increasingly endangering financial stability.

In view of this situation, in 1988 in Basel, Switzerland, the first Basel Committee

agreement is created. Basel I demands a minimum level of capital from banks

depending on the risks they face. The accord establishes the concept of “regulatory

capital” as the minimum amount of own funds that a financial institution must

have to cover credit, market and exchange rate risks in order to cope with losses

arising from potential defaults, without collapsing. This agreement was created as

a recommendation and the signatory countries were free to implement it. However,

it came into force in more than 100 countries.
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In order to determine how much liquidity is needed to cover potential losses, a

good assessment of the risk faced by the banking system is necessary. Financial

institutions are subject to different types of risk depending on their economic ac-

tivity (Pyle (1997); Bessis (2002); Saunders and Cornett (2008)); some of them are

credit risk, market risk, operational risk, interest rate risk, liquidity risk, foreign

exchange risk and sovereign risk, with credit risk being one of the most relevant. As

long as Basel I was in force, regulatory capital was calculated on the basis of risk

weights provided by the relevant central banks. Specifically, the accord required

own funds to be greater than 8% of risk assets, covering credit risk, trading risk

and foreign exchange risk. The limitation of this agreement was therefore to assume

that all credits have the same probability of default, ignoring the credit quality of

the different borrowers.

Throughout the years, different risk measurement and management techniques

have been used and have progressed towards more sophisticated statistical-financial

approaches. Furthermore, technological advances have allowed credit risk to be

calculated in ever more precise ways. An example of this is the second Basel accord,

Basel II, which is proposed in 2004 with the purpose of establishing a more refined

credit risk-sensitive regulatory capital concept than Basel I. This arrangement makes

the use of new techniques indispensable in various aspects: from the estimation of

a client’s solvency in the granting of credit up to the use of complex statistical

models for the calculation of the risk associated with investments. Several historical

precedents (Girón (1998); Bank for International Settlements (2009); Cecchetti et al.

(2009)) have proved, however, that the industry has not always made a good use of

statistical models. This is the reason why the new Basel Accord also addresses the

process of supervision and transparency.

Although Basel I and Basel II focus in one way or another on the capital that

banks must hold to avoid failure in the event of significant losses, they do not consider

the possibility of a “bank run”. A bank run occurs when large groups of depositors

simultaneously withdraw their money from banks based on fears that the institution

will become insolvent and their deposits or savings will not be covered by the bank’s
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capital. The Basel III reform, introduced in 2010 and triggered by the 2007 financial

crisis, recognises the problem of bank panic and requires different levels of capital

for different types of bank deposits and other loans. Basel III does not replace the

guidelines established in Basel I and Basel II, but complements them.

Basel II implements different mechanisms to measure the quality of borrowers

and allows banks to use internal metrics to evaluate their risk. The Basel II frame-

work operates under three pillars:

Pillar 1: Capital adequacy requirements

This pillar sets out how credit risk is measured and how regulatory capital is

calculated.

Pillar 2: Supervisory review

National supervisory institutions must validate the methods used to estimate

the parameters required under Pillar 1, as well as the sufficiency of own funds lev-

els to cope with an economic crisis. These supervisory authorities, typically the

corresponding central banks, have the competence to increase the level of prudence

required of the banks under their jurisdiction.

Pillar 3: Market discipline

The agreement establishes transparency rules, demanding the regular publication

of information about their exposure to different risks and the adequacy of their own

funds.

The so-called Pillar 1 is the core of the accord and, so far, is the main way in

which financial institutions manage credit risk. Regulatory capital under Pillar 1 of

Basel II must exceed 8% of assets at risk, taking into account credit, market, foreign

exchange and operational risks. Credit risk is defined as the expected losses due to

counterparty default in a transaction and these depend on a number of variables,

known as risk factors. However, the expected loss (EL) can be considered to depend

essentially on whether the counterparty defaults or not, the amount at risk at the
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time of default and the recovery that can be obtained in the event of default. The

Pillar 1 credit risk loss model is therefore a multiplicative relationship between these

three basic factors: probability of default (PD), exposure at default (EAD) and loss

given default (LGD). This relationship can be expressed by the following equation:

EL = PD × EAD × LGD

The parameters involved in this formula are further described in the following para-

graphs.

The probability of default (PD) is the probability that a customer, after a certain

period of time from the formalisation of his contract with the bank, will declare

himself unable to pay the credit he enjoys. In practice, a contract is considered to

be in default if it is more than 90 days overdue. This probability depends on the

credit score, a rating that the bank assigns to customers or prospective customers

with the intention of assessing their ability to pay the potential debt they may

acquire with the bank through a loan. Credit scoring is therefore a way to quantify

the creditworthiness of the client.

The portion of the debt that is exposed to the risk of loss when the default occurs

is called exposure at default (EAD). This is the maximum loss that can be incurred

and is a priori unknown at the time of default. For example, the exposure of a

derivative will depend on the value of several market factors; the EAD of a credit

card will depend on the extent of the clients’s drawdown at the time of default.

The proportion of the debt that the institution eventually expects to lose once the

borrower defaults on its contractual obligations, i.e. the percentage of EAD that is

not expected to be recoverable, is the lost given default (LGD).

Estimation of the probability of default for each client is a key element in this

credit risk model and is, indeed, the subject of this study.

Widely used default probability estimation techniques include logistic regression,

discriminant analysis and Cox proportional hazards models, among others. A simple

approach adopted by many banks is using external rating agencies to estimate PDs

based on historical default experience. Logistic regression based on a historical series
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of defaults is the technique commonly used for small companies. In retail defaults,

credit scoring is often used as a euphemism for the probability of default, which is

the true objective of the lender.

In 1992, Naraim published his work “Survival analysis and the credit granting

decision”. There, he advocated the use of survival analysis in the context of credit

risk. Specifically, he argued for the possibility of analysing all credit transactions

involving predictor variables in which time to the occurrence of an event is the

variable of interest by means of survival analysis.

In our context, the variable of interest to which Naraim refers is the time to

default. This variable is not fully observable, since at the end of the study period

some (or many) customers will not have defaulted, or some customers might be lost

to follow up for various reasons in the course of the study period. The credit scoring

plays the role of the predictor variable. The existing analogy pointed out by Naraim

(see Naraim (1992)), between the “time to default” and the “time to the event of

interest”, which is common in biometric models, is obvious. In this analogy lies the

motivation for applying survival analysis techniques to credit risk problems.

The approach of Naraim (1992) was further explored by Banasik et al. (1999)

and abundant literature has since been developed using survival analysis in credit

risk. To name a few papers, survival analysis makes it possible to obtain confidence

intervals for the probability of default in Hanson and Schuermann (2004); the time

to default distribution function is estimated using a hazard model in Glennon and

Nigro (2005) and the Kaplan-Meier estimator is used to estimate the time to default

survival function in Allen and Rose (2006).

In Naraim (1992), the proposal is a Cox proportional hazard model to estimate

the conditional survival function S(t|x). Cao et al. (2009) start from this and,

writing the probability of default in terms of conditional survival function, they

get an estimator of the PD. A second alternative given in Cao et al. (2009) is

to assume a generalized linear model for the lifetime distribution under censoring.

These approaches use parametric or semiparametric models for the time to default
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as a function of the credit scoring and the credit lifetime. The use of nonparametric

curve estimation for this purpose is however convenient. These are flexible methods

that use only the information that the data provide without making assumptions

about the shape of the curve. This is already the approach used in the third model in

Cao et al. (2009) who proposed to estimate the probability of default using Beran’s

estimator for the conditional survival function.

Following this research line, in this thesis we propose nonparametric survival

models that allow estimating the probability of default or PD conditionally on the

credit scoring for personal credits. We work with credits requested by individuals

(Basel Committee on Banking Supervision (2001b)) such as personal credits, con-

sumer loans, credit cards or mortgage loans. The latter are not specifically dealt

with in this thesis, but the results obtained here could be extended to mortgage

loans following the ideas of Beran and Djaïdja (2007).

The event of interest to be observed is the fall into default, which is partially

determined by the covariate X, denoting the credit scoring. To estimate the PD,

banks and financial institutions typically use features of the credit and the clients.

They usually build some linear combination (credit scoring) based on these infor-

mative variables and the probability of default, PD(t|x), is allowed to depend on

this scoring x. A common aproach in credit scoring is using logistic regression to

build the index. The logistic model for credit scoring has been studied by Wigin-

ton (1980), Srinivasan and Kim (1987), Steenackers and Goovaerts (1989), Thomas

et al. (1992) and Samreen et al. (2013), among others. Therefore, throughout this

study, credit scoring is assumed to be known and one-dimensional.

It is only possible to know the time it takes for a client to default, T , when the

default happens during the credits follow-up time; otherwise, the data is censored

and the observed time is the time to censoring, C. Figure 1 illustrates the censoring

mechanism that can affect the lifetimes of a portfolio of personal loans. Assuming

that the observation time is the interval [0, τ ], at the end of the study, there are

three possible situations:
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(a) The credit is defaulted: The time instant at which the default occurs is within

the interval [0, τ ] and can therefore be observed. In this case, T ≤ C and the

lifetime of the credit is uncensored.

(b) The credit is active and being paid: The credit has not yet defaulted when the

observation period ends. The default, if it occurs, cannot be observed. In this

case, T > C and the lifetime of the credit is right-censored.

(c) The credit is not being followed up: The credit has either been paid off or

cancelled before the end of the study. In either case, no default is observed.

Then, T > C and the lifetime of the credit is considered to be a right-censored

data.

Figure 1: Mechanism for censoring the life of a credit when the follow-up period is [0, τ ].

In this scenario, the available information is a simple random sample of the triplet

(X, Z, δ), where X is the credit scoring, Z = min{T, C} is the observed maturity, T

is the time to default, C is the time until the end of the study or the time until the

anticipated cancellation of the credit and δ = I(T ≤ C) is the uncensoring indicator.

The distribution function of T is denoted by F (t) and its survival function by S(t).
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Let M(x) and m(x) be the distribution and density functions of the covariate X.

It is assumed that an unknown relationship between T and X exists. Let x be a

fixed value of the covariate X (typically, the scoring) and b a horizon time (typically,

b = 12 in months), then the probability of default in a time horizon t + b from a

maturity time t is defined as follows

PD(t|x) = P (T ≤ t + b|T > t, X = x)

= P (T ≤ t + b, T > t|X = x)
P (T > t|X = x) = P (t < T ≤ t + b|X = x)

1 − P (T ≤ t|X = x)

= F (t + b|x) − F (t|x)
1 − F (t|x) = 1 − F (t|x) − (1 − F (t + b|x))

1 − F (t|x)

= 1 − S(t + b|x)
S(t|x) .

(1)

It is worth mentioning that the function defined in (1) is a relevant measure in

other fields appart from the financial one. This curve is important in many other

contexts where survival analysis can be used to quantify the probability that the

event of interest occurs not much later than t, given that it didn’t happen before t.

For example, companies that provide energy services, streaming services, telephone

or internet are interested in estimating the probability that a customer who receives

their services at time t will leave the company before time t + b.

This thesis addresses the problem of estimating the probability of default under

the conditions presented above.

Chapter 1 is devoted to introduce the reader some methodological tools that are

needed: survival analysis, nonparametric curve estimation and bandwidth selection

based on bootstrap.

In Chapter 2, four nonparametric estimators of the probability of default in

credit risk are proposed and compared. They are derived from estimators of the

conditional survival function for censored data. Asymptotic expressions for the

bias and the variance of these probability of default estimators are derived from

similar properties for the conditional survival function estimators. A simulation

study shows the performance of these four estimators. Finally, an empirical study,
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based on modified real data, illustrates their practical behaviour.

In Chapter 3, a conditional survival function estimator for censored data is stud-

ied. It is based on a double smoothing technique: both the covariate and the time

variable are smoothed. Asymptotic expressions for the bias and the variance and

the asymptotic normality of the smoothed survival estimator derived from Beran’s

estimator are found. A simulation study shows the performance of the smoothed

Beran’s estimator of the conditional survival function and compares it with the

smoothed one only in the covariate. The influence of the smoothing parameters

involved in both estimators is also studied.

In Chapter 4, resampling methods are used to solve two problems related to the

Beran’s estimator and the double smoothed Beran’s estimator of the conditional

survival function for censored data. The bootstrap is used for the automatic choice

of the necessary smoothing parameter in the computation of Beran’s estimator and

the two smoothing parameters used in the smoothed Beran’s estimator. Bootstrap

algorithms for the calculation of confidence regions of the conditional survival func-

tion for censored data are proposed. Extensive simulation studies show the good

behavior of the proposed bootstrap algorithms. Finally, the proposed techniques are

used to estimate the survival function of the time that COVID-19 patients remain

hospitalized in ward or in the Intensive Care Unit.

A doubly smoothed estimator of the probability of default is proposed and stud-

ied in Chapter 5. It is derived from the doubly smoothed estimator of the conditional

survival function proposed in Chapter 3. Asymptotic expressions for the bias and the

variance of the probability of default estimator are found and asymptotic normality

is proved. A simulation study shows the performance of the proposed estimator

and compares its behaviour with smoothed estimators only in the covariate. An

empirical study, based on modified real data, illustrates its practical application.

In Chapter 6, a practical way to choose the smoothing parameters involved in

the probability of default estimators is proposed. Resampling methods based on

bootstrap techniques are proposed to approximate the bandwidths which Beran’s
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and the smoothed Beran’s estimators of the PD depend on. Bootstrap algorithms for

the calculation of confidence regions of the probability of default are also proposed.

Extensive simulation studies show the good behaviour of presented algorithms. The

bandwidth selector and the confidence region algorithm are applied to the German

credit data set to analyse the probability of default conditional on the credit scoring.

An estimator for the probability of default that considers the existence of a cured

individuals group is proposed in Chapter 7. It is derived from a nonparametric

conditional survival function estimator based on mixture cure models. Asymptotic

expressions for the bias and the variance, as well as the asymptotic normality of

the proposed estimator are presented. A simulation study shows the performance

of the nonparamtric estimator compared with Beran’s and the smoothed Beran’s

PD estimator and other semiparametric methods. Finally, an empirical study of the

German credit data set illustrates the practical behaviour.

Some concluding remarks and comments regarding future lines of research are

given in Chapter 8.

The main chapters that compose this work have been published in international

scientific journals or are currently under review, so the reader may wish to explore

them independently. To implement the methods proposed in this thesis several R

packages have been developed by ourselves. Although they have not been uploaded

to the CRAN yet, our plan is to do it in the very near future.

33





Chapter 1

State of Art

1.1 Survival analysis

Survival analysis is a collection of statistical procedures to describe and study data

when the variable of interest is the time until an event occurs. The impossibility of

observing the event of interest in all subjects is inherent in these techniques. Reasons

such as the study ending or subjects leaving the study before experiencing the event

of interest make a proportion of survival times of interest unknown. Censoring is

therefore a distinguishing feature of survival analysis.

The term failure is used to specify the occurrence of the event of interest and the

lifetime refers the length of the time from the beginning of the study until the occur-

rence of the event. In the classical biomedical applications, lifetime may represent

the survival time of a living organism or the time until a disease is cured. Never-

theless, these techniques can be applied to data from different areas, for example,

times to default in a financial context.

Individuals in the study may be subject to different types of censoring. We

highlight the following:

Right censoring occurs when the study ends before all individuals has experi-
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enced the event of interest. The lifetime is considered to be left censored if the

failure happens some time before the follow-up period, i.e., the event of interest

has already ocurred for the individual before the observed time. An individual is

interval censored if the event is known to occur at a certain specified time interval,

but the exact time of occurrence is unknown.

Depending on the way in which the duration of the experiment is limited in order

to obtain the data, the most frequent censoring types are the following:

Type I censoring: The study has a duration, C, established a priori. The survival

time of an individual will be observed if it is less than or equal to that pre-set value.

Otherwise, the corresponding observation will have a censored value C.

Type II censoring: The trial ends at the time of the k-th failure. That instant

will be the observed time of all individuals who have not yet failed at that time.

Random censoring: The censoring variable is assumed to be independent of the

variable of interest. Times corresponding to individuals who have not yet experi-

enced the event of interest at the end of the study or who have experienced other

circumstances independent of the event that caused them to drop out of the study

are considered censored.

Let us denote the time to occurrence of the event by T and denote the censoring

time by C. In the precense of random right censoring, it is only possible to observe

the pair (Z, δ) where Z = min{T, C} is the observed time and δ = I(T ≤ C) is the

uncensoring indicator. The distribution function of T is denoted by F (t) = P (T ≤ t)

and its survival function is S(t) = P (T > t) = 1 − F (t). The ditribution function

of C is denoted by G(t) = P (C ≤ t). The distribution function of the observed

time Z is denoted by H(t) = P (Z ≤ t). Under the assumption that T and C are

independent, it is easily proved that 1 − H(t) =
(
1 − F (t)

)(
1 − G(t)

)
.

Estimating and comparing conditional survival functions of different groups and

assesing the relationship between covariates and times until the event are the main

purposes of survival analysis. Parametric models are often assumed for lifetimes
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in survival analysis. Distributions such as exponential, Weibull or log-normal have

been playing an important role in modelling failure times. Cox (1972) revolutionised

survival analysis through his semiparametric regression model for the hazard func-

tion (proportional hazards model or Cox Model), which depends arbitrarily on time

and parametrically on covariates. Another method for semiparametric survival esti-

mation is the accelerated failure time models proposed by Kalbfleisch and Prentice

(1980) and location-scale models proposed by Lawless (1982). Nonparametric meth-

ods to estimate the cumulative survival function from lifetime data are detailed in

next section.

1.2 Nonparametric curve estimation

Nonparametric curve estimation has been one of the most active fields of statistics

in recent decades. A proof of this is the long list of studies and papers on this

topic. Nonparametric methods require few assumptions regarding the underlying

distribution of the data (Hollander et al. (1999)).

In statistical inference it is often necessary to know some of the curves that char-

acterise the distribution of the population under study. These curves are not usually

known in practice and a useful approach to approximate them is to assume some

parametric or semiparametric model. However, there are examples where paramet-

ric models are not found to properly describe the data generation process. In these

cases, it is of interest to estimate such curves in a flexible way, assuming, at most,

continuity and differentiability conditions for the underlying curve. Nonparamet-

ric estimators let the data “speak for themselves” and relative mild assumptions,

relative simplicity and relative insensitive to outlying observations are some of the

advantages that nonparametric methods enjoy. One of the curves that we will be

interested in estimating throughout this thesis is the conditional survival function.

In an uncensored context, counting the proportion of subjects alive at time t

from a random sample {Ti}n
i=1 gives the empirical survival estimation (Andersen
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et al. (1993)) at that time:

Sn(t) = 1
n

n∑
i=1

I(Ti > t). (1.1)

In Kaplan and Meier (1958), this survival estimator in (1.1) is extended to an

incomplete data scenario. Let C be the censoring variable and {(Zi, δi)} be a random

right censoring sample satisfying Zi = Ti when δi = 1 and Zi = Ci when δi = 0,

for all i = 1, . . . , n. Then, the nonparametric maximum likelihood estimator of the

survival function estimator for censored data is given by

Ŝ(t) =
∏

T(i)≤t

(
1 −

δ(i)

n − i + 1

)
(1.2)

where δ(i) is the concomitant of the ordered sample of T , T(1) < · · · < T(n). The

Kaplan-Meier estimator, also known as the product-limit estimator, is the survival

function estimator mostly used for random right censored data. It is a stair-step

function with jumps at the uncensored observations and weights which depend on

the number of censored observations among them. The Kaplan-Meier estimator

assumes independence between the survival and censoring times. If the assumption

of independence does not hold, the estimator may be biased (see Kaplan and Meier

(1958)).

The generalised Kaplan-Meier estimator to the case where a continuous covariate,

X, is involved was introduced by Beran (1981). Let {(Xi, Zi, δi)} be a random right

censored sample of (X, Z, δ) and denote by S(t|x) the conditional survival function

of the time T . The conditional product-limit estimator of the conditional survival

function is given by

Ŝh(t|x) =
n∏

i=1

(
1 − I(Zi ≤ t, δi = 1)wh,i(x)

1 −∑n
j=1 I(Zj < Zi)wh,j(x)

)
where

wh,i(x) =
K
(
(x − Xi)/h

)
∑n

j=1 K
(
(x − Xj)/h

) , i = 1, . . . , n, (1.3)

are the Nadaraya-Watson weights with K being a kernel function and h > 0 being a

smoothing parameter. This estimator has been deeply studied in the literature (see

Dabrowska (1989), González-Manteiga and Cadarso-Suárez (1994), Van Keilegom

and Veraverbeke (1997)).
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1.3 Bootstrap methodology

A common problem in a nonparametric context is to study a specific characteristic

of the distribution of some statistics, but making no assumptions about its shape.

Therefore, important achievements of nonparametric methods have been made by

introducing resampling techniques such as jackknife or bootstrap. Efron (1979)

introduced the bootstrap method to approximate the sampling distribution of a

statistic, R = R(T, F ), which depends on the population distribution F and the

observed sample T = {Ti}n
i=1. The idea is to approximate the distribution of R

by the resampling distribution of R∗ = R(T∗, F̂ ), where F̂ is an estimator of the

underlying distribution, for example the empirical distribution, and T∗ = {T ∗
i }n

i=1 is

a random sample obtained from F̂ often called resample. Since F̂ can be computed

from the observed data, resamples can be obtained by simulation. Then, the Monte

Carlo method can be used to approximate the resampling distribution of R∗ just

repeating this procedure an appropriate number of times.

Bootstrap methods based on this idea do not make any assumptions about the

data generation process, which is their main advantage. This results in a high com-

putational cost, since, in general, it is necessary to resort to the Monte Carlo method

(see Efron (1979), Hall (1992) and Efron and Tibshirani (1993), among others). In

Efron and Tibshirani (1993) a bootstrap method which provides a straightforward

nonparametric way to estimate the standard error and to construct confidence in-

tervals of a parameter.

Some schemes of bootstrap resampling techniques for independent data are de-

scribed in the following paragraphs.
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Uniform bootstrap

The uniform bootstrap (or naive bootstrap) is a resampling method where the (un-

known) population distribution is replaced by the empirical distribution given by

Fn(t) = 1
n

n∑
i=1

I(Ti ≤ t).

1. For each i = 1, . . . , n, sample T ∗
i from Fn(t), i.e., P ∗(T ∗

i = Tj) = 1
n

, for all

j = 1, . . . , n.

2. Consider the bootstrap resample {T ∗
1 , . . . , T ∗

n}.

Smoothed bootstrap

The smoothed bootstrap is the resampling technique that assumes the distribution

function F (t) to be continuous and incorporates this information into the resampling

method. Since a continuous distribution function has an associated density function,

the smoothed bootstrap is based on resampling from a density function estimator.

An appropriate estimator of the density function proposed by Parzen (1962) and

Rosenblatt (1956) is as follows:

f̂h(t) = 1
nh

n∑
i=1

K

(
t − Ti

h

)

where K is a kernel function and h > 0 is a smoothing parameter, called bandwidth,

which determines the size of the neighbourhood used to compute the estimation.

The smoothed bootstrap method proceeds as follows:

1. From the sample {T1, . . . , Tn}, compute the Parzen-Rosenblatt estimator, f̂h(t)

with smoothing parameter h > 0.

2. For each i = 1, ..., n, sample T ∗
i from the density estimation f̂h(t).

3. Consider the bootstrap resample {T ∗
1 , . . . , T ∗

n}.

40



A cursory analysis of the density estimator leads to the conclusion that Step 2

of the previous algorithm can be replaced by the following:

3. For each i = 1, ..., n, draw Ui ∼ U(0, 1) and Vi with density K and obtain

T ∗
i = T[nUi]+1 + hVi,

where [u] is the integer part of u.

Bootstrap with censored data

In Efron (1981) two equivalent resampling methods, simple bootstrap and obvious

bootstrap, adapted to censored data are proposed. See also the works of Reid (1981)

and Akritas (1986).

The simple bootstrap consists of the following steps:

1. Obtain the two-dimensional empirical distribution function F Z,δ
n from the sam-

ple {(Zi, δi)}n
i=1.

2. For each i = 1, . . . , n, draw (Z∗
i , δ∗

i ) from the empirical distribution function,

that is,

P ∗
(
(Z∗

i , δ∗
i ) = (Zj, δj)

)
= 1

n
,

for all j = 1, . . . , n.

3. Consider the bootstrap resample {(Z∗
i , δ∗

i )}n
i=1.

In order to detail the obvious bootstrap algorithm it is necessary to introduce the

Kaplan-Meier estimator of the distribution function of the survival and censoring

times. According to (1.2), they are given by

F̂ (t) = 1 −
∏

T(i)≤t

(
n − i

n − i + 1

)δ(i)
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and

Ĝ(t) = 1 −
∏

T(i)≤t

(
n − i

n − i + 1

)1−δ(i)

.

Then, the obvious bootstrap consists of the following steps:

1. Obtain the Kaplan-Meier estimation of the distribution functions of the sur-

vival time, F̂ (t), and the censoring time, Ĝ(t).

2. For each i = 1, . . . , n, draw independent bootstrap observations T ∗
i from the

distribution function F̂ and C∗
i from the distribution function Ĝ.

3. For each i = 1, . . . , n, define

Z∗
i = min{T ∗

i , C∗
i }

and

δ∗
i = I(T ∗

i ≤ C∗
i ).

4. Consider the bootstrap resample {(Z∗
i , δ∗

i )}n
i=1.

The obvious bootstrap and the simple bootstrap are equivalent when there are

no ties between censored and uncensored observations (see Efron (1981)). Then, the

distribution of the resample (T ∗, δ∗) is the same for both methods. However, the

obvious bootstrap is computationally more expensive.

Bootstrap with covariates

In Li and Datta (2001) a bootstrap method for nonparametric regression with right

censored data is proposed. The method is used to obtain confidence intervals and

bands for the conditional survival function. They present two equivalent resampling

algorithms for bootstraping the generalised Kaplan-Meier estimator: the simple

weighted bootstrap and the obvious bootstrap. The equivalence of the two methods

is obtained in a straightforward way by applying the arguments in Efron (1981) for

the unconditional setting. These two bootstrap methods are detailed in the following

paragraphs:
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Simple weighted bootstrap with covariates

1. Generate {X∗
1 , . . . , X∗

n} from the empirical distribution of {Xi}n
i=1.

2. For each i = 1, . . . , n, generate the pair (Z∗
i , δ∗

i ) from the weighted empirical

distribution F̂h(u, v|X∗
i ) where

F̂h(u, v|x) =
n∑

i=1
wh,i(x)I(Zi ≤ u, δi ≤ v),

with wh,i(x) defined in (1.3).

3. Consider the bootstrap resample {(X∗
i , Z∗

i , δ∗
i )}n

i=1.

Obvious bootstrap with covariates

1. Generate {X∗
1 , . . . , X∗

n} from the empirical distribution of {Xi}n
i=1.

2. For each i = 1, . . . , n, generate T ∗
i from the Beran’s estimator of the conditional

distribution of T using the sample {(Xi, Zi, δi)}n
i=1 denoted by F̂h(t|X∗

i ) and

C∗
i from the Beran’s estimator of the conditional distribution of C using the

sample {(Xi, Zi, 1 − δi)}n
i=1 denoted by Ĝh(t|X∗

i ).

The estimators F̂h(t|X∗
i ) and Ĝh(t|X∗

i ) are forced to be equal to one from the

last observed lifetime (max{Zi : i = 1, . . . , n}) onwards.

3. For each i = 1, . . . , n, obtain

Z∗
i = min{T ∗

i , C∗
i }, δ∗

i = I
(
T ∗

i ≤ C∗
i

)
.

4. Consider the bootstrap resample {(X∗
i , Z∗

i , δ∗
i )}n

i=1.

1.4 Bandwidth selection in nonparametric curve

estimation

One of the crucial issues in nonparametric estimation, and in particular in kernel

estimation, is the selection of the smoothing parameters. In general, an excessively
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large smoothing parameter will increase the bias of the estimator, but choosing an

excessively small value will increase the variance. The selection of an appropriate

parameter is therefore a matter of finding a balance between bias and variance. For

this purpose, bandwidth selection methods in nonparametric curve estimation often

look for a minimal value of the estimation error that is made when approximating

the curve by the smoothed estimator. The mean squared error (MSE) at a fixed

point (t, x) where the curve is to be estimated or the mean integrated squared error

(MISE) over a time interval for a fixed value of x can be considered measures of the

estimation error and be defined as functions of the bandwidth. Bootstrap techniques

are, naturally, a useful tool in approximating any of these estimation errors (see,

among others, López-Cheda et al. (2017b); Cao (1993); Barbeito and Cao (2019)).

In this thesis, a global criterion for the estimation error is chosen. Therefore,

the considered error function is the mean integrated squared error as a function of

the bandwidth h, MISE(h). Bootstrap bandwidth selection consists of estimating

the function MISE(h) by means of bootstrap resampling and obtaining the band-

width h that minimises its bootstrap version. Given the sample T = {Ti}n
i=1 with

distribution function F , we can consider the random variable

Rh(T, F ) =
∫ (

θ̂h(t) − θ(t)
)2

dt

and the MISE function defined by MISE(h) = E(Rh(T, F )) where θ̂h(t) is some

kernel estimator of a curve of interest θ(t). The distribution of Rh(T, F ) is approx-

imated by the sampling distribution of

R∗
h(T∗, F̂ ) =

∫ (
θ̂∗

h(t) − θ̂(t)
)2

dt

and, consequently, the bootstrap version of the MISE function is as follows

MISE∗(h) = E∗(R∗
h(T∗, F̂ )).

This bootstrap MISE can be approximated by the Monte Carlo method using B

resamples:

MISE∗(h) = E∗(R∗
h(T∗, F̂ )) ≃ 1

B

B∑
j=1

R∗
h(T∗

j , F̂ )
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where T∗
j is the j-th bootstrap resample.

Applying Monte Carlo approximation is computationally expensive, specially if

the function to be minimised is difficult to compute. It is, however, a straightforward

way of obtaining bootstrap resamples, regardless of the data generating process.

1.5 Cure models

Thanks to the medical advances that have taken place in recent decades, the survival

and quality of life of patients with various diseases has improved remarkably. As

a consequence, clinical studies analysing the evolution of these patients suffer from

the fact that a large proportion of patients do not experience the event of interest in

the follow-up period. These scenarios present a proportion of subjects who can be

considered cured or not susceptible to the event of interest. At this point, survival

models that explicitly incorporate the possibility that a subject may never experience

the event of interest arise. These are the so-called cure models.

Cure models were originally proposed to model long-term survival of cancer

patients. However, they can be applied to any survival context where a group of

individuals is assumed not to experience the event of interest, no matter how long

they are followed. For example, a financial context where a proportion of borrowers

will not default during the loan term.

Figure 1.1 shows the differences between the survival functions of a standard

survival analysis model and a model with a proportion of cured subjects. We can

appreciate the nonzero tendency of the survival function under a cure model. This

plateau in the right tail informs about the proportion of nonsusceptible individuals.

There are two main classes of cure models: mixture and nonmixture cure models.

Nonmixture cure models were firstly due to Haybittle (1959, 1965). In Yakovlev and

Tsodikov (1996) a proportional hazards cure model is proposed. A semiparametric

maximum likelihood estimation for nonmixture cure models is presented in Liu and
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Figure 1.1: Standard survival function (left) and survival function with a fraction of cured

population (right).

Shen (2009) using the expectation-maximisation method for interval censored data.

Mixture cure models were proposed by Boag (1949) and they consider the fol-

lowing useful decomposition of the conditional survival function

S(t|x) = 1 − p(x) + p(x)S0(t|x),

where 1 − p(x) is the probability of being cured (nonsusceptible to default) and

S0(t|x) the conditional survival function of the uncured population. The functions

p(x) and S0(t|x) are called the incidence and the latency, respectively. A detailed

review of this model is provided by Maller and Zhou (1996) and Corbière et al.

(2009). There, the incidence is assumed to be a logistic function and the latency is

parametrically estimated. Since the conditional survival function cannot always be

well approximated using parametric or semiparametric methods, R. A. Maller (1992)

proposed a consistent nonparametric estimator of the incidence without handling

covariates. In Laska and Meisner (1992) a nonparametric estimator of the cure

rate that allows discrete covariates is presented. In López-Cheda et al. (2017a)

and López-Cheda et al. (2017b), nonparametric estimators of the incidence and the

latency which also consider the effects of continuous covariates are proposed and

deeply studied.
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Chapter 2

Nonparametric estimation of the

probability of default

2.1 Introduction

Since the work by Naraim (1992), abundant literature has been developed using

survival analysis in credit risk. To name a few papers, in Hanson and Schuer-

mann (2004) survival analysis makes it possible to obtain confidence intervals for

the probability of default; in Glennon and Nigro (2005) the time to default distribu-

tion function is estimated using a hazard model and in Allen and Rose (2006) the

Kaplan-Meier estimator is used to estimate the time to default survival function.

In Naraim (1992), the proposal is a Cox proportional risk model to estimate

the conditional survival function S(t|x). Cao et al. (2009) start from this and,

writing the probability of default in terms of conditional survival function, they

get an estimator of the PD. A second alternative given in Cao et al. (2009) is

to assume a generalized linear model for the lifetime distribution under censoring:

P (T ≤ t|X = x) = Fθ(t|x) = g(θ0 + θ1t + θ2x), where g is an unknown link function

and θ = (θ0, θ1, θ2). These approaches use parametric or semiparametric models for

the time to default as a function of the credit scoring and the credit lifetime. The
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use of nonparametric curve estimation for this purpose is however convenient. These

are flexible methods that use only the information that the data provide without

making assumptions about the shape of the curve. This is already the approach used

in the third model in Cao et al. (2009) who proposed to estimate the probability

of default using Beran’s estimator for the conditional survival function. Here, four

nonparametric estimators of the probability of default are defined. Their asymptotic

properties are studied and their performance is evaluated and compared by means

of a simulation study. Finally, the four nonparametric estimators of the probability

of default are applied to a set of modified real data.

The content of this chapter has been published in Peláez et al. (2021b).

2.2 Nonparametric PD estimators

Let
{
(Xi, Zi, δi)

}n

i=1
be the right censored random sample of (X, Z, δ) where Xi

represents the covariate, Zi = min{Ti, Ci} the observed lifetime and δi = I(Ti ≤ Ci)

the censoring indicator, where Ti ≥ 0 and Ci ≥ 0 are the time to occurrence of the

event and the censoring time for the i-th individual of the sample with i = 1, . . . , n.

Let x be a fixed value of the covariate X and b a horizon time, then the probability

of default in a time horizon t + b from a maturity time t is defined as follows

PD(t|x) = 1 − S(t + b|x)
S(t|x) . (2.1)

Replacing S(t|x) with a nonparametric estimator, Ŝh(t|x), in (2.1), the following

estimator of the probability of default is obtained:

P̂Dh(t|x) = 1 − Ŝh(t + b|x)
Ŝh(t|x)

, (2.2)

where h = hn is the smoothing parameter for the covariate.

In this work, the following four nonparametric estimators of the conditional sur-

vival function are used to estimate the probability of default through the expression

in (2.2).
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2.2.1 Beran’s estimator

The estimator of the conditional survival function with censored data formulated in

Beran (1981) was already used in Cao et al. (2009) to obtain a probability of default

estimator. Beran’s estimator is given by

ŜB
h (t|x) =

n∏
i=1

(
1 − I(Zi ≤ t, δi = 1)wh,i(x)

1 −∑n
j=1 I(Zj < Zi)wh,j(x)

)
, (2.3)

where the weights are

wh,i(x) =
K
(
(x − Xi)/h

)
∑n

j=1 K
(
(x − Xj)/h

) , i = 1, . . . , n,

where K is a kernel function (typically a density function to be picked up by the

user) and h = hn > 0 is a smoothing parameter.

The Beran’s estimator of the probability of default denoted by P̂D
B

h (t|x) is

obtained by replacing Ŝh(t|x) in (2.2) with the conditional survival estimator ŜB
h (t|x)

in (2.3) as follows:

P̂D
B

h (t|x) = 1 − ŜB
h (t + b|x)
ŜB

h (t|x)
. (2.4)

2.2.2 Weighted local linear (WLL) estimator

In Cai (2003) a nonparametric estimator of the regression function for censored

lifetime response variable is proposed using local polynomial fitting. Without loss

of generality, an arbitrary function, τ , and the variable V = τ(T ) can be used to

establish the following nonparametric regression model

V = τ(T ) = r(X) + ε, (2.5)

where r(x) = E(V |X = x) is the regression function of V given X and ε is the error

variable that satisfies E(ε|X) = 0 and V ar(ε|X) = σ2(X).

In order to estimate the conditional survival function, Vt = τt(T ) = I(T > t) is

chosen, so that

r(x) = E(Vt|X = x) = E(I(T > t)|X = x) = P (T > t|X = x) = S(t|X = x),
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and the estimator of the regression function r(x) will be an estimator of S(t|x) for

a fixed value t.

Let {(X[i], Z(i), δ[i])}n
i=1 be a random sample which is sorted according to the

values {Zi}n
i=1 of the population (X, Z, δ) and let X[i], δ[i] be the concomitants of

{Zi}n
i=1. Consider the functions

Sn,l(x) =
n∑

i=1
(X[i] − x)l w[i],hW[i],n,

Tn,l(x) =
n∑

i=1
τ(Z(i))(X[i] − x)l w[i],hW[i],n,

for l = 0, 1, 2, where w[i],h = Kh(X[i] − x) with K a kernel function, Kh(u) =

K(u/h)/h and h = hn a smoothing parameter, are the covariate weights and

W[i],n = δ[i]

n − i + 1

i−1∏
j=1

(
n − j

n − j + 1

)δ[j]
,

are the Kaplan-Meier censoring weights.

The weighted local linear regression estimator (WLL) proposed in Cai (2003) is

given by

ŜW LL
h (t|x) = r̂W LL

h (x) = Sn,2(x)Tn,0(x) − Sn,1(x)Tn,1(x)
Sn,2(x)Sn,0(x) − S2

n,1(x) . (2.6)

and it provides an estimator of the conditional survival function. This estimator was

used to estimate the conditional distribution function under censoring along with

Beran’s estimator in Gannoun et al. (2007).

Replacing Ŝh(t|x) in (2.2) with the conditional survival estimator ŜW LL
h (t|x), the

weighted local lineal estimator of the PD denoted by P̂D
W LL

h (t|x) is defined.

2.2.3 Weighted Nadaraya-Watson (WNW) estimator

The WLL conditional survival estimator presents two problems: it does not always

take values within the interval [0, 1] and it is not always isotonic (non increasing).

Both problems become worse when considering the PD estimator, P̂D
W LL

h (t|x).

Figure 2.1 shows an example of this.
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Figure 2.1: Theoretical curves (solid lines) and their estimations obtained by the WLL estimator

(dashed lines) for the conditional survival function S(t|x) (left) and probability of default PD(t|x)

(right) for one sample from (X, Z, δ) where X ∼ U(0, 1), T |X=x ∼ Exp(1 + 5x) and C|X=x ∼

(10 − 7/2x + 20x2).

The first problem can be solved by restricting the values that ŜW LL
h (t|x) takes

to the interval [0, 1] but the second one cannot. For this reason, a weighted local

constant estimator is proposed. It is obtained by replacing the local linear regression

weights with the Nadaraya-Watson weights. It does not present the problems that

ŜW LL
h (t|x) does. Its expression is the following one:

ŜW NW
h (t|x) = r̂W NW

h (x) =
∑n

i=1 τ(Z(i))w[i],hW[i],n∑n
i=1 w[i],hW[i],n

, (2.7)

using the same notation as for (2.5).

Replacing Ŝh(t|x) in (2.2) with the conditional survival estimator ŜW NW
h (t|x),

the weighted Nadaraya-Watson estimator of the PD denoted by P̂D
W NW

h (t|x) is

defined.

2.2.4 Van Keilegom-Akritas (VKA) estimator

In Van Keilegom and Akritas (1999) and Van Keilegom et al. (2001) a nonparametric

estimator of the conditional survival function is proposed. It presents a better
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behaviour than Beran’s estimator in the right tail of the distribution in a heavy

censoring context. It is introduced here to study if this property is inherited by the

corresponding PD estimator.

In order to define this estimator, the following nonparametric regression model

is assumed:

T = r(X) + σ(X)ε,

where r(x) = E(T |X = x) is the unknown regression curve; σ(x) is the conditional

standard deviation, enabling a possible heteroscedastic model, and ε is the error

variable.

Note that

P (T ≤ t|X = x) = P (r(X) + σ(X)ε ≤ t|X = x) = P

(
ε ≤ t − r(x)

σ(x)

)
,

so,

F (t|x) = Fε

(
t − r(x)

σ(x)

)
,

where Fε denotes the distribution function of the error variable ε. This relationship

between the conditional distribution function of T and Fε suggests the following

estimator for F (t|x) (and hence for S(t|x)).

Let r̂(x) and σ̂(x) be consistent estimators of r(x) and σ(x), respectively, and

let F̂ε be the Kaplan-Meier estimator of Fε. The estimator of the conditional distri-

bution function F (t|x) according to this model is:

F̂ (t|x) = F̂ε

(
t − r̂(x)

σ̂(x)

)
.

Thus, the estimator of the conditional survival function of Van Keilegom-Akritas is

given by

ŜV KA
h (t|x) = 1 − F̂ε

(
t − r̂(x)

σ̂(x)

)
. (2.8)

In Van Keilegom and Akritas (1999), without loss of generality these location and

scale functions are considered to define r(x) and σ(x):

r(x) =
∫ 1

0
F −1(s|x)J(s)ds, (2.9)
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σ2(x) =
∫ 1

0
F −1(s|x)2J(s)ds − r2(x), (2.10)

where F −1(s|x) = inf{t : F (t|x) ≥ s} is the conditional quantile function of T

given x and J(s) is such that
∫ 1

0 J(s)ds = 1. When choosing J(s) = 1, ∀s ∈

[0, 1], expressions (2.9) and (2.10) turn out to be E(T |X = x) and V ar(T |X = x),

respectively.

Considering the Beran’s estimator of F (t|x), F̃h(t|x), with bandwidth h = hn,

the corresponding estimator for r(x) and σ(x) are obtained by

r̂(x) =
∫ 1

0
F̃ −1(s|x)J(s)ds,

σ̂2(x) =
∫ 1

0
F̃ −1(s|x)2J(s)ds − r̂2(x).

Finally, considering the Kaplan-Meier estimator for Fε based on the regression

residuals

Êi = Zi − r̂(Xi)
σ̂(Xi)

, i = 1, . . . , n,

all the elements required in (2.8), to obtain F̂ (t|x), are available.

The Van Keilegom-Akritas estimator of the probability of default denoted by

P̂D
V KA

h (t|x) is obtained by replacing Ŝh(t|x) in (2.2) with the conditional survival

estimator ŜV KA
h (t|x).

2.3 Asymptotic results

It is known that many estimators of the conditional distribution function (and,

therefore, of the conditional survival function) enjoy desirable properties for their

bias, variance and asymptotic normality. It is interesting to obtain similar properties

for the probability of default estimators.

The theoretical results shown in this section allow to obtain, under general con-

ditions, asymptotic properties for a PD estimator, based on these properties for the

corresponding estimator of the conditional survival function.
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Let Ŝ(t|x) be an estimator of the conditional survival function, S(t|x), and let

P̂D(t|x) be its corresponding estimator of the probability of default at horizon b.

The necessary conditions to prove the asymptotic properties of the PD estimator

are the following:

C.1 The estimator of PD(t|x) is a transformation of the conditional survival esti-

mator of the following form P̂D(t|x) = 1 − Ŝ(t + b|x)
Ŝ(t|x)

C.2 The bias and the covariance of Ŝ(t|x) admit the following asymptotic expres-

sions:

B(t|x) := Bias
(
Ŝ(t|x)

)
= B0(t|x)h2 + o(h2),

C(t1, t2|x) := Cov
(
Ŝ(t1|x), Ŝ(t2|x)

)
= C0(t1, t2|x) 1

nh
+ o

(
1

nh

)
,

for any t, t1 and t2. As a consequence, defining V (t|x) := V ar
(
Ŝ(t|x)

)
and

V0(t|x) := C0(t, t|x) we have V (t|x) = V0(t|x) 1
nh

+ o

(
1

nh

)
.

C.3 The terms

E
((

Ŝ(t1|x) − E
(
Ŝ(t1|x)

))i (
Ŝ(t2|x) − E

(
Ŝ(t2|x)

))3−i
)

= o

(
1

nh

)
,

for i = 0, 1, 2, 3.

Theorem 2.1. Assume Conditions C.1-C.3. Asymptotic expressions of bias and

variance for the estimator P̂D(t|x) are the following:

Bias
(
P̂D(t|x)

)
= (1 − PD(t|x))B0(t|x) − B0(t + b|x)

S(t|x) h2 + o(h2) + O

(
1

nh

)

V ar
(
P̂D(t|x)

)
=

[
V0(t + b|x)

S(t|x)2 − 2S(t + b|x)C0(t, t + b|x)
S(t|x)3

+S(t + b|x)2V0(t|x)
S(t|x)4

]
1

nh
+ o

(
1

nh

)

The asymptotic properties of Beran’s estimator for the conditional survival func-

tion were proven in both Dabrowska (1989) and Iglesias-Pérez and González-Manteiga

(1999) under certain assumptions. From them, the expressions of the bias and the
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variance of the estimator P̂D
B

h (t|x) can be found by using Theorem 2.1. This was

done in Cao et al. (2009). The asymptotic bias and variance of the WLL estimator

of the survival function are proven in Cai (2003) under suitable conditions. Van Kei-

legom and Akritas (1999) gave necessary conditions for the asymptotic expressions

of bias and variance of the VKA estimator. It is enough to recover the expressions

for B0(t|x), C0(t, t+b|x) and V0(t|x) from the above articles and use Theorem 2.1 to

obtain the asymptotic properties of the corresponding estimators for the probability

of default. The expressions obtained in most of the cases are complex and depend on

too many parameters. It is then difficult to use them in order to compare estimators

or to obtain optimal smoothing parameters.

Proofs of these results can be found in Section 2.6.

2.4 Simulation study

A simulation study was conducted in order to compare the performance of the four

proposed estimators for the probability of default. The study is focused on three

models, one with Weibull lifetime and censoring time distributions and two models

with exponential distributions.

Model 1

For Model 1, a U(0, 1) distribution is considered for the credit scoring, X. The

time to default conditional to the credit scoring, T |X=x, follows an exponential

distribution of parameter P (x) = a0 + a1x,

T |X=x ∼ Exp
(
P (x)

)
,

and the censoring time conditional to the credit scoring, C|X=x, follows an exponen-

tial distribution with parameter Q(x) = b0 + b1x + b2x
2,

C|X=x ∼ Exp
(
Q(x)

)
.
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In this scenario, the conditional survival function and the probability of default

are the following:

S(t|x) = e−P (x)t,

PD(t|x) = 1 − e−P (x)b.

Let H0(t|x) = P (Z ≤ t, δ = 0|X = x) be the conditional subdistribution function

of Z when δ = 0. The censoring conditional probability is obtained as follows:

P (δ = 0|X = x) = H0(∞|X = x) =
∫ ∞

0

(
1 − F (u|x)

)
dG(u|x)

=
∫ ∞

0
e−P (x)td

(
1 − e−Q(x)t

)
=
∫ ∞

0
Q(x)e−P (x)te−Q(x)tdt

= − Q(x)
P (x) + Q(x)e−(P (x)+Q(x))t

]∞

0
= Q(x)

P (x) + Q(x)

and the censoring unconditional probability is given by

P (δ = 0) =
∫ +∞

−∞
P (δ = 0|X = x)m(x)dx,

where m(x) is the density function of the covariate X.

Note that if P (x) is large, then the mean lifetime of the credit (1/P (x)) is

small and the probability of conditional censoring too; whereas if P (x) is small the

censoring conditional probability is large, which is compatible with the mean of

the credit’s lifetime also being large. It is clear that the censoring probability of

an observation in this model is determined by the choice of the coefficients of the

polynomials P and Q. In this model, the polynomials chosen are: P (x) = 1 + 5x

and Q(x) = 10 + b1x + 20x2. Having set the value of the credit scoring, x = 0.8,

the value of b1 is chosen so that the censoring conditional probability is 0.2, 0.5 and

0.8. The resulting values are shown in Table 2.1 along with the corresponding both

conditional and unconditional censoring probabilities.
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b1 P (δ = 0|X = 0.8) P (δ = 0)

−431/16 0.2 0.438

−89/4 0.5 0.613

−7/2 0.8 0.816

Table 2.1: Values of b1 and the associated censoring probabilities for Model 1.

In addition, Figures 2.2, 2.3 and 2.4 show the plots of the resulting polynomials

P (x) and Q(x) and the plot of P (δ = 0|X = x) in each case. It can be seen that

P (x), Q(x) ≥ 0 ∀x ∈ [0, 1].

Figure 2.2: P (x) (solid line) and Q(x) (dashed line) in the left panel and P (δ = 0|X = x) in the

right panel when P (δ = 0|X = 0.8) = 0.2 in Model 1.
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Figure 2.3: P (x) (solid line) and Q(x) (dashed line) in the left panel and P (δ = 0|X = x) in the

right panel when P (δ = 0|X = 0.8) = 0.5 in Model 1.

Figure 2.4: P (x) (solid line) and Q(x) (dashed line) in the left panel and P (δ = 0|X = x) in the

right panel when P (δ = 0|X = 0.8) = 0.8 in Model 1.

The conditional survival function and the probability of default in Model 1 are

estimated in a time grid of size nT , 0 < t1 < · · · < tnT
, where tnT

+ b = F −1(0.95|x)

for the value of the covariable x = 0.8. For the previously set parameters, one has

b = 0.1 (20% of the grid range) and tnT
= 0.4991.

Figure 2.5 shows the theoretical conditional survival function and the probability

of default for this model under the above conditions.
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Figure 2.5: Theoretical conditional survival function S(t|x) (left) and probability of default

PD(t|x) (right) in Model 1.

Model 2

Model 2 considers a U(0, 1) distribution for X. The time to default conditional

to the credit scoring, T |X=x, follows a Weibull distribution with parameters d and

Γ(x)−1/d, with Γ(x) = c0 + c1x,

T |X=x ∼ W(d, Γ(x)−1/d),

and the censoring time conditional to the credit scoring follows a Weibull distribution

with parameters d and ∆(x)−1/d, with ∆(x) = d0 + d1x + d2x
2,

C|X=x ∼ W(d, (∆(x))−1/d).

In this case, the conditional survival function and the probability of default are

given by:

S(t|x) = e−Γ(x)td

,

PD(t|x) = 1 − e−Γ(x)(t+b)d

e−Γ(x)td .
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The censoring conditional probability is obtained as follows:

P (δ = 0|X = x) = H0(∞|X = x) =
∫ ∞

0

(
1 − F (u|x)

)
dG(u|x) =

=
∫ ∞

0
e−Γ(x)td

d
(
1 − e−∆(x)td

)
=
∫ ∞

0
d∆(x)td−1e−Γ(x)td

e−∆(x)td

dt

= − ∆(x)
Γ(x) + ∆(x)e−(Γ(x)+∆(x))td

]∞

0
= ∆(x)

Γ(x) + ∆(x)

and the unconditional probability of censoring is given by

P (δ = 0) =
∫ +∞

−∞
P (δ = 0|X = x)m(x)dx.

The polynomials Γ and ∆ used in this model are Γ(x) = 1 + 5x and ∆(x) =

10 + d1x + 20x2. Having set the value of the credit scoring, x = 0.6 the value of

d1 is chosen so that the censoring conditional probability is 0.2, 0.5 and 0.8. The

resulting values of d1 and the probabilities associated with them are shown in Table

d1 P (δ = 0|X = 0.6) P (δ = 0)

-27 0.2 0.43

-22 0.5 0.51

-2 0.8 0.82

Table 2.2: Values of d1 and the associated censoring probabilities for Model 2.

In addition, Figures 2.6, 2.7 and 2.8 show the plots of the resulting polynomials

C(x) and D(x) along with the plot of P (δ = 0|X = x) in each case. It can be seen

that Γ(x), ∆(x) ≥ 0 ∀x ∈ [0, 1].

The conditional survival function and the probability of default of Model 2 are

estimated in a time grid of size nT , 0 < t1 < · · · < tnT
, where tnT

+ b = F −1(0.95|x)

for the value of the covariable x = 0.6. For the previously set parameters, one has

b = 0.15 (20% of the time grid) and tnT
= 0.7154.

Figure 2.9 show the theoretical conditional survival function and probability of

default for this model under the above conditions.
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Figure 2.6: Γ(x) (solid line) and ∆(x) (dashed line) in the left panel and P (δ = 0|X = x) in the

right panel when P (δ = 0|X = 0.6) = 0.2 in Model 2.

Figure 2.9: Theoretical conditional survival function S(t|x) (left) and probability of default

PD(t|x) (right) in Model 2.

Model 1 and Model 2 are close to Cox models. By definition, the hazard function

can be expressed in terms of the conditional survival function as follows:

Λ(t|x) =
∫ t

0
λ(s|x)ds =

∫ t

0

f(s|x)
S(s|x)ds = − ln

(
S(s|x)

)]s=t

s=0
= − ln

(
S(t|x)

)
.

Then, S(t|x) = exp
(

− Λ(t|x)
)
.
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Figure 2.7: Γ(x) (solid line) and ∆(x) (dashed line) in the left panel and P (δ = 0|X = x) in the

right panel when P (δ = 0|X = 0.6) = 0.5 in Model 2.

Assuming a proportional hazards model, we have Λ(t|x) = Λ0(t) exp(xtβ), thus,

S(t|x) = exp
(

− Λ0(t) exp(xtβ)
)

=
(

exp
(

− Λ0(t)
))exp(xtβ)

= S0(t)exp(xtβ).

Therefore, on a Cox model, the conditional survival function can be factorized such

that S(t|x) = S0(t)exp(xtβ), where S0(t) is a survival function that does not depend

on x.

Since the conditional survival function of Model 1 can be expressed as S(t|x) =

S0(t)P (x) by defining S0(t) = e−t which is the survival function of the distribution

Exp(1), Model 1 is as close to a Cox model as the polynomial P (x) is to a function

of the form exp(β0 + β1x).

If we consider β0 = 0 and β1 = ln 6, then the polynomial P (x) = 1 + 5x and its

derivative coincide respectively with the expression exp(β0 + β1x) and its derivative

in both x = 0 and x = 1. Hence, the survival function of Model 1, S(t|x) = e−P (x)t,

is very close to the survival function of a Cox model.

The survival function of Model 2 is S(t|x) = e−Γ(x)td and it is also very close to

the survival function of a Cox model, since it can be expressed as S(t|x) = S0(t)Γ(x),

by just defining S0(t) = e−td .

The polynomial Γ(x) is identical to P (x), so the above argument is valid for it,
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Figure 2.8: Γ(x) (solid line) and ∆(x) (dashed line) in the left panel and P (δ = 0|X = x) in the

right panel when P (δ = 0|X = 0.6) = 0.8 in Model 2.

concluding that Γ(x) is very similar to a function of the form exp(β0 +β1x) choosing

β0 = 0 and β1 = ln 6. On the other hand, it is clear that S0(t) = e−td is a survival

function since S0(t) ≥ 0 for all t ≥ 0 and e−td
> e−vd if 0 ≤ t < v. Thus, Model 2 is

also close to a Cox model.

With the intention that the simulations carried out to study the behaviour of

the estimators cover widely clear scenarios, a third model which is far from a Cox

model is introduced.

Model 3

For Model 3, a U(0, 1) distribution is considered for the credit scoring, X. The

time to default conditional to the credit scoring, T |X=x, follows an exponential

distribution of parameter R(x),

T |X=x ∼ Exp
(
R(x)

)
,

and the censoring time conditional to the credit scoring, C|X=x, follows an exponen-

tial distribution with parameter Q(x) = b0 + b1x + b2x
2,

C|X=x ∼ Exp
(
Q(x)

)
.
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In this scenario, the conditional survival function, the probability of default and the

censoring conditional probability are the following:

S(t|x) = e−R(x)t,

PD(t|x) = 1 − e−R(x)b,

P (δ = 0|X = x) = Q(x)
R(x) + Q(x) .

Model 3 is as far from a Cox model as the polynomial R(x) is from a function of

the form exp(β0 + β1x). Then, chosing R(x) = 2 + 58x − 160x2 + 107x3, Model 3 is

far from a Cox model.

The distribution of the censoring time is defined by the polynomial Q(x) =

10 + b1x + 20x2. Having set the value of the credit scoring, x = 0.8, the value of

b1 is chosen so that the censoring conditional probability is 0.2, 0.5 and 0.8. The

resulting values for b1 are shown in Table 2.3.

b1 P (δ = 0|X = 0.8) P (δ = 0)

-113/4 0.2 0.268

-55/2 0.5 0.374

-123/5 0.8 0.534

Table 2.3: Values of b1 and the associated censoring probabilities for Model 3.

The resulting polynomials R(x) and Q(x) along with the plot of P (δ = 0|X = x)

are shown in Figures 2.10, 2.11 and 2.12. It can be seen that R(x), Q(x) ≥ 0

∀x ∈ [0, 1].
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Figure 2.10: R(x) (solid line) and Q(x) (dashed line) in the left panel and P (δ = 0|X = x) in

the right panel when P (δ = 0|X = 0.8) = 0.2 in Model 3.

Figure 2.11: R(x) (solid line) and Q(x) (dashed line) in the left panel and P (δ = 0|X = x) in

the right panel when P (δ = 0|X = 0.8) = 0.5 in Model 3.
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Figure 2.12: R(x) (solid line) and Q(x) (dashed line) in the left panel and P (δ = 0|X = x) in

the right panel when P (δ = 0|X = 0.8) = 0.8 in Model 3.

The conditional survival function and the probability of default in Model 3 are

estimated in a time grid of size nT , 0 < t1 < · · · < tnT
, where tnT

+ b = F −1(0.95|x)

for the value of the covariable x = 0.8. For the previously set parameters, one has

b = 0.7 (20% of the grid range) and tnT
= 3.1211.

Figure 2.13 shows the theoretical conditional survival function and probability

of default for this model under the above conditions.

Figure 2.13: Theoretical conditional survival function S(t|x) (left) and probability of default

PD(t|x) (right) in Model 2.
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In the comparative study a parametric method is introduced as a benchmark

method. The chosen technique is the Cox proportional hazards method which as-

sumes that S(t|x) = exp(−Λ(t|x)) and its estimation is obtained as follows

ŜP H(t|x) = exp(−Λ̂(t|x))

with

Λ̂0(t) =
n∑

i=1

I{Zi≤t,δi=1}∑n
i=1 I{Zj≥Zi}

and

β̂ = arg max L(β)

where

L(β) =
n∏

i=1

exp(xt
iβ)∑n

i=1 I{Zj>Zi} exp(xt
jβ)

is the likelihood function. This idea for estimating S(t|x) in this context was in-

troduced by Naraim (1992) and here it is applied to obtain a probability of default

estimator by replacing Ŝh(t|x) in (2.2) by ŜP H(t|x). The R package survival is used

to obtain the PD estimations by this method (see Therneau (2015) for more details).

Note that Model 1 is close to a proportional hazards model, while Models 2 and

3 move away from this parametric model. For this reason, Cox method is supposed

to have a reasonable behaviour in Model 1 but worse in Models 2 and 3.

The truncated Gaussian kernel with a truncation range (−50, 50) is used, the

sample size is n = 400, and the size of the lifetime grid is nT = 100. The WLL

estimator is corrected so that the estimations of the PD that it provides are contained

in [0, 1], simply setting the value 1 for P̂D
W LL

h (t|x) if it is greater than 1 or the value

0 if it is negative. In addition, the boundary effect is corrected for all the estimators

as explained below.

The boundary effect is corrected at t = 0 for the variable Z, since the time

variable must be positive. The boundary effect causes an overestimation of F (t|x)

(and consequently an underestimation of S(t|x)) at values of t > 0 close to zero. In

Silverman (1986) the reflection principle is proposed to correct the boundary effect

in the estimation of a density function with compact support. This method consists
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of obtaining f̂(t) for positive t and setting the value of f̂(t) to zero for all negative

t. Once this is done, the estimator has to be corrected so that the estimated density

integrates one. Then, positive values of f̂(t) for t < 0 are used to increase the

estimation of f(−t). This idea is carried over to the distribution function to obtain

an estimator, F̂ c(t|x), which corrects the boundary effect at zero as follows:

F̂ c(t|x) =


0 si t < 0,

F̂ (t|x) − F̂ (−t|x) si t ≥ 0,

where F̂ (t|x) is a nonparametric uncorrected estimator of the distribution func-

tion. Consequently, an estimator of the survival function, Ŝc(t|x), which avoids the

underestimation of S(t|x) around t = 0, for t > 0 is given by:

Ŝc(t|x) =


1 si t < 0,

1 + Ŝ(t|x) − Ŝ(−t|x) si t ≥ 0,

where Ŝ(t|x) = 1 − F̂ (t|x).

For every estimator, the optimal smoothing parameter hMISE is selected as the

value which minimises, in a grid of 50 bandwidth values, a Monte Carlo approxima-

tion of the MISE:

MISEx(h) = E
(∫ (

P̂Dh(t|x) − PD(t|x)
)2

dt
)

based on N = 50 simulated samples, with the integral approximated in a grid of the

interval [0, 1]. Of course, this bandwidth cannot be used in practice, but this choice

produces a fair comparison since the four estimators are constructed using their

best possible bandwidths. The smoothing parameter chosen for the Van Keilegom-

Akritas estimator is the optimal one for estimating the conditional distribution

function by means of Beran’s estimator, which is a previous step in the estimation

of the PD with this technique. The value of MISE using this smoothing parameter

is approximated from N = 1000 simulated samples for every estimator and used,

along with its square root (RMISE), as a measure of the estimation error. Tables

2.4, 2.5 and 2.6 show the estimation errors for Model 1, 2 and 3.
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In some of the scenarios analysed, MISEx(h) turned out to be a decreasing func-

tion of h. For this reason, the MISE bandwidth selected was a high but reasonable

value, considering that the variable X moves in the interval [0, 1]. This is the case

for the MISE function for the WLL and WNW estimators in Model 1 and in Model

2 when the conditional probability of censoring is 0.8.

In Models 1 and 2, Beran’s estimator provides a smaller error than Cox method

in most of the cases, even though these models are close to a Cox model. The VKA

estimator is competitive with Beran’s estimator and Cox model in these scenarios.

They are followed by the WNW estimator, which works significantly better than

WLL. In Model 3, the smallest estimator error is the one coming from Beran’s

estimator in all cases. In this model, the VKA estimator is not competitive with

Beran’s not even when the censoring conditional probability is 0.8.

The higher the censoring probability, the greater the error is for any of the

estimators. However, Beran’s estimator behaves reasonably well in all scenarios.

The WLL and WNW estimators present a much larger error than the rest of the

estimators when the censoring probability increases in all models. This is more

evident for the WLL estimator.

Beran WLL WNW VKA Cox

0.2

hMISE 0.24286 1.00000 1.00000 0.14285 —

MISEx(hMISE) 0.00398 0.00590 0.00439 0.00978 0.00850

RMISEx(hMISE) 0.06311 0.07681 0.06624 0.09888 0.09218

0.5

hMISE 0.39592 1.00000 1.00000 0.15000 —

MISEx(hMISE) 0.01129 0.03493 0.02291 0.01835 0.01312

RMISEx(hMISE) 0.10626 0.18689 0.15137 0.13546 0.11454

0.8

hMISE 0.42857 1.00000 1.00000 0.22143 —

MISEx(hMISE) 0.04379 0.10352 0.07567 0.04290 0.04054

P
(δ

=
0|

x
=

0.
8)

RMISE(hMISE) 0.20925 0.32175 0.27508 0.20711 0.20134

Table 2.4: Optimal bandwidth, MISE and RMISE of the PD estimators for each level of

censoring conditional probability in Model 1.
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Beran WLL WNW VKA Cox

0.2

hMISE 0.30204 0.43780 0.39898 0.24385 —

MISEx(hMISE) 0.00296 0.00493 0.00493 0.00543 0.00491

RMISEx(hMISE) 0.05441 0.07021 0.07021 0.07369 0.07006

0.5

hMISE 0.34082 0.51529 0.98064 0.22449 —

MISEx(hMISE) 0.01254 0.02871 0.02808 0.01731 0.01271

RMISEx(hMISE) 0.11198 0.16944 0.16757 0.13157 0.11274

0.8

hMISE 0.39898 1.00000 1.00000 0.22449 —

MISEx(hMISE) 0.06623 0.12551 0.11111 0.06424 0.06298

P
(δ

=
0|

x
=

0.
6)

RMISEx(hMISE) 0.25735 0.35427 0.33333 0.25346 0.25097

Table 2.5: Optimal bandwidth, MISE and RMISE of the PD estimator for each level of

censoring conditional probability and each estimator for Model 2.

Beran WLL WNW VKA Cox

hMISE 0.09898 0.09082 0.08571 0.04551 —

MISEx(hMISE) 0.07201 0.14970 0.14490 0.09989 0.195340.2

RMISEx(hMISE) 0.26835 0.38691 0.38066 0.31605 0.44197

hMISE 0.13163 0.10612 0.11122 0.05735 —

MISEx(hMISE) 0.20260 0.46798 0.46215 0.26169 0.302510.5

RMISEx(hMISE) 0.45011 0.68409 0.67982 0.51155 0.55001

hMISE 0.15204 0.65100 0.15204 0.13429 —

MISEx(hMISE) 0.42281 0.66306 0.65951 0.67132 0.47346

P
(δ

=
0|

x
=

0.
8)

0.8

RMISEx(hMISE) 0.65024 0.81429 0.81210 0.81934 0.68808

Table 2.6: Optimal bandwidth, MISE and RMISE of the PD estimator for each level of

censoring conditional probability and each estimator for Model 3.

In a second study, the following curves are calculated for each estimator and each

level of censoring conditional probability from N = 1000 simulated samples:{
(tk, PD(tk|x))

}nT

k=1
,{

(tk, P̂D
(5)
hMISE

(tk|x))
}nT

k=1
,
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{
(tk, P̂D

(50)
hMISE

(tk|x))
}nT

k=1
,{

(tk, P̂D
(95)
hMISE

(tk|x))
}nT

k=1
,

where P̂D
(j)(tk|x) denotes the j-th percentile of all the PD estimations obtained in

time tk.

In this section the WLL estimator is not taken into account since the results

obtained for it are similar but worse than those obtained with the WNW estimator.

On the other hand, a very high censoring probability and a not very high sample

size, such as that handled here, lead to not very accurate PD estimations, so the

third censoring scenario (P (δ = 0|x) = 0.8) is excluded. The resulting curves for

each model are shown in the following figures.

Figures 2.14, 2.15 and 2.16 show that the greater the censoring conditional prob-

ability, the worse the obtained estimations are. Also the greater the time value in

which PD is estimated, the larger the error is for the three estimators for Models 1,

2 and 3. The 50th percentile of the estimations that best fits the true probability of

default curve is the one obtained with Beran’s estimator.
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Figure 2.14: Theoretical PD(t|x) (solid line), 50th percentile (dashed line) and 5th and 95th

percentiles (dotted lines) obtained by means of Beran’s (top), WNW (second), VKA (third) and

Cox (bottom) for P (δ = 0|x) = 0.2 (left) and P (δ = 0|x) = 0.5 (right) for Model 1.
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Figure 2.15: Theoretical PD(t|x) (solid line), 50th percentile (dashed line) and 5th and 95th

percentiles (dotted lines) obtained by means of Beran’s (top), WNW (second), VKA (third) and

Cox (bottom) for P (δ = 0|x) = 0.2 (left) and P (δ = 0|x) = 0.5 (right) for Model 2.
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Figure 2.16: Theoretical PD(t|x) (solid line), 50th percentile (dashed line) and 5th and 95th

percentiles (dotted lines) obtained by means of Beran’s (top), WNW (second), VKA (third) and

Cox (bottom) for P (δ = 0|x) = 0.2 (left) and P (δ = 0|x) = 0.5 (right) for Model 3.

In Cai (2003) and Van Keilegom and Akritas (1999), it is proven that the con-
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ditional survival function estimators given in (2.6) and (2.8) improve on Beran’s

estimator when the survival function is estimated in the right tail of the time dis-

tribution, most remarkably for heavy censoring. It is certainly of interest to check

whether the PD estimators derived from these survival function estimators inherit

this good feature.

The following paragraphs discuss the behaviour of these four estimators (along

with the benchmark method) when estimating the probability of default in the

right tail of the distribution through a simulation study similar to the previous

one. The parameters of each model and simulation conditions remained, but the

range of the time variable where the PD is estimated is changed. The aim is to

obtain the optimal smoothing parameter, hMISE, and approximate the value of

MISE(hMISE) when PD(t|x) is estimated in a grid within the interval [t0.7, t0.95],

where tα denotes the value of time that satisfies F (tα +b|x) = α. For Model 1, these

values are t0.7 = 0.1408 and t0.95 = 0.4992. For Model 2, they are t0.7 = 0.3986 and

t0.95 = 0.7154. For Model 3, they are t0.7 = 0.8357 and t0.95 = 3.1211.

The results are shown in Tables 2.7, 2.8 and 2.9. In some of the scenarios

analysed, MISE(h) turned out to be a decreasing function of h. For this reason,

the MISE bandwidth selected was a high but reasonable value, considering that the

variable X moves in the interval [0, 1]. This is the case for the MISE function for the

WLL and WNW estimators in Models 1 and 2 and for Beran’s estimator in Model

3 when the conditional probability of censoring is 0.8.

In Model 1, WNW estimator provides the smallest estimation error when the

censoring probability is low. When the censoring probability increases, Beran’s

estimator, VKA estimator and Cox method behave reasonably well. The VKA

estimator provides the smallest error in that case.

When the censoring probability is low in Model 2, all the estimators have a

similar behaviour and Beran’s is the one which provides the smallest estimation

error. In this case, Van Keilegom-Akritas estimator is not competitive with Cox

method. When increasing the censoring probability, the estimation error of WLL
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and WNW is higher than the rest and the best estimations are obtained by the

VKA estimator.

In Model 3, for P (δ = 0|x = 0.8) = 0.2, Beran’s estimator provides the lowest

estimation error by far. When increasing the censoring probability, the VKA esti-

mator presents the highest mean integrated squared error. Although all estimators

have a bad behaviour in this context, Beran’s estimator is the most reasonable one,

being competitive with Cox method.

Beran WLL WNW VKA Cox

0.2

hMISE 0.26327 1.50000 1.50000 0.13571 —

MISEx(hMISE) 0.00356 0.00508 0.00351 0.00775 0.00644

RMISEx(hMISE) 0.05969 0.07127 0.05924 0.08804 0.08024

0.5

hMISE 0.47959 1.50000 1.50000 0.15204 —

MISEx(hMISE) 0.01037 0.03376 0.02234 0.01474 0.01093

RMISEx(hMISE) 0.10181 0.18374 0.14947 0.12140 0.10457

0.8

hMISE 0.53469 1.50000 1.50000 0.21939 —

MISEx(hMISE) 0.04074 0.07773 0.06882 0.03619 0.03768

P
(δ

=
0|

x
=

0.
8)

RMISEx(hMISE) 0.20184 0.27879 0.26234 0.19025 0.19412

Table 2.7: Optimal bandwidth, MISE and RMISE of the PD estimation in the right tail of the

distribution for each level of censoring conditional probability and for each estimator in Model 1.
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Beran WLL WNW VKA Cox

hMISE 0.3020 0.2827 0.2633 0.2245 —

MISEx(hMISE) 0.00259 0.00454 0.00454 0.00443 0.003810.2

RMISEx(hMISE) 0.05089 0.06738 0.06738 0.06656 0.06172

hMISE 0.3602 0.9418 1.000 0.2051 —

MISEx(hMISE) 0.01132 0.02678 0.02625 0.01454 0.010960.5

RMISEx(hMISE) 0.10640 0.16365 0.16202 0.12058 0.10469

hMISE 0.4959 1.0000 1.0000 0.2245 —

MISEx(hMISE) 0.06259 0.08916 0.08781 0.05511 0.05932

P
(δ

=
0|

x
=

0.
6)

0.8

RMISEx(hMISE) 0.25018 0.29859 0.29633 0.23476 0.24359

Table 2.8: Optimal bandwidth, MISE and RMISE of the PD estimation in the right tail of the

distribution for each level of censoring conditional probability and for each estimator in Model 2.

Beran WLL WNW VKA Cox

hMISE 0.1514 0.1312 0.1110 0.0504 —

MISEx(hMISE) 0.06131 0.13114 0.12891 0.09135 0.112690.2

RMISEx(hMISE) 0.24761 0.36213 0.35905 0.30224 0.33568

hMISE 0.2322 0.8384 0.1716 0.0706 —

MISEx(hMISE) 0.18619 0.41102 0.40943 0.23851 0.216220.5

RMISEx(hMISE) 0.43150 0.64111 0.63987 0.48837 0.46499

hMISE 1.0000 0.9592 0.2322 0.1857 —

MISEx(hMISE) 0.38754 0.42825 0.42824 0.55738 0.38660

P
(δ

=
0|

x
=

0.
8)

0.8

RMISEx(hMISE) 0.62253 0.65441 0.65441 0.74658 0.62177

Table 2.9: Optimal bandwidth, MISE and RMISE of the PD estimation in the right tail of the

distribution for each level of censoring conditional probability and for each estimator in Model 3.

Figures 2.17, 2.18 and 2.19 show in more detail the behaviour of the four es-

timators in the right tail of the distribution for the highest censoring conditional

probability. The estimation of the PD is obtained in three fixed values of time,

t0.7, t0.8 and t0.95, from N = 1000 simulated samples and the boxplots of the esti-
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mations are shown. It is easy to see that the performance of Beran’s and the Van

Keilegom-Akritas estimators is remarkably better than the performance of WLL

and WNW estimators, taking into account that, in the right tail of the distribution

with heavy censoring, the information provided by the data is very reduced. The

VKA estimator is competitive in this context.

Figure 2.17: Boxplot of the estimations of PD(t|x) obtained by Beran’s, WLL, WNW, VKA

and Cox estimator (from left to right) for t = t0.7, t0.8, t0.95 when P (δ = 0|x) = 0.8 for Model 1.
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Figure 2.18: Boxplot of the estimations of PD(t|x) obtained by Beran’s, WLL, WNW, VKA

and Cox estimator (from left to right) for t = t0.7, t0.8, t0.95 when P (δ = 0|x) = 0.8 for Model 2.

Figure 2.19: Boxplot of the estimations of PD(t|x) obtained by Beran’s, WLL, WNW, VKA

and Cox estimator (from left to right) for t = t0.7, t0.8, t0.95 when P (δ = 0|x) = 0.8 for Model 3.
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Another important aspect of the estimators which must be considered is their

computation time. Table 2.10 shows the CPU times (in seconds) that each of the

estimators spends in obtaining an estimation of the probability of default curve in

a 100-point time’s grid and a fixed value of x for different values of the sample size.

Beran’s estimator is barely affected by the increase of the sample size and it is the

fastest of the four studied estimators. Its CPU time is practically equal to the CPU

time of the parametric method. The following one is the WNW estimator which

CPU time is similar to that of the WLL estimator, but it is slightly faster. The

slowest and most affected by the increase of the sample size is the VKA estimator.

n Beran WLL WNW VKA Cox

50 0.02 0.05 0.05 0.27 0.01

100 0.02 0.07 0.06 1.04 0.01

200 0.02 0.09 0.08 5.55 0.01

400 0.02 0.19 0.17 28.50 0.02

1200 0.03 0.85 0.77 526.43 0.03

Table 2.10: CPU time for the estimation of PD(t|x) in a time grid of size 100 for every estimator

and different sample sizes.

2.5 Application to real data

The estimation methods given in previous sections are now applied to a real data

set. The data consists of a sample of 10,000 consumer credits from a Spanish bank

registered between July 2004 and November 2006. They were previously used in Cao

et al. (2009). To obtain each client’s credit scoring, the financial institution adjusted

a scoring model on several informative variables collected in the dataset: gender,

marital status, profession, place of residence, type of housing, age, employment

history and bank account balance. See Devia (2016) for more details. Due to

confidentiality, the estimated coefficients of the original explanatory variables are

not reported here. The resulting credit scoring is used as a covariate in this analysis.
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The sample censoring percentage is 92.8%; equivalently, the proportion of credits

for which the default is observed is 7.2%. An intentionally biased subsample was

obtained from the original sample, so as not to show the true solvency situation

of the bank and thus preserve confidentiality. The variables considered are the

following ones:

- X: it is the credit scoring observed for each borrower; its range lies inside the

interval [0, 1] and the higher its value, the greater solvency the debtor has.

- Z: it is the observed lifetime of the credit; it is measured in months and it

takes values between 0 and 30,

- δ: it is the uncensoring indicator; it is equal to one when the default is ob-

served.

Table 2.11 shows some summary statistics of the data. Figures 2.20 and 2.21

show the histograms of the observed lifetime and credit scoring variables. In all

of them, data from censored and uncensored (and therefore defaulted) credits are

distinguished.

Note that censored credits, which have not fallen into default during the study,

have higher lifetimes and higher credit scorings. This is reasonable since a client

with greater solvency will continue paying his or her credit longer and it will be more

difficult to observe the default. See also that the credit scoring values, although they

are higher in the censored group of credits, are generally high. This may be due to

the fact that they correspond to credits actually granted by the financial company.

min. 1stQ. median mean 3thQ. max.

Censored group Z 0.00 6.73 11.23 13.37 19.86 29.50

X 0.56 0.89 0.95 0.92 0.98 0.99

Uncensored group Z 0.03 2.97 5.35 7.54 11.44 24.77

X 0.22 0.58 0.70 0.68 0.79 0.91

Table 2.11: Summary statistics for lifetime (Z) and credit scoring (X) for the uncensored group

(defaulted credits) and the censored group.
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Figure 2.20: Histogram and kernel density estimation of the observed lifetime for the censored

sample (left) and the uncensored sample (right).

Figure 2.21: Histogram and kernel density estimation of the credit scoring for the censored

sample (left) and the uncensored sample (right).

Next, the estimation of the probability of default for x = 0.8 at horizon b = 5

months is obtained, in a time grid along the interval [0, 25], using the four estimators

presented in Section 2.2 and the benchmark method used in Section 2.4.

The probability of default was estimated by each method with some different
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possible values of the smoothing parameter in order to evaluate their influence in

the estimation, which turned out to be very slight, and choose a reasonable one.

The chosen bandwidths are h = 0.05 for Beran’s estimator, h = 0.4 for the WLL

estimator, h = 0.01 for WNW and h = 0.2 for the VKA estimator. The estimations

obtained are shown in Figure 2.22.

It could be thought that Beran’s PD estimation hardly presents variability or

jumps, unlike the rest of the estimators. However, it is simply a scale factor. Figure

2.23 shows the estimated PD obtained using Beran’s estimator in the personal credit

dataset.

Since in this case the censoring is heavy (92.8%), the VKA estimator should

be the most reliable of all of them, although the simulations showed that Beran’s

estimator was also accurate. According to Beran’s estimation (Figure 2.23), the

probability of default has a decreasing tendency and it is close to zero at all points.

It follows from the first fact that the probability of falling into default is reduced

while the debt maturity is increasing. The second fact is reasonable, given that

the probability of default is being calculated for a considerably higher value of the

covariate, which indicates a greater solvency of the borrower.

In practice, the financial institution measures different features of its clients,

such as age, amount of money in the bank account, salary, years of employment,

etc. They summarize, usually by logistic regression, these covariates into the single

variable credit scoring. Subsequently, techniques such as those shown in this work

allow the calculation of the probability of default at horizon b for all of them. The

curve PD(t|x) provides the probability that the client will default after a certain

period of time b.
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Figure 2.22: Estimation of S(t|x) (left) and PD(t|x) (right) at horizon b = 5 for x = 0.8 by

means of Beran’s (solid line), WLL (dashed line), WNW (dotted line), VKA (dash-dotted line)

and Cox (long dashed line) estimators for the consumer credits dataset.

Figure 2.23: Estimation of S(t|x) (left) and PD(t|x) (right) at horizon b = 5 for x = 0.8 by

means of Beran’s estimator on the consumer credits dataset.

2.6 Proofs

Proof of Theorem 2.1

Denote PD(t|x) = 1 − P

Q
with P = S(t + b|x) and Q = S(t|x) and P̂D(t|x) =

1 − P̂

Q̂
with P̂ = Ŝ(t + b|x) and Q̂ = Ŝ(t|x). The following equation will be useful

at some points along the proof:

1
z

= 1 − (z − 1) + · · · + (−1)p(z − 1)p + (−1)(p+1) (z − 1)
z

(p+1)

. (2.11)
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First, an asymptotic expression of the bias of P̂D(t|x) will be obtained. For

p = 1 and z = Q̂

E(Q̂)
, Equation (2.11) gives:

P̂

Q̂
= P̂

E(Q̂)
E(Q̂)

Q̂
= P̂

E(Q̂)

1 −

 Q̂

E(Q̂)
− 1

+ E(Q̂)
Q̂

 Q̂

E(Q̂)
− 1

2 =

= P̂

E(Q̂)
−

P̂
(
Q̂ − E(Q̂)

)
E(Q̂)2

+ P̂

Q̂

(
Q̂ − E(Q̂)

)2

E(Q̂)2
.

Taking expectations,

E

(
P̂

Q̂

)
= E(P̂ )

E(Q̂)
−

E
[
P̂
(
Q̂ − E(Q̂)

)]
E(Q̂)2

+
E
[

P̂

Q̂

(
Q̂ − E(Q̂)

)2
]

E(Q̂)2
=

= E(P̂ )
E(Q̂)

− Cov(P̂ , Q̂)
E(Q̂)2

+
E
[

P̂

Q̂

(
Q̂ − E(Q̂)

)2
]

E(Q̂)2
.

(2.12)

On the other hand,

Bias
(
P̂D(t|x)

)
= E

(
1 − P̂

Q̂

)
−
(

1 − P

Q

)
= P

Q
− E

(
P̂

Q̂

)
.

Consequently,

Bias
(
P̂D(t|x)

)
= α1 + α2 + α3, (2.13)

where α1 = P

Q
− E(P̂ )

E(Q̂)
, α2 = Cov(P̂ , Q̂)

E(Q̂)2
and α3 = −

E
[

P̂

Q̂

(
Q̂ − E(Q̂)

)2
]

E(Q̂)2
.

Using standard algebra and Condition C.2 gives

α1 = P

Q
− P + B0(t + b|x)h2 + o(h2)

Q + B0(t|x)h2 + o(h2)

= PB0(t|x)h2 − QB0(t + b|x)h2 + o(h2)
Q(Q + B0(t|x)h2 + o(h2))

= P/QB0(t|x)h2 − B0(t + b|x)h2 + o(h2)
Q + B0(t|x)h2 + o(h2)

= (1 − PD(t|x))B0(t|x) − B0(t + b|x)
S(t|x) h2 + o(h2).

(2.14)

α2 =
C0(t, t + b|x) 1

nh
+ o

(
1

nh

)
(
Q + B0(t|x)h2 + o(h2)

)2 = O
( 1

nh

)
+ o(h2), (2.15)
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α3 = −
E
[

P̂

Q̂

(
Q̂ − E(Q̂)

)2
]

E(Q̂)2
= −

E
[

P
Q

(
Q̂ − E(Q̂)

)2
]

E(Q̂)2
−

E
[(

P̂

Q̂
− P

Q

)(
Q̂ − E(Q̂)

)2
]

E(Q̂)2

= −

(
1 − PD(t|x)

)
V ar(Q̂)

E(Q̂)2
−

E
[(

P̂D(t|x) − PD(t|x)
)(

Q̂ − E(Q̂)
)2
]

E(Q̂)2

= α31 + α32,

where

α31 = −

(
1 − PD(t|x)

)
V ar(Q̂)

E(Q̂)2
= −

(
1 − PD(t|x)

)
V0(t|x) 1

nh
+ o

( 1
nh

)
(
Q2 + B0(t|x)h2 + o(h2)

)
= O

(
1

nh

)

and

|α32| =

∣∣∣∣∣∣
E
[(

P̂D(t|x) − PD(t|x)
)(

Q̂ − E(Q̂)
)2
]

E(Q̂)2

∣∣∣∣∣∣
≤

E
[∣∣∣P̂D(t|x) − PD(t|x)

∣∣∣(Q̂ − E(Q̂)
)2
]

E(Q̂)2
≤

E
[(

Q̂ − E(Q̂)
)2
]

E(Q̂)2
= V ar(Q̂)

E(Q̂)2

=
V0(t|x) 1

nh
+ o

( 1
nh

)
(
Q2 + B0(t|x)h2 + o(h2)

) = O

(
1

nh

)
.

Therefore,

α3 = O
( 1

nh

)
. (2.16)

Finally plugging (2.14), (2.15) and (2.16) into (2.13) the bias part in Theorem 2.1

is proven.

Next, an asymptotic expression for the variance will be found. To do this, equa-

tion (2.11) is used with p = 3 and z = Q̂2

E(Q̂)2
:

E(Q̂)2

Q̂2
= 1 +

3∑
i=1

(−1)i

 Q̂2

E(Q̂)2
− 1

i

+ (Q̂2/E(Q̂)2 − 1)4

Q̂2/E(Q̂)2

= 1 +
3∑

i=1
(−1)i

Q̂2 − E(Q̂)2

E(Q̂)2

i

+
Q̂2 − E(Q̂)2

E(Q̂)2

4
E(Q̂)2

Q̂2
.

(2.17)
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Note that,

(Q̂ − E(Q̂))2 = Q̂2 − 2Q̂E(Q̂) + E(Q̂)2 + E(Q̂)2 − E(Q̂)2

= Q̂2 − 2Q̂E(Q̂) − E(Q̂)2 + 2E(Q̂)2

= Q̂2 − E(Q̂)2 − 2E(Q̂)(Q̂ − E(Q̂)),

implies Q̂2 − E(Q̂)2 = (Q̂ − E(Q̂))2 + 2E(Q̂)(Q̂ − E(Q̂)). Using this equation along

with Newton’s binomial formula, it is possible to obtain:(
Q̂2 − E(Q̂)2

E(Q̂)2

)i

=
(

(Q̂ − E(Q̂))2 + 2E(Q̂)(Q̂ − E(Q̂))
E(Q̂)2

)i

=
(

(Q̂ − E(Q̂))2

E(Q̂)2
+ 2E(Q̂)(Q̂ − E(Q̂))

E(Q̂)2

)i

=
i∑

j=0

(
i

j

)(
(Q̂ − E(Q̂))2

E(Q̂)2

)j(2E(Q̂)(Q̂ − E(Q̂))
E(Q̂)2

)i−j

=
i∑

j=0

(
i

j

)
(Q̂ − E(Q̂))2j

E(Q̂)2j
· 2i−j(Q̂ − E(Q̂))i−j

E(Q̂)i−j

=
i∑

j=0

(
i

j

)
2i−j(Q̂ − E(Q̂))i+j

E(Q̂)i+j
.

which is used to replace in expression (2.17), obtaining:

E(Q̂)2

Q̂2
= 1 +

3∑
i=1

(−1)i

 i∑
j=0

(
i

j

)
2i−j(Q̂ − E(Q̂))i+j

E(Q̂)i+j


+
 4∑

j=0

(
4
j

)
24−j(Q̂ − E(Q̂))4+j

E(Q̂)4+j

E(Q̂)2

Q̂2
.

Thus, it is possible to calculate

E

(
P̂ 2

Q̂2

)
= E

(
P̂ 2

E(Q̂)2

E(Q̂)2

Q̂2

)

= E

 P̂ 2

E(Q̂)2
+

3∑
i=1

(−1)i

 i∑
j=0

(
i

j

)
P̂ 2

E(Q̂)2

2i−j(Q̂ − E(Q̂))i+j

E(Q̂)i+j


+

4∑
j=0

(
4
j

)
24−j(Q̂ − E(Q̂))4+j

E(Q̂)4+j

E(Q̂)2

Q̂2

P̂ 2

E(Q̂)2


= E(P̂ 2)

E(Q̂)2
+

3∑
i=1

(−1)i
i∑

j=0

(
i

j

)
2i−jE(P̂ 2(Q̂ − E(Q̂)i+j))

E(Q̂)i+j+2

+
4∑

j=0

(
4
j

)24−jE
(

P̂ 2

Q̂2

(
Q̂ − E(Q̂)

)4+j
)

E(Q̂)4+j
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= E(P̂ 2) − E(P̂ )2 + E(P̂ )2

E(Q̂)2
+

3∑
i=1

(−1)i
i∑

j=0

(
i

j

)
2i−jE(P̂ 2(Q̂ − E(Q̂)i+j))

E(Q̂)i+j+2

+
4∑

j=0

(
4
j

)24−jE
(

P̂ 2

Q̂2

(
Q̂ − E(Q̂)

)4+j
)

E(Q̂)4+j

=
E
(
P̂ 2 − E(P̂ )2

)
E(Q̂)2

+ E(P̂ )2

E(Q̂)2
+

3∑
i=1

(−1)i
i∑

j=0

(
i

j

)
2i−jE(P̂ 2(Q̂ − E(Q̂)i+j))

E(Q̂)i+j+2

+
4∑

j=0

(
4
j

)24−jE
(

P̂ 2

Q̂2

(
Q̂ − E(Q̂)

)4+j
)

E(Q̂)4+j
.

(2.18)

Let us now define:

Aij = E
[(

P̂ − E(P̂ )
)i(

Q̂ − E(Q̂)
)j]

,

Bij = E
[
P̂ i
(
Q̂ − E(Q̂)

)j]
,

Ci = E(Q̂)i,

Dij = E
[(

1 − P̂

Q̂

)i(
Q̂ − E(Q̂)

)j]
,

for i, j = 0, 1, . . .. It is easy to verify that A0j = B0j, ∀ j = 0, 1, . . . and B2j =

A2j + 2B10A1j − B2
10A0j.

Replacing these equations in expression (2.18) it is obtained:

E

(
P̂ 2

Q̂2

)
= A20

C2
+ B2

10
C2

+
3∑

i=1
(−1)i

i∑
j=0

(
i

j

)
2i−j B2,i+j

Ci+j+2
+

4∑
j=0

(
4
j

)
24−j D2,4+j

C4+j

= A20

C2
+ B2

10
C2

+
3∑

i=1
(−1)i

i∑
j=0

(
i

j

)
2i−j A2,i+j + 2B10A1,i+j − B2

10A0,i+j

Ci+j+2

+
4∑

j=0

(
4
j

)
24−j D2,4+j

C4+j

.

(2.19)

Using Condition C.3 it is possible to prove that, for i ≥ 3,

Ai0 = E
[(

P̂ − E(P̂ )
)i]

= o

(
1

nh

)
, A0i = B0i = E

[(
Q̂ − E(Q̂)

)i]
= o

(
1

nh

)

for i + j ≥ 3, Aij = o

(
1

nh

)
and for j ≥ 3, Bij = o

(
1

nh

)
and Dij = o

(
1

nh

)
.
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Moreover, A01 = 0 = A10. Therefore,

E

(
P̂ 2

Q̂2

)
= A20

C2
+ B2

10
C2

− 4B10A11

C3
− 3B2

10A02

C4
+ o

(
1

nh

)

= V ar(P̂ )
E(Q̂)2

+ E(P̂ )2

E(Q̂)2
− 4E(P̂ )Cov(P̂ , Q̂)

E(Q̂)3
+ 3E(P̂ )2V ar(Q̂)

E(Q̂)4
+ o

(
1

nh

)
.

On the other hand, using (2.12),

E

(
P̂

Q̂

)
= B10

C1
− A11

C2
+ A12 + B10A02

C3
− A13 + B10A03

C4
+ D14

C4

= E(P̂ )
E(Q̂)

− Cov(P̂ , Q̂)
E(Q̂)2

+ E(P̂ )V ar(Q̂)
E(Q̂)3

+ o

(
1

nh

)
.

Then, an expression of V ar
(
P̂D(t|x)

)
is as follows:

V ar
(
P̂D(t|x)

)
= V ar

(
1 − P̂

Q̂

)
= V ar

(
P̂

Q̂

)
= E

(
P̂ 2

Q̂2

)
− E

(
P̂

Q̂

)2

= V ar(P̂ )
E(Q̂)2

+ E(P̂ )2

E(Q̂)2
− 4E(P̂ )Cov(P̂ , Q̂)

E(Q̂)3
+ 3E(P̂ )2V ar(Q̂)

E(Q̂)4
+ o

(
1

nh

)

−

E(P̂ )
E(Q̂)

−

Cov(P̂ , Q̂)
E(Q̂)2

− E(P̂ )V ar(Q̂)
E(Q̂)3

+ o

(
1

nh

)2

= V ar(P̂ )
E(Q̂)2

+ E(P̂ )2

E(Q̂)2
− 4E(P̂ )Cov(P̂ , Q̂)

E(Q̂)3
+ 3E(P̂ )2V ar(Q̂)

E(Q̂)4
+ o

(
1

nh

)

−

E(P̂ )2

E(Q̂)2
− 2E(P̂ )

E(Q̂)

Cov(P̂ , Q̂)
E(Q̂)2

− E(P̂ )V ar(Q̂)
E(Q̂)3

+ o

(
1

nh

)
+
Cov(P̂ , Q̂)

E(Q̂)2
− E(P̂ )V ar(Q̂)

E(Q̂)3
+ o

(
1

nh

)2 
= V ar(P̂ )

E(Q̂)2
− 2E(P̂ )Cov(P̂ , Q̂)

E(Q̂)3
+ E(P̂ )2V ar(Q̂)

E(Q̂)4
+ o

(
1

nh

)

+
Cov(P̂ , Q̂)

E(Q̂)2
− E(P̂ )V ar(Q̂)

E(Q̂)3
+ o

( 1
nh

)2

+ o

(
1

nh

)
.

Then, using Condition C.2,

V ar
(
P̂D(t|x)

)
= β1 + β2 + β3 + o

(
1

nh

)
(2.20)

where β1 = V ar(P̂ )
E(Q̂)2

, β2 = −2E(P̂ )Cov(P̂ , Q̂)
E(Q̂)3

and β3 = E(P̂ )2V ar(Q̂)
E(Q̂)4

.
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Straightforward but tedious calculations and Condition C.2 give

β1 = V0(t + b|x)
S(t|x)2

1
nh

+ o
( 1

nh

)
, (2.21)

β2 = −2S(t + b|x)C0(t, t + b|x)
S(t|x)3

1
nh

+ o
( 1

nh

)
, (2.22)

β3 = S(t + b|x)2V0(t|x)
S(t|x)4

1
nh

+ o
( 1

nh

)
. (2.23)

Equations (2.21), (2.22) and (2.23) can be plugged into (2.20) to prove the variance

part in Theorem 2.1.
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Chapter 3

Doubly smoothed conditional

survival estimation

3.1 Introduction

The probability of default estimations obtained by means of the estimators presented

in Chapter 2 are very reasonable, but they have excessive variability and are very

rough curves (see Figures 2.22 and 2.23). For the conditional survival function

estimators which were analysed there, smoothing is only performed with respect to

the covariate. They are step functions with respect to t, each jump ocurring at

uncensored observed lifetimes. This fact, along with the survival ratio structure of

the PD estimator (see Equation (2.2)), is the reason why the obtained curves are so

unstable.

This is a phenomenon that can be observed even in a simpler scenario. Let

us consider a simple random sample T1, ..., Tn of an uncensored time variable, T ,

for which no covariate is taken into account. In such a case, an estimation of

the survival function of T , S(t), could be obtained from the empirical distribution

function, Fn(t), as follows:

Sn(t) = 1 − Fn(t) = 1
n

n∑
i=1

I(Ti > t). (3.1)
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Then, a straightforward estimator of the probability of default would be given by:

PDn(t) = 1 − Sn(t + b)
Sn(t) .

Despite being under a simpler scenario (no censoring and no covariate) and achieving

a decent estimation of the survival function by means of the empirical distribution,

the ratio of survivals at times t and t + b causes jumps in the PD estimation such

as those shown in Figure 3.1.

Figure 3.1: Theoretical curves (solid lines) and estimations (dashed lines) by means of the

empirical distribution function of the survival function (left) and the probability of default (right)

for a sample of size 400 from an Exp(2).

The most commonly used nonparametric estimator of F (t|x) under censoring

was introduced by Beran (1981). This estimator turns out to be the Kaplan-Meier

estimator (see Kaplan and Meier (1958)) in absence of covariates. Asymptotic prop-

erties of this estimator have been widely studied in the literature by Dabrowska

(1989), González-Manteiga and Cadarso-Suárez (1994), Van Keilegom and Veraver-

beke (1996) and Iglesias-Pérez and González-Manteiga (1999), among others. An-

other nonparametric estimator of the conditional distribution function with censored

data was proposed by Van Keilegom and Akritas (1999) and Van Keilegom et al.

(2001). It presents a better behaviour than Beran’s estimator when estimating the

distribution function in the right tail with heavy censoring. In Gannoun et al. (2005)

and Gannoun et al. (2007) an alternative estimator based on the local linear method

proposed in Cai (2003) was studied. All these nonparametric distribution estimators
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are based on just covariate smoothing and will present the issue shown in Figure 3.1

for the estimation of the probability of default.

Our idea is to smooth somewhat the jumps that characterise the survival function

estimator, so that they are not magnified in the PD estimation. The proposal, to be

detailed in the following paragraphs, consists of obtaining a weighted average of the

jumps that the survival estimator takes. In the uncensored and unconditional case

above this would come to a weighted average of the jumps 1/n that the empirical

survival estimator in (3.3) takes. Figure 3.2 shows the survival and PD estimated

in this smoothed way. The large improvement over the empirical estimator shown

in Figure 3.1 is evident.

Figure 3.2: Theoretical curves (solid lines) and estimations (dashed lines) by means of the

smoothed distribution estimator of the survival function (left) and the probability of default (right)

for a sample of size 400 from an Exp(2).

Time variable smoothing of the conditional survival function could be useful for

the graphical representation, as well as to reduce the estimation error. In addition,

as discussed above, it could be potentially useful in estimating the probability of de-

fault. In biomedical studies, predicting a patient’s survival time, T , given a covariate

X, is certainly a problem of interest. This fact also motivates the in-depth analysis

of the doubly smoothed estimator of the survival function that is proposed in this

chapter. The idea of a time variable smoothing was firstly used in Földes et al.

(1981) to propose a smoothed Kaplan-Meier estimator. The work of Giné and Nickl
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(2008) presents a smoothed empirical standard measure without covariates. This

smoothing was also used in Portier and Segers (2018) to obtain a smoothed quan-

tile function from a cumulative distribution function which is smoothed in the time

variable. The local polynomial smoothing of the Kaplan–Meier estimator for fixed

designs is explored and analysed in Bagkavos and Ioannides (2021). In Leconte

et al. (2002) the smoothed Beran’s estimator was studied by simulation, but the

derivation of the asymptotic properties was not addressed.

In this chapter, a nonparametric estimator of the conditional survival function

with double smoothing both in the covariate and in the time variable is defined.

Asymptotic properties of the nonparametric estimator with double smoothing asso-

ciated with Beran’s estimator (Beran (1981)) are presented and a simulation study

shows the improvement obtained by using the smoothed Beran’s estimator of the

conditional survival function for censored data. An illustration with real data is

included.

The content of this chapter has been published in Peláez et al. (2022b).

3.2 Doubly smoothed conditional survival estima-

tor

Consider a random sample {(Xi, Zi, δi)}n
i=1 of (X, Z, δ). Let Ŝh(t|x) be a nonpara-

metric estimator of the conditional survival function with h = hn being the smooth-

ing parameter for the covariate. The distribution function of T is denoted by F (t)

and the conditional distribution function of T evaluated at t given X = x by F (t|x).

Functions S(t) and S(t|x) are the corresponding survival functions. The conditional

distribution function of Z is denoted by H(t|x), and the conditional distribution

function of C is denoted by G(t|x). The expression of the proposed doubly smoothed

survival estimator is as follows:

S̃h,g(t|x) = 1 −
n∑

i=1
s(i)K

(
t − Z(i)

g

)
(3.2)
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where s(i) = Ŝh(Z(i−1)|x) − Ŝh(Z(i)|x) with i = 2, ..., n and s(1) = 1 − Ŝh(Z(1)|x),

Z(i) is the i-th element of the sorted sample of Z, K(t) is the cumulative distribu-

tion function of the kernel K, K(t) =
∫ t

−∞ K(u)du, and g = gn is the smoothing

parameter for the time variable.

This survival estimator is not only smoothed in the covariate but also in the time

variable. It is based on estimating the survival function in a point t conditional to x

by means of a weighted mean of the values that the estimator Ŝh(t|x) takes in points

near t so that a smoothed estimation is obtained. Its construction is fairly intuitive.

Consider the kernel density estimator proposed by Parzen (1962) and Rosenblatt

(1956) defined by

f̂g(t) = 1
ng

n∑
i=1

K

(
t − Ti

g

)
The smoothed empirical distribution estimator derived from this density estimator

was proposed in Rao (1983) and it is given by

F̂g(t) =
∫ t

−∞
f̂g(u)du = 1

ng

n∑
i=1

∫ t

−∞
K

(
u − Ti

g

)
du = 1

n

n∑
i=1

K
(

t − Ti

g

)
.

Consequently, a smoothed empirical survival estimator could be defined by

Ŝg(t) = 1 − F̂g(t) = 1 − 1
n

n∑
i=1

K
(

t − Ti

g

)
. (3.3)

Note that the empirical ditribution function defined by F̂ (t) = 1
n

∑n
i=1 I(Ti ≤ t)

is a step function that jumps up by 1/n at each point Ti. Following the idea of

Rao (1983), a smoothed estimator of the conditional survival function is obtained

by replacing the jumps 1
n

of the empirical distribution in (3.3) by the jumps s(i)

previously defined, obtaining the smoothed conditional survival estimator in (3.2).

This doubly smoothed estimator, S̃h,g(t|x), could be obtained from any condi-

tional survival estimator, Ŝh(t|x), using Equation (3.2). In this chapter, the study

focuses on the classic Beran’s estimator of the conditional survival function, ŜB
h (t|x),

defined in (2.3). The smoothed survival function estimator based on Beran’s esti-

mator, S̃B
h,g(t|x), is obtained by replacing Ŝh(t|x) in (3.2) with ŜB

h (t|x) in (2.3) as
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follows:

S̃B
h,g(t|x) = 1 −

n∑
i=1

s(i)K
(

t − Z(i)

g

)
(3.4)

where s(i) = ŜB
h (Z(i−1)|x) − ŜB

h (Z(i)|x) and s(1) = 1 − ŜB
h (Z(1)|x).

Other conditional survival function estimators could also be considered, for in-

stance, the Weighted Nadaraya-Watson estimator and the Van Keilegom-Akritas

estimator. Their expressions are shown in Section 2.2 and the corresponding doubly

smoothed versions could be built using Equation (3.2).

3.3 Asymptotic results for the smoothed Beran’s

estimator

The derivation of the asymptotic properties of the smoothed Beran’s estimator,

S̃B
h,g(t|x), is addressed in this section. First, the necessary assumptions are set

out, secondly the theoretical results are established, and finally a discussion on the

optimal bandwidths is given.

3.3.1 Assumptions and notation

The assumptions required to establish and prove the asymptotic properties and the

notation used are presented below.

A.1. X, T , C are absolutely continuous random variables.

A.2. The density function of X, m, has support [0, 1].

A.3. Let H(t) = P (Z ≤ t) be the distribution function of Z and H(t|x) be the

conditional distribution function of Z|X = x,

(a) Let I = [x1, x2] be an interval contained in the support of m such that,

0 < γ = inf{m(x) : x ∈ Ic} < sup{m(x) : x ∈ Ic} = Γ < ∞
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for some Ic = [x1 − c, x2 + c] with c > 0 and 0 < c Γ < 1.

(b) For any x ∈ I, the random variables T and C are conditionally independent

given X = x.

(c) Denoting lx = inf{t : H(t|x) > 0} and ux = inf{t : H(t|x) = 1}, for any

x ∈ Ic, 0 ≤ lx, 0 ≤ ux < ∞.

(d) There exist u, θ ∈ R satisfying inf{1−H(u|x) : x ∈ Ic} ≥ θ > 0. Therefore,

1 − H(t|x) ≥ θ > 0 for every (t, x) ∈ [l, u] × Ic for any l < u.

A.4. The first and second derivatives of m, m′(x) and m′′(x), respectively, exist and

are continuous on Ic.

A.5. Let H1(t) = P (Z ≤ t, δ = 1) be the subdistribution function of Z when δ = 1.

The corresponding density functions of H(t) and H1(t) are bounded away from

0 on [l, u] for some existing l and the value u considered in Assumption A.3d.

A.6. Let H1(t|x) the conditional subdistribution function of Z|X = x when δ = 1.

The first and second derivatives with respect to t of the functions H(t|x) and

H1(t|x), i.e. H ′(t|x), H ′
1(t|x), H ′′(t|x) and H ′′

1 (t|x), exist and are continuous

on [l, u] × Ic.

A.7. The second partial derivatives first with respect to x and second with respect

to t of the functions H(t|x) and H1(t|x), i.e. Ḣ ′(t|x) and Ḣ ′
1(t|x) respectively,

exist and are continuous on [l, u] × Ic.

A.8. The kernel, K, is a symmetric, continuous and differentiable density function

with compact support [−1, 1].

A.9. The smoothing parameters h = hn and g = gn satisfy h → 0, g → 0 and

nh → ∞ when n → ∞.

These assumptions are standard in the literature and affordable in this con-

text. They were previously required in Dabrowska (1989) and Iglesias-Pérez and

González-Manteiga (1999). Assumptions A.1 and A.2 are about characteristics and

independence of the variables involved. Assumptions A.3-A.7 are needed to bound
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some population functions. Conditions A.2, A.3a, A.3b and A.4 are assumed in

Dabrowska (1989) to obtain exponential bounds for the tails of the distribution

of ŜB
h (t|x) and, from them, to obtain the weak and strong convergence of this es-

timator. Assumptions A.3c and A.3d are necessary to estimate the tails of the

distribution functions involved. Conditions A.5, A.6 and A.7 along with those im-

posed on the kernel function in Assumption A.8 ensure asymptotic unbiasedness of

ŜB
h (t|x). Bandwidth requirements are covered by Assumption A.9. The imposed

conditions ensure that the point (t, x), where the theoretical results are established,

is not a boundary point.

The following notation will be used. Let R : R −→ R be any function, the

constants cR and dR are defined as follows

cR =
∫

R(t)2dt, dR =
∫

t2R(t)dt.

In particular, one can consider the kernel K and its distribution function K to

define these constants. In this case, Assumption A.8 guarantees that cK and dK are

finite. Being that,

cK =
∫

K(t)2dt ≤
∫ 1

−1
∥K∥2

∞dt ≤ ∥K∥2
∞

∫ 1

−1
dt = 2∥K∥2

∞ < ∞,

dK =
∫

t2K(t)dt ≤
∫ 1

−1
t2∥K∥∞dt ≤ ∥K∥∞

∫ 1

−1
t2dt = 2

3∥K∥∞ < ∞.

From A.8, K(u) = K(−u) for all u ∈ R. Then, it is satisfied that
∫ u

−∞ K(t)dt =∫∞
−u K(t)dt for u < 0, which implies K(u) = 1 − K(−u). As a consequence,

cK =
∫ +∞

−∞
K2(u)du =

∫ 1

−1
K2(u)du =

∫ 0

−1
K2(u)du +

∫ 1

0
K2(u)du

=
∫ 0

−1

(
1 − K(−u)

)2
du +

∫ 1

0
K2(u)du =

∫ 1

0

(
1 − K(v)

)2
dv +

∫ 1

0
K2(u)du

=
∫ 1

0

(
1 − 2K(u) + K2(u) + K2(u)

)
du =

∫ 1

0

(
1 − 2K(u)

(
1 − K(u)

))
du,

Given that 2K(u)
(
1 − K(u)

)
≥ 0,

cK =
∫ 1

0

(
1 − 2K(u)

(
1 − K(u)

))
du ≤

∫ 1

0
1du = 1.
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The following functions are also defined,

Kl(u) = ulK(u), Kl(u) =
∫ u

−∞
Kl(t)dt. (3.5)

Given any function f : Rk −→ R, its first derivatives with respect to the first

and second variables are denoted as follows:

f ′(x1, ..., xk) = ∂f(x1, ..., xk)
∂x1

, ḟ(x1, ..., xk) = ∂f(x1, ..., xk)
∂x2

Correspondingly, the second derivatives with respect to the first or second variable

are denoted by f ′′(x1, ..., xk) and f̈(x1, ..., xk). Finally, let f ∗ g be the convolution

of any two functions f and g defined as f ∗ g =
∫

f(t − u)g(u)du.

The following functions are required to state the asymptotic results:

ξ(Z, δ, t, x) = I(Z ≤ t, δ = 1)
1 − H(Z|x) −

∫ t

0

I(u ≤ Z)dH1(u|x)(
1 − H(u|x)

)2 ,

η(Z, δ, t, x) =
∫

K(u)
(
1 − F (t − gu|x)

)
ξ(Z, δ, t − gu, x)du,

Φξ(u, t, x) = E
[
ξ(Z1, δ1, t, x)|X1 = u

]
,

Φη(u, t, x) =
∫

K(v)
(
1 − F (t − gv|x)

)
Φξ(u, t − gv, x)dv,

L(t|x) =
∫ t

0

dH1(z|x)(
1 − H(z|x)

)2 .

An additional assumption related to the differentiability of the above functions

is then required:

A.10 Let (t, x) ∈ [l, u] × Ic. The first derivative of L(u|x) with respect to u exists at

(t, x). The second derivative of m(u) exists at u = x. The second derivative of

S(u|x) exists at (t, x) and (t + b, x). The second derivative of Φξ(u, t, x) exists

at u = x.
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3.3.2 Asymptotic results

An almost sure representation for the smoothed Beran’s estimator of the conditional

survival function is presented here. Asymptotic expressions for the bias and variance

of the estimator are found and the asymptotic normality is stated.

In Iglesias-Pérez and González-Manteiga (1999), an almost sure representation is

found for a generalized Beran’s estimator of the conditional survival function when

the data are subject to random left truncation and right censoring. We do not

consider truncation but only right censoring. Then, an almost sure representation

of Beran’s estimator can be obtained as a direct consequence of Theorem 2(c) in

Iglesias-Pérez and González-Manteiga (1999) by just assuming a degenerated in zero

distribution for the left truncation time variable.

Theorem 3.1 (Almost sure representation for Beran’s estimator of the conditional

survival function). Under assumptions A.1-A.10, if l < lx for any x ∈ I, then

ŜB
h (t|x) − S(t|x) = (1 − F (t|x))

n∑
i=1

wh,i(x)ξ(Zi, δi, t, x) + Rn(t|x)

for t ∈ [l, u], x ∈ I, where

sup
[l,u]×I

|Rn(t|x)| = O

(
ln n

nh

)3/4

a.s.

A similar result is obtained below for the smoothed Beran’s estimator.

Theorem 3.2 (Almost sure representation for the smoothed Beran’s estimator of

the conditional survival function). Under assumptions A.1-A.10, if l < lx for any

x ∈ I, then

S̃B
h,g(t|x) − S(t|x) =

n∑
i=1

wh,i(x)η(Zi, δi, t, x) − 1
2dKF ′′(t|x)g2 + R1

n(t|x) + R2
n(t|x)

for t ∈ [a′, b′], x ∈ I, where a′ = l + ε, b′ = u − ε for ε > 0,

sup
(t,x)∈[a′,b′]×I

∣∣∣∣R1
n(t|x)

∣∣∣∣ = O

(
ln n

nh

)3/4

a.s.,

and

sup
(t,x)∈[a′,b′]×I

∣∣∣R2
n(t|x)

∣∣∣ = o(g2).
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Applying Theorem 3.2, the asymptotic bias and covariance of the smoothed

Beran’s estimator of the conditional survival function are obtained. Firstly, the

smoothed Beran’s estimator S̃B
h,g(t|x) is written as the sum of two terms: one dom-

inant term and a negligible one. This is shown in Lemma 3.1.

Lemma 3.1. Under the assumptions of Theorem 3.2, the smoothed Beran’s estima-

tor S̃B
h,g(t|x) can be written as follows

S̃B
h,g(t|x) = S̃AB

h,g (t|x) + R̃n(t|x)

where

S̃AB
h,g (t|x) = S(t|x) +

n∑
i=1

wA
h,i(x)η(Zi, δi, t, x) − 1

2dKF ′′(t|x)g2,

with

wA
h,i(x) = 1

nh

K
(
(x − Xi)/h

)
m(x)

for all i = 1, ..., n, and

sup
[l,u]×I

|R̃n(t|x)| = O

(
ln n

nh

)3/4

+ o(g2) + Op

(
h2 + 1√

nh

)2

.

Theorem 3.3 (Bias and covariance of S̃AB
h,g (t|x)). Under the assumptions of The-

orem 3.2, the asymptotic expressions for the bias and the variance of S̃B
h,g(t|x) are

the following:

Bias
(
S̃AB

h,g (t|x)
)

=
dK

(
1 − F (t|x)

)
2m(x)

(
2Φ′

ξ(x, t, x)m′(x) + Φ′′
ξ (x, t, x)m(x)

)
h2

−1
2dKF ′′(t|x)g2 + o(h2),

Var
(
S̃AB

h,g (t|x)
)

= cK

m(x)
(
1 − F (t|x)

)2
L(t|x) 1

nh

+cK(cK − 1)
m(x)

(
1 − F (t|x)

)2
L′(t|x) g

nh
+ O

(
h2 + g2

nh

)
.

Finally, the asymptotic distribution of the smoothed Beran’s estimator of the

conditional survival function is obtained.
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Theorem 3.4 (Limit distribution of S̃B
h,g(t|x)). Under the assumptions of Theorem

3.2 and assuming (ln n)3

nh
→ 0, Ch := limn→∞ n1/5h > 0 and Cg := limn→∞ n1/5g >

0, the limit distribution of S̃B
h,g(t|x) is given by

√
nh
(

S̃B
h,g(t|x) − S(t|x)

)
d−→ N(µ, σ),

where

µ = C
5/2
h

dK

(
1 − F (t|x)

)
2m(x)

(
2Φ′

ξ(x, t, x)m′(x) + Φ′′
ξ (x, t, x)m(x)

)

−C
1/2
h C4/2

g

1
2dKF ′′(t|x)

and

σ2 = cK

m(x)
(
1 − F (t|x)

)
L(t|x).

Remark 3.1. Assuming Ch := limn→∞ n1/5h > 0, but n1/5g → 0, the asymptotic

distribution of the smoothed Beran’s estimator is

√
nh
(

S̃B
h,g(t|x) − S(t|x)

)
d−→ N(µ1, σ),

with

µ1 = C
5/2
h

dK

(
1 − F (t|x)

)
2m(x)

(
2Φ′

ξ(x, t, x)m′(x) + Φ′′
ξ (x, t, x)m(x)

)
.

Assuming n1/5h → 0 and n1/5g → 0, the asymptotic distribution of the smoothed

Beran’s PD estimator is
√

nh
(

S̃B
h,g(t|x) − S(t|x)

)
d−→ N(0, σ).

The asymptotic properties of Beran’s estimator for the conditional survival func-

tion were proven in both works Dabrowska (1989) and Iglesias-Pérez and González-

Manteiga (1999). It is worth noting that the asymptotic bias of Beran’s estimator

and the smoothed Beran’s estimator have the same order as long as g is negligible

with respect to h, i.e., g = o(h). On the other hand, assuming h → 0 and g → 0,

the asymptotic variance of Beran’s estimator and the smoothed Beran’s estimator

have the same order since the terms g/nh and h/n are negligible compared to 1/nh.

Proofs of these results can be found in Section 3.6.
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3.3.3 Asymptotically optimal bandwidths

In this section, a discussion about the smoothing parameters of the smoothed Beran’s

survival estimator takes place in order to find the asymptotic optimal bandwidths

defined as those that minimise the asymptotic mean squared error (MSE).

Considering only the dominant terms of the bias and the variance of the asymp-

totic estimator S̃AB
h,g (t|x), from the expressions given in Theorems 3.3 and 3.4, it

follows that

Var
(
S̃AB

h,g (t|x)
)

= c1
1

nh
− c2

g

nh
+ o

(
g

nh

)
,

Bias
(
S̃AB

h,g (t|x)
)

= c3h
2 + c4g

2 + o(h2),

where the constants c1, c2, c3 and c4 are defined by

c1 = cK

(
1 − F (t|x)

)2
L(t|x)

m(x) > 0,

c2 = cK(1 − cK)

(
1 − F (t|x)

)2
L′(t|x)

m(x) > 0,

c3 =
dK

(
1 − F (t|x)

)
2m(x)

(
2Φ′

ξ(x, t, x)m′(x) + Φ′′
ξ (x, t, x)m(x)

)
,

c4 = −1
2dKF ′′(t|x).

Then, the asymptotic bandwidths that minimise the dominant terms of the MSE

can be obtained by minising the function:

Ψ(h, g) = c1
1

nh
− c2

g

nh
+ c2

3h
4 + c2

4g
4 + 2c3c4h

2g2. (3.6)

Then, it is necessary to consider the partial derivatives of Ψ with respect to both

h and g, equal them to zero and distinguish three different cases depending on the

relative asymptotic behaviour of h and g. The partial derivative of Ψ with respect

to h is
∂Ψ
∂h

= −c1
1

nh2 + c2
g

nh2 + 4c2
3h

3 + 4c3c4hg2,

but, since g → 0, the term c2
g

nh2 is negligible with respect to the term c1

nh2 . Simi-

larly,
∂Ψ
∂g

= −c2
1

nh
+ 4c2

4g
3 + 4c3c4h

2g.
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Therefore, the equations to be taken into account are the following ones

−c1
1

nh2 + 4c2
3h

3 + 4c3c4hg2 = 0, (3.7)

−c2
1

nh
+ 4c2

4g
3 + 4c3c4h

2g = 0. (3.8)

There are three possible cases for the asymptotic behaviour of g

h
.

Case 1 g = o(h)

Equations asymptotically equivalent to (3.7) and (3.8) in this case are

−c1
1

nh2 + 4c2
3h

3 = 0,

−c2
1

nh
+ 4c3c4h

2g = 0.

Then, the optimal bandwidths are hopt = c0n
−1/5 and gopt = d0n

−2/5 with c0 =(
c1

4c2
3

)1/5

and d0 = c2c
1/5
3

42/5c
3/5
1 c4

. In this case,

Ψ(hopt, gopt) =
(

c1

c0
+ c2

3c
4
0

)
n−4/5 +

(
c3c0 + 2c3c4c

2
0d

2
0 − c2d0

c0

)
n−6/5 + c2

4d
4
0n

−8/5.

Case 2 h = o(g)

When h = o(g), asymptotically equivalent versions of Equations (3.7) and (3.8)

are

− c1

nh2 + 4c3c4hg2 = 0,

− c2

nh
+ 4c2

4g
3 = 0.

and the solution of this system is hopt = e0n
−1/7 and gopt =

(
c2

4c2
4e0

)1/3

n−2/7 with

e0 =
(

c1(4c2
4)2/3

4c3c4c
2/3
2

)3/7

. So, gopt = o(hopt) which contradicts the initial hypothesis.

Case 2 is discarded.
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Case 3 lim
h→∞

h

g
= α for some α > 0.

In this case, h

g
= α asymptotically and the asymptotic expression for Ψ becomes

Ψ(h, g) = c1

nαg
− c2

nα
+ c5g

4

with c5 = c2
3α

4 + c2
4 + 2c3c4α

2 = (c3α
2 + c4)2.

The option c5 = 0 is discarded because it leads to an optimal bandwidth g

which does not tend to zero. Therefore, c5 = (c3α
2 + c4)2 > 0 and the minimun is

reached at hopt = αl0n
−1/5 and gopt = l0n

−1/5 with l0 =
(

c1

4c5α

)1/5

. Straightforward

calculations lead to

Ψ(hopt, gopt) = 5c
4/5
1 c

1/5
5

44/5α4/5 n−4/5 − c2

nα
.

This means that the minimal value of Ψ is attained at α = ∞ which contradicts

Case 3.

From the arguments above it follows that g = o(h) is the only feasible case,

obtaining the corresponding optimal bandwidths for the estimator S̃AB
h,g (t|x).

3.4 Simulation study

A simulation study was conducted in order to compare the performance of the

smoothed Beran’s estimator of the conditional survival function with Beran’s esti-

mator. The models considered in the study are those presented in Section 2.4.

The conditional survival function is estimated in a time grid of size nT , 0 <

t1 < · · · < tnT
. For Model 1, tnT

= 0.4992 is about the 90th percentile of the

corresponding time variable distribution for x = 0.8. Model 2 considers tnT
=

0.7154 is about the 90th percentile of the corresponding time variable distribution

for x = 0.6. For Model 3, x = 0.8 and tnT
= 3.1211 is about the 90th percentile of

the corresponding time variable distribution.
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The standard Gaussian kernel truncated in the range [−50, 50] is used for both

the covariate and the time variable smoothing. The sample size is n = 400, and the

size of the lifetime grid is nT = 100. In addition, the boundary effect is corrected

using the reflexion principle proposed in Silverman (1986).

The optimal bandwidth for ŜB
h (t|x), h1, is taken (from a meshgrid of 50 values

of h) as the value which minimises a Monte Carlo approximation of the MISE:

MISEx(h) = E
(∫ (

ŜB
h (t|x) − S(t|x)

)2
dt
)

based on N = 100 simulated samples. The value of MISE using this smoothing

parameter is approximated from N = 1000 simulated samples and used, along with

its square root (RMISE), as a measure of the estimation error of ŜB
h (t|x).

The smoothed survival estimator S̃B
h,g(t|x) depends on two bandwidths. Three

strategies are be used in order to obtain these smoothing parameters.

Strategy 1 It consists of fixing the covariate smoothing parameter to the opti-

mal one, h1, for Beran’s estimator and approximating the time variable smoothing

parameter. The error to minimise is

MISEx(h1, g) = E
(∫ (

S̃B
h1,g(t|x) − S(t|x)

)2
dt
)

considered as a function of the bandwidth g. It is approximated from N = 100

simulated samples in a grid of 50 values of g and the bandwidth which provides the

smaller error is chosen as g1. Then, N = 1000 samples are simulated to approximate

MISEx(h1, g1) which is the measure of the estimation error of S̃B
h,g(t|x). The main

advantage of using this strategy is its relatively low computational cost.

Strategy 2 The optimal bandwidth (h2, g2) is chosen, from a meshgrid of 50 × 50

values of (h, g), as the pair which minimises some Monte Carlo approximations of

MISEx(h, g) = E
(∫ (

S̃B
h,g(t|x) − S(t|x)

)2
dt
)

based on N = 100 simulated samples. Then, the value of the MISE made by

S̃B
h2,g2(t|x) is approximated from N = 1000 simulated samples.
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Strategy 3 The optimal bandwidth (h3, g3) is obtained by minimising some Monte

Carlo approximations of the function MISEx(h, g) based on N = 100 simulated

samples using a limited-memory algorithm. An optimisation method for solving

large nonlinear optimisation problems allowing box contraints (L-BFGS-B) is cho-

sen. It was proposed by Byrd et al. (1995) for solving optimization problems sub-

ject to simple bounds on the variables in which information on the Hessian matrix

is difficult to obtain. This uses a limited-memory modification of the BFGS quasi-

Newton method published simultaneously by Broyden (1970), Fletcher (1970), Gold-

farb (1970) and Shanno (1970). Results of numerical studies about this method are

shown in Byrd et al. (1995). It is available at the stats package from the Compre-

hensive R Archive Network (CRAN) using Fortran 77 subroutines (see Zhu et al.

(1997)). The value of the MISE made by S̃B
h3,g3(t|x) is approximated from N = 1000

simulated samples.

Neither the bandwidth for Beran’s estimator nor the bandwidths for the smoothed

Beran’s estimator with any of these strategies can be used in practice but their choice

produces a fair comparison since the estimators are built using the best possible

choice for the smoothing parameters.

Figure 3.3 shows the function MISEx(h) over a grid of 50 values of h for Models

1, 2 and 3 when the conditional censoring probability is 0.5. These graphs show

the function to minimise in order to obtain the optimal bandwidth for Beran’s

estimator and the region where this minimum is attained. The results for other

levels of censoring probability, which are not shown here, are quite similar.

Figure 3.4 shows the function MISEx(h1, g) for each level of censoring condi-

tional probability and each model. These graphs show the error curve to minimise

in order to obtain the optimal time smoothing parameter. It follows from this that

the optimal bandwidth g is easily approximated by Strategy 1.

Figure 3.5 shows the function MISEx(h, g) over a meshgrid of 50 values of h and

50 values of g for Models 1, 2 and 3 when the censoring conditional probability is 0.5.

These graphs show the two-dimensional functions to be minimised in Strategies 2
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and 3 in order to obtain the optimal bandwidths for the smoothed Beran’s estimator.

The red zone is where this minimum is reached and the coordinates of the point at

which the minimum is attained provide the optimal smoothing bandwidths. The

results for other levels of censoring probability, which are not shown here, are quite

similar. These graphs show that the smoothing parameters for the smoothed Beran’s

estimator can be well approximated in all scenarios.

It is clear that the magnitude of the estimation error is notably affected by the

choice of the time smoothing bandwidth (g). However, for a fixed value of h, the

value of g for which the smallest error is made does not seem to vary too much

depending on the value of the covariate smoothing bandwidth (h). This can be seen

in Figure 3.6. There, MISEx(h, g) is shown as a function of g for some fixed values

of h within the interval where the optimum is reached. The obtained curves have

similar shape and they are close for all the values of h in Model 2. They are not

that close in Model 1 or 3, but the minimum of MISEx(h, g) is reached for similar

values of g in all of them.

Figure 3.3: MISEx(h) function approximated via Monte Carlo for Beran’s estimator using

N = 100 simulated samples from Model 1 (left), Model 2 (center) and Model 3 (right) when

P (δ = 0|x) = 0.5.

108



Figure 3.4: MISEx(h1, g) function approximated via Monte Carlo for the smoothed Beran’s

estimator using N = 100 simulated samples from Model 1 (left), Model 2 (center) and Model 3

(right) when P (δ = 0|x) = 0.5.

Figure 3.5: MISEx(h, g) function approximated via Monte Carlo for the smoothed Beran’s

estimator using N = 100 simulated samples from Model 1 (topleft), Model 2 (topright) and Model

3 (bottom) when P (δ = 0|x) = 0.5.
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Figure 3.6: MISEx(h, g) as a function of g approximated via Monte Carlo for the smoothed

Beran’s estimator using N = 100 simulated samples for some fixed equispaced values of h ∈ [0.1, 0.8]

for Model 1 (top), h ∈ [0.1, 0.4] for Model 2 (middle) and h ∈ [0.01, 0.18] for Model 3 (bottom)

with P (δ = 0|x) = 0.2 (left), P (δ = 0|x) = 0.5 (center) and P (δ = 0|x) = 0.8 (right).

Tables 3.1, 3.2 and 3.3 show the MISE bandwidths and the estimation errors of

Beran’s estimator and the smoothed Beran’s estimator for each model obtained by

means of each strategy. In order to compare the behaviour of the estimators and

quantify the improvement of the smoothing over the original estimator, the ratio

Ri(x) is defined

Ri(x) =
RMISEx

(
S̃B

hi,gi
(·|x)

)
RMISEx

(
ŜB

h1(·|x)
)
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for i = 1, 2, 3 depending on the chosen smoothing strategy. The closer to 0 the

value of Ri(x), the greater the improvement of the smoothed Beran’s estimator with

respect to Beran’s estimator. The relation between R1, R2 and R3 also informs

which of the three strategies reduces the error most.

In all cases, RMISE values are lower for the smoothed Beran’s estimator than for

Beran’s estimator and this difference becomes bigger when increasing the censoring

conditional probability. This is confirmed by looking at the values of Ri(x) for

all i = 1, 2, 3. When the censoring conditional probability is 0.2 or 0.5, the time

smoothing reduces the error by about 5% in Model 1 and 8% in Model 2. This

improvement is about 22% in Model 1 and 40% in Model 2 when the probability

of conditional censoring is 0.8. The error reduction in Model 3 with respect to the

nonsmoothed survival estimator is more significant, reaching 50% and 70% when

censoring is moderate or heavy, respectively.

The approximations of the optimal bandwidths obtained by Strategy 3 are similar

to those obtained by Strategy 2. The corresponding estimation errors made by the

smoothed Beran’s estimator are also very close. Both Strategies 2 and 3 improve on

Strategy 1. Therefore, the results are equally compelling for both Strategies 2 and

3. The advantage of using Strategy 3 lies in the computing times required to obtain

an approximation of the optimal bandwidths (h, g). In later paragraphs it will be

seen that the minimisation method based on the iterative method turns out to be

significantly faster.

A brief study not included here shows that the results of these simulations hold

even if the distribution of X is not uniform.
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Model 1

P (δ = 0|x) 0.2 0.5 0.8

ŜB
h1

h1 0.14245 0.15449 0.21469

RMISEx(h1) 0.02577 0.03549 0.10122

S̃B
h1,g1

h1 0.14245 0.15449 0.21469

g1 0.02727 0.03131 0.07576

RMISEx(h1, g1) 0.02466 0.03364 0.08010

R1 0.95693 0.94787 0.79135

S̃B
h2,g2

h2 0.13673 0.13673 0.19184

g2 0.02939 0.03714 0.07980

RMISEx(h2, g2) 0.02460 0.03349 0.07952

R2 0.95460 0.94365 0.78562

S̃B
h3,g3

h3 0.13108 0.13936 0.19323

g3 0.03036 0.03480 0.08129

RMISEx(h3, g3) 0.02459 0.03348 0.07951

R3 0.95421 0.94336 0.78547

Table 3.1: Optimal bandwidths, RMISE, R1, R2 and R3 of the survival estimation for Beran’s

estimator, the smoothed Beran’s estimator with Strategy 1, Strategy 2 and Strategy 3 in each level

of conditional censoring probability for Model 1.
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Model 2

P (δ = 0|x) 0.2 0.5 0.8

ŜB
h1

h1 0.25918 0.22857 0.23469

RMISEx(h1) 0.02304 0.03186 0.08641

S̃B
h1,g1

h1 0.25918 0.22857 0.23469

g1 0.05110 0.05620 0.16330

RMISEx(h1, g1) 0.02144 0.02943 0.05185

R1 0.93055 0.92373 0.60005

S̃B
h2,g2

h2 0.24082 0.20408 0.20408

g2 0.05265 0.06041 0.16510

RMISEx(h2, g2) 0.02129 0.02907 0.05067

R2 0.92405 0.91243 0.58639

S̃B
h3,g3

h3 0.24189 0.20475 0.20511

g3 0.05265 0.06040 0.16324

RMISEx(h3, g3) 0.02130 0.02908 0.05067

R3 0.92448 0.91274 0.58639

Table 3.2: Optimal bandwidths, RMISE, R1, R2 and R3 of the survival estimation for Beran’s

estimator, the smoothed Beran’s estimator with Strategy 1, Strategy 2 and Strategy 3 in each level

of conditional censoring probability for Model 2.
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Model 3

P (δ = 0|x) 0.2 0.5 0.8

ŜB
h1

h1 0.04490 0.05265 0.12837

RMISEx(h1) 0.11112 0.14644 0.28914

S̃B
h1,g1

h1 0.04490 0.05265 0.12837

g1 0.54082 0.62857 1.23469

RMISEx(h1, g1) 0.07817 0.10091 0.08886

R1 0.70347 0.68909 0.30733

S̃B
h2,g2

h2 0.11061 0.16980 1.00000

g2 0.88776 1.03061 1.35714

RMISEx(h2, g2) 0.05248 0.06379 0.07550

R2 0.47228 0.43561 0.26112

S̃B
h3,g3

h3 0.11391 0.17195 1.00000

g3 0.89506 1.03011 1.35999

RMISEx(h3, g3) 0.05241 0.06375 0.07565

R3 0.47165 0.43533 0.26164

Table 3.3: Optimal bandwidths, RMISE, R1, R2 and R3 of the survival estimation for Beran’s

estimator, the smoothed Beran’s estimator with Strategy 1, Strategy 2 and Strategy 3 in each level

of v conditional censoring probability for Model 3.

Figure 3.7 shows a cloud of estimated survival curves (50 out of 1000), the

theoretical survival function, the mean curve and the 5th and 95th percentiles of

the total estimated curves for the smoothed Beran’s estimator in Model 1, Model 2

and Model 3. These figures show clearly how the estimated curves are distributed

and the variability they present, as well as to notice the worsening of the estimations

as the probability of censoring increases.
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Figure 3.7: Theoretical S(t|x) (solid line), mean curve (dashed line) and 5th and 95th percentiles

(dotted line) obtained by means of the smoothed Beran’s estimator when P (δ = 0|x) = 0.2 (left)

and P (δ = 0|x) = 0.8 (right) in Model 1 (top), Model 2 (middle) and Model 3 (bottom).

Table 3.4 shows the computation time (in seconds) of Beran’s estimator and

smoothed Beran’s estimator when estimating the conditional survival curve in a

100-point time grid and a fixed value of x for different values of the sample size in

Model 1. The smoothing parameters are fixed to the optimal values. Time variable

smoothing results in an increase of the CPU time. The smoothed Beran’s estimator

is the most affected by the increase of the sample size and its CPU times is higher

than the CPU of Beran’s estimator.
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n 50 100 200 400 1200

Beran 0.01 0.01 0.01 0.02 0.02

SBeran 0.01 0.01 0.02 0.03 0.07

Table 3.4: CPU time (in seconds) for estimating S(t|x) in a time grid of size 100 for each estimator

and different sample sizes (n).

It is also interesting to compare the computational efficiency of the strategies used

to find the optimal bandwidths, since Strategy 1 seems to be faster but Strategies 2

and 3 provides smaller estimation errors. Table 3.5 shows the CPU time (in minutes)

for each strategy and several number of trials.

In all strategies the sample size is n = 400 and the conditional survival function

is estimated in a time grid of size nT = 100. The number of simulated samples

(N) used to approximate the MISE by Monte Carlo is the parameter that varies to

compare the time each strategy takes to obtain the optimal bandwidths. The results

clearly show the computational advantage of using Strategy 3, since Strategy 1 and

2 are significantly slower.

N 50 100 150 200

Strategy 1 1.12 1.95 2.99 3.86

Strategy 2 37.58 79.83 117.79 159.99

Strategy 3 0.55 1.13 2.04 2.71

Table 3.5: CPU time (in minutes) for approximating the optimal bandwidth (h, g) for S̃B
h,g(t|x)

with Strategies 1, 2 and 3 and different numbers of trials (N).

3.5 Application to real data

A brief illustration of the use of the smoothed Beran’s estimator is provided here.

The survival function of the time that COVID-19 patients remain hospitalised in

the Intensive Care Unit (ICU) is estimated by means of Beran’s and the smoothed
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Beran’s estimators. A dataset from SERGAS (Galician health service) with dates of

admission and discharge (if applicable) to ICU and age of 288 COVID-19 patients

in Galicia (Spain) during the first weeks of the outbreak (February-April, 2020) is

used. The censoring rate of this dataset is 14.60%. Figure 3.8 shows the conditional

survival estimation at x = 66.04 years, which is the sample mean of age in the

dataset, along the time interval [0, 40]. The bandwidths were empirically chosen

through visual inspection and considering the ranges in which the variables lie:

h = 7.03 for Beran’s estimator and (h, g) = (7.03, 10.80) for the smoothed Beran’s

estimator. The differences between the two estimations are remarkable. Although

the tendency of the survival curve is similar in both estimations, Beran’s estimation

has the classic roughness of a jump function in the time variable, while the smoothed

Beran’s estimation is a much smoother curve and presumably with lower estimation

error.

Figure 3.8: Conditional survival function estimated with Beran’s (solid line) and the smoothed

Beran’s estimator (dashed line) for the COVID-19 SERGAS dataset.
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3.6 Proofs

The following lemmas will be used in the proofs.

Lemma 3.2 (Integration by parts formula for Riemann-Stieltjes integral with a

piecewise-defined function). Let u : [0, L] −→ R be a differentiable function in [0, L]

and let v : [0, L] −→ R be a nondecreasing piecewise function, i.e.,

v(x) =
k−1∑
j=1

bj1[aj−1,aj)(x) + bk1[ak−1,ak](x)

where 0 = a0 < a1 < · · · < ak = L and bi ∈ R for all i = 1, ..., k, b1 < b2 < · · · < bk.

Then, ∫ L

0
u(x)v(dx) =

[
u(x)v(x)

]x=L

x=0
−
∫ L

0
u′(x)v(x)dx.

Proof of Lemma 3.2.

On the one hand,

∫ L
0 u(x)v(dx) =

k−1∑
i=1

u(ai)
(
v(ai) − v(a−

i )
)

=
k−1∑
i=1

u(ai)
(
v(ai) − v(ai−1)

)

=
k−1∑
i=1

u(ai)
(
bi+1 − bi

) (3.9)

On the other hand,[
u(x)v(x)

]x=L

x=0
−
∫ L

0
u′(x)v(x)dx =

= u(L)v(L) − u(0)v(0) −
k−1∑
j=1

bj

∫ L

0
u′(x)1[aj−1,aj)(x)dx − bk

∫ L

0
u′(x)1[ak−1,ak](x)dx

= u(L)v(L) − u(0)v(0) −
k−1∑
j=1

bj

∫ aj

aj−1
u′(x)dx − bk

∫ ak

ak−1
u′(x)dx

= u(L)v(L) − u(0)v(0) −
k−1∑
j=1

bj

(
u(aj) − u(aj−1)

)
− bk

(
u(ak) − u(ak−1)

)

= u(L)v(L) − u(0)v(0) −
k−1∑
j=1

bju(aj) +
k−1∑
j=1

bju(aj−1) − bku(ak) + bku(ak−1)
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= u(L)v(L) − u(0)v(0) −
k−1∑
j=1

bju(aj) +
k−2∑
j=0

bj+1u(aj) − bku(ak) + bku(ak−1)

= u(L)v(L) − u(0)v(0) −
k−2∑
j=1

bju(aj) − bk−1u(ak−1) +
k−2∑
j=1

bj+1u(aj) + b1u(a0)

−bku(ak) + bku(ak−1)

= u(L)v(L) − u(0)v(0) + b1u(a0) − bku(ak) +
k−1∑
j=1

(bj+1 − bj)u(aj)

Since a0 = 0, ak = L, v(a0) = b1 and v(ak) = bk, we have

[
u(x)v(x)

]x=L

x=0
−
∫ L

0
u′(x)v(x)dx =

k−1∑
j=1

(bj+1 − bj)u(aj). (3.10)

Now, using (3.9) and (3.10), the lemma is proved.

Lemma 3.3. Under Assumptions A.8 and A.10, then

E

[
K

(
x − X1

h

)
η(Z1, δ1, t, x)

]

= dK

2
(
1 − F (t|x)

)(
2Φ′

ξ(x, t, x)m′(x) + Φ′′
ξ (x, t, x)m(x)

)
h3 + o(h3).

Proof of Lemma 3.3.

First,

E

[
K

(
x − X1

h

)
η(Z1, δ1, t, x)

]

= E

[
K

(
x − X1

h

)
E
[
η(Z1, δ1, t, x)|X1

]]
=
∫ +∞

−∞
K

(
x − u

h

)
Φη(u, t, x)m(u)du

=
∫ +∞

−∞
hK(v)Φη(x − hv, t, x)m(x − hv)dv

=
∫ +∞

−∞
hK(v)

(
Φη(x, t, x)m(x) − hv

∂Φη(u, t, x)m(u)
∂u

∣∣∣∣
u=x

+h2v2

2
∂2Φη(u, t, x)m(u)

∂u2

∣∣∣∣
u=x

+ o(h2)
)

dv.
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Then,

E

[
K

(
x − X1

h

)
η(Z1, δ1, t, x)

]

= Φη(x, t, x)m(x)h + dK

2

(
Φη(x, t, x)m′′(x) + 2Φ′

η(x, t, x)m′(x)

+Φ′′
η(x, t, x)m(x)

)
h3 + o(h3).

Next, an explicit expression for Φη is obtained,

Φη(u, t, x) =
∫

K(v)
(
1 − F (t − gv|x)

)
Φξ(u, t − gv, x)dv,

where Φξ(u, t, x) = E
[
ξ(Z1, δ1, t, x)|X1 = u

]
can be written as follows:

Φξ(u, t, x) =
∫ t

0

dH1(z|u)
1 − H(z|x) −

∫ t

0

1 − H(v|u)(
1 − H(v|x)

)2 dH1(v|x).

Then, Φξ(x, t, x) = 0 for any x and t and, consequently, Φη(x, t, x) = 0 for any x and

t. Furthermore, using Taylor’s formula, expressions for Φ′
η(x, t, x) and Φ′′

η(x, t, x) are

as follows

Φ′
η(x, t, x) =

(
1 − F (t|x)

)
Φ′

ξ(x, t, x) + o(g),

Φ′′
η(x, t, x) =

(
1 − F (t|x)

)
Φ′′

ξ (x, t, x) + o(g).

Hence,

E

[
K

(
x − X1

h

)
η(Z1, δ1, t, x)

]

= dK

2
(
1 − F (t|x)

)(
2Φ′

ξ(x, t, x)m′(x) + Φ′′
ξ (x, t, x)m(x)

)
h3 + o(h3).

Lemma 3.4. Under Assumptions A.8 and A.10, then

Cov

[
K

(
x − X1

h

)
η(Z1, δ1, t1, x), K

(
x − X1

h

)
η(Z1, δ1, t2, x)

]

= cKm(x)V 1
g (t1, t2, x)h + cKm(x)V 2

g (t1, t2, x)hg + cKm(x)V 3
g (t1, t2, x)hg2

+dK2V 4
g (t1, t2, x)h3 + O(h4) + O(h3g) + O(hg3).
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where

V 1
g (t1, t2, x) = 2J(t1|x)

(
1 − F (t2|x)

)
K ∗ K

(
t2 − t1

g

)
,

V 2
g (t1, t2, x) = 2J(t1|x)f(t2|x)K ∗ K1

(
t1 − t2

g

)

+2J ′(t1|x)
(
1 − F (t2|x)

)
K ∗ K1

(
t2 − t1

g

)
,

V 3
g (t1, t2, x) = J ′′(t1|x)

(
1 − F (t2|x)

)
K ∗ K2

(
t2 − t1

g

)

−J(t1|x)f ′(t2|x)
(

dK − K ∗ K2

(
t1 − t2

g

))

+2J ′(t1|x)f(t2|x)K1 ∗ K1

(
t2 − t1

g

)
,

V 4
g (t1, t2, x) = m(x)

(
1 − F (t1|x)

)(
1 − F (t2|x)

)
Φ′

ξ(x, t1, x)Φ′
ξ(x, t2, x)

+1
2D′′

g (x, t1, t2, x),

J(t|x) =
(
1 − F (t|x)

)
L(t|x),

Dg(u, t1, t2, x) = Cov
[
η(Z1, δ1, t1, x), η(Z1, δ1, t2, x)|X1 = u

]
m(u).

Proof of Lemma 3.4.

Using the Law of Total Covariance,

Cov

[
K

(
x − X1

h

)
η(Z1, δ1, t1, x), K

(
x − X1

h

)
η(Z1, δ1, t2, x)

]
= C11 − C12 + C2,

(3.11)

where

C11 = E

K2
(

x − X1

h

)
Φη(X1, t1, x)Φη(X1, t2, x)

,

C12 = E

K

(
x − X1

h

)
Φη(X1, t1, x)

E

K

(
x − X1

h

)
Φη(X1, t2, x)


and

C2 = E

Cov
[
K

(
x − X1

h

)
η(Z1, δ1, t1, x), K

(
x − X1

h

)
η(Z1, δ1, t2, x)

∣∣∣∣X1

].

Asymptotic expressions for the terms involved in (3.11) are found. The first one
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becomes

C11 =
∫

K2
(

x − u

h

)
Φη(u, t1, x)Φη(u, t2, x)m(u)du

=
∫

K2
(

x − u

h

)(∫
K(v1)

(
1 − F (t1 − gv1|x)

)
Φξ(u, t1 − gv1, x)dv1

)

·
(∫

K(v2)
(
1 − F (t2 − gv2|x)

)
Φξ(u, t2 − gv2, x)dv2

)
m(u)du

=
∫ ∫ ∫

hK2(w)K(v1)K(v2)
(
1 − F (t1 − gv1|x)

)(
1 − F (t2 − gv2|x)

)
·B(x − hw, t1 − gv1, t2 − gv2, x)dv1dv2dw,

where B(u, z1, z2, x) := Φξ(u, z1, x)Φξ(u, z2, x)m(u).

Since Φξ(x, z1, x) = 0 = Φξ(x, z2, x) for any x, z1 and z2, we have

B(x, z1, z2, x) = 0,

∂B(u, z1, z2, x)
∂u

∣∣∣∣∣
u=x

= 0

and
∂2B(u, z1, z2, x)

∂u2

∣∣∣∣∣
u=x

= 2Φ′
ξ(x, z1, x)Φ′

ξ(x, z2, x)m(x).

Now, by means of a Taylor expansion of B(u, t1 − gv1, t2 − gv2, x) when u = x − hw

around u = x,

B(x−hw, t1 −gv1, t2 −gv2, x) = h2w2Φ′
ξ(x, t1 −gv1, x)Φ′

ξ(x, t2 −gv2, x)m(x)+O(h3).

Thus,

C11 =
∫ ∫ ∫

h3w2K2(w)K(v1)K(v2)
(
1 − F (t1 − gv1|x)

)(
1 − F (t2 − gv2|x)

)
·Φ′

ξ(x, t1 − gv1, x)Φ′
ξ(x, t2 − gv2, x)m(x)dv1dv2dw + O(h4),

and using Taylor expansions of the functions involved when z1 = t2 − gv1 and

z2 = t2 − gv2 around z1 = t1 and z2 = t2, respectively, leads to

C11 = dK2m(x)
(
1 − F (t1|x)

)(
1 − F (t2|x)

)
Φ′

ξ(x, t1, x)Φ′
ξ(x, t2, x)h3

+O(h4) + O(h3g2).
(3.12)
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From Lemma 3.3, E

K

(
x − X1

h

)
Φη(X1, t, x)

 = O(h3). Hence,

C12 = O(h6). (3.13)

Now,

C2 =
∫

K2
(

x − z

h

)
Cov

[
η(Z1, δ1, t1, x), η(Z1, δ1, t2, x)|X1 = z

]
m(z)dz

=
∫

hK2(v)Cov
[
η(Z1, δ1, t1, x), η(Z1, δ1, t2, x)|X1 = x − hv

]
m(x − hv)dv

= cKDg(x, t1, t2, x)h + dK2D′′
g (x, t1, t2, x)h3 + O(h4),

(3.14)

where Dg(u, t1, t2, x) is defined in the statement of Lemma 3.4. An expression for

Dg(x, t1, t2, x) is calculated. Since

E
[
η(Z1, δ1, t, x)|X1 = x

]
=
∫ ∫

K(v)
(
1 − F (t − gv|x)

)
Φξ(x, t, x) = 0

and

E
[
η(Z1, δ1, t1, x)η(Z1, δ1, t2, x)|X1 = x

]

=
∫ ∫

K(v1)K(v2)
(
1 − F (t1 − gv1|x)

)(
1 − F (t2 − gv2|x)

)
E
[
ξ(Z1, δ1, t1 − gv1, x)ξ(Z1, δ1, t2 − gv2, x)|X1 = x

]
dv1dv2,

it follows that

Dg(x, t1, t2, x) = E
[
η(Z1, δ1, t1, x)η(Z1, δ1, t2, x)|X1 = x

]
m(x)

= m(x)
∫ ∫

K(v1)K(v2)
(
1 − F (t1 − gv1|x)

)(
1 − F (t2 − gv2|x)

)
E
[
ξ(Z1, δ1, t1 − gv1, x)ξ(Z1, δ1, t2 − gv2, x)|X1 = x

]
dv1dv2.

Long calculations lead to the following expression for Dg(x, t1, t2, x):

Dg(x, t1, t2, x) = m(x)V 1
g (t1, t2, x) + m(x)V 2

g (t1, t2, x)g

+m(x)V 3
g (t1, t2, x)g2 + O(g3),

(3.15)
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where V 1
g (t1, t2, x), V 2

g (t1, t2, x) and V 3
g (t1, t2, x) are defined in the statement of

Lemma 3.4.

By means of similar but more tedious calculations, omitted here, a general ex-

pression for Dg(u, t1, t2, x) could be obtained. Thus, using expression (3.15) in (3.14),

gives:

C2 = cKm(x)V 1
g (t1, t2, x)h + cKm(x)V 2

g (t1, t2, x)hg

+cKm(x)V 3
g (t1, t2, x)h2g + dK2D′′

g (x, t1, t2, x)m(x)V 1
g (t1, t2, x)h3

+O(h4) + O(h3g) + O(hg3).

(3.16)

Now, plugging (3.12), (3.13) and (3.16) in (3.11) gives

Cov

[
K

(
x − X1

h

)
η(Z1, δ1, t1, x), K

(
x − X1

h

)
η(Z1, δ1, t2, x)

]

= cKm(x)V 1
g (t1, t2, x)h + cKm(x)V 2

g (t1, t2, x)hg + cKm(x)V 3
g (t1, t2, x)hg2

+dK2V 4
g (t1, t2, x)h3 + O(h4) + O(h3g) + O(hg3).

Lemma 3.5. Under Assumptions A.8 and A.10, then

V ar

[
K

(
x − X1

h

)
η(Z1, δ1, t, x)

]

= cKm(x)
(
1 − F (t|x)

)2
L(t|x)h

+cKm(x)(cK − 1)
(
1 − F (t|x)

)2
L′(t|x)hg + cKm(x)V (t, x)hg2

+ dK2

m2(x)

(
m(x)

(
1 − F (t|x)

)2(
Φ′

ξ(x, t, x)
)2

+ 1
2D(t, x)

)
h

n

+o

(
h2 + g2

nh

)
.

where

V (t, x) = −dK

(
1 − F (t|x)

)
L(t|x)f ′(t|x) +

(
1
2 − µ1(K2)

)(
1 − F (t|x)

)2
L′′(t|x)

+
(
2µ1(K2) − 1

)(
1 − F (t|x)

)
L′(t|x)f(t|x),
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D(t, x) =
(
1 − F (t|x)

)2
(

m′′(x)N(x, t, t, x) + m(x)N ′′(x, t, t, x)

+2m′(x)N ′(x, t, t, x) − 2cKm(x)Φ′
ξ(x, t, x)Φ′

ξ(x, t, x)
)

,

N(u, t1, t2, x) = E
[
ξ(Z1, δ1, t1, x)ξ(Z1, δ1, t2, x)

∣∣∣X1 = u
]
.

Proof of Lemma 3.5.

Using Lemma 3.4 for t1 = t2 = t,

V ar

[
K

(
x − X1

h

)
η(Z1, δ1, t, x)

]

= Cov

[
K

(
x − X1

h

)
η(Z1, δ1, t, x), K

(
x − X1

h

)
η(Z1, δ1, t, x)

]

= cKm(x)V 1
g (t, t, x)h + cKm(x)V 2

g (t, t, x)hg + cKm(x)V 3
g (t, t, x)hg2

+dK2V 4
g (t, t, x)h3 + O(h4) + O(h3g) + O(hg3),

where

V 1
g (t, t, x) = 2

(
1 − F (t|x)

)2
L(t|x)K ∗ K(0),

V 2
g (t, t, x) = 2

(
1 − F (t|x)

)2
L′(t|x)K ∗ K1(0),

V 3
g (t, t, x) =

(
− f ′(t|x)L(t|x)

(
1 − F (t|x)

)
−2f(t|x)L′(t|x)

(
1 − F (t|x)

))
K ∗ K2(0)

−
(
1 − F (t|x)

)
L(t|x)f ′(t|x)

(
dK − K ∗ K2(0)

)
(

− 2f 2(t|x)L(t|x) +
(
1 − F (t|x)

)
L′(t|x)f(t|x)

)
K1 ∗ K1(0),

V 4
g (t, t, x) = m(x)

(
1 − F (t|x)

)2(
Φ′

ξ(x, t, x)
)2

+ 1
2D′′

g (x, t, t, x).

Definitions of Kl(u) and Kl(u) in (3.5) and assumption A.8 give:

K ∗ K(0) =
∫

K(u)K(−u)du =
∫
K(u)K(u)du =

∫
K(u)

(∫ u

−∞
K(v)dv

)
du

=
∫ ∫

{v≤u}
K(u)K(v)dudv = 1

2

(∫ ∫
{v≤u}

K(u)K(v)dudv

+
∫ ∫

{u≤v}
K(v)K(u)dvdu

)
= 1

2

∫ ∫
R2

K(u)K(v)dudv + 0 = 1
2
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K ∗ K1(0) =
∫

K(u)K1(−u)du =
∫
K(u)K1(−u)du = −

∫
uK(u)K(u)du

= −1
2

[
uK2(u)

]+1

−1
+ 1

2

∫
K2(u)du = −1

2 + 1
2cK

K ∗ K2(0) =
∫

K(u)K2(−u)du =
∫
K(u)u2K(−u)du =

∫
u2K(u)K(u)du

= 1
2

[
u2K(u)

]+1

−1
−
∫

uK2(u)du = 1
2 − µ1(K2)

K1 ∗ K1(0) =
∫

K1(u)K1(−u)du =
∫
K1(u)(−u)K(−u)du

= −
∫

uK(u)K1(u)du = −
∫

uK(u)
(∫ u

−∞
K1(v)dv

)
du

= −
∫

uK(u)
(∫ u

−∞
vK(v)dv

)
du = −

∫ ∫
{v≤u}

uvK(u)K(v)dudv

= −1
2

(∫ ∫
{v≤u}

uvK(u)K(v)dudv +
∫ ∫

{u≤v}
vuK(v)K(u)dvdu

)

= −1
2

(∫ ∫
R2

uvK(u)K(v)dudv + 0
)

= 0.

Therefore,

V 1
g (t, t, x) =

(
1 − F (t|x)

)2
L(t|x),

V 2
g (t, t, x) = (cK − 1)

(
1 − F (t|x)

)2
L′(t|x),

V 3
g (t, t, x) = −dK

(
1 − F (t|x)

)
L(t|x)f ′(t|x)

+
(

1
2 − µ1(K2)

)(
1 − F (t|x)

)2
L′′(t|x)

+
(
2µ1(K2) − 1

)(
1 − F (t|x)

)
L′(t|x)f(t|x).
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Now, an expression for Dg(u, t1, t2, x) is found:

Dg(u, t1, t2, x) = E
[
η(Z1, δ1, t1, x)η(Z1, δ1, t1, x)

∣∣∣X1 = u
]
m(u)

−E
[
η(Z1, δ1, t1, x)

∣∣∣X1 = u
]
E
[
η(Z1, δ1, t1, x)

∣∣∣X1 = u
]
m(u)

=
∫ ∫

K(v1)K(v2)
(
1 − F (t1 − gv1|x)

)(
1 − F (t2 − gv2|x)

)
·N(u, t1 − gv1, t2 − gv2, x)m(u)dv1dv2

−
∫

K(v)2
(
1 − F (t1 − gv|x)

)(
1 − F (t2 − gv|x)

)
·Φξ(u, t1 − gv, x)Φξ(u, t2 − gv, x)m(u)dv.

Differentiating Dg(u, t1, t2, x) twice with respect to u and using Taylor’s formula

when g tends to 0, an expression for D′′
g (u, t1, t2, x) derives

D′′
g (u, t1, t2, x)

=
∫ ∫

K(v1)K(v2)dv1dv2
(
1 − F (t1|x)

)(
1 − F (t2|x)

)
·
(

m′′(u)N(u, t2, t2, x) + m(u)N ′′(u, t1, t2, x) + 2m′(u)N ′(u, t1, t2, x)
)

−
∫

K2(v)dv
(
1 − F (t1|x)

)(
1 − F (t2|x)

)(
Φ′′

ξ (u, t1, x)Φξ(u, t2, x)m(u)

+Φξ(u, t1, x)Φ′′
ξ (u, t2, x)m(u) + Φξ(u, t1, x)Φξ(u, t2, x)m′′(u)

+2Φ′
ξ(u, t1, x)Φ′

ξ(u, t2, x)m(u) + 2Φξ(u, t1, x)Φ′
ξ(u, t2, x)m′(u)

+2Φ′
ξ(u, t1, x)Φξ(u, t2, x)m′(u)

)
+ o(1).

Note that Φξ(x, t, x) = 0,
∫ ∫

K(v1)K(v2)dv1dv2 = 1 and cK =
∫

K2(v)dv. Hence,

D′′
g (x, t, t, x) =

(
1 − F (t|x)

)2
(

m′′(x)N(x, t, t, x) + m(x)N ′′(x, t, t, x)

+2m′(x)N ′(x, t, t, x) − 2cKm(x)Φ′
ξ(x, t, x)Φ′

ξ(x, t, x)
)

+ o(1)

= D(t, x) + o(1).

Therefore,

V 4
g (t, t, x) = m(x)

(
1 − F (t|x)

)2(
Φ′

ξ(x, t, x)
)2

+ 1
2D(t, x) + o(1),
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and, consequently,

V ar

[
K

(
x − X1

h

)
η(Z1, δ1, t, x)

]

= cKm(x)V 1
g (t, t, x)h + cKm(x)V 2

g (t, t, x)hg + cKm(x)V 3
g (t, t, x)hg2

+ dK2

m2(x)

(
m(x)

(
1 − F (t|x)

)2(
Φ′

ξ(x, t, x)
)2

+ 1
2D(t, x)

)
h

n
+ o

(
g2

nh
+ h

n

)
.

Proof of Theorem 3.2.

Denoting F̃ B
h,g(t|x) = 1−S̃B

h,g(t|x) and F̂ B
h (dt|x) = 1−ŜB

h (dt|x), standard algebra

gives

F̃ B
h,g(t|x) − F (t|x) =

∫
K
(

t − u

g

)
F̂ B

h (du|x) − F (t|x) = A1 + A2, (3.17)

where

A1 =
∫

K
(

t − u

g

)(
F̂ B

h (du|x) − F (du|x)
)

and

A2 =
∫

K
(

t − u

g

)
F (du|x) − F (t|x).

Using Lemma 3.2 and Theorem 3.1, it is obtained

A1 =
∫

K
(

t − y

g

)(
F̂ B

h (dy|x) − F (dy|x)
)

=
[
K
(

t − y

g

)(
F̂ B

h (y|x) − F (y|x)
)]y=+∞

y=−∞

+
∫ 1

g
K

(
t − y

g

)(
F̂ B

h (y|x) − F (y|x)
)
dy

=
∫ 1

g
K

(
t − y

g

)(
F̂ B

h (y|x) − F (y|x)
)
dy

=
∫

K(u)
(
F̂ B

h (t − gu|x) − F (t − gu|x)
)
du

=
∫

K(u)
((

F (t − gu|x) − 1
) n∑

i=1
wh,i(x)ξ(Zi, δi, t − gu, x) + Rn(t − gu|x)

)
du

Then,

A1 = A11 + A12 (3.18)
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where

A11 = −
∫

K(u)
(
1 − F (t − gu|x)

) n∑
i=1

wh,i(x)ξ(Zi, δi, t − gu, x)du

and

A12 =
∫

K(u)Rn(t − gu|x)du.

First considering A11 in (3.18),

A11 = −
∫

K(u)
(
1 − F (t − gu|x)

) n∑
i=1

wh,i(x)ξ(Zi, δi, t − gu, x)du

= −
n∑

i=1
wh,i(x)

∫
K(u)

(
1 − F (t − gu|x)

)
ξ(Zi, δi, t − gu, x)du,

and considering η(Z, δ, t, x) defined in Section 3.3.1, it is obtained

A11 = −
n∑

i=1
wh,i(x)η(Zi, δi, t, x). (3.19)

Considering A12 in (3.18) and using A.8, it follows that

|A12| =
∣∣∣∣∣
∫

K(u)R′
n(t − gu|x)du

∣∣∣∣∣ ≤
∫ 1

−1
K(u)

∣∣∣∣R′
n(t − gu|x)

∣∣∣∣du ≤ sup
z∈[t−g,t+g]

∣∣∣∣R′
n(z|x)

∣∣∣∣.
Fix ε > 0 and define a′ = l + ε, b′ = u − ε. Then,

sup
(t,x)∈[a′,b′]×I

|A12| ≤ sup
(t,x)∈[a′,b′]×I

{
sup

z∈[t−g,t+g]

∣∣∣∣Rn(z|x)
∣∣∣∣
}

(3.20)

On the one hand, there exists n0 ∈ N such that g = gn ≤ ε for all n ≥ n0. So,

z ∈ [t − g, t + g] implies that |z − t| ≤ g ≤ ε and equivalently, t − ε ≤ z ≤ t + ε.

On the other hand, t ∈ [a′, b′] implies that l + ε = a′ ≤ t ≤ b′ = u − ε.

Therefore,

z ≤ t + ε ≤ (u − ε) + ε = u ⇒ z ≤ u

and also,

z ≥ t − ε ≥ (l + ε) − ε = l ⇒ z ≥ l.

Hence, z ∈ [l, u] and x ∈ I. So, for t ∈ [a′, b′],

sup
z∈[t−g,t+g]

∣∣∣∣Rn(z|x)
∣∣∣∣ ≤ sup

(t′,x′)∈[l,u]×I

∣∣∣∣Rn(t′|x′)
∣∣∣∣. (3.21)
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Recalling the inequality obtained in (3.20) and applying the inequality in (3.21),

one has

sup
(t,x)∈[a′,b′]×I

|A12| ≤ sup
(t,x)∈[a′,b′]×I

{
sup

(t′,x′)∈[l,u]×I

∣∣∣∣Rn(t′|x′)
∣∣∣∣
}

and from Theorem 3.1,

sup
(t′,x′)∈[l,u]×I

∣∣∣∣Rn(t′|x′)
∣∣∣∣ = O

(
ln n

nh

)3/4

a. s.

Finally, defining R1
n(t|x) = A12, the following is obtained

sup
(t,x)∈[a′,b′]×I

∣∣∣∣R1
n(t|x)

∣∣∣∣ = sup
(t,x)∈[a′,b′]×I

|A12| = O

(
ln n

nh

)3/4

a. s. (3.22)

Now, considering A2 in (3.17) and using Lemma 3.2, it follows that

A2 =
∫

K
(

t − y

g

)
F (dy|x) − F (t|x)

=
[
K
(

t − y

g

)
F (y|x)

]y=+∞

y=−∞
+
∫ +∞

−∞

1
g

K

(
t − y

g

)
F (y|x)dy − F (t|x)

=
∫ +∞

−∞

1
g

K

(
t − y

g

)
F (y|x)dy − F (t|x) =

∫ +∞

−∞
K(u)F (t − gu|x)du − F (t|x)

Assuming that g = gn tends to zero when n tends to infinity, Taylor’s formula for

F (t − gu|x) gives:

F (t − gu|x) = F (t|x) − guF ′(t|x) + 1
2(gu)2F ′′(t|x) + o(g2)

Then,

A2 =
∫ +∞

−∞
K(u)

[
F (t|x) − guF ′(t|x) + 1

2(gu)2F ′′(t|x) + o(g2)
]
du − F (t|x)

= F (t|x)
∫ +∞

−∞
K(u)du − F ′(t|x)g

∫ +∞

−∞
uK(u)du + 1

2g2F ′′(t|x)
∫ +∞

−∞
u2K(u)du

+o(g2)
∫ +∞

−∞
K(u)du − F (t|x)

Using assumption A.8,

A2 = 1
2dKF ′′(t|x)g2 + R2

n(t|x) (3.23)

with sup
{∣∣∣R2

n(t|x)
∣∣∣ : (t, x) ∈ [l, u] × I

}
= o(g2).
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Finally, Equations (3.17) - (3.23) give

F̃ B
h,g(t|x) − F (t|x) = −

n∑
i=1

wh,i(x)η(Zi, δi, t, x) + 1
2dKF ′′(t|x)g2 + R1

n(t|x) + R2
n(t|x)

where

sup
(t,x)∈[a′,b′]×I

∣∣∣∣R1
n(t|x)

∣∣∣∣ = O

(
ln n

nh

)3/4

a. s.

which proves Theorem 3.2 since S̃B
h,g(t|x) − S(t|x) = F (t|x) − F̃ B

h,g(t|x).

Proof of Lemma 3.1.

Theorem 3.2 gives

S̃B
h,g(t|x)−S(t|x) =

n∑
i=1

wh,i(x)η(Zi, δi, t, x)− 1
2dKF ′′(t|x)g2+R1

n(t|x)+R2
n(t|x) a.s.,

where

wh,i(x) =
K
(
(x − Xi)/h

)
∑n

j=1 K
(
(x − Xj)/h

) .

Note that

m̂h(x) := 1
nh

n∑
j=1

K
(
(x − Xj)/h

)
is the Parzen-Rosenblatt estimator of the density function of X, m(x). Then,

n∑
i=1

wh,i(x)η(Zi, δi, t, x) =
n∑

i=1

1
nh

K
(
(x − Xi)/h

)
m̂h(x) η(Zi, δi, t, x)

=
n∑

i=1

1
nh

K
(
(x − Xi)/h

)
m(x) η(Zi, δi, t, x)

+m(x) − m̂h(x)
m̂h(x)

n∑
i=1

1
nh

K
(
(x − Xi)/h

)
m(x) η(Zi, δi, t, x)

=
n∑

i=1
wA

h,i(x)η(Zi, δi, t, x) + R3
n(t|x)

where

wA
h,i(x) = 1

nh

K
(
(x − Xi)/h

)
m(x)

for all i = 1, ..., n and

R3
n(t|x) = m(x) − m̂h(x)

m̂h(x)

n∑
i=1

wA
h,i(x)η(Zi, δi, t, x)
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Since m̂h(x) is a consistent estimator of m(x) and its bias and variance convergence

rates are O(h2) and O(1/nh), respectively (see Silverman (1986)),

R3
n(t|x) = Op

(
h2 + 1√

nh

)
n∑

i=1
wA

h,i(x)η(Zi, δi, t, x).

From Lemma 3.3,

E

[
n∑

i=1
wA

h,i(x)η(Zi, δi, t, x)
]

= nE

[
1

nh

1
m(x)K

(
x − X1

h

)
η(Z1, δ1, t, x)

]
= O(h2).

From Lemma 3.5,

V ar

[
n∑

i=1
wA

h,i(x)η(Zi, δi, t, x)
]

= nV ar

[
1

nh

1
m(x)K

(
x − X1

h

)
η(Z1, δ1, t, x)

]
= O

(
1

nh

)
.

Therefore,
n∑

i=1
wA

h,i(x)η(Zi, δi, t, x) = Op

(
h2 + 1√

nh

)
and

sup
[l,u]×I

|R3
n(t|x)| = Op

(
h2 + 1√

nh

)2

.

Finally,

R̃n(t|x) = R1
n(t|x) + R2

n(t|x) + R3
n(t|x) = O

(
ln n

nh

)3/4

+ o(g2) + Op

(
h2 + 1√

nh

)2

.

Proof of Theorem 3.3.

Lemma 3.1 gives

S̃AB
h,g (t|x) − S(t|x) =

n∑
i=1

wA
h,i(x)η(Zi, δi, t, x) − 1

2dKF ′′(t|x)g2

=
n∑

i=1
φn,i(t, x) − 1

2dKF ′′(t|x)g2,

where φn,i(t, x) = 1
nh

1
m(x)K

(
x − Xi

h

)
η(Zi, δi, t, x) are independent and identically

distributed random variables for all i = 1, ..., n. Consequently,

Bias
(
S̃AB

h,g (t|x)
)

= nE
(
φn,1(t, x)

)
− 1

2dKF ′′(t|x)g2 (3.24)
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and

Var
(
S̃AB

h,g (t|x)
)

= nVar
(
φn,1(t, x)

)
. (3.25)

First, an expression for E
(
φn,1(t, x)

)
is found. From Lemma 3.3,

E
(
φn,1(t, x)

)
= 1

nh

1
m(x)E

[
K

(
x − X1

h

)
η(Z1, δ1, t, x)

]

=
dK

(
1 − F (t|x)

)
2m(x)

(
2Φ′

ξ(x, t, x)m′(x) + Φ′′
ξ (x, t, x)m(x)

)
h2

n
+ o

(
h2

n

)

and replacing it in (3.24) the bias of S̃AB
h,g (t|x) is obtained.

To derive the variance of the estimator, an asymptotic expression for Var
(
φn,1(t, x)

)
is found. Using Lemma 3.5,

Var
(
φn,1(t, x)

)
= 1

n2h2m2(x)V ar

[
K

(
x − X1

h

)
η(Z1, δ1, t, x)

]

= cK

m(x)V1(t, x) 1
n2h

+ cK

m(x)V2(t, x) g

n2h
+ cK

m(x)V3(t, x) g2

n2h

+ dK2

m2(x)

(
m(x)

(
1 − F (t|x)

)2(
Φ′

ξ(x, t, x)
)2

+ 1
2D(t, x)

)
h

n2

+o

(
g

n2h
+ h

n2

)
.

(3.26)

Plugging (3.26) in (3.25), the variance part of the theorem is proved.

Proof of Theorem 3.4.

Lemma 3.1 gives:

√
nh
(

S̃B
h,g(t|x) − S(t|x)

)
=

√
nh

n∑
i=1

φn,i(t, x) −
√

nh
1
2dKF ′′(t|x)g2

+
√

nhR̃n(t|x) a.s.

(3.27)

The variables φn,i(t, x) = 1
nh

1
m(x)K

(
x − Xi

h

)
η(Zi, δi, t, x) are independent and

identically distributed random variables for all i = 1, ..., n. Assuming (ln n)3

nh
→ 0,
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the remainder term
√

nhR̃n(t|x) is negligible with respect to the dominant terms in

(3.27). According to Theorem 3.3, the variance of the dominant terms in (3.27) is

given by

V ar

[√
nh
∑n

i=1 φn,i(t, x)
]

= nh
cK

m(x)
(
1 − F (t|x)

)
L(t|x) 1

nh
+ O

nh

(
h

n
+ g

nh

).

Since the supports of the functions K and m are compact and F (t|x) is bounded,

this variance is finite.

Therefore, the asymptotic distribution of
√

nh
(
S̃B

h,g(t|x) − S(t|x)
)

is the same as

the asymptotic distribution of
√

nh
∑n

i=1 φn,i(t, x).

If Lindeberg’s condition for triangular arrays (Theorem 7.2 in Billingsley (1968))

is satisfied, then
n∑

i=1

(√
nhφn,i(t, x) − E

[√
nhφn,i(t, x)

])
d−→ N(0, σ),

where

σ2 = cK

m(x)
(
1 − F (t|x)

)
L(t|x).

Defining the following indicator function

1n,i = 1

(∣∣∣√nhφn,i(t, x) − E[
√

nhφn,i(t, x)]
∣∣∣ > εσ

)
,

Lindeberg’s condition requires that

lim
n→∞

1
σ2 E

[
n∑

i=1

(√
nhφn,i(t, x) − E

[√
nhφn,i(t, x)

])2
1n,i

]
= 0, (3.28)

for every ε > 0.

By applying assumption A.3d, it is easy to prove that ξ(Z, δ, t, x) is bounded:

|ξ(Z, δ, t, x)| =
∣∣∣∣∣1(Z ≤ t, δ = 1)

1 − H(Z|x) −
∫ t

0

dH1(u|x)(
1 − H(u|x)

)2

∣∣∣∣∣
≤ 1(Z ≤ t, δ = 1)

1 − H(Z|x) +
∫ t

0

dH1(u|x)(
1 − H(u|x)

)2

≤ 1
θ

+
∫ t

0

dH1(u|x)
θ2 ≤ 1

θ
+ H(t|x)

θ2 ≤ 1
θ

+ 1
θ2 ,
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and, consequently, η is also bounded:

|η(Z, δ, t, x)| ≤
∫

K(u)
(
1 − F (t − gu|x)

)(1
θ

+ 1
θ2

)
du

=
(

1
θ

+ 1
θ2

)((
1 − F (t|x)

)
+ g2

2 dK

(
1 − F ′′(t|x)

))
+ o(g2).

Since η is bounded, K and m(x) have compact support and nh → ∞,
{
φn,i(t, x) −

E
[
φn,i(t, x)

]
, i = 1, ..., n, n ∈ N

}
is a sequence of random variables which is bounded

by a convergent to zero nonrandom sequence, εσ√
nh

. Hence, there exists n0 ∈ N such

that for all i = 1, ..., n, 1n,i = 0 for all n ≥ n0 and

lim
n→∞

1
s2 E

[
n∑

i=1

(√
nhφn,i(t, x) − E

[√
nhφn,i(t, x)

])2
1n,i

]
= 0,

which proves Lindeberg’s condition in (3.28). Then,
n∑

i=1

(√
nhφn,i(t, x) − E

[√
nhφn,i(t, x)

])
d−→ N(0, σ)

and, therefore, using (3.27) and Slutsky lemma, the asymptotic normality of the

estimator holds:
√

nh
(

S̃B
h,g(t|x) − S(t|x)

)
d−→ N(µ, σ).

Using Theorem 3.3 under assumptions of Theorem 3.4, Ch := limn→∞ n1/5h > 0 and

Cg := limn→∞ n1/5g > 0,

µ = C
5/2
h

dK

(
1 − F (t|x)

)
2m(x)

(
2Φ′

ξ(x, t, x)m′(x) + Φ′′
ξ (x, t, x)m(x)

)

−C
1/2
h C4/2

g

1
2dKF ′′(t|x).
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Chapter 4

Bootstrap bandwidth selection for

the smoothed Beran’s survival

estimator

4.1 Introduction

Beran’s estimator and the smoothed Beran’s estimator of the conditional survival

functions were presented and compared in Chapter 3. Their asymptotic proper-

ties have been deeply analysed in Iglesias-Pérez and González-Manteiga (1999) and

Chapter 3, respectively. Simulation studies carried out in previous chapter show

a good performance of the smoothed Beran’s estimator. However, these preced-

ing studies were carried out using the smoothing parameters that minimised the

mean integrated squared error obtained from the theoretical survival curve. Since

the asymptotic bias and variance expressions are complex and depend on several

population parameters, they are not useful in practice to obtain plug-in estimations

of the theoretical bandwidths. The goal of this chapter is to propose resampling

techniques to approximate them.

Bootstrap has become a strong tool in many statistical applications since it was
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first introduced by Efron (1979). Bootstrap for right censored data was first pro-

posed by Efron (1981) and the bootstrap method and its applications were studied

in Efron and Tibshirani (1993). Asymptotic theory for the bootstrap for right cen-

sored data was stablished by Reid (1981), Akritas (1986) and Lo and Singh (1986).

In Van Keilegom and Veraverbeke (1997), bootstrap for nonparametric regression

with right censored observations at fixed covariate values was studied. A bootstrap

approach for the nonparametric censored regression setup was studied in Li and

Datta (2001). In Geerdens et al. (2017) a local cross-validation bandwidth selector

was proposed.

Our approach follows the ideas of Li and Datta (2001), and it is based on the

obvious bootstrap. Both Beran’s and the smoothed Beran’s estimators are boot-

strapped in order to approximate their corresponding optimal bandwidths. The

existing theoretical results only allow to obtain pointwise and theoretical confidence

intervals, which are not computable in practice, since the variance of the estimator

again depends on unknown population quantities. Therefore, the bootstrap is also

useful to compute confidence regions.

Bootstrap selectors for the bandwidths of Beran’s and the smoothed Beran’s

estimators are proposed. A simulation study shows the behaviour of the survival

estimators with bootstrap bandwidths. The issue of obtaining confidence regions

for the conditional survival function, S(t|x), for a fixed value of x ∈ I ⊆ R and

t covering the interval IT ⊆ R+, is also addressed using Beran and the smoothed

Beran’s estimators. This work is motivated by a real data application based on

studying the survival times of COVID-19 patients in Galicia, Spain, during the first

weeks of the breakdown.
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4.2 Bandwidth selection for Beran’s and the

smoothed Beran’s survival estimators

In this section, methods for the automatic selection of the bandwidths for Beran’s

estimator in (2.3) and the smoothed Beran’s estimator in (3.4) of the conditional

survival function are proposed. These estimators are based on the right censored

random sample
{
(Xi, Zi, δi)

}n

i=1
of (X, Z, δ).

4.2.1 Beran’s estimator

There are two classic methods for bootstrap resampling in a censoring context: the

obvious bootstrap and the simple bootstrap. The equivalence between both methods

in an unconditional setup is proved in Efron (1981). In Li and Datta (2001), this

result is extended to the case where a covariate is involved, assuming there is no

ties in the sample values of the covariate. This was done by proving the equivalence

of the two resampling methods, the obvious bootstrap and the simple weighted

bootstrap. In this chapter, the following obvious bootstrap method combined with

a smoothed bootstrap for the covariate is proposed for the automatic selection of

the covariate bandwidth h of Beran’s estimator, ŜB
h (t|x), defined in (2.3). Here, this

estimator is simply denoted by Ŝh(t|x).

Algorithm for bootstrap resampling based on Beran’s estimator

Let I1 ⊆ R be an interval containing appropriate bandwidth values and let r ∈ I1

be pilot bandwidth for the bootstrap resampling:

1. Obtain U1, . . . , Un iid with Ui ∼ U(0, 1) and V1, . . . , Vn iid with common den-

sity K for all i = 1, . . . , n.

2. For each i = 1, . . . , n, define

X∗
i = X[nUi]+1 + rVi.
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Generate T ∗
i from Beran’s estimator of the conditional distribution of T us-

ing the sample {(Xi, Zi, δi)}n
i=1 and bandwidth r, denoted by F̂r(t|X∗

i ), and

C∗
i from the Beran’s estimator of the conditional distribution of C using the

sample {(Xi, Zi, 1 − δi)}n
i=1 and bandwidth r, denoted by Ĝr(t|X∗

i ).

The estimators F̂r(t|X∗
i ) and Ĝr(t|X∗

i ) are forced to be equal to one from the

last observed lifetime (max{Zi : i = 1, . . . , n}) onwards.

3. For each i = 1, . . . , n, obtain

Z∗
i = min{T ∗

i , C∗
i },

δ∗
i = I

(
T ∗

i ≤ C∗
i

)
.

4. Consider the bootstrap resample
{
(X∗

i , Z∗
i , δ∗

i )
}n

i=1
.

In this chapter, in order to estimate the survival function, S(t|x), for a fixed x ∈ I

and t covering the interval IT ⊂ R, our benchmark is the bandwidth hMISE ∈ I1,

that minimizes the mean integrated squared error given by

MISEx(h) = E

(∫
IT

(
Ŝh(t|x) − S(t|x)

)2
dt

)
(4.1)

whose bootstrap approximation is

MISE∗
x(h) = E∗

(∫
IT

(
Ŝ∗

h(t|x) − Ŝr(t|x)
)2

dt

)

where Ŝr(t|x) is the estimation of the theoretical survival function with pilot band-

width, r, using the sample
{
(Xi, Zi, δi)

}n

i=1
and Ŝ∗

h(t|x) is the bootstrap estimation

of S(t|x) with bandwidth h, using the bootstrap resample
{
(X∗

i , Z∗
i , δ∗

i )
}n

i=1
.

The resampling distribution of Ŝ∗
h(t|x) cannot be computed in a close form, so

the Monte Carlo method is used. It is based on obtaining B bootstrap resamples

and estimating Ŝ∗
h(t|x) for each of them. Thus, the distribution of Ŝ∗

h(t|x) is approx-

imated by the empirical one of Ŝ∗,1
h (t|x), . . . , Ŝ∗,B

h (t|x), obtained from B bootstrap

resamples and the bootstrap version of the estimation error of Beran’s estimator for

any smoothing parameter h is given by

MISE∗
x(h) ≃ 1

B

B∑
k=1

(∫
IT

(
Ŝ∗,k

h (t|x) − Ŝr(t|x)
)2

dt

)
. (4.2)
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Likewise, the integral is approximated by a Riemann sum.

Algorithm for bootstrap bandwidth selector for Beran’s estimator

Let x ∈ I be a fixed value of the covariate, t ∈ IT and r ∈ I1:

1. Compute Ŝr(t|x) from the original sample {(Xi, Zi, δi)}n
i=1.

2. Obtain B bootstrap resamples of the form {(X∗,k
i , Z∗,k

i , δ∗,k
i )}n

i=1 with k =

1, ..., B using the bootstrap based on Beran’s estimator with pilot bandwidth

r ∈ I1 and calculate Ŝ∗,k
h (t|x) for each of them.

3. Approximate MISE∗
x(h) according to (4.2).

4. Repeat Steps 1–3 for values of h in a grid of I1.

5. Select the value of h that provides the smallest MISE∗
x(h) as the bootstrap

bandwidth h∗.

Concerning the auxiliary bandwidth r ∈ I1, a preliminary analysis not shown

here suggests the following choice for the pilot bandwidth:

r = c

(
QX(0.975) − QX(0.025)

)
2

(
n∑

i=1
δi

)−1/3

, (4.3)

where QX(u) is the u quantile of the sample
{
Xi

}n

i=1
, as a suitable pilot band-

width in this context. Equation (4.3) considers the variability of the covariate,

QX(0.975) − QX(0.025), and the uncensored sample size, ∑n
i=1 δi. The exponent of

this sample size, −1/3, is typically appropriate in selection of the optimal bandwidth

for estimating the distribution function (Azzalini (1981), Jones (1990)). This ex-

pression was derived after several attempts in the simulation studies. These analyses

show that choosing c < 1 increases the estimation error of Beran’s estimator since

the bootstrap method provides excessively small bandwidths. In general, c ≥ 1 is

considered, with the choice c = 3/2 being appropriate. In cases where the function
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E(T |X = x) is found to be highly variable with respect to x, smaller bandwidths

may be considered and our proposal there is c = 1.

Note that the proposed algorithm is also valid to obtain a bootstrap approxima-

tion of the optimal bandwidth for the estimation of S(t|x) for fixed values of t ∈ IT

and x ∈ I by replacing MISE∗
x(h) by MSE∗

t,x(h), which is the bootstrap analogue

of

MSEt,x(h) = E

((
Ŝh(t|x) − S(t|x)

)2
)

.

4.2.2 The smoothed Beran’s estimator

Given the good performance that the doubly smoothed survival estimator showed

in previous simulation studies, it is interesting to propose a method for automatic

selection of the two-dimensional bandwidth on which it depends. Then, consider the

smoothed Beran’s estimator of the conditional survival function, S̃B
h,g(t|x), defined

in (3.4). For simplicity of notation, the smoothed Beran’s estimator of the survival

function is denoted by S̃h,g(t|x) in this chapter. A bootstrap method is proposed for

the automatic selection of the bivariate bandwidth (h, g).

Algorithm for bootstrap resampling based on the smoothed Beran’s es-

timator

Let I1 ⊆ R and I2 ⊆ R be intervals containing appropriate bandwidth values and

let r ∈ I1 and s ∈ I2 be pilot bandwidths for the smoothed resample of X, T and

C:

1. Obtain U1, . . . , Un iid with Ui ∼ U(0, 1) and V1, . . . , Vn iid with common den-

sity K, W 1
1 , . . . , W 1

n iid with common density K and W 2
1 , . . . , W 2

n iid with

common density K for all i = 1, . . . , n.

2. For each i = 1, . . . , n, obtain

X∗
i = X[nUi]+1 + rVi,
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T ∗
i = T ∗

0,i + sW 1
i

C∗
i = C∗

0,i + sW 2
i

where T ∗
0,i is resampled from F̂r(t|X∗

i ), constructed using Beran’s estimator

with the sample {(Xi, Zi, δi)}n
i=1, and C∗

0,i is resampled from Ĝr(t|X∗
i ), con-

structed using Beran’s estimator with the sample {(Xi, Zi, 1 − δi)}n
i=1.

3. For each i = 1, . . . , n, obtain

Z∗
i = min{T ∗

i , C∗
i },

δ∗
i = I

(
T ∗

i ≤ C∗
i

)
.

4. Consider the bootstrap resample
{
(X∗

i , Z∗
i , δ∗

i )
}n

i=1
.

The conditional distribution functions of T ∗|X∗ and C∗|X∗ are, respectively, the

smoothed Beran’s estimators F̃r,s(t|X∗
i ) and G̃r,s(t|X∗

i ).

The optimal bivariate bandwidth, (hMISE, gMISE) ∈ I1 ×I2 is defined as the pair

of bandwidths that minimizes the mean integrated squared error given by

MISEx(h, g) = E
(∫

IT

(
S̃h,g(t|x) − S(t|x)

)2
dt
)

. (4.4)

The bootstrap version of MISEx(h, g) is given by

MISE∗
x(h, g) = E∗

(∫
IT

(
S̃∗

h,g(t|x) − S̃r,s(t|x)
)2

dt

)
,

where S̃r,s(t|x) is the smoothed Beran’s survival estimation with pilot bandwidths

(r, s) ∈ I1×I2 using the sample
{
(Xi, Zi, δi)

}n

i=1
and S̃∗

h,g(t|x) is the bootstrap estima-

tion of S(t|x) with bandwidths (h, g), using the bootstrap resample
{
(X∗

i , Z∗
i , δ∗

i )
}n

i=1
.

Since the sampling distribution of S̃∗
h,g(t|x) is unknown, the Monte Carlo method

gives the following approximation

MISE∗
x(h, g) ≃ 1

B

B∑
k=1

(∫
IT

(
S̃∗,k

h,g(t|x) − S̃r,s(t|x)
)2

dt

)
, (4.5)

based on the empirical distribution of S̃∗
h,g(t|x) obtained from B bootstrap resamples.

The integral is approximated by a Riemann sum.
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Algorithm for bootstrap bandwidth selector for the smoothed Beran’s

estimator

Let x be a fixed value of the covariate, t ∈ IT and (r, s) ∈ I1 × I2:

1. Compute S̃r,s(t|x) from the original sample {(Xi, Zi, δi)}n
i=1.

2. Obtain B bootstrap resamples of the form {(X∗,k
i , Z∗,k

i , δ∗,k
i )}n

i=1 with k =

1, ..., B using the bootstrap based on the smoothed Beran’s estimator and

calculate S̃∗,k
h,g(t|x) for each of them.

3. Approximate MISE∗
x(h) according to (4.5).

4. Repeat Steps 1–3 for pairs of values (h, g) in a grid of I1 × I2.

5. Obtain the pair (h, g) that provides the smallest MISE∗
x(h, g) as the bootstrap

bandwidth (h∗, g∗).

The auxiliary bandwidth r ∈ I1 was defined in (4.3). The pilot bandwidth s ∈ I2

for the time variable smoothing is chosen using the following formula

s = 3
4
(
QZ(0.975) − QZ(0.025)

)( n∑
i=1

δi

)−1/7

, (4.6)

where QZ(u) is the u quantile of the sample
{
Zi

}n

i=1
. This expression was derived

after several attempts in the simulation studies. It takes into account the variability

of the observed time variable, QZ(0.975) − QZ(0.025), and the sample size of the

uncensored population, ∑n
i=1 δi. The exponent of this sample size, −1/7, is heuristi-

cally deduced from the asymptotic expression of the MISE of the survival estimators

(see Chapter 3).

4.3 Simulation study for bandwidth selection

A simulation study is conducted in order to show the behaviour of bootstrap band-

width selectors for Beran’s and smoothed Beran’s estimators proposed in Section

4.2.
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Due to the computational cost of the resampling methods, only Models 2 and

3, presented in Section 2.4, and the low and medium censoring scenarios (P (δ =

0|x) = 0.2 and P (δ = 0|x) = 0.5) will be considered in this chapter.

Model 2 considers a uniform distribution for the credit scoring and Weibull life

and censoring times. The conditional survival function for this model is estimated

at x = 0.6 in a time grid over the interval IT = (0, 0.8654).

Model 3 also considers a uniform distribution for the credit scoring and exponen-

tial distributions for life time and censoring time. The conditional survival function

for this model is estimated at x = 0.8 in a time grid over the interval IT = (0, 3.8211).

Regarding the pilot bandwidth defined in (4.3) Model 2 considers c = 3/2,

while Model 3 considers c = 1. The reason for this choice is that the conditional

distribution of T |X = x for Model 3 changes quite a lot with x, thus requiring

smaller bandwidths. This is shown in Figure 4.1 where the theoretical regression

function, r(x) = E(T |X = x), for both models is shown.

Figure 4.1: Theoretical regression function r(x) = E(T |X = x) for Model 2 (solid line) and

Model 3 (dashed line).
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For more details about these simulation models, see Section 2.4. The simulation

setup is similar to the one introduced in Section 3.4. Strategy 3 presented there is

considered to obtain the bandwidths that minimised the bootstrap version of the

MISE in this section.

4.3.1 Simulation study for Beran’s estimator

In this subsection, the behaviour of the bootstrap bandwidth selector for Beran’s

estimator is analysed. For each model, the estimation error function MISEx(h) is

approximated via Monte Carlo using 300 simulated samples. The bandwidth that

minimises MISEx(h) is obtained and denoted by hMISE. The values of hMISE and

MISEx(hMISE) are used as a benchmark.

In the simulation study, N = 300 simulated samples are used. For each sample,

B = 500 bootstrap resamples are generated to approximate the bootstrap MISE

function, MISE∗
x(h), and obtain the bootstrap bandwidth associated to each sim-

ulated sample, h∗
j , j = 1, 2, . . . , N . The mean value of the N bootstrap bandwidths

and the standard deviation are defined as follows

h∗ = 1
N

N∑
j=1

h∗
j , sd

(
h∗
)

=

√√√√√ 1
N

N∑
j=1

(
h∗

j − h∗
)2

.

As a relative measure of the difference between the bootstrap bandwidth and

the optimal one, we compute

H∗
j =

h∗
j − hMISE

hMISE

,

with j = 1, . . . , N . The mean of the absolute value of these relative deviations,

H∗ = 1
N

∑N
j=1 |H∗

j |, is a good measure of how close the bootstrap bandwidth is to

the optimal one.

For each sample, the estimation error of Beran’s estimator with the corresponding

bootstrap bandwidth,

MISEx(h∗
j) = E

(∫
IT

(
Ŝh∗

j
(t|x) − S(t|x)

)2
dt

)
,
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and its square root, RMISEx(h∗
j), are approximated via Monte Carlo using 300

simulated samples. The mean of these estimation errors given by

RMISEx(h∗) = 1
N

N∑
j=1

RMISEx(h∗
j)

is used as a measure of the estimation error made by the bootstrap bandwidth, when

compared with the estimation error made by the MISE bandwidth.

As a relative measure of the difference between the estimation errors using the

bootstrap and the MISE bandwidths, the following ratios are defined:

R∗
j =

RMISEx(h∗
j) − RMISEx(hMISE)

RMISEx(hMISE)

satisfying R∗
j ≥ 0 for all j = 1, . . . , N . The mean of the R∗

j values with j = 1, . . . , N

is denoted by R∗ = 1
N

∑N
j=1 R∗

j .

Small values (close to zero) of H∗ and R∗ indicate good behavior of the bootstrap

bandwidth. Values of the bootstrap bandwidths, estimation errors and relative

measures for Models 2 and 3 are included in Table 4.1. Figures 4.2 and 4.3 show

the MISE function and the bootstrap MISE approximation for Models 2 and 3 and

the boxplots of the relative error measures. The results show a good performance

of the proposed bootstrap selector.

Model 2 Model 3

P (δ = 0|X = x) 0.2 0.5 0.2 0.5

hMISE 0.23939 0.21212 0.04515 0.05687

RMISEx(hMISE) 0.02411 0.03652 0.11612 0.15576

h∗ (sd) 0.23815 (0.093) 0.21897 (0.082) 0.06718 (0.007) 0.08082 (0.011)

H∗ 0.29033 0.26199 0.48794 0.42119

RMISEx(h∗) 0.02548 0.03809 0.13391 0.17242

R∗ 0.05762 0.04373 0.15316 0.10698

Table 4.1: MISE and average bootstrap bandwidths and estimation errors of Beran’s survival

estimator in each level of conditional censoring probability for Models 2 and 3. Numbers within

brackets are standar deviations.
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Figure 4.2: MISEx(h) function (black line) approximated via Monte Carlo and MISE∗
x(h)

functions (gray lines) for N = 300 samples (top), boxplot of H∗
1 , ..., H∗

N values (middle) and

boxplot of R∗
1, ..., R∗

N values (bottom) when the conditional probability of censoring is 0.2 (left)

and 0.5 (right) in Model 2.
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Figure 4.3: MISEx(h) function (black line) approximated via Monte Carlo and MISE∗
x(h)

functions (gray lines) for N = 300 samples (top), boxplot of H∗
1 , ..., H∗

N values (middle) and

boxplot of R∗
1, ..., R∗

N values (bottom) when the conditional probability of censoring is 0.2 (left)

and 0.5 (right) in Model 3.

Figure 4.4 shows the theoretical survival function and Beran’s estimation with

optimal and bootstrap bandwidths for one sample from Models 2 and 3 when the
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conditional probability of censoring is 0.5.

Figure 4.4: Theoretical conditional survival function S(t|x) (solid line), Beran’s estimation with

MISE bandwidth (dotted line) and Beran’s estimation with bootstrap bandwidth (dashed line) for

one sample from Model 2 (left) and Model 3 (right) with P (δ = 0|x) = 0.5.

4.3.2 Simulation study for the smoothed Beran’s estimator

In this section, a simulation study on the bootstrap bandwidth selector for the

smoothed Beran’s estimator in (3.4) is carried out. The resampling technique and

Monte Carlo approximation of the MISE presented in Section 4.2.2 are used.

For each model, the error function MISEx(h, g) is approximated via Monte

Carlo from 300 simulated samples and the bivariate bandwidth that minimises

MISEx(h, g) is obtained and denoted by (hMISE, gMISE). The values of (hMISE, gMISE)

and MISEx(hMISE, gMISE) are used as a benchmark.

In the study, N = 300 samples are simulated. For each simulated sample, the

corresponding bootstrap bandwidths are approximated from B = 500 resamples,

obtaining (h∗
j , g∗

j ) with j = 1, . . . , N . The mean value of the N bootstrap bandwidths

and the standard deviation are the following:

(h∗, g∗) =
(

1
N

N∑
j=1

h∗
j ,

1
N

N∑
j=1

g∗
j

)
,
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sd
(
h∗
)

=

√√√√√ 1
N

N∑
j=1

(
h∗

j − h∗
)2

, sd
(
g∗
)

=

√√√√√ 1
N

N∑
j=1

(
g∗

j − g∗
)2

.

In order to measure the distance of the bootstrap two-dimensional bandwidth of

the j-th sample, (h∗
j , g∗

j ), from the corresponding MISE bandwidth, (hMISE, gMISE),

consider the vector

D∗
j =

(
h∗

j − hMISE

hMISE

,
g∗

j − gMISE

gMISE

)
∈ R2.

and its Euclidean norm denoted by H∗
j = ∥D∗

j ∥2 with j = 1, . . . , N . The mean

value, H∗ = 1
N

∑N
j=1 H∗

j is a measure of how close the bootstrap bandwidths are to

the MISE one.

For each sample, the estimation error of the smoothed Beran’s estimator with

the corresponding bootstrap bandwidth,

MISEx(h∗
j , g∗

j ) = E

(∫
IT

(
S̃h∗

j ,g∗
j
(t|x) − S(t|x)

)2
dt

)
,

and its square root, RMISEx(h∗
j , g∗

j ), are approximated via Monte Carlo using 300

simulated samples. The mean of these estimation errors given by

RMISEx(h∗, g∗) = 1
N

N∑
j=1

RMISEx

(
h∗

j , g∗
j

)

is used as a measure of the estimation error made by the bootstrap two-dimensional

bandwidth in the model.

The ratio

R∗
j =

RMISEx(h∗
j , g∗

j ) − RMISEx(hMISE, gMISE)
RMISEx(hMISE, gMISE)

is defined as a relative measure of the difference between the error of the estimator

with bootstrap bandwidth and MISE bandwidth. The mean of the positive values

R∗
j with j = 1, . . . , N is denoted by R∗ = 1

N

∑N
j=1 R∗

j . Values of the bootstrap

bivariate bandwidths, estimation errors and relative measures for Models 2 and 3

are included in Table 4.2.
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Model 2 Model 3

P (δ = 0|X = x) 0.2 0.5 0.2 0.5

hMISE 0.23469 0.20408 0.11122 0.23979

gMISE 0.05143 0.08102 0.91530 1.13878

RMISEx(hMISE, gMISE) 0.02158 0.03024 0.05594 0.06938

h∗ (sd) 0.24172 (0.086) 0.22600 (0.085) 0.31289 (0.132) 0.36221 (0.142)

g∗ (sd) 0.09701 (0.017) 0.11474 (0.022) 0.85749 (0.117) 0.86538 (0.112)

H∗ 0.94544 0.54256 1.82913 0.73757

RMISEx(h∗, g∗) 0.02769 0.03851 0.11035 0.12633

R∗ 0.20027 0.17301 1.01971 0.84987

Table 4.2: MISE and average bootstrap bandwidths and estimation errors of the smoothed

Beran’s survival estimator in each level of censoring conditional probability for Models 2 and 3.

Numbers within brackets are standar deviations.

Figures 4.5 and 4.6 show the MISEx(h, g) function of the smoothed Beran’s

estimator and its bootstrap approximation along with the corresponding contour

plot for one sample of both Models 2 and 3 when the conditional probability of

censoring is 0.5. It is approximated over a meshgrid of 50 × 50 values of (h, g).

Note that both MISEx(h, g) and MISE∗
x(h, g) curves for each fixed h value are

quite similar in the region close to the minimum value of MISE∗
x(h, g). Thus, the

influence of the covariate smoothing parameter, h, is weak when estimating the

survival function using values of bandwidth g close to the optimal one.

Figures 4.7 and 4.8 show the boxplots of H∗
j and R∗

j with j = 1, . . . , N . In

general, the selector tends to overestimate the value of the covariate bandwidths.

Due to the behaviour of the MISEx(h, g) curves, mentioned above, this does not

lead to a significant increase in the estimation error.
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Figure 4.5: MISEx(h, g) function (top left) and contour plot of MISEx(h, g) (top right) and

MISE∗
x(h, g) function (bottom left) and contour plot of MISE∗

x(h, g) (bottom right) for one

sample from Model 2 when P (δ = 0|x) = 0.5.
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5

Figure 4.6: MISEx(h, g) function (top left) and contour plot of MISEx(h, g) (top right) and

MISE∗
x(h, g) function (bottom left) and contour plot of MISE∗

x(h, g) (bottom right) for one

sample from Model 3 when P (δ = 0|x) = 0.5.
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Figure 4.7: Boxplot of H∗
1 , ..., H∗

N values (top) and boxplot of R∗
1, ..., R∗

N values (bottom) when

the conditional probability of censoring is 0.2 (left) and 0.5 (right) in Model 2.
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Figure 4.8: Boxplot of H∗
1 , ..., H∗

N values (top) and boxplot of R∗
1, ..., R∗

N values (bottom) when

the conditional probability of censoring is 0.2 (left) and 0.5 (right) in Model 3.

Figure 4.9 shows the theoretical survival function and the smoothed Beran’s

estimation with optimal and bootstrap bandwidths for one sample of each model

when the conditional probability of censoring is 0.5.
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Figure 4.9: Theoretical conditional survival function, S(t|x), (solid line), smoothed Beran’s

estimation with MISE bandwidth (dotted line) and smoothed Beran’s estimation with bootstrap

bandwidth (dashed line) for one sample from Model 2 (left), Model 3 (right) with P (δ = 0|x) = 0.5.

The results showed in Tables 4.1 and 4.2 are summarised in Table 4.3 to com-

pare the behaviour of Beran’s and the smoothed Beran’s estimators and to evaluate

whether the improvement that smoothing in the time variable provides for survival

estimation is preserved when approximating the smoothing parameters by resam-

pling techniques. The behaviour of both estimators with bootstrap bandwidths is

very similar in Model 2, while there is a significant decrease in estimation error due

to double smoothing in Model 3.

Model 2 Model 3

P (δ = 0|X = x) 0.2 0.5 0.2 0.5

Ŝh(t|x)
h∗ 0.23815 0.21897 0.06718 0.08082

RMISEx(h∗) 0.02548 0.03809 0.13391 0.17242

S̃h,g(t|x)

h∗ 0.24172 0.22600 0.31289 0.36220

g∗ 0.09701 0.11474 0.85749 0.86537

RMISE(h∗, g∗) 0.02770 0.03851 0.11035 0.12633

Table 4.3: Comparative table of the bootstrap bandwidths and RMISE with Beran’s estimator

and the smoothed Beran’s estimator in Model 2 and 3.
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4.4 Confidence regions using Beran’s and the

smoothed Beran’s estimators

Let x ∈ I be a fixed value of the covariate and consider S(t|x) the conditional survival

curve with t ∈ IT . The curve S(t|x) belongs to the function space F(IT ) whose

elements are real-valued functions with domain IT . From the sample {(Xi, Zi, δi),

i = 1, ..., n}, Beran’s estimation of S(t|x), Ŝh(t|x), is obtained and a confidence

region of S(t|x) at 1 − α confidence level associated to Beran’s estimator can be

constructed. A similar construction is done for the smoothed Beran’s estimator.

This confidence region of S(t|x) is a random subset of IT × F(IT ) denoted by Rα

that satisfies

P
(
(t, S(t|x)) ∈ Rα, ∀t ∈ IT

)
= 1 − α.

In this section we propose two different methods to obtain confidence regions of

the S(t|x) curve based on resampling techniques. Both Beran’s estimator and the

smoothed Beran’s estimator can be used with these two methods.

Method 1 for confidence regions

First, Beran’s estimator of the conditional survival function, Ŝh(t|x), given in (2.3)

is used. This method follows the ideas of Cao et al. (2010) to obtain prediction

regions. It is based on finding the value of λα ∈ R+ such that

P
(
|Ŝh(t|x) − S(t|x)| < λασ(t), ∀t ∈ IT

)
= 1 − α

with σ2(t) = V ar
(
Ŝh(t|x)

)
. Thus, the theoretical confidence region is defined by

R1
α =

{
(t, y) : t ∈ IT , y ∈

(
Ŝh(t|x) − λασ(t), Ŝh(t|x) + λασ(t)

)}
.

Since λα and σ(t) are unknown, they are approximated by means of a bootstrap

technique. The bootstrap confidence region is defined as follows:

R1∗
α =

{
(t, y) : t ∈ IT , y ∈

(
Ŝ∗

h(t|x) − λ∗
ασ∗(t), Ŝ∗

h(t|x) + λ∗
ασ∗(t)

)}
.
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where Ŝ∗
h(t|x) is the bootstrap estimation of S(t|x) with bandwidth h and λ∗

α and

σ∗(t) are the bootstrap analogue of λα and σ(t). The confidence region R1∗
α satisfies

p(λ∗
α) = P ∗

(
(t, Ŝr(t|x)) ∈ R1∗

α , ∀t ∈ IT

)
= 1 − α. (4.7)

From the original sample
{
(Xi, Zi, δi)

}n

i=1
, Beran’s estimator of S(t|x) is obtained

with appropriate bandwidth h, Ŝh(t|x). The algorithm to obtain the bootstrap

confidence region for S(t|x) at confidence level 1−α associated to Ŝh(t|x) is explained

below. The Monte Carlo method is used to approximate σ∗(t), and an iterative

method is used to approximate the value of λ∗
α so that the confidence region has a

confidence level approximately equal to 1 − α.

1. Compute Beran’s estimator Ŝr(t|x) from the original sample
{
(Xi, Zi, δi)

}n

i=1

and pilot bandwidth r ∈ I1.

2. Generate B bootstrap resamples of the form
{
(X∗,k

i , Z∗,k
i , δ∗,k

i )
}n

i=1
by means of

the resampling algorithm for Beran’s estimator presented in Subsection 4.2.1

and pilot bandwidth r.

3. For k = 1, . . . , B, compute Ŝ∗,k
h (t|x) with the k-th bootstrap resample and

bandwidth h, obtaining
{
Ŝ∗,k

h (t|x)
}B

k=1
.

4. Approximate the standard deviation of Ŝ∗
h(t|x) by

σ∗(t) ≃

 1
B

B∑
k=1

(
Ŝ∗,k

h (t|x) − 1
B

B∑
l=1

Ŝ∗,l
h (t|x)

)2
1/2

, t ∈ IT .

5. Use an iterative method to obtain an approximation of the value λ∗
α defined

in (4.7).

6. The confidence region is given by

R̂1
α =

{
(t, y) : t ∈ IT , y ∈

(
Ŝh(t|x) − λ∗

ασ∗(t), Ŝh(t|x) + λ∗
ασ∗(t)

)}
.
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Iterative method to approximate λ∗
α

The iterative method to approximate the value of λ∗
α ∈ R+ so that the confidence

region R∗
α has a confidence level approximately equal to 1 − α is explained below.

This algorithm allows to quickly and efficiently approximate the parameter λ∗
α.

Let
{
Ŝ∗,k

h (t|x)
}B

k=1
be the Beran’s estimations of the survival function with band-

width h over a set of B bootstrap resamples of
{
(Xi, Zi, δi)

}n

i=1
. Define the Monte

Carlo approximation of p(λ) in (4.7), for any λ ∈ R+, as follows:

p(λ) ≃ 1
B

B∑
k=1

I
(

Ŝr(t|x) ∈
(
Ŝ∗,k

h (t|x) − λσ∗(t), Ŝ∗,k
h (t|x) + λσ∗(t)

)
, ∀t ∈ IT

)
. (4.8)

Let λL, λH ∈ R+ be such that p(λL) ≤ 1 − α ≤ p(λH) and let ζ > 0 be a

tolerance, for example, ζ = 10−4.

1. Obtain λM = λL + λH

2 and compute Monte Carlo approximations of p(λL),

p(λM) and p(λH) according to (4.8).

2. If p(λM) = 1 − α or p(λH) − p(λL) < ζ, then λ∗
α = λM . Otherwise,

(a) If 1 − α < p(λM), then λH = λM and return to Step 1.

(b) If p(λM) < 1 − α, then λL = λM and return to Step 1.

This method to obtain confidence regions for the curve S(t|x) for fixed x ∈ I

and t covering IT based on Beran’s estimator can be adapted to obtain confidence

regions using the smoothed Beran’s estimator. Simply replace Beran’s estimator

Ŝh(t|x) by the smoothed Beran’s estimator S̃h,g(t|x) given in (3.4) where necessary,

and obtain the analogous bootstrap approximations of λα and σ(t):

1. Compute the smoothed Beran’s estimator S̃r,s(t|x) from the original sample{
(Xi, Zi, δi)

}n

i=1
and pilot bandwidths r ∈ I1 and s ∈ I2.

2. Generate B bootstrap resamples of the form
{
(X∗,k

i , Z∗,k
i , δ∗,k

i )
}n

i=1
by means

of the resampling algorithm for the smoothed Beran’s estimator presented in

Subsection 4.2.1 and pilot bandwidths r and s.
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3. For k = 1, . . . , B, compute S̃∗,k
h,g(t|x) with the k-th bootstrap resample and

bandwidth h, obtaining
{
S̃∗,k

h,g(t|x)
}B

k=1
.

4. Approximate the standard deviation of S̃∗
h,g(t|x) by

σ∗(t) ≃

 1
B

B∑
k=1

(
S̃∗,k

h,g(t|x) − 1
B

B∑
l=1

S̃∗,l
h,g(t|x)

)2
1/2

, t ∈ IT .

5. Use an iterative method to obtain an approximation of the value λ∗
α defined

in (4.7).

6. The confidence region is given by

R̃1
α =

{
(t, y) : t ∈ IT , y ∈

(
S̃h,g(t|x) − λ∗

ασ∗(t), S̃h,g(t|x) + λ∗
ασ∗(t)

)}
.

The pilot bandwidths defined in (4.3) and (4.6) are used for the confidence region

algorithm based on both Beran’s and the smoothed Beran’s estimators.

Method 2 for confidence regions

An alternative procedure to obtain a confidence region for S(t|x), with fixed x ∈ I

and t covering the interval IT , is based on considering that the curve S(t|x) belongs

to the functional space Lp(IT ) defined using a natural generalization of the p-norm

for finite-dimensional vector spaces, ∥·∥p. The confidence region for S(t|x) computed

at the 1 − α confidence level is a ball around Ŝh(t|x) of radius ρα, where ρα is such

that

P
(
∥Ŝh(t|x) − S(t|x)∥p < ρα

)
= 1 − α.

This idea was presented in Zhun and Politis (2017) to obtain prediction regions

in functional autoregression models. Since S(t|x) is unknown, the distribution of

R = ∥Ŝh(t|x) − S(t|x)∥p is not available and the value of ρα can not be calculated.

Therefore, a bootstrap approximation is given by R∗ = ∥Ŝ∗
h(t|x) − Ŝr(t|x)∥p. The

bootstrap confidence region is a ball in Lp(IT ) around Ŝh(t|x) of radius ρ∗
α, where

ρ∗
α is such that

P ∗
(
∥Ŝ∗

h(t|x) − Ŝr(t|x)∥p < ρ∗
α

)
= 1 − α.
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and r ∈ Ih is an auxiliary bandwidth.

From the original sample
{
(Xi, Zi, δi)

}n

i=1
, Beran’s estimator of S(t|x) is obtained

with appropriate bandwidth h, Ŝh(t|x). The algorithm to obtain the bootstrap

confidence region for S(t|x) at confidence level 1−α associated to Ŝh(t|x) is explained

below. The Monte Carlo method is used to approximate the radius ρα, so that the

confidence region has a confidence level approximately equal to 1 − α.

1. Compute Beran’s estimator Ŝr(t|x) with the original sample {(Xi, Zi, δi)}n
i=1

and pilot bandwidth r ∈ Ih.

2. Generate B bootstrap resamples
{
(X∗k

i , Z∗k
i , δ∗k

i )
}n

i=1
, for k = 1, ..., B, by

means of the resampling algorithm for Beran’s estimator presented in Sub-

section 4.2.1 and pilot bandwidth r.

3. For k = 1, ..., B, compute Ŝ∗k
h (t|x) with the k-th bootstrap resample and band-

width r and obtain

R∗
k = ∥Ŝ∗k

h (t|x) − Ŝr(t|x)∥p

4. Sort the values R∗
1, ..., R∗

B by obtaining R∗
(1), ..., R∗

(B) and select ρ∗
α = R∗

([B(1−α)]).

5. The confidence region is the ball in Lp(IT ) around Ŝh(t|x) with radius ρ∗
α.

Regarding the norm to be used, the usual norms of the function spaces L1 and

L2 allow us to mathematically define the confidence region and to check whether or

not a given curve belongs to this region. The disadvantage of these function spaces

is that they do not allow a graphical representation of the confidence region.

Choosing the function space L∞ and its associated norm, ∥·∥∞, then the statistic

used to obtain the confidence region is defined as follows

R = ∥Ŝh(t|x) − S(t|x)∥∞ = sup
t∈[l,u]

|Ŝh(t|x) − S(t|x)|

and the confidence region is

R2
α =

{
(t, y) : t ∈ IT , y ∈

(
Ŝh(t|x) − ρα, Ŝh(t|x) + ρα

)}
.
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whose graphical representation may be useful. The disadvantage of this choice of the

space is that the confidence region Rα has the same radius ρα at all points t ∈ IT ,

so it does not capture the variability of the estimator, σ2(t) = V ar(Ŝh(t|x)).

This method can be adapted to obtain confidence regions using the smoothed Be-

ran’s estimator. Simply replace Beran’s survival estimator Ŝh(t|x) by the smoothed

Beran’s estimator S̃h,g(t|x) given in (3.4) where necessary. The confidence region for

S(t|x) based on the smoothed Beran’s estimator at 1 − α confidence level is a ball

in Lp(IT ) around S̃h,g(t|x) of radius ρα, where ρα is such that

P (R < ρ1−α) = 1 − α

with

R = ∥S̃h,g(t|x) − S(t|x)∥p.

A similar procedure to the one shown in the previous paragraphs for Beran’s esti-

mator allows us to obtain the bootstrap approximation of ρα.

The pilot bandwidths defined in (4.3) and (4.6) are used for the confidence region

algorithm based on both Beran’s and the smoothed Beran’s estimators.

If the aim were the point estimation of S(t|x), the algorithms proposed in this

section can be easily adapted to obtain confidence intervals for S(t|x) for fixed x ∈ I

and t ∈ IT .

4.5 Simulation study for confidence regions

A simulation study is carried out to analyse the performance of the bootstrap con-

fidence regions obtained by means of the two methods proposed in Section 4.4 and

based on both Beran’s and the smoothed Beran’s estimator.

Models 2 and 3 are considered and the simulation setup is the one introduced

in Section 4.3. Two conditional probabilities of censoring are considered for each

model: P (δ = 0|x) = 0.2 and P (δ = 0|x) = 0.5. The number of simulated samples
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of each model is N = 300 and B = 500 bootstrap resamples are obtained for each

sample. The sample size is n = 400. The confidence level is 1 − α with α = 0.05.

When Beran’s estimator is considered, the optimal bandwidth that minimises the

mean integrated squared error is used (h = h1 from Tables 3.2 and 3.3). Similarly,

the two-dimensional bandwidth that minimises the MISE is considered when using

the smoothed Beran’s estimator ((h, g) = (h3, g3) from Tables 3.2 and 3.3). These

bandwidths are unknown in practice, but they allow a fair comparison of the methods

in the simulation study. Regarding the pilot bandwidth defined in (4.3), Model 2

considers c = 3/2, while Model 3 considers c = 1, as explained in Section 4.3.

Denote the lower and upper bounds of the confidence region by l(t, x) and u(t, x),

respectively. It may happen that the lower bound of the confidence region is less

than 0 or the upper bound is greater than one for some points (t0, x0). When this

happens, we set l(t0, x0) = 0 or u(t0, x0) = 1, as appropriate.

It is clear that S(t|x) = 1 when t = 0 and S(t|x) is not necessarily 1 when

t = 0 + ε with any ε > 0. However, due to the lack of information provided by

the data at times close to zero, it is the case that the estimation of S(t|x) is 1

for the smallest values of the time grid in most of the samples of the study. As a

consequence, using Method 1, l(t, x) = 1 = u(t, x) for such small values of t and the

confidence region does not contain the true survival curve, so the coverage decreases.

The proposed solution is to artificially increase the width of the confidence region

at the first points of the grid: for those values of t such that l(t, x) = 1 = u(t, x),

we make l(t, x) = l(t′, x) where t′ ∈ {t1, . . . , tn} is the first grid point such that

l(t0, x) < 1. This is a problem that Method 2 does not present, since the variability

that the conditional survival estimations have in the right tail of the time ditribution

is inherited by the width of the confidence region at all points of the time grid.

A confidence region performs well if its coverage is close to the nominal one, in

this case 1 − α = 0.95, and has a small area or average width. The following values

measure the performance of the confidence region and allow for the comparison of

results.
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Coverage is the percentage of bootstrap regions that contain the whole theoretical

survival curve and it is defined as follows

1
N

N∑
j=1

I
{

S(tk|x) ∈
(
l(tk, x), u(tk, x)

)
, ∀k = 1, ..., nT

}
.

The mean pointwise coverage is the mean of the proportion of time grid values

for which the confidence region contains the theoretical conditional survival curve.

It is given by

1
N

N∑
j=1

(
1

nT

nT∑
k=1

I
{

S(tk|x) ∈
(
l(tk, x), u(tk, x)

)})
.

Average width of the bootstrap confidence region is defined by

1
N

N∑
j=1

 1
nT

nT∑
k=1

(
u(tk, x) − l(tk, x)

).

Winkler score (see Winkler (1972)) is also used to compare the behaviour of

the methods. For classical confidence or prediction intervals, it is defined as the

length of the interval plus a penalty if the theoretical value is outside the interval.

Thus, it combines width and coverage. For values that fall within the interval, the

Winkler score is simply the length of the interval. So low scores are associated with

narrow intervals. When the theoretical value falls outside the interval, the penalty

is proportional to how far the observation is from the interval. The formula of the

Winkler score (WS) as a function of the time and covariate variables is as follows:

WS(t, x) = u(t, x) − l(t, x) + 2
α

(l(t, x) − S(t|x))I
(
S(t|x) < l(t, x)

)
+ 2

α
(S(t|x) − u(t, x))I

(
S(t|x) > u(t, x)

)
.

Since we are working with confidence regions for fixed x ∈ I and t varying

over the interval IT , the integrated Winkle score is proposed as a criteria for the

comparison of the confidence regions. It is defined by

IWS(x) =
∫

IT

WS(t, x)dt.
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and the lower the value of IWS, the better the performance of the confidence region.

The results obtained are shown in Tables 4.4 and 4.5. The high values of point-

wise coverage in all scenarios are remarkable. Furthermore, these coverage percent-

ages are preserved when using double smoothing, while the average width of the

confidence regions is decreased. This is reflected in the IWS, which presents much

larger values in the Beran’s estimator-based confidence regions.

Method 1 has lower mean coverage, but equal pointise coverage and smaller

width than Method 2 in Model 2. In Model 3, the coverages of the two methods are

similar, with Method 1 providing confidence regions of smaller width. The coverage

indicates the percentage of times the theoretical curve is completely contained in

the confidence band. This coverage decreases as soon as the curve goes outside the

region at a single point on the time grid. This, that only a few points go out of the

region, is what mainly happens here.

In some of the scenarios, the mean coverage of Method 1 is remarkably low.

For example, the average coverage of the confidence region based on the Beran’s

estimator for Model 2 is 40%. This value indicates that only in 60 out of 100 trials

does the confidence region obtained by the proposed method entirely contain the

theoretical curve. However, in the same scenario, the average point coverage is 96%,

so the survival curve is within the confidence region at 96 out of 100 grid points,

which is a considerably high value of the pointwise coverage.

In conclusion, the two proposed methods for the confidence regions have reason-

able behaviours, both presenting very high pointwise coverages. Method 1 provides

confidence regions of variable width at the cost of slightly decreasing the average

coverage. Method 2 has higher coverage percentages but also a larger width, which

is also constant everywhere. The results obtained using the smoothed Beran’s esti-

mator in either method are promising.
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Model 2 Beran SBeran

P (δ = 0 | X = 0.6) 0.2 0.5 0.2 0.5

Method Met 1 Met 2 Met 1 Met 2 Met 1 Met 2 Met 1 Met 2

Width 0.16264 0.21677 0.21664 0.35643 0.15759 0.16426 0.17985 0.21985

Coverage (%) 39.33 97.67 40.33 97.00 97.67 97.33 58.67 98.67

Pointwise
coverage(%) 96.45 99.93 95.85 99.82 98.71 99.44 96.57 99.67

IWS 0.15076 0.17167 0.21480 0.26943 0.13759 0.13550 0.16372 0.17469

Table 4.4: Coverage, average width and IWS of the 95% confidence regions by means Methods

1 and 2 and Beran’s and the smoothed Beran’s estimators using N = 300 simulated samples from

Model 2.

Model 3 Beran SBeran

P (δ = 0 | X = 0.8) 0.2 0.5 0.2 0.5

Method Met 1 Met 2 Met 1 Met 2 Met 1 Met 2 Met 1 Met 2

Width 0.34203 0.34511 0.42486 0.41146 0.24070 0.19981 0.37740 0.27440

Coverage (%) 85.33 89.00 66.67 83.33 88.67 93.67 96.00 99.67

Pointwise
coverage(%) 97.56 99.32 92.90 98.91 98.24 98.94 98.67 99.94

IWS 1.37220 1.18335 2.06192 1.38213 0.93535 0.77965 1.45099 0.92742

Table 4.5: Coverage, average width and IWS of the 95% confidence regions by means Methods

1 and 2 and Beran’s and the smoothed Beran’s estimators using N = 300 simulated samples from

Model 3.

This analysis is also illustrated in following figures. Figure 4.10 shows the the-

oretical survival curve, the estimation with MISE bandwidths and the bootstrap

estimations of S(t|x) from B = 500 resamples using both Beran’s and the smoothed

Beran’s estimator. These graphs show the higher variability of the Beran’s estima-

tions in the resamples with respect to the smoothed Beran’s estimations.

Figure 4.11 shows the confidence regions for the conditional survival function

obtained by Method 1 for one sample from Models 2 and 3. The confidence regions

obtained by Method 2 are shown in Figure 4.12. The higher variability of the Beran’s

estimations in the resamples with respect to the smoothed Beran’s estimations leads

to much wider confidence regions. When using Method 1, this only affects the width
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of the confidence region at the right tail of the time distribution. When using Method

2, this variability causes the confidence region to have a larger width for all points

on the time grid.

Figure 4.10: Theoretical S(t|x) (red solid line) and estimation with MISE bandwidths (black

dashed line) along with the bootstrap estimations of S(t|x) from B = 500 resamples (gray dashed

lines) by means of Beran’s estimator (left) and the smoothed Beran’s estimator (right) for one

sample from Model 2 (top) and Model 3 (bottom) when P (δ = 0|x) = 0.5.
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Figure 4.11: Theoretical S(t|x) (red solid line), estimation with MISE bandwidths (black dashed

line) and 95% confidence region (black dotted lines) by means of Beran’s estimator (left) and the

smoothed Beran’s estimator (right) for one sample from Model 2 (top) and Model 3 (bottom) when

P (δ = 0|x) = 0.5 using Method 1.
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Figure 4.12: Theoretical S(t|x) (red solid line), estimation with MISE bandwidths (black dashed

line) and 95% confidence region (black dotted lines) by means of Beran’s estimator (left) and the

smoothed Beran’s estimator (right) for one sample from Model 2 (top) and Model 3 (bottom) when

P (δ = 0|x) = 0.5 using Method 2.

4.6 Analysis of the computational times

This section includes a brief analysis of the computation times required in the pro-

cesses detailed above.

Note that the CPU time of the resampling is the same both when using the

Beran’s estimator and when using the smoothed Beran’s estimator. This is due to

the fact that the resampling is identical in both cases, except for the perturbation on

the lifetime and censoring variables, which is insignificant in terms of computation

time.

Regarding the selection of a bootstrap bandwidth, the difference between the

two methods lies in the function to be minimised, since it will be unidimensional in
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the case of the Beran’s estimator, but two-dimensional in the case of the smoothed

Beran’s estimator. Since the optimization of the error function was conducted using

an external R package, its computational efficiency is not analysed here.

In the first scenario, the number of samples N = 1 and the number of resamples

B = 100 are set and different sample sizes are considered. Table 4.6 shows the

resulting times.

n 100 200 400 800 1600 3200 6400

Time 0h 0’ 12” 0h 0’ 49” 0h 4’ 32” 0h 29’ 41” 3h 31’ 48’ 27h 36’ 40” 227h 58’ 3”

Table 4.6: CPU times of the resampling method for N = 1 sample of size n and B = 100

bootstrap resamples.

In the second scenario the sample size, n = 100, is fixed and either the number

of samples, N , or the number of resamples, B, are varied as a verification that the

processes are linear over these parameters. Tables 4.7 and 4.8 show the results.

Approximating the bootstrap bandwidth or computing a confidence region by

500 resamples from a sample of size 100 requires one minute and a half, while a

sample of size 500 requires 25 minutes to obtain the result. These times seem to

increase quadratically as the sample size grows, which may lead to prohibitive times

for very large sample sizes.

N 50 100 500 1000

Time 0h 14’ 49” 0h 31’ 17” 1h 29’ 24” 2h 59’ 7”

Table 4.7: CPU times of the resampling method for N samples of size n = 100 and B = 100

bootstrap resamples.

B 50 100 500 1000 5000

Time 0h 0’ 8” 0h 0’ 16” 0h 1’ 26” 0h 3’ 2” 0h 15’ 9”

Table 4.8: CPU times of the resampling method for N = 1 sample of size n = 100 and B

bootstrap resamples.

171



4.7 Application to real data

The usefulness of the automatic bootstrap selector of the bandwidths of Beran’s and

the smoothed Beran’s estimator is illustrated in this section. The survival function of

the time that COVID-19 patients remain hospitalised in ward or the Intensive Care

Unit (ICU) is estimated by means of Beran’s and the smoothed Beran’s estimators.

A dataset from SERGAS (Galician health service) with dates of admission and

discharge (if applicable), age, gender and previous diseases of COVID-19 patients in

Galicia (Spain) is available.

The event of interest is the patient leaving ward or ICU, so the time variable

which is subject to right random censoring is the time until the patients leave the

ward or the ICU. An informative covariate of the survival time is the age of the pa-

tient. Other factors like sex or previous diaseases are used to disaggregate interesting

subpopulations. There are certain risk factors for COVID-19 that could affect hospi-

talisation and recovery times. Two of these are obesity and COPD. COPD (chronic

obstructive pulmonary disease) is a chronic inflammatory lung disease that causes

obstructed airflow from the lungs. The following paragraphs take into consideration

whether or not patients have obesity or COPD in order to analyse their influence

on the hospitalisation times.

4.7.1 Time until leaving ward

The time until a COVID-19 positive patient leaves the ward is first considered. A

patient leaves the ward because he/she is discharged, admitted to the ICU or dies.

When none of these three circumstances is observed for a patient before the end of

the study, the censoring time is what is observed. The total number of hospitalised

patients followed up is 2453 and the censoring rate of this dataset is 8.85%.

Table 4.9 shows summary statistics of the hospitalisation time in ward and the

age of COVID-19 patients disaggregating the censored and uncensored groups. Fig-

ure 4.13 shows the histogram of the time in ward and the age for all patients.
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Figure 4.14 informs about the proportion of men and women suffering from each of

the above pathologies considered in the study.

min. 1stQ. median mean 3thQ. max.

Censored data Time 1.00 5.00 15.00 18.22 28.00 105.00

Age 4.00 69.00 80.00 76.04 87.00 100.00

Uncensored data Time 1.00 6.00 10.00 13.02 16.00 75.00

Age 0.00 60.00 72.00 69.61 82.00 106.00

Table 4.9: Summary statistics for time of the stay in ward (Z) and age (X) for the uncensored

group (patients who left ward) and the censored group (patients in ward).

Figure 4.13: Histogram and kernel density estimation for the time in ward (left) and age (right).
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Figure 4.14: Bar chart of the COPD variable (left) and the obesity variable (right) by gender of

the patients in ward.

The bootstrap algorithm shown in the previous section is used here to compute

the bootstrap bandwidths for estimating the survival function of the time in ward

of the Galician COVID-19 patients. Due to the good results that the smoothed

Beran’s estimator showed in the previous simulations, this is the estimator mainly

used in this section. Some interesting confidence regions based on the smoothed

Beran’s estimator are also obtained. Method 1, which was proposed in Section 4.4

and provides confidence regions of varying width, is used.

The bootstrap estimation is obtained in a grid of time t1 < · · · < tnT
with

tnT
= Q̂(0.95) and nT = 100. The pilot bandwidth for the covariate used in the

bootstrap algorithm is the one defined in (4.3) with c = 3/2. Figure 4.15 shows the

reason for the choice of the constant c, as it can be seen that the regression function

of T on X, estimated using the Nadaraya-Watson estimator for censored data, is

not very variable with respect to x. The pilot bandwidth for the time variable is

the one defined in (4.6).
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Figure 4.15: Scatter plot and estimated regression function of age versus time in ward.

Firstly, three age profiles are considered: 40, 60 and 80 years old. In some

cases, due to the differences found, a brief analysis will be included for the 30 year

old profile. In other cases, because of sample limitations, only 60 and 80 year old

profiles will be considered.

The bandwidth that minimises the Monte Carlo approximation of the boot-

strap MISE, MISE∗
x(h∗) for Beran’s estimator along with the square root of MISE,

RMISE∗
x(h∗) and the two-dimensional bandwidth that minimises the Monte Carlo

approximation of the bootstrap MISE, MISE∗
x(h∗, g∗), for the smoothed Beran’s

estimator along with the square root of MISE, RMISE∗
x(h∗, g∗), are shown in Table

4.10. For x = 80, the RMISE∗
x(h, g) function is decreasing in h, so the bandwidth

selector for the smoothed Beran’s estimator proposes as the bootstrap bandwidth

the upper end of the interval considered for this smoothing parameter.
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Beran SBeran

x h∗ RMISE∗
x(h∗

1) h∗
2 g∗

2 RMISE∗
x(h∗

2, g∗
2)

40 4.765306 0.024209 5.507370 1.266695 0.160623

60 4.571429 0.016797 5.548651 0.784956 0.115867

80 13.387760 0.012351 30.000000 2.348188 0.055815

Table 4.10: Bootstrap bandwidth and bootstrap RMISE for Beran’s estimation and the smoothed

Beran’s estimation of the conditional survival function of the time in ward for some different values

of age.

Figure 4.16 shows the boostrap estimations of the survival function by means

of Beran’s and the smoothed Beran’s estimator. The differences between the two

estimations are not remarkable, except for the reduction of the roughness of the

smoothed Beran’s estimation. Only 20% of the 40 year old patients spend more

than 15 days in ward. Meanwhile, 40% of COVID-19 positive patient of 60 or 80

years old spend more than 15 days in ward and only 20% of these patients spend

more than 25 days in ward.

Figure 4.17 shows the estimation of the conditional survival function of the time

in the ward of a 60-year-old patient and the bootstrap confidence region at the 95%

confidence level obtained by Method 1. The average width of the confidence region

is 0.1227.
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Figure 4.16: Estimation of S(t|x) for time in ward with Beran’s estimator (left) and the smoothed

Beran’s estimator (right) using the bootstrap bandwidths for x = 40 (dotted line), x = 60 (dashed

line) and x = 80 (solid line).

Figure 4.17: Estimation of S(t|x) with bootstrap bandwidths for time in ward and bootstrap

confidence region by means of Method 1 based on the smoothed Beran’s estimator for x = 60.

Recovery times were also analysed by classifying individuals into two gender

populations. The main conclusions are shown in following paragraphs.

Figure 4.18 shows that there is no remarkable differences between ages when

restricting to the men subpopulation. On the contrary, the distribution of the time

177



in ward seems to be slightly different for women of different ages. About 20% of

women aged 60-80 spend more than 20 days in ward. Meanwhile, only 10% of 40-

year-old women spend more than 20 days in ward. Furthermore, Figure 4.19 shows

that young women have shorter recovery times than young men.

Figure 4.18: Estimation of S(t|x) for time in ward with the smoothed Beran’s estimator using

the bootstrap bandwidths in the men subpopulation (left) and in the women subpopulation (right)

for x = 40 (dotted line), x = 60 (dashed line) and x = 80 (solid line).

Figure 4.19: Estimation of S(t|x) for time in ward with the smoothed Beran’s estimator using

the bootstrap bandwidths with x = 30 (left) and x = 40 (right) in the men (dashed lines) and

women (dotted lines) subpopulations.
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Figure 4.20 shows the estimation of the conditional survival function of the time

in ward of a 60-year-old man and a 60-year-old woman and the corresponding boot-

strap confidence regions at the 95% confidence level. The average width of the

confidence region for the men subpopulation is 0.1224 and for the women subpopu-

lation is 0.1272.

Figure 4.20: Estimation of S(t|x) with bootstrap bandwidths for time in ward and bootstrap

confidence region by means of Method 1 based on the smoothed Beran’s estimator for x = 60 in

the men (red lines) and the women (black lines) subpopulations.

Now, it is considered whether or not patients have COPD. The possible effect

of this risk factor on recovery times is discussed below. The age profiles considered

here are 60 and 80 years because the proportion of young patients in the sample

diagnosed with COPD is low.

Figure 4.21 shows that there is no significant difference in the recovery time

of patients with and without COPD for these ages. Although the recovery times

of COPD patients in their 60s might be very slightly higher than in non-COPD

patients, no differences are observed for patients in their 80s (Figure 4.22).
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Figure 4.21: Estimation of S(t|x) for time in ward with the smoothed Beran’s estimator using

the bootstrap bandwidth in the COPD patients subpopulation (left) and non-COPD patients

subpopulation (right) for x = 60 (dashed line) and x = 80 (solid line).

Figure 4.22: Estimation of S(t|x) for time in ward with the smoothed Beran’s estimator using

the bootstrap bandwidth with x = 60 (left) and x = 80 (right) in the COPD (dashed lines) and

non-COPD (dotted lines) subpopulations.

Another risk factor for COVID-19 disease is obesity, so its possible effect on the

time of hospitalisation (in ward) is studied.

Figure 4.23 shows that the effect of age on recovery time is greatly attenuated
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by obesity. That is, in the case of obesity, the hospitalisation time is similar for all

considered ages. Figure 4.24 shows that hospitalisation times are somewhat longer

in 40-year-old patients with obesity than in 40-year-old patients without obesity. In

contrast, at older ages, the effect of this risk factor is not appreciable: hospitalisation

times in ward do not differ between patients with and without obesity in their 80s.

Figure 4.23: Estimation of S(t|x) for time in ward with Beran’s estimator using the bootstrap

bandwidth in the obesity patients subpopulation (left) and non-obesity patients subpopulation

(right) for x = 40 (dotted line), x = 60 (dashed line) and x = 80 (solid line).
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Figure 4.24: Estimation of S(t|x) for time in ward with Beran’s estimator using the bootstrap

bandwidth with x = 40 (left) and x = 80 (right) in the obesity (dashed lines) and non-obesity

(dotted lines) subpopulations.

4.7.2 Time until leaving ICU

The time until leaving the Intensive Care Unit is considered in this section. A

COVID-19 positive patient leaves the ICU because he/she is discharged (from the

ICU) or dies and his/her time until the event of interest is knwon. In other case,

the censoring time is what is observed. The total number of patients in the ICU

who were followed up is 288 and the censoring rate of this dataset is 14.58%. Table

4.11 shows summary statistics of the hospitalisation time in the ICU and the age

of COVID-19 patients disaggregating the censored and uncensored groups. Figure

4.25 shows the histogram of the time in the ICU and the age for all patients. Figure

4.26 informs about the proportion of men and women suffering from each of the

above pathologies considered in the study.
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min. 1stQ. median mean 3thQ. max.

Censored data Time 1.00 24.00 33.50 30.45 43.75 51.00

Age 42.00 64.75 71.00 69.21 75.00 84.00

Uncensored data Time 0.00 5.00 12.00 14.04 20.00 53.00

Age 25.00 60.00 68.00 65.50 73.00 89.00

Table 4.11: Summary statistics for time of the stay in ICU (Z) and age (X) for the uncensored

group (patients who left ICU) and the censored group (patients in ICU).

Figure 4.25: Histogram and kernel density estimation for the time in ICU (left) and age (right).
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Figure 4.26: Bar chart of the COPD variable (left) and the obesity variable (right) by gender of

the patients in the ICU.

As in the previous subsection, the smoothed Beran’s estimator is used for esti-

mating the survival function of the time in ICU of the Galician COVID-19 patients

with bootstrap bandwidths obtained by the automatic selector proposed in Section

4.2.2. Some interesting confidence regions based on the smoothed Beran’s estima-

tor are also obtained. Method 1, which was proposed in Section 4.4 and provides

confidence regions of varying width, is used. The bootstrap estimation is obtained

in a grid of time t1 < · · · < tnT
with tnT

= Q̂(0.95) and nT = 100. The pilot

bandwidth for the covariate used in the bootstrap algorithm is the one defined in

(4.3) with c = 3/2. The choice of c can be justified by the low variability of the

regression function of the time in ICU as a function of age (see Figure 4.27). The

pilot bandwidth for the time variable was defined in (4.6). Again, three age profiles

are considered: 40, 60 and 80 years old.
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Figure 4.27: Scatter plot and estimated regression function of age versus time in ICU.

The bandwidth that minimises the Monte Carlo approximation of the boot-

strap MISE, MISE∗
x(h∗) for Beran’s estimator along with the square root of MISE,

RMISE∗
x(h∗), and the two-dimensional bandwidth that minimises the Monte Carlo

approximation of the bootstrap MISE, MISE∗
x(h∗, g∗), for the smoothed Beran’s

estimator along with the square root of MISE, RMISE∗
x(h∗, g∗), are shown in Table

4.12. For x = 60 and x = 80, the RMISE∗
x(h, g) function is decreasing in h, so the

bandwidth selector for the smoothed Beran’s estimator proposes as the bootstrap

bandwidth the upper end of the interval considered for this smoothing parameter.

Beran SBeran

x h∗ RMISE∗
x(h∗

1) h∗
2 g∗

2 RMISE∗
x(h∗

2, g∗
2)

40 12.438780 0.055774 13.102690 2.949216 0.320261

60 11.244900 0.034801 30.000000 2.030116 0.218001

80 15.622450 0.031022 30.000000 5.739782 0.160175

Table 4.12: Bootstrap bandwidth and bootstrap RMISE for Beran’ estimation and the smoothed

Beran’s estimation of the conditional survival function of the time in ICU for some different values

of age.

Figure 4.28 shows the survival function of time in the ICU estimated for several
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ages by means of Beran’s and the smoothed Beran’s estimator.

It can be seen, in contrast to the time in ward, that age has little effect on time

in the ICU, except in hospitalisations of more than 20 days where slight differences

can be seen with time in ICU being shorter in younger age groups.

Figure 4.29 shows the estimation of the coditional survival function of the time

in the ICU of a 60-year-old patient and the bootstrap confidence region at the 95%

confidence level obtained by Method 1 based on the smoothed Beran’s estimator.

The average width of the confidence region is 0.1529.

Figure 4.28: Estimation of S(t|x) for time in ICU with Beran’s estimator (left) and the smoothed

Beran’s estimator (right) using the bootstrap bandwidths for x = 40 (dotted line), x = 60 (dashed

line) and x = 80 (solid line).
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Figure 4.29: Estimation of S(t|x) with bootstrap bandwidths for time in ICU and bootstrap

confidence region by means of Method 1 based on the smoothed Beran’s estimator for x = 60.

An analysis of the factors sex, diagnosis of COPD and obesity, parallel to the one

carried out for time in ward, is included here for time in the ICU. The conclusions

of this study for ICU time do not differ from those obtained for ward time.

The percentage of the patients spending at least 20 days in the ICU is nearly

40%. The estimated survival function shows that 20% of the COVID-19 patients

spend more than 30 days in the ICU. According to Figure 4.30 there is no significant

differences in the probability of survival with respect to age. Although age has no

global impact on the ICU time, it does have an effect when we consider the male

and female populations independently: young women have shorter ICU times than

young men, but there are no differences between the older age groups (Figure 4.31).
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Figure 4.30: Estimation of S(t|x) for time in the ICU with the smoothed Beran’s estimator using

the bootstrap bandwidth in the men subpopulation (left) and in the women subpopulation (right)

for x = 40 (dotted line), x = 60 (dashed line) and x = 80 (solid line).

Figure 4.31: Estimation of S(t|x) for time in the ICU with the smoothed Beran’s estimator

using the bootstrap bandwidth with x = 30 (left) and x = 40 (right) in the men (dashed lines)

and women (dotted lines) subpopulations.

Figure 4.32 shows the estimation of the conditional survival function of the time

in the ICU of a 60-year-old man and a 60-year-old woman and the corresponding

bootstrap confidence regions at the 95% confidence level obtained by Method 1 based
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on the smoothed Beran’s estimator. The average width of the confidence region for

the men subpopulation is 0.1752 and for the women subpopulation is 0.2306.

Figure 4.32: Estimation of S(t|x) with bootstrap bandwidths for time in the ICU and bootstrap

confidence region by means of Method 1 based on the smoothed Beran’s estimator for x = 60 in

the men (red lines) and the women (black lines) subpopulations.

Both risk factors, COPD and obesity, have a negative effect on patients’ recovery

times. In both cases this effect is attenuated by age. See Figures 4.33 and 4.34 for

the COPD results and Figures 4.35 and 4.36 for obesity results.
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Figure 4.33: Estimation of S(t|x) for time in ward with the smoothed Beran’s estimator using

the bootstrap bandwidth in the COPD patients subpopulation (left) and non-COPD patients

subpopulation (right) forx = 60 (dashed line) and x = 80 (solid line).

Figure 4.34: Estimation of S(t|x) for time in ward with the smoothed Beran’s estimator using

the bootstrap bandwidth with x = 60 (left) and x = 80 (right) in the COPD (dashed lines) and

non-COPD (dotted lines) subpopulations.
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Figure 4.35: Estimation of S(t|x) for time in ward with the smoothed Beran’s estimator using

the bootstrap bandwidth in the obesity patients subpopulation (left) and non-obesity patients

subpopulation (right) for x = 40 (dotted line), x = 60 (dashed line) and x = 80 (solid line).

Figure 4.36: Estimation of S(t|x) for time in ward with the smoothed Beran’s estimator using

the bootstrap bandwidth with x = 40 (left) and x = 80 (right) in the obesity (dashed lines) and

non-obesity (dotted lines) subpopulations.
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Chapter 5

Doubly smoothed estimator of the

probability of default

5.1 Introduction

The works of Cao et al. (2009) or Peláez et al. (2021b) and also Chapter 2 consider

probability of default estimators based on survival estimators which are smoothed

with respect to the covariate, but step functions with respect to t, each jump ocurring

at uncensored observed lifetimes. This fact along with the survival ratio required to

compute the PD by Equation (2.1) are the cause of the roughness and variability

observed in the probability of default estimations obtained in Chapter 2.

In the previous chapter a general nonparametric estimator of the conditional

survival function with double smoothing is proposed and studied. This survival

estimator is not only smoothed in the covariate but also in the time variable. A large

simulation study shows there that the estimator with double smoothing improves

on the corresponding nonparametric estimator of the survival function which is

smoothed only in the covariate. This doubly smoothed survival estimator can be

used to obtain a doubly smoothed version of the PD estimator according to Equation

(2.2). It is expected that the resulting estimator will no longer exhibit the roughness
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problem observed so far. The aim is not only to improve the graphical representation

of the estimated PD, but also to reduce the estimation error and obtain more realistic

estimations in their application.

For this purpose, a general nonparametric estimator of the PD with double

smoothing derived from the smoothed survival estimator is proposed in this chapter.

The asymptotic properties of the doubly smoothed PD estimator based on Beran’s

estimator are studied. A simulation study shows the improvement obtained by using

the double smoothing on a number of nonparametric estimators of the probability

default, including Beran’s estimator. Finally, the doubly smoothed PD estimator

based on Beran’s estimator is applied to a set of modified real data.

The content of this chapter is published in Peláez et al. (2021a).

5.2 Doubly smoothed PD estimator

Let {(Xi, Zi, δi)}n
i=1 be a random sample of (X, Z, δ) where X is the covariate, Z =

min{T, C} is the follow-up time variable, T is the time to occurrence of the event, C

is the censoring time and δ = I(T ≤ C) is the uncensoring indicator. Consider the

doubly smoothed survival estimator S̃h,g(t|x), defined in (3.2). Replacing S(t|x) in

(2.1) by S̃h,g(t|x), the doubly smoothed nonparametric estimator of the probability

of default is as follows:

P̃Dh,g(t|x) = 1 − S̃h,g(t + b|x)
S̃h,g(t|x)

. (5.1)

Since Ŝh(t|x) in (3.2) is any arbitrary conditional survival estimator, and there-

fore so is S̃h,g(t|x), the probability of default estimator P̃Dh,g(t|x) is very gen-

eral. Nevertheless, this chapter mainly focuses on the smoothed Beran’s estimator

S̃B
h,g(t|x) given in (3.4). Using S̃B

h,g(t|x) in (5.1), the smoothed probability of default

estimator based on Beran’s survival estimator is obtained as follows:

P̃D
B

h,g(t|x) = 1 −
S̃B

h,g(t + b|x)
S̃B

h,g(t|x)
. (5.2)
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5.3 Asymptotic results for the smoothed Beran’s

estimator

Asymptotic theory for the smoothed Beran’s estimator of the PD, P̃D
B

h,g(t|x), is

derived from the asymptotic properties of the smoothed Beran’s survival estimator

presented in Section 3.3.

Certain functions need to be defined in order to state these results. Some of them

were already established in Section 3.3.1. Additional functions are defined below:

b1(t, x) =
dK

(
1 − F (t|x)

)
2m(x)

(
2Φ′

ξ(x, t, x)m′(x) + Φ′′
ξ (x, t, x)m(x)

)
,

b2(t, x) = −1
2dKF ′′(t|x),

V1(t, x) = cK

m(x)
(
1 − F (t|x)

)2
L(t|x),

V2(t, x) = cK(cK − 1)
m(x)

(
1 − F (t|x)

)2
L′(t|x),

C(t1, t2, x) = cK

m(x)2
(
1 − F (t1|x)

)(
1 − F (t2|x)

)
L(t1|x),

The assumptions required to state the results are standard in the literature and

not too restrictive in this context. They were previously assumed in the nonpara-

metric conditional survival function estimation setup and listed in Section 3.3.1.

Theorem 5.1. Let (t, x) ∈ [l, u] × Ic be such that S(t|x) > 0. Under assumptions

A.1-A.10 and assuming nh3 → ∞ and nhg2 → ∞ when n → ∞, expressions for

the asymptotic bias and the asymptotic variance of P̃D
B

h,g(t|x) are the following:

Bias
(
P̃D

B

h,g(t|x)
)

=

(
1 − PD(t|x)

)
b1(t, x) − b1(t + b, x)
S(t|x) h2

+

(
1 − PD(t|x)

)
b2(t, x) − b2(t + b, x)
S(t|x) g2

+o(h2) + o(g2) + O

(
1

nh

)
,
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V ar
(
P̃D

B

h,g(t|x)
)

=
(

V1(t + b, x)
S(t|x)2 − 2S(t + b|x)C(t, t + b, x)

S(t|x)3 + S(t + b|x)2V1(t, x)
S(t|x)4

)
1

nh

+
(

V2(t + b, x)
S(t|x)2 + S(t + b|x)2V2(t, x)

S(t|x)4

)
g

nh
+ o

(
1

nh

)
+ O

(
h2 + g2

nh

)
.

It is difficult to use the theoretical bias and variance in an applied context in

order to compare estimators or to obtain optimal smoothing parameters, since their

expressions are complex and depend on too many population functions.

Theorem 5.2. Under the assumptions of Theorem 5.1 and assuming

Ch := lim
n→∞

n1/5h > 0, Cg := lim
n→∞

n1/5g > 0,

the limit distribution of P̃D
B

h,g(t|x) is given by
√

nh
(
P̃D

B

h,g(t|x) − PD(t|x)
)

d−→ N(µ, s0),

where

µ = C
5/2
h

(
1 − PD(t|x)

)
b1(t, x) − b1(t + b, x)
S(t|x)

+C
1/2
h C4/2

g

(
1 − PD(t|x)

)
b2(t, x) − b2(t + b, x)
S(t|x)

and

s2
0 = V1(t + b, x)

S(t|x)2 − 4S(t + b|x)
S(t|x)3

cK

(
1 − F (t|x)

)(
1 − F (t + b|x)

)
L(t|x)

m(x)

+S(t + b|x)2V1(t, x)
S(t|x)4 .

Remark 5.1. Assuming Ch := limn→∞ n1/5h > 0, but n1/5g → 0, the asymptotic

distribution of the smoothed Beran’s PD estimator is
√

nh
(
P̃D

B

h,g(t|x)−PD(t|x)
)

d−→

N(µ̃, s0), with

µ̃ = C
5/2
h

(
1 − PD(t|x)

)
b1(t, x) − b1(t + b, x)
S(t|x) .

Assuming n1/5h → 0, n1/5g → 0 and nh

(ln n)3 → ∞, the asymptotic distribution of

the smoothed Beran’s PD estimator is
√

nh
(
P̃D

B

h,g(t|x) − PD(t|x)
)

d−→ N(0, s0).

Proofs of these results are included in Section 5.6.
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5.4 Simulation study

Intuitively, the improvement coming from smoothing in the time variable in the

conditional survival function estimator will lead to a similar gain for nonparametric

PD estimators. The aim of this section is to explore this by simulation.

Models presented in Section 2.4 are again considered. This makes it possible to

compare the results obtained in both studies. The simulation setup is similar to the

one proposed in Section 3.4.

The probability of default curve is estimated in a time grid 0 < t1 < · · · < tnT

of size nT where tnT
+ b = F −1(0.95|x) and the horizon of default b is about 20% of

the time range. For Model 1, x = 0.8, b = 0.1 and tnT
= 0.4991. Model 2 considers

x = 0.6, b = 0.15 and tnT
= 0.7154. For Model 3, x = 0.8, b = 0.7 and tnT

= 3.1211.

The standard Gaussian kernel truncated in the range [−50, 50] is used for both

covariate and time variable smoothing. The sample size is n = 400, and the size of

the lifetime grid is nT = 100. The boundary effect is corrected using the reflexion

principle proposed in Silverman (1986).

First, the performance of Beran’s PD estimator, P̂D
B

h (t|x), and the smoothed

Beran’s PD estimator, P̃D
B

h,g(t|x), are compared.

The optimal bandwidth for P̂D
B

h (t|x), h1, is taken as the value which minimises

a Monte Carlo approximation of the MISE as explained in Section 2.4.

The smoothed PD estimator P̃D
B

h,g(t|x) depends on two bandwidths: h that

measures the smoothing degree introduced in the covariate and g that measures the

smoothing in the time variable.

The optimal bandwidth (h2, g2) is chosen as the pair which minimises some Monte

Carlo approximations of

MISEx(h, g) = E
(∫ (

P̃D
B

h,g(t|x) − PD(t|x)
)2

dt
)

based on N = 100 simulated samples. Then, the value of the MISE of P̃D
B

h2,g2(t|x)
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is approximated from N = 1000 simulated samples.

In order to minimise the function MISEx(h, g) without increasing CPU time

more than necessary, the limited-memory algorithm based on the quasi-Newton

method, explained in Section 3.4, is considered.

Neither the bandwidth for Beran’s estimator nor the bandwidths for the smoothed

Beran’s estimator can be used in practice but their choice produces a fair comparison

since the estimators are built using their best possible smoothing parameters.

Figure 5.1 shows the function MISEx(h, g) over a meshgrid of 50 values of h

and 50 values of g for Models 1, 2 and 3 when the conditional censoring probability

is 0.5. These graphs show the two-dimensional functions to minimise in order to

obtain the optimal bandwidths for the smoothed Beran’s PD estimator. The red

zone is where this minimum is reached and the coordinates of the point at which

the minimum is attained provide the optimal smoothing bandwidths. The results

for other levels of censoring probability, which are not shown here, are quite similar.

It is clear that the choice of the time bandwidth (g) notably affects the estimation

the estimation error, whereas h seems not to affect much the quality of the estimator.

However, for a fixed value of h, the value of g for which the smallest error is made

does not seem to vary too much depending on the value of the covariate smoothing

bandwidth (h). Figure 5.2 shows this analysis. There, MISEx(h, g) is shown as a

function of g for some fixed values of h within the interval where the optimum is

reached. The obtained curves have similar shape and they are close for all the values

of h, mainly at the highest level of censoring conditional probability. The minimum

of MISEx(h, g) is reached for similar values of g in all the scenarios.
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Figure 5.1: MISEx(h, g) function approximated via Monte Carlo for the smoothed Beran’s

estimator using N = 100 simulated samples from Model 1 (topleft), Model 2 (topright) and Model

3 (bottom) when P (δ = 0|x) = 0.5.

199



Figure 5.2: MISEx(h, g) function approximated via Monte Carlo for the smoothed Beran’s

estimator using N = 100 simulated samples from Model 1 (top), Model 2 (middle) and Model 3

(bottom) for some fixed equispaced values of h ∈ [0.1, 0.5] when P (δ = 0|x) = 0.5.

Tables 5.1, 5.2 and 5.3 show the optimal bandwidths and the square root of

the MISE (RMISE) of Beran’s estimator and the smoothed Beran’s estimator for

each model. In order to compare the behaviour of the estimators and quantify the

improvement of the smoothing over the original estimator, the ratio Rx is defined

Rx =
RMISEx

(
P̃D

B

h2,g2(·|x)
)

RMISEx

(
P̂D

B

h1(·|x)
)

The closer to 0 the value of Rx, the greater the improvement of the smoothed Beran’s

estimator with respect to Beran’s estimator.
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In all cases, RMISE values are lower for the smoothed Beran’s estimator and

this difference becomes bigger when increasing the censoring conditional probability.

This is confirmed by looking at the values of Rx.

When the censoring conditional probability is 0.2 or 0.5 in Models 1 and 2, the

time smoothing reduces the error by about 40 − 50% and this improvement is more

than 60% when the conditional probability of censoring is 0.8. The error reduction in

Model 3 with respect to the nonsmoothed PD estimator is more significant, reaching

75% and 80% when censoring is moderate or heavy, respectively.

Model 1

P (δ = 0|x) 0.2 0.5 0.8

P̂D
B

h1

h1 0.24286 0.39592 0.42857

RMISEx(h1) 0.06311 0.10626 0.20925

P̃D
B

h2,g2

h2 0.14438 0.15233 0.18917

g2 0.11510 0.15228 0.21839

RMISEx(h2, g2) 0.03687 0.05498 0.07647

Rx 0.58422 0.51741 0.36545

Table 5.1: Optimal bandwidths, RMISE and Rx of the PD estimation for Beran’s estimator and

the smoothed Beran’s estimator with optimal bandwidths in each level of conditional censoring

probability for Model 1.
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Model 2

P (δ = 0|x) 0.2 0.5 0.8

P̂D
B

h1

h1 0.30204 0.34082 0.39898

RMISEx(h1) 0.05437 0.11195 0.25738

P̃D
B

h2,g2

h2 0.21687 0.15559 0.18962

g2 0.09320 0.13651 0.19811

RMISEx(h2, g2) 0.03846 0.05946 0.06198

Rx 0.70738 0.53113 0.24083

Table 5.2: Optimal bandwidths, RMISE and Rx of the PD estimation for Beran’s estimator and

the smoothed Beran’s estimator with optimal bandwidths in each level of conditional censoring

probability for Model 2.

Model 3

P (δ = 0|x) 0.2 0.5 0.8

P̂D
B

h1

h1 0.09898 0.13163 0.15204

RMISEx(h1) 0.27128 0.49813 0.67999

P̃D
B

h2,g2

h2 0.10722 0.26967 1.00000

g2 1.20340 1.61882 1.89462

RMISEx(h2, g2) 0.09208 0.12337 0.13431

Rx 0.33944 0.24767 0.19751

Table 5.3: Optimal bandwidths, RMISE and Rx of the PD estimation for Beran’s estimator and

the smoothed Beran’s estimator with optimal bandwidths in each level of conditional censoring

probability for Model 3.

Figure 5.3 shows a cloud of estimated survival curves (50 out of 1000), the

theoretical survival function, the mean curve and the 5th and 95th percentiles of the

total estimated curves for the smoothed Beran’s estimator in Model 1, Model 2 and

Model 3. These figures show clearly how the estimated curves are distributed and the

variability they present. Note how the behaviour of the estimators become worse

when the conditional probability of censoring increases, since lack of information

leads to poor performance of the estimators, especially in Model 3.
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Figure 5.3: Theoretical PD(t|x) (solid line), mean curve (dashed line) and 5th and 95th per-

centiles (dotted line) obtained by means of the smoothed Beran’s estimator when P (δ = 0|x) = 0.2

(left) and P (δ = 0|x) = 0.8 (right) in Model 1 (top), Model 2 (middle) and Model 3 (bottom).

As explained in the introduction of this dissertation, credit scoring is usually

obtained by means of a logistic regression using different characteristics of the client.

Typical scoring values range from 0 to 1, and summarises the client’s solvency.

Clients with lower credit scoring are previously rejected for receiving the credit.

Then, a negative skewed distribution of the credit scoring is expected in a real data

set.

Based on the definition of credit scoring, assuming a uniform distribution of

this variable is not realistic in this context. The reason for choosing the uniform
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distribution for the simulation models is just following the simulations performed

by Van Keilegom et al. (2001) for comparison purposes. A small analysis of Beran’s

estimator and the smoothed Beran’s estimator with modified Models 2 and 3 is

included below.

The beta distribution has a compact support, [0, 1], and its parameters can

be chosen to be negatively asymmetric. We chose X ≡ Beta(10, 2). Its density

function is shown in Figure 5.4. Models 2 and 3 consider the same distributions and

parameters except for the beta distribution of the covariate. Strategy 1 is used to

approximate the optimal bandwidths.

Figure 5.4: Probability density function of Beta(α = 10, β = 2).

Table 5.4 shows the optimal bandwidths, the estimation error and the ratio

Rx for Beran’s estimator and the smoothed Beran’s estimator. When the censoring

conditional probability is 0.2 or 0.5 in Model 2, the time smoothing reduces the error

by about 60% and this improvement is about 80% when the conditional probability

of censoring is 0.8. The error reduction in Model 3 with respect to the nonsmoothed

PD estimator is also significant, reaching 80% when censoring is moderate or heavy.

This brief analysis shows that the results of these simulations and the good appealing

behaviour of the smoothed Beran’s estimator hold when the distribution of X is not

uniform but a more realistic asymmetric distribution for the credit scoring.
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Model 2 (X ≡ Beta(10, 2)) Model 3 (X ≡ Beta(10, 2))

P (δ = 0|x) 0.2 0.5 0.8 0.2 0.5 0.8

P̂D
B

h

h1 0.16122 0.18510 0.47551 0.06571 0.10551 0.10551

RMISEx(h1) 0.20854 0.32296 0.38625 0.19733 0.40411 0.66071

P̃D
B

h,g

h2 0.16122 0.18510 0.47551 0.06571 0.10551 0.10551

g2 0.35347 0.35347 0.39388 1.01020 1.33674 1.77959

RMISEx(h2, g2) 0.07905 0.07415 0.06612 0.07600 0.11423 0.13945

Rx 0.37906 0.22959 0.17118 0.38514 0.28267 0.21106

Table 5.4: Optimal bandwidths, RMISE and R1 of the PD estimation for Beran’s estimator and

the smoothed Beran’s estimator with Strategy 1 in each level of censoring conditional probability

for Model 1 and Model 2 with beta distribution for the covariate.

The computation time of both estimators should be considered in the compar-

ison. Table 5.5 shows the CPU times (in seconds) that Beran’s estimator and the

smoothed Beran’s estimator spend on estimating the probability of default curve in

a 100-point time grid and a fixed value of x, for different values of the sample size.

The smoothing parameters are fixed to the optimal ones for estimating estimating

the curve. Table 5.5 shows that the second smoothing increases the CPU time and

the Beran’s PD estimator with double smoothing is more affected by the increase

in sample size than Beran’s estimator.

n 50 100 200 400 1200

Beran 0.01 0.01 0.01 0.02 0.03

SBeran 0.03 0.03 0.03 0.05 0.20

Table 5.5: CPU time (in seconds) for estimating PD(t|x) in a time grid of size 100 for each

estimator and different sample sizes.

Since the improvement in statistical efficiency that the time variable smoothing

provides to Beran’s PD estimator has been verified, it is interesting to check if

other PD estimators based on other estimators for the survival function are equally

improved by applying this type of smoothing.
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Any other estimator of the conditional survival function could be considered

to obtain the corresponding smoothed estimator defined in (3.2) and then, to es-

timate the probability of default through the expression given in (5.1). In par-

ticular, two other survival estimators are considered in this work: the Weighted

Nadaraya-Watson estimator (WNW) defined in (2.7) and the Van Keilegom-Akritas

estimator (VKA) defined in (2.8). They are respectively denoted by ŜW NW
h (t|x) and

ŜV KA
h (t|x). Their smoothed versions are built according to Equation (3.2), obtaining

the following smoothed survival estimators: S̃W NW
h,g (t|x) and S̃V KA

h,g (t|x). Replacing

S̃h,g(t|x) with S̃W NW
h,g (t|x) and S̃V KA

h,g (t|x) in Equation (5.1) gives the nonparametric

smoothed estimators of PD(t|x) denoted by P̃D
W NW

h,g (t|x) and P̃D
V KA

h,g (t|x).

The optimal bandwidths for these estimators are obtained following the strategy

used for the smoothed Beran’s estimator of the PD introduced in this section. In

some of the scenarios analysed for the smoothed WNW estimator, MISE(h, g)

turned out to be a decreasing function of h. For this reason, the bandwidth h2

selected was a high but reasonable value, considering that the variable X moves in

the interval [0, 1].

In order to quantify the improvement that the smoothing provides to the PD

estimators and compare the performance of the three estimators, the ratios R•
S(x)

and Rc(x) are defined for a fixed value of x as follows:

R•
S(x) =

RMISEx

(
P̃D

•
h2,g2(·|x)

)
RMISEx

(
P̂D

•
h1(·|x)

)

R•
c(x) =

RMISEx

(
P̃D

B

h2,g2(·|x)
)

RMISEx

(
P̃D

•
h2,g2(·|x)

)
being • = B, WNW, V KA and they are included in Tables 5.6, 5.7 and 5.8 along

with the approximation of the optimal smoothing parameters and the estimation

error of each estimator.

The values of R•
S report the influence of the smoothing. The smaller the value,

the better the estimation obtained with the smoothed estimator compared to the

corresponding nonsmoothed estimator. Since its value is less than 1 in almost all
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cases of Models 1 and 2, the smoothing in the time variable is confirmed to be an

improvement of any of the estimators, mainly when censoring is heavy. In addition,

the smaller the value of R•
S, the greater the improvement that smoothing provides

to the estimator. In this line, the smoothed WNW estimator is the estimator whose

error is reduced the most, followed by Beran’s estimator.

The values of R•
c indicate how much better or worse the smoothed Beran’s esti-

mator is. The lower the value of R•
c , the smaller the estimation error of the smoothed

Beran with comparison to the rest of the estimators. These values are, in most cases,

less than one. This implies that, in general terms, the smoothed Beran’s estimator is

the one that provides the lowest estimation error. The smoothed WNW estimator is

competitive with the smoothed Beran’s estimator in some of the analysed scenarios.

P (δ = 0|x) = 0.2 P (δ = 0|x) = 0.5 P (δ = 0|x) = 0.8

SBeran SWNW SVKA SBeran SWNW SVKA SBeran SWNW SVKA

h2 0.14438 1.00000 0.14286 0.15233 1.00000 0.15000 0.18917 1.00000 0.22143

g2 0.11510 0.09878 0.06327 0.15228 0.19347 0.13429 0.21839 0.27755 0.19939

RMISE 0.03687 0.04912 0.09343 0.05498 0.05740 0.11580 0.07647 0.05536 0.10859

R•
S 0.58422 0.74155 0.94488 0.51741 0.37920 0.85486 0.36545 0.20125 0.52431

R•
c 1.00000 0.75061 0.39463 1.00000 0.95784 0.47478 1.00000 1.38132 0.70421

Table 5.6: Optimal bandwidths, RMISE, R•
S and R•

c of the PD estimation for smoothed Beran’s

estimator, the smoothed WNW and the smoothed VKA for each level of conditional censoring

probability in Model 1.

P (δ = 0|x) = 0.2 P (δ = 0|x) = 0.5 P (δ = 0|x) = 0.8

SBeran SWNW SVKA SBeran SWNW SVKA SBeran SWNW SVKA

h2 0.21687 0.38776 0.25918 0.15559 0.90102 0.22857 0.18962 1.00000 0.23469

g2 0.09320 0.14020 0.06327 0.13651 0.20531 0.11653 0.19811 0.28367 0.19347

RMISE 0.03846 0.03513 0.06418 0.05946 0.03260 0.09957 0.06198 0.04705 0.09816

R•
S 0.70738 0.50036 0.88744 0.53113 0.19457 0.76112 0.24083 0.14115 0.38976

R•
c 1.00000 1.09479 0.59925 1.00000 1.82393 0.59717 1.00000 1.31732 0.63142

Table 5.7: Optimal bandwidths, RMISE, R•
S and R•

c of the PD estimation for smoothed Beran’s

estimator, the smoothed WNW and the smoothed VKA for each level of conditional censoring

probability in Model 2.
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P (δ = 0|x) = 0.2 P (δ = 0|x) = 0.5 P (δ = 0|x) = 0.8

SBeran SWNW SVKA SBeran SWNW SVKA SBeran SWNW SVKA

h2 0.10722 0.09143 0.04567 0.26967 0.10694 0.05380 1.00000 0.11857 0.12837

g2 1.20340 1.55102 1.44286 1.61882 1.77551 1.45714 1.89462 1.92857 1.52857

RMISE 0.09208 0.12628 0.49730 0.12337 0.13406 0.37621 0.13431 0.13375 0.11410

R•
S 0.33944 0.33177 1.63226 0.24767 0.19828 0.88273 0.19751 0.16480 0.16868

R•
c 1.00000 0.72917 0.18516 1.00000 0.92026 0.32793 1.00000 1.00419 1.17713

Table 5.8: Optimal bandwidths, RMISE, R•
S and R•

c of the PD estimation for smoothed Beran’s

estimator, the smoothed WNW and the smoothed VKA for each level of conditional censoring

probability in Model 3.

Analysing the differences between the computacional times os these techniques

is also useful. Table 5.9 shows the CPU time (in seconds) that is needed by each

estimator to obtain the estimated probability of default curve in a time grid of size

100 and a fixed value of x for different values of the sample size.

Time variable smoothing clearly implies an increase of the CPU time. The three

doubly smoothed PD estimators which were considered have higher CPU times than

Beran’s estimator. It should be noted that the smoothed Beran’s estimator is least

affected by the increase of the sample size and it is the fastest of the three doubly

smoothed estimators. The CPU time of the smoothed VKA increases very fast with

the sample size but the slowest method and most affected by the sample size is the

smoothed WNW estimator.

n Beran SBeran SWNW SVKA

50 0.01 0.03 2.30 0.42

100 0.01 0.03 6.33 1.80

200 0.01 0.03 25.97 7.34

400 0.02 0.05 140.62 53.99

1200 0.03 0.20 1459.35 507.36

Table 5.9: CPU time (in seconds) for estimating PD(t|x) in a time grid of size 100 for every

estimator and different sample sizes.
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5.5 Application to real data

In order to illustrate the use of these smoothed estimators in the context of credit

risk, a real data set is analysed using the smoothed Beran’s estimator. The data con-

sists of a sample of 10000 consumer credits from a Spanish bank registered between

July 2004 and November 2006. They were previously used in Section 2.5, where

an explanatory analysis was performed. The data set provides the credit scoring

computed for each borrower, the observed lifetime of the credit in months and the

uncensoring indicator.

The probability of default for x = 0.5 at horizon b = 5 months is estimated in a

time grid along the interval [0, 25] using the smoothed Beran’s estimator. The esti-

mation is obtained with some different possible values of the time variable smoothing

parameter, while the covariate bandwidth is fixed to a reasonable value (h = 0.05),

since it has a very slight influence on the estimation. Figure 5.5 shows the results.

Beran’s estimation and the smoothed Beran’s estimation of the conditional sur-

vival function and the PD for h = 0.05 and g = 3 are shown in Figure 5.6. Although

the survival estimations are very similar with both estimators, it can be seen how the

roughness of the curve estimation is reduced and the jumps are removed when using

the smoothed Beran’s estimator. This is even more remarkable when estimating the

probability of default.

According to the smoothed Beran’s estimation, the probability of default has an

increasing tendency. It follows from it that the higher the debt maturity, the higher

the probability of falling into default for an individual with this credit scoring.
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Figure 5.5: Estimation of S(t|x) (left) and estimation of PD(t|x) (right) at horizon b = 5 for

x = 0.5 by means of the smoothed Beran’s estimator on the consumer credits dataset for h = 0.05

and g = 0.5 (solid line), g = 1 (dashed line) and g = 3 (dotted line).

Figure 5.6: Estimation of S(t|x) (left) and PD(t|x) (right) at horizon b = 5 for x = 0.5 by

means of Beran’s estimator (dashed line) and smoothed Beran’s estimator (solid line) using the

bandwidths h = 0.05 and g = 3 on the consumer credits dataset.

Finally, sample quartiles of the credit scoring are considered for the group of

clients with observed default (uncensored group) and the group with unobserved

default (censored group). Figure 5.7 shows the PD estimation by means of the

210



smoothed Beran’s estimator for these values of the credit scoring at horizon b = 5

months with h = 0.05 and g = 3.

Note how the PD estimations are closer to each other and closer to zero for all

time points as the credit scoring value increases. The increasing spike of the estima-

tion in the nondefaulted (censored) group in the right tail of the time distribution

is probably due to the lack of information in that region.

Figure 5.7: Smoothed Beran’s estimation of PD(t|x) at horizon b = 5, for large (left) and small

(right) values of the score x, using bandwidths h = 0.05 and g = 3. The large values chosen are the

three sample quartiles of the score for nondefaulted credits, while the small values are the three

sample quartiles of the score for the defaulted credits.

In a real practical problem the true default probability curve is unknown. There-

fore, unlike in simulations, in real data analysis it is not possible to evaluate the

behaviour of the proposed estimator. Alternatively, it is possible to assess whether

the PD curve obtained is reasonable and fits the real credit risk scenario. The results

obtained by the doubly smoothed Beran’s estimator seem to be more appropriate,

since the roughness of the Beran’s estimaton is not expected in this type of curve.

Supporting the conclusion of our real data analysis, the estimation of the PD over

time for the assessment of risk in portfolios and bond rating obtained in Barnard

(2017) and dos Reis and Smith (2018) have shapes similar to those obtained here.
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5.6 Proofs

Proof of Theorem 5.1.

Denote P = S(t + b|x), Q = S(t|x) and PD(t|x) = 1 − P

Q
. Similarly, P̃ =

S̃B
h,g(t + b|x), Q̃ = S̃B

h,g(t|x) and P̃D
B

h,g(t|x) = 1 − P̃

Q̃
. As a consequence of the proof

of Theorem 2.1:

ABias
(
P̃D

B

h,g(t|x)
)

= α1 + α2 + α3, (5.3)

AV ar
(
P̃D

B

h,g(t|x)
)

= β1 + β2 + β3, (5.4)

where

α1 = P

Q
− E(P̃ )

E(Q̃)
, α2 = Cov(P̃ , Q̃)

E(Q̃)2
, α3 = −

E
[

P̃

Q̃

(
Q̃ − E(Q̃)

)2
]

E(Q̃)2
(5.5)

and

β1 = V ar(P̃ )
E(Q̃)2

, β2 = −2E(P̃ )Cov(P̃ , Q̃)
E(Q̃)3

, β3 = E(P̃ )2V ar(Q̃)
E(Q̃)4

. (5.6)

The asymptotic expressions for the bias and the variance of the survival estimator

S̃B
h,g(t|x) are obtained from Theorem 3.3:

Bias
(
S̃B

h,g(t|x)
)

= b1(t, x)h2 + b2(t, x)g2 + o(h2), (5.7)

Var
(
S̃B

h,g(t|x)
)

= V1(t, x) 1
nh

+ V2(t, x) g

nh
+ O

(
h2 + g2

nh

)
(5.8)

From Lemma 3.4, the covariance of the survival estimator S̃B
h,g(t|x) is obtained:

Cov
(
S̃B

h,g(t1|x), S̃B
h,g(t2|x)

)
= cK

m(x)V 1
g (t1, t2, x) 1

nh
+ cK

m(x)V 2
g (t1, t2, x) g

nh

+O

(
h2 + g2

nh

)
,

where the functions V 1
g (t1, t2, x) and V 2

g (t1, t2, x) were defined in Lemma 3.4.

Considering t1 = t, t2 = t + b,

V 1
g (t, t + b, x) = 2J(t|x)

(
1 − F (t + b|x)

)
K ∗ K

(
b

g

)
.

212



Given that g = gn → 0 when n tends to infinity, b/g → ∞ and

lim
n→∞

K ∗ K

(
b

g

)
= lim

u→∞
K ∗ K(u) = lim

u→∞

∫ +∞

−∞
K(y)K(u − y)dy

=
∫ +∞

−∞
lim

u→∞
K(u − y)K(y)dy =

∫ +∞

−∞
K(y)dy = 1.

(5.9)

Then,

V 1
g (t, t + b, x) −−−→

n→∞
2
(
1 − F (t|x)

)(
1 − F (t + b|x)

)
L(t|x).

On the other hand,

V 2
g (t, t + b, x) = 2J(t|x)f(t + b|x)K ∗ K1

(
− b

g

)

+2J ′(t|x)
(
1 − F (t + b|x)

)
K ∗ K1

(
b

g

)
.

Since

lim
n→∞

K ∗ K1

(
− b

g

)
= lim

u→−∞
K ∗ K(u) = lim

u→−∞

∫ +∞

−∞
K1(y)K(u − y)dy

=
∫ +∞

−∞
lim

u→−∞
K(u − y)K1(y)dy = 0.

and

lim
n→∞

K ∗ K1

(
b

g

)
= lim

u→∞
K ∗ K1(u) = lim

u→∞

∫ +∞

−∞
K1(y)K(u − y)dy

=
∫ +∞

−∞
lim

u→∞
K(u − y)K1(y)dy =

∫ +∞

−∞
K1(y)dy

=
∫+∞

−∞ yK(y)dy = 0,

we have

V 2
g (t, t + b, x) −−−→

n→∞
0.

Therefore,

Cov
(
S̃B

h,g(t|x), S̃B
h,g(t + b|x)

)
= C(t, t + b, x) 1

nh
+ O

(
h2 + g2

nh

)
, (5.10)

where C(t1, t2, x) is defined in Section 5.3.
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Considering Equations (5.5), (5.8) and (5.10), detailed expressions for α1, α2 and

α3 are obtained as follows:

α1 = P

Q
− P + b1(t + b, x)h2 + b2(t + b, x)g2 + o(h2) + o(g2)

Q + b1(t, x)h2 + b2(t, x)g2 + o(h2) + o(g2)

= PQ + Pb1(t, x)h2 + Pb2(t, x)g2 + o(h2) + o(g2)

Q
(

Q + b1(t, x)h2 + b2(t, x)g2 + o(h2) + o(g2)
) +

−PQ − Qb1(t + b, x)h2 − Qb2(t + b, x)g2 + o(h2) + o(g2)

Q
(

Q + b1(t, x)h2 + b2(t, x)g2 + o(h2) + o(g2)
)

= Pb1(t, x)h2 − Qb1(t + b, x)h2 + o(h2) + o(g2)

Q
(

Q + b1(t, x)h2 + b2(t, x)g2 + o(h2) + o(g2)
)+

Pb2(t, x)g2 − Qb2(t + b, x)g2 + o(h2) + o(g2)

Q
(

Q + b1(t, x)h2 + b2(t, x)g2 + o(h2) + o(g2)
) .

Then,

α1 =

(
1 − PD(t|x)

)
b1(t, x) − b1(t + b, x)
S(t|x) h2

+

(
1 − PD(t|x)

)
b2(t, x) − b2(t + b, x)
S(t|x) g2 + o(h2) + o(g2),

(5.11)

α2 = C(t, t + b, x)
S(t|x)2

1
nh

+ O

(
h2 + g2

nh

)
, (5.12)

α3 =
E
[

P̃

Q̃

(
Q̃ − E(Q̃)

)2
]

E(Q̃)2
≤ Var(Q̃)

E(Q̃)2

= V1(t, x)
S(t|x)2

1
nh

+ V2(t, x)
S(t|x)2

g

nh
+ O

(
h2 + g2

nh

)
.

(5.13)

By plugging (5.11), (5.12) and (5.13) into (5.3), the bias part in Theorem 5.1 is

proved.

Now, expressions (5.6), (5.8) and (5.10) lead to

β1 = V1(t + b, x)
S(t|x)2

1
nh

+ V2(t + b, x)
S(t|x)2

g

nh
+ O

(
h2 + g2

nh

)
, (5.14)

β2 = −2S(t + b, x)
S(t|x)3 C(t, t + b, x) 1

nh
+ O

(
h2 + g2

nh

)
, (5.15)
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β3 = S(t + b, x)2V1(t, x)
S(t|x)4

1
nh

+ S(t + b, x)2V2(t, x)
S(t|x)4

g

nh
+ O

(
h2 + g2

nh

)
. (5.16)

Plugging Equations (5.14), (5.15) and (5.16) in (5.4) the variance part in Theorem

5.1 is proved.

Proof of Theorem 5.2.

From Equations (2.1) and (5.1) follows:

S̃B
h,g(t + b|x)
S̃B

h,g(t|x)
− S(t + b|x)

S(t|x) = −
(
P̃D

B

h,g(t|x) − PD(t|x)
)
. (5.17)

On the other hand, denoting a1 = 1
S(t|x) , a2 = −S(t + b|x)

S(t|x)2 and

Ch,g(t, t+b, x) =
S(t|x)

(
S̃B

h,g(t + b|x) − S(t + b|x)
)

− S(t + b|x)
(
S̃B

h,g(t|x) − S(t|x)
)

S̃B
h,g(t|x)S(t|x)

,

it holds

S̃B
h,g(t + b|x)
S̃B

h,g(t|x)
− S(t + b|x)

S(t|x) = a1
(
S̃B

h,g(t + b|x) − S(t + b|x)
)

+ a2
(
S̃B

h,g(t|x) − S(t|x)
)

+Ch,g(t, t + b, x)
(

1 −
S̃B

h,g(t|x)
S(t|x)

)
,

and considering (5.17):

PD(t|x) − P̃D
B

h,g(t|x)

= a1
(
S̃B

h,g(t + b|x) − S(t + b|x)
)

+ a2
(
S̃B

h,g(t|x) − S(t|x)
)

+C
(
S̃B

h,g(t|x)
)(

1 −
S̃B

h,g(t|x)
S(t|x)

)
.

(5.18)

Since S̃B
h,g(t|x) is a consistent estimator of S(t|x), S̃B

h,g(t|x) P−→ S(t|x). Thus,

1 −
S̃B

h,g(t|x)
S(t|x)

P−→ 0.

Therefore, the asymptotic distribution of
√

nh
(
P̃D

B

h,g(t|x) − PD(t|x)
)

is the same

as the asymptotic distribution of the linear combination

a1
√

nh
(
S̃B

h,g(t + b|x) − S(t + b|x)
)

+ a2
√

nh
(
S̃B

h,g(t|x) − S(t|x)
)
.
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From Lemma 3.1, S̃B
h,g(t|x) can be written as a sum of the following terms

S̃B
h,g(t|x) = S(t|x) +

n∑
i=1

φn,i(t, x) + b2(t, x)g2 + Rn(t|x), (5.19)

where φn,i(t, x) = 1
nh

1
m(x)K

(
(x − Xi)/h

)
η(Zi, δi, t, x) are independent and identi-

cally distributed random variables for all i = 1, ..., n and Rn(t|x) is negligible with

respect to the other terms:

Rn(t|x) = Op

(
ln n

nh

)3/4

+ o(g2) + Op

(
h2 + 1√

nh

)
n∑

i=1
φn,i(t, x).

Using (5.19),

a1
√

nh
(
S̃B

h,g(t + b|x) − S(t + b|x)
)

+ a2
√

nh
(
S̃B

h,g(t|x) − S(t|x)
)

=
n∑

i=1
φ̃n,i(t, x) + a1b2(t + b, x)g2

√
nh + a2b2(t, x)g2

√
nh + R̃n(t, x),

(5.20)

where

φ̃n,i(t, x) =
√

nh
(
a1φn,i(t + b, x) + a2φn,i(t, x)

) (5.21)

and

R̃n(t, x) =
√

nh
(
a1Rn(t + b, x) + a2Rn(t, x)

)
=

√
nh(a1 + a2)Op

(
ln n

nh

)3/4

+
√

nh(a1 + a2)o(g2)

+Op

(
h2 + 1√

nh

)
n∑

i=1
φ̃n,i(t, x).

(5.22)

Since h → 0 and nh → ∞, the term Op

(
h2 + 1√

nh

)∑n
i=1 φ̃n,i(t, x) in (5.22) is

negligible with respect to ∑n
i=1 φ̃n,i(t, x) in (5.20). Given that g → 0, the term

√
nh(a1 + a2)o(g2) in (5.22) is negligible with respect to a1b2(t + b, x)g2

√
nh +

a2b2(t, x)g2
√

nh in (5.20). Finally, the term
√

nh(a1 + a2)Op

(
ln n

nh

)3/4

in (5.22)

is negligible with respect to ∑n
i=1 φ̃n,i(t, x) in (5.20) because nh

(ln n)3 = Chn4/5

(ln n)3 → ∞.
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The variance of the dominant term in (5.20) is O(1):

Var
(∑n

i=1 φ̃n,i(t, x)
)

= nVar
(
φ̃n,1(t, x)

)
= n2h

(
a2

1Var
(
φn,1(t + b, x)

)
+ a2

2Var
(
φn,1(t, x)

)
+2a1a2Cov

(
φn,1(t + b, x), φn,1(t, x)

))
.

(5.23)

From the proof of Lemma 3.4,

Cov
(
φn,1(t1, x), φn,1(t2, x)

)

= 2cK

m(x)n2

(
1 − F (t1|x)

)(
1 − F (t2|x)

)
L(t1|x)K ∗ K

(
t2 − t1

g

)
1
h

+ O

(
g

n3h

)
.

In particular, for t1 = t, t2 = t+ b, K∗K

(
t2 − t1

g

)
= K∗K

(
b

g

)
and from Equation

(5.9), limn→∞ K ∗ K

(
b

g

)
= 1. Consequently,

Cov
(
φn,1(t + b, x), φn,1(t, x)

)

= 2cK

m(x)n2

(
1 − F (t|x)

)(
1 − F (t + b|x)

)
L(t|x) 1

h
+ O

(
g

n3h

)
+ o

(
1

n2h

)
. (5.24)

For t1 = t2,

K ∗ K

(
t2 − t1

g

)
= K ∗ K(0) =

∫
K(u)K(−u)du

=
∫
K(u)K(u)du =

∫
K(u)

(∫ u

−∞
K(v)dv

)
du =

∫ ∫
{v≤u}

K(u)K(v)dudv

= 1
2

(∫ ∫
{v≤u}

K(u)K(v)dudv +
∫ ∫

{u≤v}
K(v)K(u)dvdu

)

= 1
2

∫ ∫
R2

K(u)K(v)dudv = 1
2 .

So,

Var
(
φn,1(t, x)

)
= cK

m(x)n2

(
1 − F (t|x)

)2)
L(t|x) 1

h
+ O

(
g

n3h

)
. (5.25)
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Replacing (5.24) and (5.25) in (5.23),

Var
(∑n

i=1 φ̃n,i(t, x)
)

= a2
1

cK

m(x)
(
1 − F (t + b|x)

)2
L(t + b|x) + a2

2
cK

m(x)
(
1 − F (t|x)

)2
L(t|x)

+4a1a2
cK

m(x)
(
1 − F (t|x)

)(
1 − F (t + b|x)

)
L(t|x) + O

(
g

n

)
+ o(1).

Thus, Var
(∑n

i=1 φ̃n,i(t, x)
)

= O(1) and the linear combination can be expressed as

(5.20) with R̃n(t, x) negligible with respect to the term ∑n
i=1 φ̃n,i(t, x). Therefore,

we proceed to analyse the asymptotic distribution of ∑n
i=1 φ̃n,i(t, x).

As the variables φn,i(t, x) are independent and identically distributed for all

i = 1, ..., n, the variables φ̃n,i(t, x) are also so. In addition, Var
(
φ̃n,i(t, x)

)
exists and

it is finite for all i = 1, ..., n. In this scenario, if Lindeberg’s condition for triangular

arrays (see Theorem 7.2 in Billingsley (1968)) is satisfied, then
n∑

i=1

(
φ̃n,i(t, x) − E

[
φ̃n,i(t, x)

])
d−→ N(0, s0), (5.26)

where

s2
0 = a2

1
cK

m(x)
(
1 − F (t + b|x)

)2
L(t + b|x) + a2

2
cK

m(x)
(
1 − F (t|x)

)2
L(t|x)

+4a1a2
cK

m(x)
(
1 − F (t|x)

)(
1 − F (t + b|x)

)
L(t|x).

(5.27)

We will now check Lindeberg’s condition:

lim
n→∞

1
s2

0
E

[
n∑

i=1

(
φ̃n,i(t, x) − E

[
φ̃n,i(t, x)

])2
1n,i

]
= 0 (5.28)

for every ε > 0, where 1n,i denotes the indicator function given by

1n,i = 1

(∣∣∣φ̃n,i(t, x) − E[φ̃n,i(t, x)]
∣∣∣ > εs0

)
.

Using assumption A.3d, ξ(Z, δ, t, x) is found out to be bounded:

|ξ(Z, δ, t, x)| =
∣∣∣∣∣I(Z ≤ t, δ = 1)

1 − H(Z|x) −
∫ t

0

dH1(u|x)(
1 − H(u|x)

)2

∣∣∣∣∣
≤ I(Z ≤ t, δ = 1)

1 − H(Z|x) +
∫ t

0

dH1(u|x)(
1 − H(u|x)

)2 ≤ 1
θ

+
∫ t

0

dH1(u|x)
θ2

≤ 1
θ

+ H(t|x)
θ2 ≤ 1

θ
+ 1

θ2
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and, consequently, η is also bounded:

|η(Z, δ, t, x)| ≤
∫

K(u)
(
1 − F (t − gu|x)

)(1
θ

+ 1
θ2

)
du

=
(

1
θ

+ 1
θ2

)((
1 − F (t|x)

)
+ g2

2 dK

(
1 − F ′′(t|x)

))
+ O(g2).

Since η is bounded, K and m(x) have compact support and nh → ∞, the

sequence
{
φ̃n,i(t, x), i = 1, ..., n, n ∈ N

}
is a random variables sequence bounded

by a convergent to zero sequence. Hence, there exists n0 ∈ N such that for all

i = 1, ..., n, 1n,i = 0 for all n ≥ n0 and accordingly,

lim
n→∞

1
s2

0
E

[
n∑

i=1

(
φ̃n,i(t, x) − E

[
φ̃n,i(t, x)

])2
1n,i

]
= 0,

which proves Lindeberg’s condition given in (5.28).

Furthermore, from the proof of Theorem 3.3 in Section 3.3,

E
(
φn,1(t, x)

)
= b1(t, x)h2

n
+ o

(
h2

n

)
,

so,

E
(∑n

i=1 φ̃n,i(t, x)
)

= nE
(
φ̃n,1(t, x)

)
= a1n

√
nhE

(
φn,1(t + b, x)

)
+ a2n

√
nhE

(
φn,1(t, x)

)
=

√
nh5

(
a1b1(t + b, x) + a2b1(t, x) + o(h2)

)
.

Therefore, taking into account that h = Chn−1/5, we have
n∑

i=1
φ̃n,i(t, x) d−→ N(µ0, s0),

where

µ0 = C
5/2
h

(
a1b1(t + b, x) + a2b1(t, x)

)
.

Consequently, recalling (5.20) and assuming g = Cgn−1/5,

a1
√

nh
(
S̃B

h,g(t + b|x) − S(t + b|x)
)

+ a2
√

nh
(
S̃B

h,g(t|x) − S(t|x)
)

d−→ N(µ1, s0),

where

µ1 = µ0 + C
1/2
h C4/2

g

(
a1b2(t + b, x) + a2b2(t, x)

)
.
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Finally, using equation (5.18) with a1 = 1
S(t|x) and a2 = −S(t + b|x)

S(t|x)2 , the

asymptotic distribution of the PD estimator holds:

√
nh
(
P̃D

B

h,g(t|x) − PD(t|x)
)

d−→ N(µ, s0),

where µ = −µ1. Then,

µ = C
5/2
h

(
S(t + b|x)

S(t|x)2 b1(t, x) − b1(t + b, x)
S(t|x)

)

+C
1/2
h C4/2

g

(
S(t + b|x)

S(t|x)2 b2(t, x) − b2(t + b, x)
S(t|x)

)

= C
5/2
h

(
1 − PD(t|x)

)
b1(t, x) − b1(t + b, x)
S(t|x)

+C
1/2
h C4/2

g

(
1 − PD(t|x)

)
b2(t, x) − b2(t + b, x)
S(t|x)

and

s2
0 = 1

S(t|x)2

cK

(
1 − F (t + b|x)

)2
L(t + b|x)

m(x) + S(t + b|x)2

S(t|x)4

cK

(
1 − F (t|x)

)2
L(t|x)

m(x)

−4S(t + b|x)
S(t|x)3

cK

(
1 − F (t|x)

)(
1 − F (t + b|x)

)
L(t|x)

m(x)

= V1(t + b, x)
S(t|x)2 − 4S(t + b|x)

S(t|x)3

cK

(
1 − F (t|x)

)(
1 − F (t + b|x)

)
L(t|x)

m(x)

+S(t + b|x)2V1(t, x)
S(t|x)4 .
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Chapter 6

Bootstrap bandwidth selection for

the smoothed Beran’s PD

estimator

6.1 Introduction

In Chapters 2 and 5, Beran’s estimator and the smoothed Beran’s estimator of

the probability of default were presented and the asymptotic properties and the

performance of the estimators have been deeply studied in these previous pages.

The results of the simulation studies carried out are promising, especially for the

smoothed Beran’s estimator. However, these analyses are based on the smoothing

parameters that minimised the mean integrated squared error, MISE, obtained from

the theoretical curve of PD and the asymptotic bias and variance expressions do not

make it easy to get plug-in estimations of these theoretical bandwidths. The goal

of this chapter is to propose resampling techniques to approximate them. Our

approach follows the ideas of Li and Datta (2001), and it is based on the obvious

bootstrap. Both Beran and smoothed Beran’s estimators are bootstrapped in order

to approximate their corresponding optimal bandwidths. The bootstrap is also

useful to compute confidence regions.
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A simulation study shows the behaviour of the PD estimators with bootstrap

bandwidths. The issue of obtaining confidence regions based on Beran’s and the

smoothed Beran’s estimator for the probability of default, PD(t|x), for a fixed

value of x ∈ I ⊆ R and t covering the interval IT ⊆ R+ is addressed. Finally, these

estimators with bootstrap bandwidths are used to analyse the probability of default

function conditional on the credit scoring for the German credit dataset.

The content of this chapter is published in Peláez et al. (2022a).

6.2 Bandwidth selection for Beran’s and the

smoothed Beran’s PD estimators

In this section, methods for the automatic selection of the bandwidths for Beran’s

estimator in (2.4) and the smoothed Beran’s estimator in (5.2) of the probability of

default are proposed. Consider the right censored random sample
{
(Xi, Zi, δi)

}n

i=1

of (X, Z, δ)

6.2.1 Beran’s estimator

There are two classic methods for bootstrap resampling in a censoring context: the

obvious bootstrap and the simple bootstrap. In Li and Datta (2001), both methods

are extended to the case where a covariate is involved, assuming there is no ties in

the sample values of the covariate. In this chapter, the following obvious bootstrap

method combined with a smoothed bootstrap for the covariate is proposed for the

automatic selection of the covariate bandwidth h of Beran’s estimator, P̂D
B

h (t|x),

defined in (2.4). Here, this estimator is simply denoted by P̂Dh(t|x).

Our goal is to estimate the probability of default function, PD(t|x), for a fixed

x ∈ I and t covering the interval IT ⊂ R. Therefore, our goal is to get the bandwidth
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hMISE ∈ I1 that minimises the mean integrated squared error given by

MISEx(h) = E

(∫
IT

(
P̂Dh(t|x) − PD(t|x)

)2
dt

)
(6.1)

whose bootstrap approximation is

MISE∗
x(h) = E∗

(∫
IT

(
P̂D

∗
h(t|x) − P̂Dr(t|x)

)2
dt

)

where P̂Dr(t|x) is the estimator of the theoretical PD with pilot bandwidth r, using

the sample
{
(Xi, Zi, δi)

}n

i=1
and P̂D

∗
h(t|x) is the bootstrap estimator of PD with

bandwidth h, using the bootstrap resample
{
(X∗

i , Z∗
i , δ∗

i )
}n

i=1
.

The resampling distribution of P̂D
∗
h(t|x) cannot be computed in a close form, so

the Monte Carlo method is used. It is based on obtaining B bootstrap resamples

and estimating P̂D
∗
h(t|x) for each of them. Thus, the distribution of P̂D

∗
h(t|x) is

approximated by the empirical one of P̂D
∗,1
h (t|x), . . . , P̂D

∗,B

h (t|x), obtained from

B bootstrap resamples and the bootstrap version of the estimation error made by

Beran’s estimator for any smoothing parameter h is given by

MISE∗
x(h) ≃ 1

B

B∑
k=1

(∫
IT

(
P̂D

∗,k

h (t|x) − P̂Dr(t|x)
)2

dt

)
. (6.2)

Likewise, the integral is approximated by a Riemann sum.

Algorithm for bootstrap bandwidth selector for Beran’s estimator

Let x ∈ I be a fixed value of the covariate, t ∈ IT and r ∈ I1:

1. Compute P̂Dr(t|x) from the original sample {(Xi, Zi, δi)}n
i=1.

2. Obtain B bootstrap resamples of the form {(X∗,k
i , Z∗,k

i , δ∗,k
i )}n

i=1 with k =

1, ..., B using the bootstrap technique based on Beran’s estimator proposed in

Subsection 4.2.1 with pilot bandwidth r ∈ I1 and compute P̂D
∗,k

h (t|x) for each

of them.

3. Approximate MISE∗
x(h) according to (6.2).
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4. Repeat Steps 1–3 for values of h in a grid of I1.

5. Select the value of h that provides the smallest MISE∗
x(h) as the bootstrap

bandwidth h∗.

Concerning the auxiliary bandwidth r ∈ I1, a preliminary analysis not shown

here suggests that a good choice for it is

r = 3
4
(
QX(0.975) − QX(0.025)

)( n∑
i=1

δi

)−1/3

, (6.3)

where QX(u) is the u quantile of the sample
{
Xi

}n

i=1
. Equation (6.3) takes into

account the variability of the covariate, QX(0.975) − QX(0.025), and the number of

uncensored data, ∑n
i=1 δi. The exponent of this sample size, −1/3, is heuristically

deduced from the asymptotic expression of the MISE of the PD estimators (see

Chapter 2). It is typically the appropriate exponent in selection of the optimal

bandwidth for estimating the distribution function (Azzalini (1981), Jones (1990)).

This expression was derived after several attempts in the simulation studies.

Note that the proposed algorithm is also valid to obtain a bootstrap approxi-

mation of the optimal bandwidth for the estimation of PD(t|x) for fixed values of

t ∈ IT and x ∈ I by replacing MISE∗
x(h) by MSE∗

t,x(h), which is the bootstrap

analogue of

MSEt,x(h) = E

((
P̂Dh(t|x) − PD(t|x)

)2
)

.

6.2.2 The smoothed Beran’s estimator

Given the good performance that the doubly smoothed PD estimator based on Be-

ran’s estimator showed in previous simulation studies, it is interesting to propose a

method for automatic selection of the two-dimensional bandwidth on which it de-

pends. Then, consider the smoothed Beran’s estimator of the probability of default,

P̃D
B

h,g(t|x), defined in (5.2). For simplicity of notation, the smoothed Beran’s esti-

mator of the PD is denoted by P̃Dh,g(t|x) in this chapter. A bootstrap method is

proposed for the automatic selection of the bivariate bandwidth (h, g).
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The optimal bivariate bandwidth, (hMISE, gMISE) ∈ I1 ×I2 is defined as the pair

of bandwidths that minimises the mean integrated squared error given by

MISEx(h, g) = E
(∫

IT

(
P̃Dh,g(t|x) − PD(t|x)

)2
dt
)

. (6.4)

The bootstrap version of MISEx(h, g) is given by

MISE∗
x(h, g) = E∗

(∫
IT

(
P̃D

∗
h,g(t|x) − P̃Dr,s(t|x)

)2
dt

)
,

where P̃Dr,s(t|x) is the smoothed Beran’s PD estimation with pilot bandwidths

(r, s) ∈ I1×I2 using the sample
{
(Xi, Zi, δi)

}n

i=1
and P̃D

∗
h,g(t|x) is the bootstrap esti-

mation of PD with bandwidths (h, g), using the bootstrap resample
{
(X∗

i , Z∗
i , δ∗

i )
}n

i=1
.

Since the sampling distribution of P̃D
∗
h,g(t|x) is unknown, the Monte Carlo method

gives the following approximation

MISE∗
x(h, g) ≃ 1

B

B∑
k=1

(∫
IT

(
P̃D

∗,k

h,g(t|x) − P̃Dr,s(t|x)
)2

dt

)
, (6.5)

based on the empirical distribution of P̃D
∗
h,g(t|x) obtained from B bootstrap resam-

ples. The integral is approximated by a Riemann sum.

Algorithm for bootstrap bandwidth selector for the smoothed Beran’s

estimator

Let x be a fixed value of the covariate, t ∈ IT and (r, s) ∈ I1 × I2:

1. Compute P̃Dr,s(t|x) from the original sample {(Xi, Zi, δi)}n
i=1.

2. Obtain B bootstrap resamples of the form {(X∗,k
i , Z∗,k

i , δ∗,k
i )}n

i=1 with k =

1, ..., B using the bootstrap technique based on the smoothed Beran’s estimator

proposed in Subsection 4.2.2 and compute P̃D
∗,k

h,g(t|x) for each of them.

3. Approximate MISE∗
x(h) according to (6.5).

4. Repeat Steps 1–3 for pairs of values (h, g) in a grid of I1 × I2.
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5. Obtain the pair (h, g) that provides the smallest MISE∗
x(h, g) as the bootstrap

bivariate bandwidth (h∗, g∗).

The auxiliary bandwidth r ∈ I1 was defined in (6.3). The pilot bandwidth s ∈ I2

for the time variable smoothing is chosen as

s = 3
4
(
QZ(0.975) − QZ(0.025)

)( n∑
i=1

δi

)−1/7

, (6.6)

where QZ(u) is the u quantile of the sample
{
Zi

}n

i=1
. This expression considers the

variability of the observed time variable, QZ(0.975) − QZ(0.025), and the sample

size of the uncensored population, ∑n
i=1 δi.

6.3 Simulation study for bandwidth selection

A simulation study was conducted in order to show the behaviour of bootstrap band-

width selectors for Beran’s and smoothed Beran’s estimators proposed in Section

6.2.

The simulation setup is similar to the one introduced in Section 2.4. Due to the

computational cost of the resampling methods, only Models 2 and 3 in Section 2.4

and the low and medium censoring scenarios (P (δ = 0|x) = 0.2 and P (δ = 0|x) =

0.5) will be considered in this chapter. Model 2 considers a uniform distribution for

the credit scoring and Weibull life and censoring times. The probability of default for

this model is estimated at x = 0.6 in a time grid over the interval IT = (0, 0.8654).

Model 3 also considers a uniform distribution for the credit scoring and exponential

distributions for life time and censoring time. The probability of default for this

model is estimated at x = 0.8 in a time grid over the interval IT = (0, 3.8211).

The limited-memory algorithm for solving large nonlinear optimization problems

presented in Section 3.4 is used to minimise the MISE error function.
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6.3.1 Simulation study for Beran’s estimator

In this subsection, the performance of the bootstrap bandwidth selector for Beran’s

estimator is analysed. For each model, the estimation error function MISEx(h) is

approximated via Monte Carlo using 300 simulated samples. The bandwidth that

minimises MISEx(h) is obtained and denoted by hMISE. The values of hMISE and

MISEx(hMISE) are used as a benchmark.

In the simulation study, N = 300 simulated samples are used. For each sam-

ple, B = 500 bootstrap resamples are obtained to approximate the bootstrap MISE

function, MISE∗
x(h), and obtain the bootstrap bandwidth associated to each sim-

ulated sample h∗
j , j = 1, 2, . . . , N . The mean value of the N bootstrap bandwidths

and the standard deviation are defined as follows

h∗ = 1
N

N∑
j=1

h∗
j , sd

(
h∗
)

=

√√√√√ 1
N

N∑
j=1

(
h∗

j − h∗
)2

.

As a relative measure of the difference between the bootstrap bandwidth and

the optimal one, we compute

H∗
j =

h∗
j − hMISE

hMISE

,

with j = 1, . . . , N . The mean of the absolute value of these relative deviations,

H∗ = 1
N

∑N
j=1 |H∗

j |, is a good measure of how close the bootstrap bandwidth is to

the optimal one.

For each sample, the estimation error of Beran’s estimator with the corresponding

bootstrap bandwidth,

MISEx(h∗
j) = E

(∫
IT

(
P̂Dh∗

j
(t|x) − PD(t|x)

)2
dt

)
,

and its square root, RMISEx(h∗
j), are approximated via Monte Carlo using 300

simulated samples. The mean of these estimation errors given by

RMISEx(h∗) = 1
N

N∑
j=1

RMISEx(h∗
j)
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is used as a measure of the estimation error made by the bootstrap bandwidth, when

compared with the estimation error made by the MISE bandwidth.

As a relative measure of the difference between the estimation errors using the

bootstrap and the MISE bandwidths, the following ratios are defined:

R∗
j =

RMISEx(h∗
j) − RMISEx(hMISE)

RMISEx(hMISE)

satisfying R∗
j ≥ 0 for all j = 1, . . . , N . The mean of the R∗

j values with j = 1, . . . , N

is denoted by R∗ = 1
N

∑N
j=1 R∗

j . Small values (close to zero) of H∗ and R∗ indicate

good behaviour of the bootstrap bandwidth. Values of the bootstrap bandwidths,

estimation errors and relative measures for Models 2 and 3 are included in Table

6.1. The results show a good performance of the proposed bootstrap selector.

Model 2 Model 3

P (δ = 0|X = x) 0.2 0.5 0.2 0.5

hMISE 0.37576 0.35909 0.09494 0.10959

RMISEx(hMISE) 0.05520 0.11144 0.27942 0.49991

h∗ (sd) 0.27856 (0.092) 0.30892 (0.110) 0.21763 (0.041) 0.23091 (0.068)

H∗ 0.31431 0.29306 1.29211 1.10692

RMISEx(h∗) 0.05700 0.11405 0.29671 0.50824

R∗ 0.03260 0.02336 0.06188 0.01666

Table 6.1: RMISE, average bootstrap bandwidths and estimation errors of Beran’s PD estimator

in each level of conditional censoring probability for Models 2 and 3. Numbers within brackets are

standard deviations.

Figures 6.1 and 6.2 show the function MISEx(h) along with the Monte Carlo

approximations of MISE∗
x(h) for some simulated samples and the boxplots of H∗

j

and R∗
j with j = 1, . . . , N for Models 2 and 3. The method tends to slightly

underestimate the value of h∗ with respect to hMISE in Model 2 and overestimate

its value in Model 3, which is reflected in the boxplots of H∗
j . Nevertheless, these

figures show that the MISEx(h) curve is fairly flat and variations in the selection

of h do not imply an important increase in the estimation error.
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In order to illustrate the results, Figure 6.3 shows the theoretical probability of

default function and Beran’s estimation with the MISE and bootstrap bandwidths

drawn for one sample from Model 2 and 3 when the conditional probability of

censoring is 0.5. For large values of time, the performance of the estimator becomes

worse, due to the fact that in that region there are few data, most of them censored,

and therefore offering poor information.
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Figure 6.1: MISEx(h) function (black line) approximated via Monte Carlo and MISE∗
x(h)

functions (gray lines) for N = 300 samples (top), boxplot of H∗
1 , ..., H∗

N values (middle) and

boxplot of R∗
1, ..., R∗

N values (bottom) when the conditional probability of censoring is 0.2 (left)

and 0.5 (right) in Model 2.
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Figure 6.2: MISEx(h) function (black line) approximated via Monte Carlo and MISE∗
x(h)

functions (gray lines) for N = 300 samples (top), boxplot of H∗
1 , ..., H∗

N values (middle) and

boxplot of R∗
1, ..., R∗

N values (bottom) when the conditional probability of censoring is 0.2 (left)

and 0.5 (right) in Model 3.
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Figure 6.3: Theoretical probability of default function PD(t|x) (solid line), Beran’s estimation

with MISE bandwidth (dotted line) and Beran’s estimation with bootstrap bandwidth (dashed

line) for one sample from Model 2 (left) and Model 3 (right) with P (δ = 0|x) = 0.5.

6.3.2 Simulation study for the smoothed Beran’s estimator

In this section, a simulation study on the bootstrap bandwidth selector of the

smoothed Beran’s estimator in (5.2) is carried out. The resampling technique and

Monte Carlo approximation of the MISE presented in Subsection 6.2.2 are used.

For each model, the error function MISEx(h, g) is approximated via Monte

Carlo from 300 simulated samples and the bivariate bandwidth that minimises

MISEx(h, g) is obtained and denoted by (hMISE, gMISE). The values of (hMISE, gMISE)

and MISEx(hMISE, gMISE) are used as a benchmark.

In the study, N = 300 samples are simulated. For each simulated sample, the

corresponding bootstrap bandwidths are approximated from B = 500 resamples,

obtaining (h∗
j , g∗

j ) with j = 1, . . . , N . The mean value of the N bootstrap bandwidths

and the standard deviation are the following:

(h∗, g∗) =
(

1
N

N∑
j=1

h∗
j ,

1
N

N∑
j=1

g∗
j

)
,

sd
(
h∗
)

=

√√√√√ 1
N

N∑
j=1

(
h∗

j − h∗
)2

, sd
(
g∗
)

=

√√√√√ 1
N

N∑
j=1

(
g∗

j − g∗
)2

.
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In order to measure the distance of the bootstrap two-dimensional bandwidth of

the j-th sample, (h∗
j , g∗

j ), to the corresponding MISE bandwidth, (hMISE, gMISE),

we consider the vector

D∗
j =

(
h∗

j − hMISE

hMISE

,
g∗

j − gMISE

gMISE

)
∈ R2.

and its Euclidean norm denoted by H∗
j = ∥D∗

j ∥2 with j = 1, . . . , N . The mean

value, H∗ = 1
N

∑N
j=1 H∗

j is a measure of how close the bootstrap bandwidths are to

the MISE one.

For each sample, the estimation error of the smoothed Beran’s estimator with

the corresponding bootstrap bandwidth,

MISEx(h∗
j , g∗

j ) = E

(∫
IT

(
P̃Dh∗

j ,g∗
j
(t|x) − PD(t|x)

)2
dt

)
,

and its square root, RMISEx(h∗
j , g∗

j ), are approximated via Monte Carlo using 300

simulated samples. The mean of these estimation errors given by

RMISEx(h∗, g∗) = 1
N

N∑
j=1

RMISEx

(
h∗

j , g∗
j

)

is used as a measure of the estimation error of the bootstrap two-dimensional band-

width in the model.

The ratio

R∗
j =

RMISEx(h∗
j , g∗

j ) − RMISEx(hMISE, gMISE)
RMISEx(hMISE, gMISE)

is defined as a relative measure of the difference between the error made by the

estimator with bootstrap bandwidth and MISE bandwidth. The mean of the positive

values R∗
j with j = 1, . . . , N is denoted by R∗ = 1

N

∑N
j=1 R∗

j . Values of the bootstrap

bivariate bandwidths, estimation errors and relative measures for Models 2 and 3

are included in Table 6.2.
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Model 2 Model 3

P (δ = 0|X = x) 0.2 0.5 0.2 0.5

hMISE 0.21633 0.16735 0.11122 0.37551

gMISE 0.09286 0.14612 1.27755 1.68878

RMISEx(hMISE, gMISE) 0.03710 0.05094 0.09829 0.12322

h∗ (sd) 0.11736 (0.051) 0.11219 (0.057) 0.19813 (0.180) 0.16593 (0.218)

g∗ (sd) 0.12647 (0.039) 0.19671 (0.054) 0.60005 (0.375) 1.45428 (0.711)

H∗ 0.68121 0.63604 1.22609 0.89164

RMISEx(h∗, g∗) 0.04620 0.06793 0.22135 0.28342

R∗ 0.24517 0.33357 1.25199 1.30003

Table 6.2: RMISE, average bootstrap bandwidths and estimation errors of the smoothed Beran’s

PD estimator in each level of conditional censoring probability for Models 2 and 3. Numbers within

brackets are standard deviations.

Figures 6.4 and 6.5 show the MISEx(h, g) function for the smoothed Beran’s

estimator and its bootstrap approximation along with the corresponding contour

plot for one sample of both Models 2 and 3 when the conditional probability of

censoring is 0.5. It is approximated on a meshgrid of 50 × 50 values of (h, g). Note

that both MISEx(h, g) and MISE∗
x(h, g) curves, for each fixed h value, are quite

similar in the region close to the minimum value of MISE∗
x(h, g). Thus, the influence

of covariate smoothing parameter h is weak when estimating the PD using values

of bandwidth g close to the optimal one.

Figures 6.6 and 6.7 show the boxplots of H∗
j and R∗

j with j = 1, . . . , N . In

general, the selector tends to underestimate the value of the bandwidths. Due to

the behaviour of the MISEx(h, g) curves mentioned above, this does not lead to a

significant increase in the estimation error.

Figure 6.8 shows the theoretical probability of the default function and Beran’s

estimation with MISE and bootstrap bandwidths for one sample from Models 2 and

3 when the conditional probability of censoring is 0.5. Comparing this figure with

the equivalent one for Beran’s estimator shown in Figure 6.3, the improvement in

estimation due to the double smoothing is remarkable.
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Figure 6.4: MISEx(h, g) function (top left) and contour plot of MISEx(h, g) (top right) and

MISE∗
x(h, g) function (bottom left) and contour plot of MISE∗

x(h, g) (bottom right) for one

sample from Model 2 when P (δ = 0|x) = 0.5.
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5

Figure 6.5: MISEx(h, g) function (top left) and contour plot of MISEx(h, g) (top right) and

MISE∗
x(h, g) function (bottom left) and contour plot of MISE∗

x(h, g) (bottom right) for one

sample from Model 3 when P (δ = 0|x) = 0.5.
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Figure 6.6: Boxplot of H∗
1 , ..., H∗

N values (top) and boxplot of R∗
1, ..., R∗

N values (bottom) when

the conditional probability of censoring is 0.2 (left) and 0.5 (right) in Model 2.
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Figure 6.7: Boxplot of H∗
1 , ..., H∗

N values (top) and boxplot of R∗
1, ..., R∗

N values (bottom) when

the conditional probability of censoring is 0.2 (left) and 0.5 (right) in Model 3.

Figure 6.8: Theoretical probability of default function, PD(t|x), (solid line), smoothed Beran’s

estimation with MISE bandwidth (dotted line) and smoothed Beran’s estimation with bootstrap

bandwidth (dashed line) for one sample from Model 2 (left), Model 3 (right) with P (δ = 0|x) = 0.5.
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The results showed in Tables 6.1 and 6.2 are summarized in Table 6.3 to com-

pare the behaviour of Beran and the smoothed Beran’s estimators for the PD and

to evaluate whether the improvement that smoothing in the time variable provides

for PD estimation is preserved when approximating the smoothing parameters by

resampling techniques. Table 6.3 shows the estimation errors of Beran’s and the

smoothed Beran’s estimators of the probability of default using bootstrap band-

widths. In order to measure the increase in estimation error resulting from using

Beran’s estimator, the following ratio is defined:

RS = RMISEx(h∗) − RMISE(h∗, g∗)
RMISE(h∗, g∗)

and included in Table 6.3.

In Model 2, the estimation error of Beran’s estimator is 20% larger than the error

of the smoothed Beran’s estimator when the conditional probability of censoring is

0.2 and 50% larger when the conditional probability of censoring is 0.5. In Model 3,

these differences are even more significant: the estimation error increases up to 80%

when using Beran’s estimator with bootstrap bandwidth instead of the smoothed

Beran’s estimator.

Model 2 Model 3

P (δ = 0|X = x) 0.2 0.5 0.2 0.5

Beran RMISEx(h∗) 0.05579 0.11206 0.28593 0.49916

SBeran RMISE(h∗, g∗) 0.04629 0.07216 0.20007 0.27611

RS 0.20523 0.55294 0.42915 0.80783

Table 6.3: Comparative table of the estimation error of Beran’s estimator and the smoothed

Beran’s estimator in Models 2 and 3.
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6.4 Confidence regions using Beran’s and the

smoothed Beran’s estimators

Let x ∈ I be a fixed value of the covariate and consider PD(t|x) the probability

of default curve with t ∈ IT . The curve PD(t|x) belongs to the function space

F(IT ) whose elements are real-valued functions with domain IT . From the sample

{(Xi, Zi, δi), i = 1, ..., n}, Beran’s estimation of PD(t|x), P̂Dh(t|x), is obtained

and a confidence region of PD(t|x) at 1 − α confidence level associated to Beran’s

estimator can be constructed. A similar construction is done for the smoothed

Beran’s estimator. This confidence region of PD(t|x) is a random subset of IT ×

F(IT ) denoted by Rα that satisfies

P
(
(t, PD(t|x)) ∈ Rα, ∀t ∈ IT

)
= 1 − α.

In this section, a method for constructing confidence regions, Rα, based on Beran

and the smoothed Beran’s estimator is developed.

First, Beran’s estimator of the probability of default, P̂Dh(t|x), given in (2.4)

is used. This method follows the ideas of Cao et al. (2010) to obtain prediction

regions. It is based on finding the value of λα ∈ R+ such that

P
(
|P̂Dh(t|x) − PD(t|x)| < λασ(t), ∀t ∈ IT

)
= 1 − α

with σ2(t) = V ar
(
P̂Dh(t|x)

)
. Thus, the theoretical confidence region is defined by

Rα =
{

(t, y) : t ∈ IT , y ∈
(
P̂Dh(t|x) − λασ(t), P̂Dh(t|x) + λασ(t)

)}
.

Since λα and σ(t) are unknown, they are approximated by the bootstrap. These

two values are calibrated in order that a certain confidence region has the desired

1 − α confidence level. The bootstrap confidence region is defined as follows:

R∗
α =

{
(t, y) : t ∈ IT , y ∈

(
P̂D

∗
h(t|x) − λ∗

ασ∗(t), P̂D
∗
h(t|x) + λ∗

ασ∗(t)
)}

.

where P̂D
∗
h(t|x) is the bootstrap estimation of PD with bandwidth h and λ∗

α and

σ∗(t) are the bootstrap analogue of λα and σ(t). The confidence region R∗
α satisfies

p(λ∗
α) = P ∗

(
(t, P̂Dr(t|x)) ∈ R∗

α, ∀t ∈ IT

)
= 1 − α. (6.7)
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From the original sample
{
(Xi, Zi, δi)

}n

i=1
, Beran’s estimator of PD(t|x) is ob-

tained with an appropriate bandwidth h, P̂Dh(t|x). The algorithm to obtain the

bootstrap confidence region for PD(t|x) at confidence level 1 − α associated to

P̂Dh(t|x) is explained below. The Monte Carlo method is used to approximate

σ∗(t), and an iterative method is used to approximate the value of λ∗
α so that the

confidence region has a confidence level approximately equal to 1 − α.

Confidence region based on Beran’s estimator

1. Compute Beran’s estimator P̂Dr(t|x) from the original sample
{
(Xi, Zi, δi)

}n

i=1

using pilot bandwidth r ∈ I1.

2. Generate B bootstrap resamples of the form
{
(X∗,k

i , Z∗,k
i , δ∗,k

i )
}n

i=1
, k = 1, . . . , B,

by means of the resampling algorithm presented in Subsection 6.2.1 and pilot

bandwidth r.

3. For k = 1, . . . , B, compute P̂D
∗,k

h (t|x) with the k-th bootstrap resample and

bandwidth h, obtaining
{
P̂D

∗,k

h (t|x)
}B

k=1
.

4. Approximate the standard deviation of P̂D
∗
h(t|x) by

σ∗(t) ≃

 1
B

B∑
k=1

(
P̂D

∗,k

h (t|x) − 1
B

B∑
l=1

P̂D
∗,l
h (t|x)

)2
1/2

, t ∈ IT .

5. Use an iterative method to obtain an approximation of the value λ∗
α defined

in (6.7).

6. The confidence region is given by

R̂α =
{

(t, y) : t ∈ IT , y ∈
(
P̂Dh(t|x) − λ∗

ασ∗(t), P̂Dh(t|x) + λ∗
ασ∗(t)

)}
.

Iterative method to approximate λ∗
α

The iterative method to approximate the value of λ∗
α ∈ R+ so that the confidence

region R∗
α has a confidence level approximately equal to 1 − α is explained below.
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It is based on the method proposed by Cao et al. (2010). This algorithm allows the

parameter λ∗
α to be approximated quickly and efficiently.

Let
{
P̂D

∗,k

h (t|x)
}B

k=1
be the Beran’s estimations of the PD with bandwidth h

over a set of B bootstrap resamples. Define the Monte Carlo approximation of p(λ)

in (6.7), for any λ ∈ R+, as follows:

p(λ) ≃ 1
B

B∑
k=1

I
(

P̂Dr(t|x) ∈
(
P̂D

∗,k

h (t|x) − λσ∗(t), P̂D
∗,k

h (t|x) + λσ∗(t)
)
, ∀t ∈ IT

)
.

(6.8)

Let λL, λH ∈ R+ be such that p(λL) ≤ 1 − α ≤ p(λH) and let ζ > 0 be a

tolerance, for example, ζ = 10−4.

1. Obtain λM = λL + λH

2 and compute Monte Carlo approximations of p(λL),

p(λM) and p(λH) according to (6.8).

2. If p(λM) = 1 − α or p(λH) − p(λL) < ζ, then λ∗
α = λM . Otherwise,

(a) If 1 − α < p(λM), then λH = λM and return to Step 1.

(b) If p(λM) < 1 − α, then λL = λM and return to Step 1.

A preliminary analysis not shown here suggests the following choice for the pilot

bandwidth:

r = 3
4
(
QX(0.975) − QX(0.025)

)( n∑
i=1

δi

)−1/3

.

This method to obtain confidence regions for the curve PD(t|x) for fixed x ∈ I

and t covering IT based on Beran’s estimator can be adapted to obtain confidence

regions using the smoothed Beran’s estimator. Simply replace Beran’s estimator

P̂Dh(t|x) by the smoothed Beran’s estimator P̃Dh,g(t|x) given in (5.2) where nec-

essary, and obtain the analogous bootstrap approximations of λα and σ(t). The

confidence region is given by

R̃α =
{

(t, y) : t ∈ IT , y ∈
(
P̃Dh,g(t|x) − λ∗

ασ∗(t), P̃Dh,g(t|x) + λ∗
ασ∗(t)

)}
.
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Denote the lower and upper bounds of the confidence region by l(t, x) and u(t, x),

respectively. It may happen that the lower bound of the confidence region is less

than 0 or the upper bound is greater than one for some points (t0, x0). When this

happens, we set l(t0, x0) = 0 or u(t0, x0) = 1, as appropriate.

The pilot bandwidths defined in (6.3) and (6.6) are used for the confidence region

algorithm based on both Beran and smoothed Beran’s estimators.

This is an analogous procedure to Method 1 presented in Section 4.4 to obtain

confidence regions for the conditional survival function. Due to the variability that

the PD estimations exhibit, especially those obtained without time smoothing, the

confidence regions with constant width, such as those resulting from Method 2, do

not have a promising behaviour in this context.

6.5 Simulation study for confidence regions

A simulation study is carried out to test the performance of bootstrap confidence

regions proposed. Models 2 and 3 described in 2.4 are again considered in this

study, with identical features. The methods shown in Section 6.4 are used for

this purpose with both Beran’s and smoothed Beran’s estimators. When Beran’s

estimator is used, the bandwidth that minimises the mean integrated squared error,

h = hMISE, is used. Similarly, if the smoothed Beran’s estimator is used, the two-

dimensional bandwidth that minimises the mean integrated squared error, (h, g) =

(hMISE, gMISE), is used. These bandwidths are unknown in practice, but they allow

a fair comparison of methods in the simulation study.

The simulation setup is the one explained in Section 6.3. Two conditional

probabilities of censoring are considered for each model: P (δ = 0|x) = 0.2 and

P (δ = 0|x) = 0.5. The number of bootstrap resamples of each samples is B = 500,

and N = 300 simulated samples of each model are obtained. The sample size is

n = 400. The confidence level is 1 − α with α = 0.05.
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Figure 6.9 shows Beran’s estimations of the PD for B = 500 resamples from

one sample of Model 3 when the conditional probability of censoring is 0.5. The

theoretical probability of default is also plotted in the figure. The PD is estimated

on a time grid t1 = 0 < t2 < · · · < tnT
such that tnT

+ b = F −1(0.95|x). The

information provided by the data in the right tail of such a time distribution is

sparse due to heavy censoring. The method results in extremely wide confidence

regions or degeneration to zero as in the case of Model 3 (see Figure 6.9). Therefore,

the time grid in this section is restricted to the interval where sufficient information

is available.

For this section, we consider the problem of obtaining the bootstrap confidence

region for the probability of default in a time grid t1 = 0 < t2 < · · · < tnT
such

that tk ∈ IT ⊆ R+ for all k = 1, . . . , nT and tnT
+ b = F −1(0.70|x), with b being

approximately equal to 20% of the grid length.

For Model 2, having set the value of the covariate, x = 0.6, the time horizon

is b = 0.1 (20% of the time range) and tnT
+ b = F −1(0.70|x = 0.6) = 0.55. For

Model 2, having set the value of the covariate, x = 0.8, the time horizon is b = 0.3

(20% of the time range) and tnT
+ b = F −1(0.70|x = 0.8) = 1.55. Table 6.4 contains

the bandwidths that minimise the MISE function for Beran’s estimator and the

smoothed Beran’s estimator along this new time grid.
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Figure 6.9: Theoretical PD(t|x) (red solid line), Beran’s estimation of PD(t|x) with MISE

bandwidths (black dashed line) and bootstrap versions of Beran’s estimations of PD(t|x) from

B = 500 resamples (gray dashed lines) for one sample from Model 2 when P (δ = 0|x) = 0.5.

Model 2 Model 3

P (δ = 0|X = x) 0.2 0.5 0.2 0.5

Beran
hMISE 0.375510 0.320408 0.041837 0.057755

RMISEx(hMISE) 0.019403 0.025943 0.193334 0.220733

SBeran

hMISE 0.230612 0.196939 0.094286 0.154490

gMISE 0.073673 0.083469 0.908163 1.071429

RMISEx(hMISE, gMISE) 0.013658 0.018165 0.026161 0.029007

Table 6.4: MISE bandwidths and RMISE of Beran’s and the smoothed Beran’s estimator in each

level of conditional censoring probability for Models 2 and 3 when tnT
+ b = F −1(0.70|x).

For each model, the confidence region is obtained according to the method ex-

plained in Section 6.4 using both Beran’s estimator and the smoothed Beran’s esti-

mator. The criteria for comparing the methods are set out below.

A confidence region performs well if its coverage is close to the nominal one, in

this case 1 − α = 0.95, and has a small area or average width. For each sample, j =

1, . . . , N , denoting lj(t, x) = P̂Dh(t|x) − λ∗
ασ∗(t) and uj(t, x) = P̂Dh(t|x) + λ∗

ασ∗(t)

when using Beran’s estimator or lj(t, x) = P̃Dh,g(t|x) − λ∗
ασ∗(t) and uj(t, x) =
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P̃Dh,g(t|x) + λ∗
ασ∗(t) when using the smoothed Beran’s estimator, the following

values measure the performance of the confidence region and allow for comparison

of results.

Coverage is the proportion of bootstrap regions that contain the whole theoretical

probability of default curve and it is defined as follows

1
N

N∑
j=1

I
{

PD(tk|x) ∈
(
lj(tk, x), uj(tk, x)

)
, ∀k = 1, ..., nT

}
.

The mean pointwise coverage is the mean of the proportion of time grid values

for which the confidence region contains the theoretical probability of default curve.

It is given by

1
N

N∑
j=1

(
1

nT

nT∑
k=1

I
{

PD(tk|x) ∈
(
lj(tk, x), uj(tk, x)

)})
.

Average width of the bootstrap confidence region is defined by

1
N

N∑
j=1

 1
nT

nT∑
k=1

(
uj(tk, x) − lj(tk, x)

).

Winkler score (see Winkler (1972)) is also used to compare the behaviour of

the methods. For classical confidence or prediction intervals, it is defined as the

length of the interval plus a penalty if the theoretical value is outside the interval.

Thus, it combines width and coverage. For values that fall within the interval, the

Winkler score is simply the length of the interval. So low scores are associated with

narrow intervals. When the theoretical value falls outside the interval, the penalty

is proportional to how far the observation is from the interval. The formula of the

Winkler score (WS) as a function of the time and covariate variables is as follows:

WS(t, x) = uj(t, x) − lj(t, x) + 2
α

(lj(t, x) − PD(t|x))I
(
PD(t|x) < lj(t, x)

)
+ 2

α
(PD(t|x) − uj(t, x))I

(
PD(t|x) > uj(t, x)

)
.

Since we are working with confidence regions for fixed x ∈ I and t varying

over the interval IT , the integrated Winkle score is proposed as a criteria for the
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comparison of the confidence regions. It is defined by

IWS(x) =
∫

IT

WS(t, x)dt.

and the lower the value of IWS, the better the performance of the confidence region.

The results obtained are shown in Table 6.5. The high values of pointwise cov-

erage in all scenarios are remarkable. Furthermore, these coverage percentages are

preserved when using double smoothing, while the average width of the confidence

regions is halved. This is reflected in the IWS, which presents much larger values in

the Beran’s estimator-based confidence regions.

Model 2 Model 3

P (δ = 0|X = x) 0.2 0.5 0.2 0.5

Estimator Beran SBeran Beran SBeran Beran SBeran Beran SBeran

Coverage (%) 96.33 90.67 90.00 85.33 97.33 83.00 91.46 98.00

Pointwise
coverage(%) 99.94 98.05 99.63 96.85 99.88 98.53 99.65 99.85

Width 0.21997 0.09539 0.24827 0.10937 0.50514 0.17969 0.55581 0.33033

IWS 0.09869 0.04537 0.11218 0.05571 0.62590 0.22825 0.71009 0.40845

Table 6.5: Coverage, pointwise coverage, width and IWS of the 95% confidence regions by means

of Beran’s and the smoothed Beran’s estimators using N = 300 simulated samples from Models 2

and 3.

This analysis is also illustrated in Figures 6.10 and 6.11, where the confidence

region for the probability of default of one sample from Models 2 and 3 is shown.

These graphs show the higher variability of the Beran’s estimations in the resam-

ples with respect to the smoothed Beran’s estimations. This leads to much wider

confidence regions, especially at the right tail of the time distribution.
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Figure 6.10: Theoretical PD(t|x) (red solid line) and estimation with MISE bandwidths (black

dashed line) along with the bootstrap estimations of PD(t|x) from B = 500 resamples (gray dashed

lines) in the left panel and 95% confidence region (black dotted lines) in the right panel by means of

Beran’s estimator (top) and the smoothed Beran’s estimator (bottom) for one sample from Model

2 when P (δ = 0|x) = 0.5.
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Figure 6.11: Theoretical PD(t|x) (red solid line) and estimation with MISE bandwidths (black

dashed line) along with the bootstrap estimations of PD(t|x) from B = 500 resamples (gray dashed

lines) in the left panel and 95% confidence region (black dotted lines) in the right panel by means of

Beran’s estimator (top) and the smoothed Beran’s estimator (bottom) for one sample from Model

3 when P (δ = 0|x) = 0.5.

An analysis of the computational times of these techniques could be of interest.

Since the slowing part of these methods is the resampling and this is the same as

that presented in Section 4.2, the computation times are similar to those shown in

Section 4.6.

6.6 Application to real data

In this section, bandwidth selectors for Beran’s and the smoothed Beran’s estimators

are applied to the German Credit dataset, and the confidence region of the proba-

bility of default is obtained. This dataset is publicly available on the webpage http:

//archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data) (last ac-
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cess on September 15th, 2021) and was previously analysed in Strzalkowska-Kominiak

and Cao (2013). This data set includes information about 1000 credits, from which

293 were classified as bad credits and 707 as good credits. Then, the censor-

ing percentage of this dataset is 70.7%. The duration of the credits in months

(Z) is available along with the amount of the credit in DM (X1), the amount of

money in the checking account in thousands of Deutsche Marks (X2), the savings

amount in thousands of Deutsche Marks (X3) and years of employment (X4). Let

the credit scoring be denoted by X = X1 + θ2X2 + θ3X3 + θ4X4. Since some

of the original covariates are ordinal (interval) variables, they are changed into

numerical variables by following the criteria explained in Strzalkowska-Kominiak

and Cao (2013): X1 is already a continuous variable denoting amount of credit

in DM, X2 ∈ {−0.05, 0.01, 0.25, 0} denotes the amount of money in the checking

account in thousands of DM, X3 ∈ {0, 0.05, 0.25, 0.75, 1.25} denotes the savings

amount in thousands of DM and X4 ∈ {0, 0.5, 2.5, 5.5, 8.5} denotes the years of

employment. The single-index method proposed in Strzalkowska-Kominiak and

Cao (2013) is used to estimate (1, θ2, θ3, θ4), obtaining the credit scoring X =

X1 + 3.2091X2 + 0.2312X3 + 2.1891X4.

Figure 6.12 shows the scatter plot of credit scoring and follow-up time distin-

guishing between the censored and uncensored (and therefore defaulted) credits. A

dependency relationship between the two variables can be identified in the plot.

The probability of default, PD(t|x), is estimated when x = 0.85, which is a close

value to the sample mean of the credit scoring, and t ∈ [0, 60]. The bandwidth

selector presented in Section 6.2.1 is used to approximate the optimal bandwidth

for Beran’s estimator, obtaining h∗ = 0.500. The bandwidth selector presented

in Section 6.2.2 gives the bootstrap approximation of the optimal two-dimensional

bandwidth for the smoothed Beran’s estimator, (h∗, g∗) = (0.102, 13.614). The esti-

mations of the conditional survival function and the probability of default by means

of Beran’s and the smoothed Beran’s estimator with the corresponding bootstrap

bandwidths are shown in Figure 6.13. The poor behaviour of Beran’s PD estimator

for large values of time is evident. The results obtained by the smoothed Beran’s
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estimator seem to be more appropriate (Barnard (2017); dos Reis and Smith (2018)).

Figure 6.12: Scatter plot of credit scoring and duration of the credit in the censored group (red

circles) and the uncensored group (blue triangles) for the German credit data.

Figure 6.13: Conditional survival function estimation (left) and probability of default estimation

(right) by means of Beran’s estimator (dashed line) and the smoothed Beran’s estimator (solid

line) with bootstrap bandwidths when x = 0.85 for the German credit dataset.

Finally, the confidence region methods proposed in Section 6.4 are applied. Since

the MISE bandwidths are unknown in this context, bootstrap bandwidths are used.

The bootstrap resamples and the resulting confidence regions at confidence level 95%

using each estimator are shown in Figure 6.14. The average width of the confidence

region based on Beran’s estimator is 0.5581, and the average width of the one based
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on the smoothed Beran’s estimator is 0.1438. Note that the confidence region of

PD(t|x) is computed over the time interval [0, 40]. Since the information provided

in the right tail of the time distribution is sparse, Beran’s estimator performs very

poorly, leading to extremely wide confidence regions. However, this problem is not

as severe for the smoothed Beran’s estimator, so the confidence region is computable

for higher values of time. Figure 6.15 shows the confidence region of PD(t|x) based

on the smoothed Beran’s estimator with t ∈ [0, 60]. The average width of this

confidence region is 0.2398.

Figure 6.14: Estimation of PD(t|x) with bootstrap bandwidths along with bootstrap estimations

of PD from B = 500 resamples (left) and 95% confidence region (right) by Beran’s estimator (top)

and the smoothed Beran’s estimator (bottom) when x = 0.85 and t ∈ [0, 40] for the German credit

data set.
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Figure 6.15: Estimation of PD(t|x) with bootstrap bandwidths along with bootstrap estimations

of PD from B = 500 resamples (left) and 95% confidence region (right) by the smoothed Beran’s

estimator when x = 0.85 and t ∈ [0, 60] in the German credit data set.
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Chapter 7

PD estimator based on cure

models

7.1 Introduction

Time to default could face not only a problem of right censoring, but also the

existence of cured individuals which never default. That is, no matter how long you

observe such individuals, they will never experience the event of interest. Hence, the

survival function of the time to default will have a point mass at infinity. Survival

models that take this feature into account are called cure models.

Cure survival models are nowadays well developed in the statistics and biostatis-

tics literature, where the number of papers studying various aspects of cure models

(on e.g. estimation, testing, prediction, model selection, among others) has increased

a lot over the last 10 years. We refer to Amico and Van Keilegom (2018), for an

overview paper on this topic. However in the area of credit risks cure models have

not been used much so far, despite their natural applications. Notable exceptions

are Beran and Djaïdja (2007), Dirick et al. (2019) and Dirick et al. (2015). In the

latter paper an AIC variable selection procedure is proposed in the context of PD

estimation based on cure models.
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Instead of working with Beran’s estimator (Beran (1981)), we will use another

nonparametric estimator, that estimates separately the probability that a borrower

will eventually default, called the incidence, and the survival function for the de-

faulted customers, called the latency. For both quantities a kernel estimator (de-

pending on possibly different bandwidths) will be used. This is useful, since different

degrees of smoothness for the incidence and latency require different bandwidths in

order to estimate the PD in an optimal way.

In this chapter, a nonparametric estimator of the PD based on mixture cure

models is proposed. Asymptotic properties of this PD estimator are presented and

a simulation study shows the behaviour of the nonparametric cure model estimator

and a comparison with Beran’s estimator and other semiparametric estimators. The

PD estimators are applied to a set of modified real data.

The content of this chapter has been submitted for possible publication and it

is currently under revision in Peláez et al. (2022c).

7.2 Nonparametric cure model estimator

Let {(Xi, Zi, δi)}n
i=1 be a random sample of (X, Z, δ) where X is the credit scoring,

Z = min{T, C} is the follow-up time, T is the time to default, C is the time until

the end of the study or the time until the anticipated cancellation on the credit

and δ = I(T ≤ C) is the uncensoring indicator. Let ν be a binary variable where

ν = 0 indicates if the individual belongs to the susceptible group (the individual will

eventually experience the default if followed for long enough) and ν = 1 indicates

if the subject is cured (the individual will never experience the default). Therefore,

T = (1−ν)T0+ν∞, where T0 denotes the survival time of an individual susceptible to

default. According to these variables, the population is classified into three groups:

Group 1: The group of individuals who are susceptible to default and censored. The

default will eventually occur but it will not be observed. It corresponds

to the situation ν = 0, δ = 0 and, consequentelly, C < T < ∞.
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Group 2: The group of individuals who are susceptible to default and noncensored.

The default happens and it is observed. It corresponds to the situation

ν = 0, δ = 1. In this case, T < C.

Group 3: The group of individuals who are not susceptible to default. These individ-

uals will never experience default no matter how long they are observed,

so they are censored for sure. It corresponds to the situation ν = 1, δ = 0,

and, therefore, C < T = ∞.

The event ν =1 and δ =1 are not compatible. It would correspond to an indi-

vidual who is both non-susceptible (will never experience default since T = ∞) and

uncensored (default is observed since T < C). In practice, distinguishing whether

or not the censored individual was susceptible to experiencing the default (belongs

to first or third group) is not possible without additional assumptions. In this con-

text, the Law of Total Probability provides a useful decomposition of the conditional

survival function as follows

S(t|x) = P (T > t|x) = P (T > t|ν = 1, x)P (ν = 1|x)

+P (T > t|ν = 0, x)P (ν = 0|x)

= 1
(
1 − P (ν = 0|x)

)
+ P (T > t|ν = 0, x)P (ν = 0|x)

=
(
1 − P (ν = 0|x)

)
+ P (T0 > t|x)P (ν = 0|x)

= 1 − p(x) + S0(t|x)p(x)

where 1 − p(x) is the probability of being cured (nonsusceptible to default) and

S0(t|x) the conditional survival function of the uncured population. The functions

p(x) and S0(t|x) are called the incidence and the latency, respectively.

Let x be a fixed value of the covariate X (typically, the scoring) and b a horizon

time. The aim is to find an appropriate survival estimator, Ŝh(t|x), that captures

the existence of a group of individuals not susceptible to default or cured, resulting

in a good estimator of the probability of default, P̂Dh(t|x), in this context. For
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this purpose, a nonparametric survival estimator based on mixture cure models is

considered.

The nonparametric cure model estimator of the conditional survival function

proposed by López-Cheda (2018) is given by

ŜNP CM
h1,h2 (t|x) = 1 − p̂h1(x) + p̂h1(x)Ŝ0,h2(t|x). (7.1)

The incidence estimator, p̂h1(x), is proposed by Xu and Peng (2014) and deeply

studied in López-Cheda et al. (2017b). It corresponds to Beran’s estimator evaluated

at the highest uncensored lifetime:

p̂h1(x) = 1 − ŜB
h1

(
max{Ti : i = 1, ..., n, δi = 1}|x

)
.

The latency estimator depending on one single bandwidth, Ŝ0,h2(t|x), proposed by

López-Cheda et al. (2017a) is as follows:

Ŝ0,h2(t|x) =
ŜB

h2(t|x) −
(
1 − p̂h2(x)

)
p̂h2(x) .

Replacing (7.1) in (2.2), we obtain the nonparametric cure model estimator (NPCM)

of the probability of default.

Note that the particular case h1 = h2 corresponds to Beran’s estimator, which

does not take into account a priori the existence of a group of cured individuals. In

López-Cheda (2018) it was found by simulation that the bandwidths h1 and h2 are

substantially different in practice, although they have the same convergence rate.

Choosing the best bandwidth h1 for incidence and the best bandwidth h2 for latency

has a considerable effect on the estimation of the conditional survival curve in cure

models and could have a considerable effect on the estimation of PD.

7.3 Asymptotic results for the NPCM estimator

Asymptotic properties of nonparametric incidence and latency estimators are al-

ready available in López-Cheda et al. (2017a) and López-Cheda et al. (2017b). In
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this Section, asymptotic properties of the NPCM estimator of the probability of

default are studied.

A number of notations used below were defined in Section 3.3.1. Additionally,

let R : R −→ R be any function and and given any constant a ∈ R,

c̃R(a) =
∫

R(at)R(t)dt. (7.2)

The following functions are required to state the results.

ω(Z, δ, t, x) = −S(t|x)
p(x) ξ(Z, δ, t, x) −

(
1 − p(x)

)(
1 − S(t|x)

)
p2(x) ξ(Z, δ, ∞, x),

Φ2(u, t, x) = E
[
ξ2(Z, δ, t, x)|X = u

]
,

B1(t, x) =
dK

(
S0(t|x) − 1

)(
p(x) − 1

)
2m(x)

∂2

∂u2

(
Φξ(u, t, x)m(u)

)
|u=x,

B2(t, x) = −dkS(t|x)
2m(x)

∂2

∂u2

(
Φξ(u, t, x)m(u)

)
|u=x

−
dK

(
1 − p(x)

)(
1 − S(t|x)

)
2p(x)m(x)

∂2

∂u2

(
Φξ(u, ∞, x)m(u)

)
|u=x,

B̃1(t, x) = − 1
S(t|x)B1(t + b, x) + S(t + b|x)

S2(t|x) B1(t, x),

B̃2(t, x) = − 1
S(t|x)B2(t + b, x) + S(t + b|x)

S2(t|x) B2(t, x),

Dξ(u, t1, t2, x) = Cov
[
ξ(Z1, δ1, t1, x), ξ(Z1, δ1, t2, x)

∣∣∣∣X1 = u
]
m(u),

Dξ,ω(u, t1, t2, x) = Cov
[
ξ(Z1, δ1, t1, x), ω(Z1, δ1, t2, x)

∣∣∣∣X1 = u
]
m(u),
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C1(t1, t2, x) = cKS(t1|x)S(t2|x)
p2(x) Dξ(x, t1, t2, x)

+
cKS(t1|x)

(
1 − S(t2|x)

)
p3(x) Dξ(x, t1, ∞, x)

+
cK

(
1 − S(t1|x)

)
S(t2|x)

(
1 − p(x)

)
p3(x) Dξ(x, ∞, t2, x)

+
cK

(
1 − p(x)

)2(
1 − S(t1|x)

)(
1 − S(t2|x)

)
p4(x) Φ2(x, ∞, x)m(x),

V1(t1, t2, x) =

(
S0(t1|x) − 1

)(
S0(t2|x) − 1

)(
p(x) − 1

)2

m(x) cKΦ2(x, ∞, x),

V2(t1, t2, x) = p2(x)C1(t1, t2, x)
m2(x) ,

V3(t1, t2, x) =

(
S0(t1|x) − 1

)(
p(x) − 1

)
p(x)

m2(x) Dξ,ω(x, ∞, t2, x)

+

(
S0(t2|x) − 1

)(
p(x) − 1

)
p(x)

m2(x) Dξ,ω(x, t1, ∞, x).

Assumptions A.1-A.10 listed in Section 3.3.1 are required to state the results.

Additional assumptions are introduced in this section to study the asymptotic prop-

erties of the NPCM estimator. They were previously assumed in López-Cheda et al.

(2017a) and López-Cheda et al. (2017b) to obtain almost sure representations of the

incidence and latency estimators.

A.11. Let G(t) = P (C ≤ t) be the distribution function of C and G(t|x) be the

conditional distribution function of C|X = x. Let τG(x) = sup{t : G(t|x) < 1},

τS0(x) = sup{t : S0(t|x) > 0} and τ0 = sup{τS0(x) : x ∈ I}, then, τ0 <

τG(x), ∀x ∈ I.

A.12. The first derivatives with respect to t of the functions S0(t|x) and G(t|x), i.e.

S ′
0(t|x) and G′(t|x) exist and are continuous on [l, u] × Ic.

A.13. The functions S0(t|x), H(t|x) and G(t|x) have bounded second-order deriva-

tives with respect to x ∈ Ic given any value of t ∈ [l, u].

A.14. The density function of T , f(t) is bounded away from 0 on [l, u].
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A.15.
∫ ∞

0

dH1(t|x)(
1 − H(t|x)

)2 < ∞ ∀x ∈ I.

A.16. The smoothing parameter h1 = h(n) satisfies h1 → 0, nh5
1

ln n
= O(1), (ln n)3

nh1
→ 0

and (ln n)3nh1 → ∞.

A.17. The smoothing parameter h2 = h2(n) satisfies h2 → 0, nh5
2

ln n
= O(1), (ln n)3

nh2
→

0 and (ln n)3nh2 → ∞.

A.18. The smoothing parameters h1 = h(n) and h2 = h2(n) satisfy nh3
1

h2
2(ln n)3 → ∞

and nh3
2

h2
1(ln n)3 → ∞.

A.19. Let (t, x) ∈ [l, u] × Ic. The second derivative of m(u) exists at u = x. The

second derivative of Φξ(u, t, x) exists at (x, t, x) and (x, ∞, x). The second

derivative of Φ2(u, t, x) exists at (x, t, x) and (x, ∞, x). The second derivative

of Dξ(u, t1, t2, x) exists at (x, t, t+b, x), (x, t, ∞, x) and (x, ∞, t, x). The second

derivative of Dξ,ω(u, t1, t2, x) exists at (x, t, ∞, x) and (x, ∞, t, x).

Assumptions A.11-A.15 are needed to bound some population functions. They

require existence and continuity of population function derivatives. Bandwidths

requirements are covered by Assumptions A.16, A.17 and A.18. Assumption A.19

refers to the differentiability of the functions previously defined in this section.

Lemma 7.1 (Almost sure representation of the NPCM estimator for the conditional

survival function). Under Assumptions A.1-A.19, for fixed values (t, x) ∈ [l, u] × I,

ŜNP CM
h1,h2 (t|x) − S(t|x)

=
(
S0(t|x) − 1

)(
p(x) − 1

)∑n
i=1 wA

h1,i(x)ξ(Zi, δi, ∞, x)

+p(x)∑n
i=1 wA

h2,i(x)ω(Zi, δi, t, x) + R1
n(t|x) a.s.,

(7.3)

where wA
h,i(x) was defined in Lemma 3.1 and

sup
(t,x)∈[l,u]×I

|R1
n(t|x)| = Op

(
ln n

nh1

)3/4

+ Op

(
ln n

nh2

)3/4

.
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Theorem 7.1 (Almost sure representation of the NPCM estimator for the PD).

Under Assumptions A.1-A.19, for fixed values (t, x), (t + b, x) ∈ [l, u] × I,

P̂D
NP CM

h1,h2 (t|x) − PD(t|x) =
n∑

i=1
Ψn,i(t, x) + R2

n(t|x) a.s.,

where

Ψn,i(t, x) = − 1
S(t|x)ζn,i(t + b, x) + S(t + b|x)

S2(t|x) ζn,i(t, x),

ζn,i(t, x) =
(
S0(t|x) − 1

)(
p(x) − 1

)
wA

h1,i(x)ξ(Zi, δi, ∞, x) + p(x)wA
h2,i(x)ω(Zi, δi, t, x)

and

sup
(t,x)∈[l,u]×I

|R2
n(t|x)| = Op

 ln n

(
1

nh1
+ 1

nh2

)3/4

.

Theorem 7.2 (Asymptotic bias and variance of the NPCM estimator for the PD).

Under Assumptions A.1-A.19, for fixed values (t, x), (t+b, x) ∈ [l, u]×I, the asymp-

totic expressions of the bias and the variance of the dominant term in the almost

sure representation of P̂D
NP CM

h1,h2 (t|x) are the following:

ABias
(
P̂D

NP CM

h1,h2 (t|x)
)

= B̃1(t, x)h2
1 + B̃2(t, x)h2

2 + o(h2
1) + o(h2

2) (7.4)

(i) If Ch1,h2 := lim
n→∞

h1

h2
∈ (0, ∞), then

AVar
(
P̂D

NP CM

h1,h2 (t|x)
)

=
(

Ṽ1(t + b, t, x) + Ch1,h2Ṽ2(t + b, t, x)

+Ch1,h2 c̃K(Ch1,h2)Ṽ3(t + b, t, x)
) 1

nh1

+o

(
1

nh1

)
+ O

(
h1

n

)

(ii) If lim
n→∞

h1

h2
= 0, then

AVar
(
P̂D

NP CM

h1,h2 (t|x)
)

= Ṽ1(t + b, t, x) 1
nh1

+ o

(
1

nh1

)
+ O

(
h2

n

)

(iii) If lim
n→∞

h2

h1
= 0, then

AVar
(
P̂D

NP CM

h1,h2 (t|x)
)

= Ṽ2(t + b, t, x) 1
ng

+ o

(
1

nh2

)
+ O

(
h1

n

)
,
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where

Ṽi(t1, t2, x) = 1
S2(t2|x)Vi(t1, t1, x) + S2(t1|x)

S2(t2|x)Vi(t2, t2, x) + 2 S(t1|x)
S2(t2|x)Vi(t1, t2, x)

with i = 1, 2, 3 and c̃K is defined in (7.2).

Theorem 7.3 (Asymptotic normality of the NPCM estimator for the PD). Un-

der Assumptions A.1-A.19, for fixed values (t, x), (t + b, x) ∈ [l, u] × I, the limit

distribution of P̂D
NP CM

h1,h2 (t|x) is the following:

(i) Assuming Ch1 := limn→∞ n1/5h1 ∈ (0, ∞), Ch2 := limn→∞ n1/5h2 ∈ (0, ∞),

then √
nh1

(
P̂D

NP CM

h1,h2 (t|x) − PD(t|x)
)

d−→ N(µ, s),

where

µ = C
5/2
h1 B̃1(t, x) + C

5/2
h2 B̃2(t, x)

and

s2 =
(
Ṽ1(t + b, t, x) + Ch1,h2Ṽ2(t + b, t, x) + Ch1,h2 c̃K(h1,h2)Ṽ3(t + b, t, x)

)
.

(ii) Assuming Ch2 := limn→∞ n1/5h2 ∈ (0, ∞) and limn→∞ n1/5h1 = 0, then

√
nh1

(
P̂D

NP CM

h1,h2 (t|x) − PD(t|x)
)

d−→ N(µ, s),

where

µ = C
5/2
h2 B̃2(t, x)

and

s2 = Ṽ1(t + b, t, x).

(iii) Assuming Ch1 := limn→∞ n1/5h1 ∈ (0, ∞), limn→∞ n1/5h2 = 0, then

√
nh2

(
P̂D

NP CM

h1,h2 (t|x) − PD(t|x)
)

d−→ N(µ, s),

where

µ = C
5/2
h1 B̃1(t, x)
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,

s2 = Ṽ2(t + b, t, x)

and Ṽi(t1, t2, x), i = 1, 2, 3 are defined in Theorem 7.2.

Proofs of the results presented here are included in Section 7.6.

7.4 Simulation study

A simulation study was conducted in order to compare the performance of the two

proposed estimators of the probability of default. The study is focused on three

different models. All three have a nonzero probability of cure and the proportion

of cured subjects and the survival distribution of uncured subjects are modeled

separately. Therefore, they are mixture cure models.

In Model 1, the probability of cure, 1 − p(x), is a logistic function with the

incidence given by

p(x) = exp(β0 + β1x)
1 + exp(β0 + β1x)

where β0 = 1 and β1 = −1.

A uniform distribution U(0, 1) is considered for the credit scoring variable X.

In the uncured population, the time to default conditional to the credit scoring,

T0|X=x, follows a Weibull distribution with parameters d and A(x)−1/d, with d = 2

and A(x) = 1 + 5x,

T0|X=x ∼ W(d, A(x)−1/d),

and the censoring time conditional to the credit scoring, C0|X=x, follows a Weibull

distribution with parameters d and B(x)−1/d, with B(x) = 10 − 22x + 20x2,

C0|X=x ∼ W(d, B(x)−1/d).

Therefore, the latency is given by

S0(t|x) = e−A(x)td

.
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It is quite close to fulfill a proportional hazards model and an accelerated failure

time model, since the polynomial A(x) is a linear function which is reasonable close

to the function exp(γx) for some γ. For more details, see Section 2.4.

The conditional censoring probability of the uncured population is as follows:

P (δ = 0|ν = 0, X = x) = B(x)
A(x) + B(x) .

In this scenario,

P (δ = 0|X = x) = P (δ = 0|ν = 0, X = x)P (ν = 0|X = x)

+P (δ = 0|ν = 1, X = x)P (ν = 1|X = x).

Since P (ν = 0|x) = p(x), P (ν = 1|x) = 1 − p(x) and

P (δ = 0|ν = 1, X = x) = P (C < T |T = ∞, X = x) = 1,

the expression of the censoring conditional probability is as follows:

P (δ = 0|X = x) = 1 − p(x) + p(x)P (δ = 0|ν = 0, X = x) (7.5)

The unconditional probability of censoring is given by

P (δ = 0) =
∫ +∞

−∞
P (δ = 0|X = x)m(x)dx, (7.6)

and the probability of censoring in Model 1 is 0.77151.

The conditional survival function and the probability of default are the following:

S(t|x) = 1 − p(x) + p(x)e−A(x)td

,

PD(t|x) = 1 − 1 − p(x) + p(x)e−A(x)(t+b)d

1 − p(x) + p(x)e−A(x)td .

Figure 7.1 shows the incidence and latency functions in Model 1. The incidence

function is decreasing: the higher the value of the scoring x, the lower the value of

p(x) and the higher the probability of being cured of the event falling into default.

This is consistent in the context of credit risk.

265



Figure 7.2 shows the theoretical conditional survival function and the probability

of default in Model 1. The non-zero tendency of the survival function under this

cure model is clear. This plateau in the right tail informs about the proportion of

cured individuals in this model.

Figure 7.1: Theoretical incidence p(x) (left) and latency S0(t|x = 0.5) (right) of Model 1.

Figure 7.2: Theoretical conditional survival function S(t|x = 0.5) (left) and probability of default

PD(t|x = 0.5) (right) of Model 1.

The conditional survival function and the probability of default of Model 1 are

estimated in a time grid of size nT , 0 < t1 < · · · < tnT
, where tnT

+ b = F −1
0 (0.95|x)

with F0 being the distribution function of the time variable in the uncured population

266



and b about 20% of the time grid. For x = 0.5, b = 0.18503 and tnT
= 0.74013.

In Model 2, the incidence is given by

p(x) = exp(β0 + β1x + β2x
2 + β3x

3)
1 + exp(β0 + β1x + β2x2 + β3x3) (7.7)

where β0 = 15, β1 = −190/3, β2 = 88 and β3 = −128/3.

A uniform distribution U(0, 1) is considered for the credit scoring variable, X. In

the uncured population, the time to default conditional to the credit scoring, T0|X=x,

follows an exponential distribution with parameter Q(x) = 2 + 58x − 160x2 + 107x3,

T0|X=x ∼ Exp
(
Q(x)

)
,

and the censoring time conditional to the credit scoring, C0|X=x, follows an expo-

nential distribution with parameter R(x) = 10 − 55
2 x + 20x2,

C0|X=x ∼ Exp
(
R(x)

)
.

The latency is given by

S0(t|x) = e−Q(x)t.

The incidence of this model is not a logistic function and the latency function does

not fit a proportional hazards model nor an accelerated failure time model, since

the polynomial Q(x) is not monotone in x and, therefore, is far from an exponential

function. For more details, see the explanations in Section 2.4.

In this scenario, the conditional censoring probability of the uncured population

results in:

P (δ = 0|ν = 0, X = x) = R(x)
Q(x) + R(x) .

The conditional survival function and the probability of default are the following:

S(t|x) = 1 − p(x) + p(x)e−Q(x)t,

PD(t|x) = 1 − 1 − p(x) + p(x)e−Q(x)(t+b)

1 − p(x) + p(x)e−Q(x)t .

Figure 7.3 shows the incidence and latency functions for Model 2. The decreasing

incidence function is consistent with a credit risk context, since the higher the value
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of the scoring x, the higher the probability of being cured of the event falling into

default.

Figure 7.4 shows the theoretical conditional survival function and the probability

of default in Model 2. The plateau in the right tail of the survival function under

this cure model is clear.

Figure 7.3: Theoretical incidence p(x) (left) and latency S0(t|x = 0.5) (right) of Model 2.

Figure 7.4: Theoretical conditional survival function S(t|x = 0.5) (left) and probability of default

PD(t|x = 0.5) (right) of Model 2.

The conditional survival function and the probability of default of Model 2 are

estimated in a time grid of size nT , 0 < t1 < · · · < tnT
, where tnT

+ b = F −1
0 (0.95|x)
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with F0 being the distribution function of the time variable in the uncured popula-

tion. For the previously set parameters and x = 0.5, one has b = 0.13695 (20% of

the grid range) and tnT
= 0.54779.

In Model 3, the incidence is given by (7.7) with β0 = 31, β1 = −398/3, β2 = 184

and β3 = −256/3. A uniform distribution, U(0, 1), is considered for the credit

scoring variable X. In the uncured population, the time to default conditional to

the credit scoring, T0|X=x, follows a Weibull distribution with parameters k1(x) =
5

1000 + 28x − 16x2 and B1(x) = (log(2))1/k1(x),

T0|X=x ∼ W
(
k1(x), 1/B1(x)

)
,

and the censoring time conditional to the credit scoring, C0|X=x, follows a Weibull

distribution with parameters k2(x) = 1 + 8x and B2(x) = (log(2))1/k2(x),

C0|X=x ∼ W
(
k2(x), 1/B2(x)

)
.

Therefore, the latency is given by

S0(t|x) = e−(B1(x)t)k1(x)
.

The incidence of this model is not a logistic function and the latency function does

not fit a proportional hazards model nor an accelerated failure time model, since

the shape paremeter of the Weibull distribution, k1(x), depends on x.

In this scenario, the conditional censoring probability of the uncured population

is as follows:

P (δ = 0|ν = 0, X = x) = B1(x)
B1(x) + B2(x) .

and the conditional survival function and the probability of default are the following:

S(t|x) = 1 − p(x) + p(x)e−(B1(x)t)k1(x)
,

PD(t|x) = 1 − 1 − p(x) + p(x)e−(B1(x)(t+b))k1(x)

1 − p(x) + p(x)e−(B1(x)t)k1(x) .

The simulation analysis is conducted for different credit scoring values in each

model. The probability of cured, the unconditional probability of censoring and the

269



probabilities of censoring conditional on each chosen value of x are shown in Table

7.1 for Models 1, 2 and 3.

Model 1 Model 2 Model 3

P (δ = 0) 0.771510 0.656636 0.706833

x = 0.2 1 − p(x) 0.310026 0.004022 0.000014

P (δ = 0|x) 0.835720 0.399251 0.483227

x = 0.5 1 − p(x) 0.377541 0.500000 0.500031

P (δ = 0|x) 0.709519 0.611111 0.745433

x = 0.8 1 − p(x) 0.450166 0.767098 0.743473

P (δ = 0|x) 0.730474 0.884726 0.870492

Table 7.1: Unconditional and conditional probabilities of censoring in Models 1, 2 and 3.

For comparison purposes, Beran’s estimator and the smoothed Beran’s estimator

are included in this simulation study. They do not consider a priori the existence of

a cured population, but may be able to detect a nonzero probability of cure from the

sample data. The smoothed Beran’s estimator showed a better performance than

Beran’s estimator in Chapter 5. In this section its performance is compared with

the NPCM estimator.

Two other semiparametric estimators are considered in this analysis as bench-

mark methods: the proportional hazards cure model estimator (PHCM) and the

accelerated failure time cure model estimator (AFTCM). The PHCM estimator and

the AFTCM estimator both assume that the conditional survival function is defined

by S(t|x) = 1 − p(x) + p(x)S0(t|x) with 1 − p(x) fiting a logistic model and the

latency S0(t|x) fiting a proportional hazards model and an accelerated failure time

model, respectively. The details of the methods can be consulted in Sy and Taylor

(2000) and Sy and Taylor (2001).

Model 1 fits Cox and AFT cure models with logistic cure probability, meanwhile

Model 2 and 3 move away from these semiparametric models. Therefore, the PHCM

and AFTCM methods are expected to have a reasonable behaviour in Model 1 but
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worse in Models 2 and 3.

The nonparametric estimators of the incidence and latency required to com-

pute the NPCM estimator are implemented in the R-Package npcure (see López-de

Ullibarri et al. (2020)). The semiparametric methods are implemented in the R-

Package smcure (see Cai et al. (2012)).

The conditional survival function and the probability of default are estimated in

a time grid of size nT , 0 < t1 < · · · < tnT
, where tnT

+ b = F −1
0 (0.95|x) with F0

being the distribution function of the time variable in the uncured population and

b is about 20% of the time grid. The size of the time grid is nT = 100. The sample

size is n = 400. The truncated Gaussian kernel in [−50, 50] is used for the covariable

smoothing in Beran’s estimator.

The optimal value of the bandwidth involved in Beran’s estimator, hMISE, is

chosen as the value that minimises a Monte Carlo approximation of the MISE given

by

MISEx(h) = E
(∫ (

P̂D
B

h (t|x) − PD(t|x)
)2

dt
)

based on the estimation for N = 100 simulated samples for each value of h in a grid

of nh = 50 possible values. Then, N = 300 samples are simulated to approximate

MISEx(hMISE).

The optimal bivariate bandwidth (hMISE, gMISE) involved in the smoothed Be-

ran’s estimator is chosen, from a meshgrid of 50 × 50 values of (h, g), as the pair

that minimises a Monte Carlo approximation of the MISE given by

MISEx(h, g) = E
(∫ (

P̂D
B

h,g(t|x) − PD(t|x)
)2

dt
)

based on N = 100 simulated samples. Then, N = 300 simulated samples are used

to approximate MISEx(hMISE, gMISE).

The optimal bivariate bandwidth (hMISE
1 , hMISE

2 ) involved in the NPCM estima-

tor is chosen, from a meshgrid of 50×50 values of (h1, h2), as the pair that minimises

a Monte Carlo approximation of the MISE given by

MISEx(h1, h2) = E
(∫ (

P̂D
NP CM

h1,h2 (t|x) − PD(t|x)
)2

dt
)
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based on N = 100 simulated samples. Then, N = 300 simulated samples are used

to approximate MISEx(hMISE
1 , hMISE

2 ).

Of course, these bandwidths cannot be used in practice, but this choice produces

a fair comparison since the two estimators are constructed using their best possible

bandwidths. The value of MISE and its square root, RMISE, are used as a

measure of the estimation error of the PD estimators.

Figure 7.5 shows the contour plots of the MISEx(h, g) function for the NPCM

estimator in Models 1, 2 and 3 when x = 0.5.

Figure 7.5: Contour plots of the approximation of MISEx(h) function of NPCM estimator using

N = 1000 samples from Model 1 (top left), Model 2 (top right) and Model 3 (bottom) when

x = 0.5.
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Tables 7.2-7.4 contain the optimal bandwidths and the square root of MISE

(RMISE) for each estimator in Models 1, 2 and 3 when x = 0.2, x = 0.5 and

x = 0.8. In some of the scenarios analysed, the MISE function turned out to

be a decreasing function of the covariate bandwidth. For this reason, the MISE

bandwidth selected was a high but reasonable value, considering that the variable

X moves in the interval [0, 1]. This is the case of the optimal of Beran’s estimator

and the NPCM estimator in Model 1.

The NPCM estimator is performing very well in all scenarios. In general, it

provides smaller errors than the semiparametric methods in Model 2 and 3. As

expected, the behaviour of the AFTCM estimator is better under the semiparametric

Model 1, although the NPCM estimator is still competitive.

Beran’s estimation error is similar to the NPCM estimation error in some cases.

This is remarkable, given that Beran’s estimator does not consider the existence

of a cured group in its definition, as the NPCM estimator does. The smoothed

Beran’s estimator provides the smaller error in all scenarios. Its good performance

is remarkable.

Beran’s and the smoothed Beran’s estimators make no assumptions about the

survival function, but use only the information provided by the data, being able

to detect the nonzero tendency of the survival function and reflect it in the PD

estimation. This is also confirmed by Figures 7.6, 7.7 and 7.8.

SBeran Beran NPCM PHCM AFTCM

x
=

0.
2 Bandwidths (1.000000, 0.853061) 0.522449 (0.926531, 0.871429) — —

RMISEx 0.047494 0.135059 0.134939 0.139143 0.096897

x
=

0.
5 Bandwidths (0.155102, 0.632653) 0.559184 (1.000000, 0.724490) — —

RMISEx 0.042042 0.058921 0.058925 0.054809 0.050675

x
=

0.
8 Bandwidths (0.320408, 0.111020) 0.430612 (1.000000, 0.687755) — —

RMISEx 0.028910 0.037749 0.037591 0.045671 0.045183

Table 7.2: Optimal bandwidths and RMISE of the probability of default estimators when

x = 0.2, x = 0.5 and x = 0.8 in Model 1.
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SBeran Beran NPCM PHCM AFTCM
x

=
0.

2 Bandwidths (0.069388, 0.088775) 0.108163 (0.127551, 0.375510) — —

RMISEx 0.050586 0.089049 0.076577 0.093894 0.102628

x
=

0.
5 Bandwidths (0.263265, 0.146939) 0.185714 (0.457143, 0.302041) — —

RMISEx 0.011431 0.025038 0.025178 0.029877 0.030471

x
=

0.
8 Bandwidths (0.108163, 0.961225) 0.146939 (0.263265, 0.632653) — —

RMISEx 0.046706 0.066779 0.055069 0.051907 0.052058

Table 7.3: Optimal bandwidths and RMISE of the probability of default estimators when

x = 0.2, x = 0.5 and x = 0.8 in Model 2.

SBeran Beran NPCM PHCM AFTCM

x
=

0.
2 Bandwidths (0.059184, 0.090816) 0.077551 (0.160204, 0.178571) — —

RMISEx 0.060799 0.068428 0.068027 0.101598 0.159328

x
=

0.
5 Bandwidths (0.320408, 0.030204) 0.353061 (0.928571, 0.565306) — —

RMISEx 0.022604 0.023605 0.023751 0.029312 0.058107

x
=

0.
8 Bandwidths (0.191867, 0.050408) 0.178571 (0.614286, 0.814286) — —

RMISEx 0.015308 0.016911 0.025107 0.028312 0.046132

Table 7.4: Optimal bandwidths and RMISE of the probability of default estimators when

x = 0.2, x = 0.5 and x = 0.8 in Model 3.

Figures 7.6, 7.7 and 7.8 show the survival and PD estimations obtained by Be-

ran’s estimator, the smoothed Beran’s estimator and the NPCM estimator in one

sample from Models 1, 2 and 3, respectively, using the optimal MISE bandwidths

from Tables 7.2, 7.3 and 7.4 with x = 0.5. All estimators, including Beran’s one,

capture the nonzero tendency of survival, which is a characteristic of cure models.
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Figure 7.6: Theoretical survival function and estimations (left) and probability of default curve

and estimations (right). Theoretical curve (solid line), smoothed Beran’s estimation (dash-dotted

line), Beran’s estimation (dashed line) and NPCM estimation (dotted line) using MISE bandwidths

in one sample from Model 1 when x = 0.5.

Figure 7.7: Theoretical survival function and estimations (left) and probability of default curve

and estimations (right). Theoretical curve (solid line), smoothed Beran’s estimation (dash-dotted

line), Beran’s estimation (dashed line) and NPCM estimation (dotted line) using MISE bandwidths

in one sample from Model 2 when x = 0.5.
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Figure 7.8: Theoretical survival function and estimations (left) and probability of default curve

and estimations (right). Theoretical curve (solid line), smoothed Beran’s estimation (dash-dotted

line), Beran’s estimation (dashed line) and NPCM estimation (dotted line) using MISE bandwidths

in one sample from Model 3 when x = 0.5.

Since computation time is an important aspect to be considered in the compari-

son of the estimators, a small study of CPU time is addressed in this section. Table

7.5 shows the CPU times in seconds needed to estimate the PD for a single sample

of different sizes with the four studied estimators. Table 7.6 shows the CPU times

in seconds needed to approximate the optimal bandwidths to estimate the PD from

N = 100 simulated samples of different sizes with Beran’s estimator and the NPCM

estimator. The estimators based on PH cure model and AFT cure model do not

depend on any smoothing parameter.

According to Table 7.5, Beran’s estimator is the fastest of the four studied es-

timators. The NPCM estimator and Beran’s estimator are barely affected by the

increase in the sample size. The smoothed Beran’s estimator is somewhat more

time consuming than Beran’s and NPCM estimators. The semiparametric methods

are slower; in particular, the AFTCM estimator. However, the optimal bandwidth

approximation is what slows down nonparametric methods as opposed to semipara-

metric methods, which do not depend on bandwidth parameters. Table 7.6 shows

the computation times required to obtain the MISE bandwidths for the nonpara-

metric estimators.
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In practice, these bandwidths will be obtained by some resampling technique

and the time required will be different from the one shown here. However, it gives

an idea of the disadvantage of the smoothed Beran’s estimator that depends on

one smoothing bandwidth in the covariate and one in the time variable. The same

applies to the NPCM estimator which depends on two bandwidths for the covariate.

The error functions in both cases must be minimised in two dimensions to obtain

these bandwidths.

n 100 400 800 1600 2400

Beran 0.01 0.01 0.01 0.02 0.02

SBeran 0.03 0.05 0.07 0.18 0.32

NPCM 0.02 0.02 0.02 0.02 0.02

PHCM 0.24 0.40 0.43 1.39 2.49

AFTCM 0.42 1.61 6.12 39.57 82.96

Table 7.5: CPU time (in seconds) for the estimation of PD(t|x) in a time grid of size 100 and

x = 0.5 for one sample of size n with Beran’s estimator, the smoothed Beran’s estimator, the

NPCM estimator, the PHCM estimator and the AFTCM estimator.

n 100 400 800 1600 2400

Beran 5.01 4.14 13.34 33.65 44.92

SBeran 53.55 197.85 415.50 954.37 3020.22

NPCM 20.44 65.38 35.03 94.97 37.76

Table 7.6: CPU time (in seconds) for the approximation of the optimal bandwidth from N = 100

samples of size n to estimate PD(t|x) in a time grid of size 100 and x = 0.5 with Beran’s estimator,

the smoothed Beran’s estimator and the NPCM estimator.

7.5 Application to real data

In this section we apply the above PD estimators to the German Credit data set

which was previously analysed in Section 6.6. This data set includes information of
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1000 credits with a censoring ratio of 70.7%. The duration of the credits in months

(Z) is available along with the credit scoring (X) and the default indicator (δ).

A distinction is made between credits for which default is observed and those

that are censored. Censored credits correspond to cured credits that will never

run into arrears, credits cancelled in advance or credits susceptible to default if the

follow-up of the credit would be longer enough.

The survival function and the probability of default conditional on the credit scor-

ing are estimated using the estimators presented in the simulation study and the re-

sult is shown in Figure 7.9. The estimations of these curves are obtained at x = 0.85

through empirically chosen bandwidths based on visual inspection of the PD curves

and considering the ranges in which the variables lie: h = 0.5 for Beran’s estimator,

(h, g) = (0.5, 5) for the smoothed Beran’s estimator and (h1, h2) = (0.3, 0.5) for the

NPCM estimator.

Figure 7.9: Estimation of the conditional survival function (left) and the probability of default

(right) for x = 0.85 by means of Beran’s estimator (solid line), the smoothed Beran’s estimator

(dashed line) and the NPCM estimator (dotted line) in the German credit data set.
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7.6 Proofs

Lemma 7.2. Denote Φξ(u, t, x) = E
[
ξ(Z, δ, t, x)|X = u

]
with ξ(Z, δ, t, x) defined in

Section 7.3. Under Assumptions A.8 and A.19, then

E

[
K

(
x − X1

h

)
ξ(Z1, δ1, t, x)

]
= 1

2h3 ∂2

∂u2

(
Φξ(u, t, x)m(u)

)
|u=x + o(h3).

Proof.

Using a Taylor expansion for Φξ(u, t, x)m(u) when u = x − hv around u = x and

Assumption A.8:

E

[
K

(
x − X1

h

)
ξ(Z1, δ1, t, x)

]

= E

[
K

(
x − X1

h

)
E
[
ξ(Z1, δ1, t, x)

∣∣∣X1

]]
=
∫ +∞

−∞
K

(
x − u

h

)
Φ(u, t, x)m(u)du

= (−h)
∫ −∞

+∞
K(v)Φ(x − hv, t, x)m(x − hv)dv

=
∫ +∞

−∞
hK(v)

(
Φ(x, t, x)m(x) − hv

∂

∂u

(
Φ(u, t, x)m(u)

)∣∣∣
u=x

+h2v2

2
∂2

∂u2

(
Φ(u, t, x)m(u)

)∣∣∣
u=x

+ o(h2)
)

dv

= Φ(x, t, x)m(x)h + dK

2
∂2

∂u2

(
Φ(u, t, x)m(u)

)∣∣∣
u=x

h3 + o(h3).

Moreover, Φξ(x, t, x) = 0 ∀(t, x) ∈ [0, ∞) × I, since

Φξ(u, t, x) = E
[
ξ(Z, δ, t, x)|X = u

]
=
∫ t

0

dH1(z|u)
1 − H(z|x) −

∫ t

0

1 − H(v|u)(
1 − H(v|x)

)2 dH1(v|x).

Lemma 7.3. Denote Φ2(u, t, x) = E
[
ξ2(Z, δ, t, x)|X = u

]
with ξ(Z, δ, t, x) defined

in Section 7.3. Under Assumptions A.8 and A.19, then

V ar

[
K

(
x − X1

h

)
ξ(Z1, δ1, t, x)

]
= hΦ2(x, ∞, x)m(x)cK

+h3 dK2

2
∂2

∂u2

(
Φ2(u, ∞, x)m(u)

)
|u=x + o(h3).
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Proof.

First,

V ar

[
K

(
x − X1

h

)
ξ(Z1, δ1, t, x)

]

= E

[
K2
(

x − X1

h

)
ξ2(Z1, δ1, t, x)

]
− E

[
K

(
x − X1

h

)
ξ(Z1, δ1, t, x)

]2

.

Using a Taylor expansion for Φ2(u, t, x)m(u) when u = x − hv around u = x and

Assumption A.8:

E

[
K2
(

x − X1

h

)
ξ2(Z1, δ1, t, x)

]
=
∫ +∞

−∞
K2
(

x − u

h

)
Φ2(u, t, x)m(u)du

= cKΦ2(x, t, x)m(x)h + dK2

2
∂2

∂u2

(
Φ2(u, t, x)m(u)

)∣∣∣
u=x

h3 + o(h3).

From Lemma 7.2,

E

[
K

(
x − X1

h

)
ξ(Z1, δ1, t, x)

]2

= O(h6).

Then,

V ar

[
K

(
x − X1

h

)
ξ(Z1, δ1, t, x)

]

= cKΦ2(x, t, x)m(x)h + dK2

2
∂2

∂u2

(
Φ2(u, t, x)m(u)

)∣∣∣
u=x

h3 + o(h3).

Lemma 7.4. Denote Dξ(u, t1, t2, x) = Cov
[
ξ(Z1, δ1, t1, x), ξ(Z1, δ1, t2, x)|X1 = u

]
and B(u, t1, t2, x) = Φξ(u, t1, x)Φξ(u, t2, x)m(u). Under Assumptions A.8 and A.19,

then

Cov

[
K

(
x − X1

h

)
ξ(Z1, δ1, t1, x), K

(
x − X1

h

)
ξ(Z1, δ1, t2, x)

]

= cKDξ(x, t1, t2, x)h + dK2

2
(
D′′

ξ (x, t1, t2, x) + B′′(x, t1, t2, x)
)
h3 + o(h3).

Proof.

Using the Law of total covariance,
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Cov

[
K

(
x − X1

h

)
ξ(Z1, δ1, t1, x), K

(
x − X1

h

)
ξ(Z1, δ1, t2, x)

]

= E

Cov

[
K

(
x − X1

h

)
ξ(Z1, δ1, t1, x), K

(
x − X1

h

)
ξ(Z1, δ1, t2, x)

∣∣∣X1

]
+E

K2
(

x − X1

h

)
Φξ(X1, t1, x)Φξ(X1, t2, x)


−E

K

(
x − X1

h

)
Φξ(X1, t1, x)

E

K

(
x − X1

h

)
Φξ(X1, t2, x)

 = S1 + S2 − S3.

(7.8)

Using a Taylor expansion for Dξ(u, t1, t2, x)m(u) when u = x − hv around u = x

and Assumption A.8:

S1 =
∫ +∞

−∞
K2
(

x − u

h

)
Cov

[
ξ(Z1, δ1, t1, x), ξ(Z1, δ1, t2, x)|X1 = u

]
m(u)du

= (−h)
∫ −∞

+∞
K2(v)Dξ(x − hv, t1, t2, x)dv

= h
∫ +∞

−∞
K(v)

(
Dξ(x, t1, t2, x) − hvD′

ξ(x, t1, t2, x)

+h2v2

2 D′′
ξ (x, t1, t2, x) + o(h2)

)
dv

= cKDξ(x, t1, t2, x)h + dK2

2 D′′
ξ (x, t1, t2, x)h3 + o(h3).

Using a Taylor expansion for B(u, t1, t2, x) when u = x − hv around u = x and

Assumption A.8:

S2 =
∫ +∞

−∞
K2
(

x − u

h

)
Φ(u, t1, x)Φ(u, t2, x)m(u)du

=
∫ +∞

−∞
K2
(

x − u

h

)
B(u, t1, t2, x)du

=
∫ −∞

+∞
(−h)K2(v)B(x − hv, t1, t2, x)dv =

∫ +∞

−∞
hK2(v)B(x − hv, t1, t2, x)dv

=
∫ +∞

−∞
hK2(v)

(
B(x, t1, t2, x) − hvB′(x, t1, t2, x)

+h2v2

2 B′′(x, t1, t2, x) + o(h2)
)

dv

= cKB(x, t1, t2, x)h + dK2

2 B′′(x, t1, t2, x)h3 + o(h3).

281



Since Φ(x, t, x) = 0 ∀(t, x) ∈ [0, ∞) × I, B(x, t1, t2, x) = 0 for all t1, t2 ∈ [0, ∞).

Then,

S2 = dK2

2 B′′(x, t1, t2, x)h3 + o(h3).

Finally, from Lemma 7.2,

E

[
K

(
x − X1

h

)
Φξ(X1, t, x)

]
= O(h3).

Then, S3 = O(h6), and replacing S1, S2 and S3 in (7.8), the lemma is proved.

Proof of Lemma 7.1

Let us denote Ŝh1,h2(t|x) := ŜNP CM
h1,h2 (t|x). According to the definition of the

NPCM estimator in (7.1),

Ŝh,g(t|x) − S(t|x)

= 1 − p̂h(x) + p̂h1(x)Ŝ0,h2(t|x) −
(

1 − p(x) + p(x)S0(t|x)
)

= p(x) − p̂h1(x) + p̂h1(x)Ŝ0,h2(t|x) − p(x)S0(t|x) + p̂h1(x)S0(t|x) − p̂h1(x)S0(t|x)

= p(x) − p̂h1(x) + S0(t|x)
(
p̂h1(x) − p(x)

)
+ p̂h1(x)

(
Ŝ0,h2(t|x) − S0(t|x)

)
=

(
S0(t|x) − 1

)(
p̂h1(x) − p(x)

)
+
(
p̂h1(x) + p(x) − p(x)

)(
Ŝ0,h2(t|x) − S0(t|x)

)
=

(
S0(t|x) − 1

)(
p̂h1(x) − p(x)

)
+ p(x)

(
Ŝ0,h2(t|x) − S0(t|x)

)
+
(
p̂h1(x) − p(x)

)(
Ŝ0,h2(t|x) − S0(t|x)

)
(7.9)

From Theorem 3 in López-Cheda et al. (2017b) and Theorem 1 in López-Cheda

et al. (2017a), the almost sure representations of the incidence and the latency

nonparametric estimators are available:

p̂h1(x) − p(x) =
(
p(x) − 1

) n∑
i=1

wA
h1,i(x)ξ(Zi, δi, ∞, x) + Rn(x), (7.10)

Ŝ0,h2(t|x) − S0(t|x) =
n∑

i=1
wA

h2,i(x)ω(Zi, δi, t, x) + Rn(t|x), (7.11)
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with

sup
x∈I

|Rn(x)| = O

(
ln n

nh1

)3/4

a.s. and sup
(t,x)∈[l,u]×I

|Rn(t|x)| = O

(
ln n

nh2

)3/4

a.s.

Replacing (7.10) and (7.11) in (7.9), the almost sure representation of the NPCM

survival estimator will follow from expression:

Ŝh1,h2(t|x) − S(t|x)

=
(
S0(t|x) − 1

)(
p(x) − 1

) n∑
i=1

wA
h1,i(x)ξ(Zi, δi, ∞, x)

+p(x)
n∑

i=1
wA

h2,i(x)ω(Zi, δi, t, x) +
(
S0(t|x) − 1

)
Rn(x) + p(x)Rn(t|x)

+
(
p̂h1(x) − p(x)

)(
Ŝ0,h2(t|x) − S0(t|x)

)
.

From Theorem 3 in López-Cheda et al. (2017b) and Theorem 3 in López-Cheda

et al. (2017a), it follows that

p̂h1(x) − p(x) = Op

(
1√
nh1

)
,

and

Ŝ0,h2(t|x) − S0(t|x) = Op

(
1√
nh2

)
.

Then, (
p̂h1(x) − p(x)

)(
Ŝ0,h2(t|x) − S0(t|x)

)
= Op

(
1

n
√

h1h2

)
and

Ŝh1,h2(t|x) − S(t|x) =
(
S0(t|x) − 1

)(
p(x) − 1

) n∑
i=1

wA
h1,i(x)ξ(Zi, δi, ∞, x)

+p(x)
n∑

i=1
wA

h2,i(x)ω(Zi, δi, t, x) + R1
n(t|x),

where

R1
n(t|x) =

(
S0(t|x) − 1

)
Rn(x) + p(x)Rn(t|x) + Op

(
1

n
√

h1h2

)

= Op

(
ln n

nh1

)3/4

+ Op

(
ln n

nh2

)3/4

+ Op

(
1

n
√

h1h2

)
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Under Assumptions A.16 and A.17,

R1
n(t|x) = Op

 ln n

(
1

nh1
+ 1

nh2

)3/4

and Lemma 7.1 is proved.

Proof of Theorem 7.1

Let us denote P̂Dh1,h2(t|x) := P̂D
NP CM

h1,h2 (t|x) and Ŝh1,h2(t|x) := ŜNP CM
h1,h2 (t|x).

Consider the function

Wh1,h2(t, t+b, x) =
S(t|x)

(
Ŝh1,h2(t + b|x) − S(t + b|x)

)
− S(t + b|x)

(
Ŝh1,h2(t|x)−S(t|x)

)
Ŝh1,h2(t|x)S(t|x)

.

Since
Ŝh1,h2(t + b|x)

Ŝh1,h2(t|x)
− S(t + b|x)

S(t|x) = −
(
P̂Dh1,h2(t|x) − PD(t|x)

)
and

Ŝh1,h2(t + b|x)
Ŝh1,h2(t|x)

− S(t + b|x)
S(t|x) =

= Ŝh1,h2(t + b|x)S(t|x) − S(t + b|x)Ŝh1,h2(t|x) − S(t + b|x)S(t|x) + S(t + b|x)S(t|x)
Ŝh1,h2(t|x)S(t|x)

=
S(t|x)

(
Ŝh1,h2(t + b|x) − S(t + b|x)

)
− S(t + b|x)

(
Ŝh1,h2(t|x) − S(t|x)

)
Ŝh1,h2(t|x)S(t|x)

= Wh1,h2(t, t + b, x)
(

Ŝh1,h2(t|x)
S(t|x) + 1 − Ŝh1,h2(t|x)

S(t|x)

)

= 1
S(t|x)

(
Ŝh1,h2(t + b|x) − S(t + b|x)

)
− S(t + b|x)

S2(t|x)
(
Ŝh1,h2(t|x) − S(t|x)

)
+Wh1,h2(t, t + b, x)

(
1 − Ŝh1,h2(t|x)

S(t|x)

)
,

we have

P̂Dh1,h2(t|x) − PD(t|x)

= a1
(
Ŝh1,h2(t + b|x) − S(t + b|x)

)
+ a2

(
Ŝh1,h2(t|x) − S(t|x)

)
+Wh1,h2(t, t + b, x)

(
Ŝh1,h2(t|x) − S(t|x)

S(t|x)

) (7.12)
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with a1 = − 1
S(t|x) and a2 = S(t + b|x)

S2(t|x) .

Using the almost sure representation of Ŝh1,h2(t + b|x) from Lemma 7.1 in (7.12)

and considering the functions ζn,i(t|x) defined in the statement of Theorem 7.1, the

almost sure representation of P̂Dh1,h2(t|x) follows:

P̂Dh1,h2(t|x) − PD(t|x) = a1
∑n

i=1 ζn,i(t + b|x) + a2
∑n

i=1 ζn,i(t|x) + R2
n(t|x)

= ∑n
i=1 Ψn,i(t, x) + R2

n(t|x),
(7.13)

where Ψn,i(t, x) = a1ζn,i(t + b|x) + a2ζn,i(t|x) are independent and identically dis-

tributed for all i = 1, ..., n and

R2
n(t|x) = − 1

S(t|x)R1
n(t + b|x) + S(t + b|x)

S2(t|x) R1
n(t|x)

+Wh,g(t, t + b, x)
(

Ŝh1,h2(t|x) − S(t|x)
S(t|x)

)
.

From Equation (7.3) in Lemma 7.1, we have Ŝh1,h2(t|x)−S(t|x) = τ1 + τ2 + τ3 where

τ1 =
(
S0(t|x) − 1

)(
p(x) − 1

) n∑
i=1

wA
h1,i(x)ξ(Zi, δi, ∞, x),

τ2 = p(x)
n∑

i=1
wA

h2,i(x)ω(Zi, δi, t, x),

τ3 = Op

 ln n

(
1

nh1
+ 1

nh2

)3/4

.

Lemmas 7.2 and 7.3 and straightforward but tedious calculations give

τ1 = Op

(
h1

2 + 1√
nh1

)

and

τ2 = Op

(
h2

2 + 1√
nh2

)
.

Under Assumption A.18, τ3 is proved to be negligible with respect to τ1 and τ2.

Then,

Wh1,h2(t, t + b, x)
(

Ŝh1,h2(t|x) − S(t|x)
S(t|x)

)
= Op

(
h4

1 + h4
2 + 1

nh1
+ 1

nh2

)
.
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Therefore,

R2
n(t|x) = Op

 ln n

(
1

nh1
+ 1

nh2

)3/4

+ Op

(
h4

1 + h4
2 + 1

nh1
+ 1

nh2

)
.

Using Assumptions A.16 and A.17, the second term in R2
n(t|x) is negligible with

respect to the first one and Theorem 7.1 is proved.

Proof of Theorem 7.2

According to the almost sure representation of P̂Dh1,h2(t|x) := P̂D
NP CM

h1,h2 (t|x),

the asymptotic expression for the bias is obtained from its dominant term. Then,

E

[
n∑

i=1
Ψn,i(t, x)

]
=

n∑
i=1

E
[
Ψn,i(t, x)

]
= nE

[
Ψn,1(t, x)

]

= na1E
[
ζn,1(t + b, x)

]
+ na2E

[
ζn,1(t, x)

]
.

(7.14)

with a1 = − 1
S(t|x) and a2 = S(t + b|x)

S2(t|x) .

The expression of E
[
ζn,1(t, x)

]
in (7.14) is then calculated:

E
[
ζn,1(t, x)

]
=

(
S0(t|x) − 1

)(
p(x) − 1

)
E
[
wA

h1,1(x)ξ(Z1, δ1, ∞, x)
]

+p(x)E
[
wA

h2,1(x)ω(Z1, δ1, t, x)
]

=
(
S0(t|x) − 1

)(
p(x) − 1

) 1
nh1m(x)E

[
K

(
x − X1

h1

)
ξ(Z1, δ1, ∞, x)

]

−S(t|x) 1
nh2m(x)E

[
K

(
x − X1

h2

)
ξ(Z1, δ1, t, x)

]

−

(
1 − p(x)

)(
1 − S(t|x)

)
p(x)

1
nh2m(x)E

[
K

(
x − X1

h2

)
ξ(Z1, δ1, ∞, x)

]
.

Using Lemmas 7.2 and 7.3:

E
[
ζn,1(t, x)

]
= B1(t, x)h1

2

n
+ B2(t, x)h2

2
n

+ o

(
h1

2

n

)
+ o

(
h2

2
n

)
. (7.15)

Replacing expression (7.15) in (7.14), the bias part of the theorem is proved:

E

[
n∑

i=1
Ψn,i(t, x)

]
= B̃1(t, x)h1

2 + B̃2(t, x)g2 + o(h1
2) + o(h2

2),
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where B̃1(t, x) and B̃1(t, x) were defined in Section 7.3.

The asymptotic expression for the variance of P̂Dh1,h2(t|x) is obtained from the

variance of the dominant term of its almost sure representation:

V ar

[
n∑

i=1
Ψn,i(t, x)

]
=

n∑
i=1

V ar
[
Ψn,1(t, x)

]
= nV ar

[
Ψn,1(t, x)

]

= na2
1V ar

[
ζn,1(t + b, x)

]
+ na2

2V ar
[
ζn,1(t, x)

]
+2na1a2Cov

[
ζn,1(t + b, x), ζn,1(t, x)

]
.

(7.16)

Consider

A1 = V ar

[
K

(
x − X1

h1

)
ξ(Z1, δ1, ∞, x)

]
,

A2 = Cov

[
K

(
x − X1

h1

)
ξ(Z1, δ1, ∞, x), K

(
x − X1

h2

)
ω(Z1, δ1, t2, x)

]
, (7.17)

A3 = Cov

[
K

(
x − X1

h1

)
ξ(Z1, δ1, t1, x), K

(
x − X1

h2

)
ω(Z1, δ1, ∞, x)

]
(7.18)

and

A4 = Cov

[
K

(
x − X1

h2

)
ω(Z1, δ1, t1, x), K

(
x − X1

h2

)
ω(Z1, δ1, t2, x)

]
.

To find the asymptotic expression for Cov
[
ζn,1(t+ b, x), ζn,1(t, x)

]
, some calculations

lead to

Cov
[
ζn,1(t1, x), ζn,1(t2, x)

]

=
(
S0(t1|x) − 1

)(
S0(t2|x) − 1

)(
p(x) − 1

)2 1
n2h1

2m2(x)
A1

+
(
S0(t1|x) − 1

)(
p(x) − 1

)
p(x) 1

n2h1h2m2(x)A2

+
(
S0(t2|x) − 1

)(
p(x) − 1

)
p(x) 1

n2h1h2m2(x)A3 + p2(x) 1
n2h2

2m
2(x)A4.

(7.19)

First, from Lemma 7.3,

A1 = h1Φ2(x, ∞, x)m(x)cK + O(h1
3). (7.20)
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Second, using Lemmas 7.3 and 7.4,

A4 = C1(t1, t2, x)h2 + O(h3
2). (7.21)

where C1(t1, t2, x) is defined in Section 7.3.

In order to obtain asymptotic expressions of A2 and A3, an asymptotic expression

for

Cov

[
K

(
x − X1

h1

)
ξ(Z1, δ1, t1, x), K

(
x − X1

h2

)
ω(Z1, δ1, t2, x)

]
is obtained by distinguishing three different cases:

(i) If Ch1,h2 := lim
n→∞

h1

h2
∈ (0, ∞):

Cov

[
K

(
x − X1

h1

)
ξ(Z1, δ1, t1, x), K

(
x − X1

h2

)
ω(Z1, δ1, t2, x)

]

≃ Cov

[
K

(
x − X1

h1

)
ξ(Z1, δ1, t1, x), K

(
x − X1

h1/Ch1,h2

)
ω(Z1, δ1, t2, x)

]

= S1 + S2 − S3.

where

S1 = E

Cov

[
K

(
x − X1

h1

)
ξ(Z1, δ1, t1, x), K

(
x − X1

h1/Ch1,h2

)
ω(Z1, δ1, t2, x)

∣∣∣∣X1

],

S2 = E

K

(
x − u

h1

)
K

(
Ch1,h2

x − u

h1

)
Φξ(X1, t1, x)Φω(X1, t2, x)


and

S3 = E

K

(
x − X1

h1

)
Φξ(X1, t1, x)

E

K

(
Ch1,h2

x − u

h1

)
Φω(X1, t2, x)

.

Considering the function Dξ,ω(u, t1, t2, x) defined in Section 7.3 and its Taylor

expansion when u = x − hv around u = x:

S1 =
∫ +∞

−∞
K

(
x − u

h1

)
K

(
Ch1,h2

x − u

h1

)
Dξ,ω(u, t1, t2, x)du

= h1

∫ +∞

−∞
K(v)K(Ch1,h2v)

(
Dξ,ω(x, t1, t2, x)

−h1vD′
ξ,ω(x, t1, t2, x) + O(h1

2)
)

dv.
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Since K is symmetric, K(Ch1,h2v) = K(−Ch1,h2v) and the function K(v)K(Ch1,h2v)

is also even. Consequently,∫ +∞

−∞
K(v)K(Ch1,h2v)vdv = 0.

Then,

S1 = c̃K(Ch1,h2)Dξ,ω(x, t1, t2, x)h1 + O(h1
3). (7.22)

Defining Bω(u, t1, t2, x) = Φξ(u, t1, x)Φω(u, t2, x)m(u) and using a Taylor ex-

pansion for Bω(u, t1, t2, x) when u = x − hv around u = x:

S2 =
∫ +∞

−∞
K

(
x − u

h1

)
K

(
Ch1,h2

x − u

h1

)
Φξ(u, t1, x)Φω(u, t2, x)m(u)du

=
∫ +∞

−∞
K

(
x − u

h

)
K

(
Ch,g

x − u

h

)
Bω(u, t1, t2, x)du

=
∫ +∞

−∞
hK

(
x − u

h

)
K

(
Ch,g

x − u

h

)
Bω(x − hv, t1, t2, x)dv

= c̃K(Ch1,h2)Bω(x, t1, t2, x)h1 + O(h1
3).

Since Φξ(x, t, x) = 0 for all (t, x) ∈ [0, ∞) × I, then Bω(x, t1, t2, x) = 0 for all

t1, t2 ∈ [0, ∞), x ∈ I, and, consequently:

S2 = O(h1
3). (7.23)

From Lemma 7.2,

E

[
K

(
x − X1

h1

)
Φξ(X1, t, x)

]
= O(h1

3).

Now, using a Taylor expansion for Φω(u, t, x)m(u) when u = x − hv around

u = x, gives

E

K

(
Ch1,h2

x − X1

h1

)
Φω(X1, t, x)



=
(∫ +∞

−∞
K
(
Ch1,h2v

)
dv

)
Φω(x, t, x)m(x)h1 + O(h1

3).

Considering the definition of the function ω(Z, δ, t, x), given in Section 7.3, and

Lemma 7.2, Φω(x, t, x) = 0 for all (t, x) ∈ [0, ∞) × I and

E

K

(
Ch1,h2

x − X1

h1

)
Φω(X1, t, x)

 = O(h1
3).
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Therefore,

S3 = O(h6). (7.24)

Using the expresions for S1 in (7.22), S2 in (7.23) and S3 in (7.24),

Cov

[
K

(
x − X1

h1

)
ξ(Z1, δ1, t1, x), K

(
x − X1

h2

)
ω(Z1, δ1, t2, x)

]

= c̃K(Ch1,h2)Dξ,ω(x, t1, t2, x)h1 + O(h1
3).

Therefore, recalling (7.17) and (7.18),

A2 = Cov

[
K

(
x − X1

h1

)
ξ(Z1, δ1, ∞, x), K

(
x − X1

h2

)
ω(Z1, δ1, t2, x)

]

= c̃K(Ch1,h2)Dξ,ω(x, ∞, t2, x)h1 + O(h1
3)

(7.25)

and

A3 = Cov

[
K

(
x − X1

h1

)
ξ(Z1, δ1, t1, x), K

(
x − X1

h2

)
ω(Z1, δ1, ∞, x)

]

= c̃K(Ch1,h2)Dξ,ω(x, t1, ∞, x)h1 + O(h1
3).

(7.26)

Replacing (7.20), (7.21), (7.25) and (7.26) in (7.19) and assuming lim
n→∞

h1

h2
=

Ch1,h2 ∈ (0, +∞), we have

Cov
[
ζn,1(t1, x), ζn,1(t2, x)

]

=

(
S0(t1|x) − 1

)(
S0(t2|x) − 1

)(
p(x) − 1

)2

m(x) cKΦ2(x, ∞, x) 1
n2h1

+Ch1,h2 c̃K(Ch1,h2)

(
S0(t1|x) − 1

)(
p(x) − 1

)
p(x)

m2(x) Dξ,ω(x, ∞, t2, x) 1
n2h1

+Ch1,h2 c̃K(Ch1,h2)

(
S0(t2|x) − 1

)(
p(x) − 1

)
p(x)

m2(x) Dξ,ω(x, t1, ∞, x) 1
n2h1

+Ch1,h2

p2(x)C1(t1, t2, x)
m2(x)

1
n2h1

+ o

(
1

n2h1

)
+ O

(
h1

n2

)
.

Considering the functions V1, V2 and V3, defined in Section 7.3:
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Cov
[
ζn,1(t1, x), ζn,1(t2, x)

]

=
(

V1(t1, t2, x) + Ch1,h2V2(t1, t2, x) + Ch1,h2 c̃K(Ch1,h2)V3(t1, t2, x)
) 1

n2h1

+o

(
1

n2h1

)
+ O

(
h1

n2

)
.

(7.27)

Using Equation (7.27) with t1 = t2 = t + b and t1 = t2 = t, the expressions of

V ar
[
ζn,1(t + b, x)

]
and V ar

[
ζn,1(t, x)

]
are also available. Therefore, Case (i) of

the Theorem is proved by pluggin (7.27) in (7.16):

V ar
[∑n

i=1 Ψn,i(t, x)
]

=
[
a2

1V1(t + b, t + b, x) + a2
2V1(t, t, x) + 2a1a2V1(t + b, t, x)

+Ch1,h2

(
a2

1V2(t + b, t + b, x) + a2
2V2(t, t, x) + 2a1a2V2(t + b, t, x)

)
+Ch1,h2 c̃K(Ch1,h2)

(
a2

1V3(t + b, t + b, x) + a2
2V3(t, t, x)

+2a1a2V3(t + b, t, x)
)] 1

nh1
+ o

(
1

nh1

)
+ O

(
h1

n

)

=
(
Ṽ1(t + b, t, x) + Ch1,h2Ṽ2(t + b, t, x) + Ch1,h2 c̃K(Ch,g)Ṽ3(t + b, t, x)

) 1
nh1

+o

(
1

nh1

)
+ O

(
h1

n

)
.

(ii) If lim
n→∞

h1

h2
= 0:

From Lemma 7.3 and Equation (7.21) when t1 = t2, we have

V ar

[
K

(
x − X1

h1

)
ξ(Z1, δ1, t1, x)

]
= h1cKΦ2(x, t1, x)m(x) + O(h1

3),

V ar

[
K

(
x − X1

h2

)
ω(Z1, δ1, t2, x)

]
= C1(t2, t2, x)h2 + O(h3

2).

Then, using the Cauchy-Schwarz inequality:

Cov

[
K

(
x − X1

h1

)
ξ(Z1, δ1, t1, x), K

(
x − X1

h2

)
ω(Z1, δ1, t2, x)

]

≤
√

h1h2cKΦ2(x, t1, x)m(x)C1(t2, t2, x) + O(h1h3
2) + O(h2h1

3). (7.28)
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Therefore,

A2 = O
(
(h1h2)1/2

)
, A3 = O

(
(h1h2)1/2

)
. (7.29)

Plugging (7.20), (7.21) and (7.29) in (7.19), we have

Cov
[
ζn,1(t1, x), ζn,1(t2, x)

]

=

(
S0(t1|x) − 1

)(
S0(t2|x) − 1

)(
p(x) − 1

)2

m(x) cKΦ2(x, ∞, x) 1
n2h1

+p2(x)C1(t1, t2, x)
m2(x)

1
n2h2

+ O

(
h1

n2

)
+ O

(
h2

n2

)
+ O

(√
h1h2

n2h1h2

)
.

(7.30)

Assuming lim
n→∞

h1

h2
= 0 and considering the function V1(t1, t2, x), we have

Cov
[
ζn,1(t1, x), ζn,1(t2, x)

]
= V1(t1, t2, x) + o

(
1

n2h1

)
+ O

(
g

n2

)
. (7.31)

Using Equation (7.31) with t1 = t2 = t + b and t1 = t2 = t, the expressions of

V ar
[
ζn,1(t + b, x)

]
and V ar

[
ζn,1(t, x)

]
are also available. Therefore, Case (ii)

of the Theorem is proved by replacing (7.31) in (7.16):

V ar
[∑n

i=1 Ψn,i(t, x)
]

=
(

a2
1V1(t + b, t + b, x) + a2

2V1(t, t, x) + 2a1a2V1(t + b, t, x)
) 1

nh1

+o

(
1

nh1

)
+ O

(
h2

n

)

= Ṽ1(t + b, t, x) 1
nh1

+ o

(
1

nh1

)
+ O

(
h2

n

)
.

(iii) If lim
n→∞

h2

h1
= 0:

From Equation (7.30) and assuming that lim
n→∞

h2/h1 = 0, we have

Cov
[
ζn,1(t1, x), ζn,1(t2, x)

]
= V2(t1, t2, x) 1

n2h2
+ o

(
1

n2h2

)
+ O

(
h1

n2

)
.

(7.32)

Considering the expression for Cov
[
ζn,1(t1, x), ζn,1(t2, x)

]
in (7.32) with t1 =

t2 = t + b and t1 = t2 = t, the expressions for V ar
[
ζn,1(t + b, x)

]
and
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V ar
[
ζn,1(t, x)

]
are also available. Therefore, Case (iii) of the Theorem is proved

by replacing (7.32) in (7.16):

V ar
[∑n

i=1 Ψn,i(t, x)
]

=
(
a2

1V2(t + b, t + b, x) + a2
2V2(t, t, x)

+2a1a2V2(t + b, t, x)
) 1

ng
+ o

(
1

ng

)
+ O

(
h

n

)

= Ṽ2(t + b, t, x) 1
ng

+ o

(
1

ng

)
+ O

(
h

n

)
.

Proof of Theorem 7.3

(i) Assuming Ch1 := limn→∞ n1/5h1 ∈ (0, ∞), Ch2 := limn→∞ n1/5h2 ∈ (0, ∞):

From Equation (7.13) in the proof of Lemma 7.1 we have
√

nh1
(
P̂Dh1,h2(t|x) − PD(t|x)

)
=
√

nh1

n∑
i=1

Ψn,i(t, x) + R̃2
n(t|x), (7.33)

where Ψn,i(t, x) = a1ζn,i(t + b|x) + a2ζn,i(t|x) with a1 = − 1
S(t|x) , a2 =

S(t + b|x)
S2(t|x) and R̃2

n(t|x) =
√

nh1R
2
n(t|x) with R2

n(t|x) defined in the statement

of Theorem 7.1. The variables Ψn,i(t, x) are independent and identically dis-

tributed for all i = 1, ..., n. The remainder term is as follows:

R̃2
n(t|x) =

√
nh1R

2
n(t|x) =

√
nh1OP

(
ln n

(
1

nh1
+ 1

nh2

))3/4

.

Using Assumptions A.16, A.17 and limn→∞ h1/h2 ∈ (0, +∞) from Theorem

7.3, the remainder term R̃2
n(t|x) is negligible with respect to the dominant

term of (7.33).

On the other hand, from Case (i) of Theorem 7.2 and Equation (7.33), the
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variance of the dominant term is finite, since it is given by:

V ar
[√

nh1
∑n

i=1 Ψn,i(t, x)
]

= nh1

(
Ṽ1(t + b, t, x) + Ch1,h2Ṽ2(t + b, t, x)

+Ch1,h2 c̃K(Ch1,h2)Ṽ3(t + b, t, x)
) 1

nh1

+nh1 o

(
1

nh1

)
+ nh1 O

(
h1

n

)

= O(1).

Therefore, the asymptotic distribution of
√

nh1
(
P̂Dh1,h2(t|x) − PD(t|x)

)
is

the same as the asymptotic distribution of
√

nh1
∑n

i=1 Ψn,i(t, x). If Lindeberg’s

condition for triangular arrays (see Theorem 7.2 in Billingsley (1968)) is satis-

fied, then
n∑

i=1

(√
nh1Ψn,i(t, x) − E

[√
nh1Ψn,i(t, x)

])
d−→ N(0, s), (7.34)

where

s2 = Ṽ1(t + b, t, x) + Ch1,h2Ṽ2(t + b, t, x) + Ch1,h2 c̃K(Ch1,h2)Ṽ3(t + b, t, x).

Lindeberg’s condition is now checked. The condition is:

lim
n→∞

1
s2 E

[
n∑

i=1

(√
nh1Ψn,i(t, x) − E

[√
nh1Ψn,i(t, x)

])2
1n,i

]
= 0 (7.35)

for every ε > 0, where 1n,i denotes the indicator function given by

1n,i = 1

(∣∣∣√nh1Ψn,i(t, x) − E[
√

nh1Ψn,i(t, x)]
∣∣∣ > εs

)
.

Using Assumption A.3d, ξ(Z, δ, t, x) can be proved to be bounded:

|ξ(Z, δ, t, x)| ≤ 1
θ

+
∫ t

0

dH1(u|x)
θ2 ≤ 1

θ
+ H(t|x)

θ2 ≤ 1
θ

+ 1
θ2

and, consequently, ω is also bounded:

|ω(Z, δ, t, x)| ≤ S(t|x)
p(x)

(
1
θ

+ 1
θ2

)
+

(
1 − p(x)

)(
1 − S(t|x)

)
p2(x)

(
1
θ

+ 1
θ2

)
.

Since ω is bounded, K and m(x) have compact support and nh1 → ∞,{
Ψn,i(t, x) − E

[
Ψn,i(t, x)

]
, i = 1, ..., n, n ∈ N

}
is a sequence of random vari-

ables which is bounded by a convergent to zero nonrandom sequence, εs√
nh1

.
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Hence, there exists n0 ∈ N such that for all i = 1, ..., n, 1n,i = 0 for all n ≥ n0

and accordingly,

lim
n→∞

1
s2 E

[
n∑

i=1

(√
nh1Ψn,i(t, x) − E

[√
nh1Ψn,i(t, x)

])2
1n,i

]
= 0,

which proves Lindeberg’s condition in (7.35).

Finally, assuming h1 = Ch1n−1/5 and h2 = Ch2n−1/5 and considering Equation

(7.4), we have √
nh1

n∑
i=1

Ψn,i(t, x) d−→ N(µ, s),

where µ = C
5/2
h1 B̃1(t, x) + C

5/2
h2 B̃2(t, x).

(ii) Assuming Ch2 := limn→∞ n1/5h2 ∈ (0, ∞) and limn→∞ n1/5h1 = 0:

Consider (7.33). Under Assumptions A.16, A.17 and limn→∞ h1/h2 = 0 from

Case (ii) in Theorem 7.3, the remainder term R̃2
n(t|x) is found to be negligible

with respect to the dominant term in (7.33). Furthermore, the variance of this

dominant term is finite, since, from the proof of Theorem 7.2,

V ar
[√

nh1
∑n

i=1 Ψn,i(t, x)
]

= nh1

Ṽ1(t + b, t, x) 1
nh1

+ o

(
1

nh1

)
+ O

(
h1

n

)
= O(1).

Therefore, the asymptotic distribution of
√

nh1
(
P̂Dh1,h2(t|x) − PD(t|x)

)
is

the same as the asymptotic distribution of
√

nh1
∑n

i=1 Ψn,i(t, x). If Lindeberg’s

condition given in (7.35) is satisfied, then
n∑

i=1

(√
nh1Ψn,i(t, x) − E

[√
nh1Ψn,i(t, x)

])
d−→ N(0, s), (7.36)

where s2 = Ṽ1(t + b, t, x).

Lindeberg’s condition is proved here following the same argument used for Case

i. Finally, assuming h2 = Ch2n−1/5 and n1/5h1 → 0 and considering Equation

(7.4), √
nh1

n∑
i=1

Ψn,i(t, x) d−→ N(µ, s),

where µ = C
5/2
h2 B̃2(t, x).
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(iii) Assuming Ch1 := limn→∞ n1/5h1 ∈ (0, ∞), limn→∞ n1/5h2 = 0:

From Equation (7.13) in the proof of Theorem 7.2 we have

√
nh2

(
P̂Dh1,h2(t|x) − PD(t|x)

)
=

√
nh2

∑n
i=1 Ψn,i(t, x) + R̃2

n(t|x) (7.37)

where Ψn,i(t, x) are independent and identically distributed for all i = 1, ..., n

and R̃2
n(t|x) =

√
nh2R

2
n(t|x) with R2

n(t|x) defined in the statement of Theorem

7.1. The remainder term is as follows:

R̃2
n(t|x) =

√
nh2R

2
n(t|x)

=
√

nh2OP

(
ln n

(
1

nh1
+ 1

nh2

))3/4

.

Using Assumptions A.16, A.17 and limn→∞ h2/h1 = 0 from Theorem 7.3, the

remainder term R̃2
n(t|x) is negligible with respect to the dominant term of

(7.37).

The remainder term R̃2
n(t|x) is then found to be negligible with respect to the

dominant term in (7.33). Furthermore, the variance of this dominant term is

finite, since, from the proof of Theorem 7.2,

V ar
[√

nh2
∑n

i=1 Ψn,i(t, x)
]

= nh2

Ṽ2(t + b, t, x) 1
nh2

+ o

(
1

nh2

)
+ O

(
h1

n

) = O(1).

Therefore, the asymptotic distribution of
√

nh2
(
P̂Dh1,h2(t|x) − PD(t|x)

)
is

the same as the asymptotic distribution of
√

nh2
∑n

i=1 Ψn,i(t, x). If Lindeberg’s

condition given by

lim
n→∞

1
s2 E

[
n∑

i=1

(√
nh2Ψn,i(t, x) − E

[√
nh2Ψn,i(t, x)

])2
1n,i

]
= 0

is satisfied, then
n∑

i=1

(√
nh2Ψn,i(t, x) − E

[√
nh2Ψn,i(t, x)

])
d−→ N(0, s), (7.38)

where s2 = Ṽ2(t + b, t, x).
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Similar arguments to those used for Case i prove Lindeberg’s condition. Finally,

assuming h1 = Ch1n−1/5 and n1/5h2 → 0 and considering Equation (7.4), we

have √
nh2

n∑
i=1

Ψn,i(t, x) d−→ N(µ, s),

where µ = C
5/2
h1 B̃1(t, x).
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Chapter 8

Conclusions and future research

lines

In the context of credit risk, one is often interested in modelling and estimating the

probability of default (PD) measuring the probability of a client to run into arrears

on his or her credit obligation. Since the work of Naraim (1992), new techniques

based on survival analysis have been developed to solve credit risk issues. Examples

of this have been widely cited throughout this dissertation. Here, we have proposed

a novel method to estimate the probability of default in a time horizon t + b from a

maturity time t using nonparametric estimators.

After an in-depth study of several nonparametric estimators of the probabil-

ity of default obtained from conditional survival estimators, it became clear the

convenience of proposing a doubly smoothed estimator of the conditional survival

function both in the covariate and in the time variable. This doubly smoothed

estimator showed desirable asymptotic properties and promising simulation perfor-

mance. This allowed us to propose a doubly smoothed estimator of the probability

of default based on the generalised product-generalised limit estimator of Beran

(1981). This time variable smoothing of the PD estimator resulted in a remarkable

decrease of the estimation error. In addition, asymptotic expressions for the bias

and variance of the smoothed PD estimator based on Beran’s estimator for the sur-
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vival function and its limit distribution were proved. Automatic bandwidth selectors

and confidence regions algorithms based on bootstrap for Beran’s estimator and the

smoothed Beran’s estimator of the conditinal survival function and the probability

of default proposed in this report exhibited a reasonable behaviour. Since a group

of cured individuals who will never experience the default could potentially exists, a

nonparametric estimator of the probability of default based on mixture cure models

was also proposed. The asymptotic bias and variance and the asymptotic normality

of the cure model probability of default estimator were proved. The performance of

the smoothed Beran’s estimator of the PD remained however competitive with this

proposal.

Interesting challenges remain to be dealt in the future:

There is a clear practical need for an automatic selector of the bandwidths in-

volved in the cure model-based nonparametric estimator. In addition, a time variable

smoothing of this estimator could be considered, as it was done with the smoothed

Beran’s estimator.

Beyond what has been seen in this work, a usefulness of cure models is that

they allow estimating not only the PD, but also the probability of cure. In fact, a

hypothesis test to confirm whether or not the probability of cure is zero could be

very interesting in this context.

Using cure models when the cure status is partially known is also an appealing

idea to be considered for future research. A nonparametric view along the lines

similar to Safari et al. (2020) can be used to propose a nonparametric estimator

which incorporates information from individuals for whom the cure is observed. A

multi-state model that allows individuals to move among a finite number of states

could also be interesting.

Throughout this work, the purpose has been to estimate the probability of de-

fault curve over time for fixed values of the covariate, so the mean integrated squared

error was used as estimation error and the optimal bandwidths were obtained by

minimising this function or its bootstrap approximation. Local smoothing parame-
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ters could be obtained by a k-nearest neighbours criterion. An error criterion could

also be established to choose the best parameters to estimate the PD(t|x) curve for

a fixed time and x variable. Similarly, a global error measure would allow both t

and x to vary.

A critical point of this work lies in the low global (though not pointwise) coverage

that the confidence regions have in some scenarios. The auxiliary bandwidths could

be more influential than expected and their choice may need to be further refined.

Another proposal for improvement would be the use of multiple or Bonferroni-type

tests. The main limitation of proposed resampling methods is their high computa-

tional cost. Future work could include the analysis of subsampling techniques for

optimising these methods.

In a financial context, one-dimensional credit scoring typically summarises sev-

eral interesting features of clients in order to measure their creditworthiness. How-

ever, this work could be extended to the case of having a multidimensional covariate

(X1, . . . , Xq) where each Xi is a feature of the individual. Methods such as single-

index may be useful for this purpose to avoid the curse of dimensionality. An

approach along the lines similar to Strzalkowska-Kominiak and Cao (2013) could be

used.

In this dissertation, and previous papers on this topic, it is assumed that life and

censoring times are conditionally independent given the covariate. In some biomed-

ical scenarios, this assumption is known not to be entirely realistic and research on

that is already underway (see Deresa and Van Keilegom (2021)). An engaging open

problem would be to extend the existing results to the estimation of the probability

of default when the survival data are subject to dependent censoring.

For the time being, comparison tests of probability of default curves or classifi-

cation tests based on the default probability are also left out of the picture. This is

however a field we would like to explore in the future.

A practical use of the techniques developed here could be the calculation of risk

appetite. Risk appetite is the amount of risk that a financial institution is willing
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to take in order to achieve its strategic objectives. It would be interesting to know

the probability of default at horizon b conditional on numerous scoring values, so

that the scoring value associated with this risk appetite could be estimated.

Finally, we would like to make the software developed in this thesis publicly

accessible to any interested user. For this reason, we plan to implement an R

package that will be available on CRAN.
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Appendix A

Resumen en castellano

Esta tesis pretende recoger los estudios realizados y los resultados obtenidos a lo

largo del proceso de doctorado. Este trabajo se centra en estimar la curva de proba-

bilidad de mora a lo largo del tiempo, condicionalmente a la puntuación crediticia.

Con este fin, se proponen estimadores no paramétricos basados en el análisis de

supervivencia y los modelos de curación. A continuación se expone un resumen del

contenido más relevante de esta disertación.

En la Introducción se motiva la necesidad de conocer y estimar la curva de proba-

bilidad de mora. El riesgo de crédito se define como la posible pérdida que asume un

agente económico en caso de que la contraparte incumpla sus obligaciones contrac-

tuales y es un área de investigación importante dentro de las finanzas cuantitativas.

Las deudas procedentes de clientes con créditos impagados tienen un importante im-

pacto en la solvencia de los bancos y otras entidades financieras. Por esta razón, el

Comité de Basilea para la Supervisión Bancaria del Banco de Pagos Internacionales

estableció en 2004 un conjunto de mecanismos estándar para la medición del riesgo

de crédito en las instituciones financieras. Según este Acuerdo de Basilea, uno de

los elementos de mayor influencia en el riesgo de crédito es la probabilidad de mora,

denotada por PD, por sus siglas en inglés probability of default. Es por ello que para

la entidad bancaria resulta importante determinar la probabilidad de que un crédito

caiga en mora, convirtiéndose en un crédito moroso. Para un tiempo fijo, t, y un
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horizonte de mora, b, la PD puede definirse como la probabilidad de que un crédito

que ha sido pagado hasta el instante t, caiga en mora no más tarde del instante t+b.

Para estimar la PD, los bancos e instituciones financieras utilizan covariables que

contienen información sobre los créditos y los correspondientes clientes. La infor-

mación contenida en estas covariables suele resumirse mediante alguna combinación

lineal de las mismas que mide la capacidad de clientes o futuros clientes para hacer

frente a una posible deuda que contraigan con el banco a través de un préstamo.

Esta combinación lineal recibe el nombre de puntuación crediticia o credit scoring en

inglés. En este escenario, la variable de interés es el tiempo hasta la caída en mora.

Esta variable no es completamente observable: sólo es posible conocer el tiempo de

vida de un crédito hasta que el cliente deja de pagarlo cuando la caída en mora

tiene lugar durante el tiempo de observación de los créditos; en otro caso, el dato

es censurado y el tiempo observado es el tiempo hasta la censura. La puntuación

crediticia juega el papel de variable predictora, proporcionando información acerca

del tiempo hasta la caída en mora. Se asume, por tanto, que la probabilidad de

mora es una curva PD(t|x) a lo largo del tiempo, t, que depende de la puntuación

crediticia, x.

El Capítulo 1 está dedicado a introducir al lector en el contexto en el que se desa-

rrolla este trabajo. Se explica en qué consiste un escenario de censura por la derecha

y se exponen los conceptos básicos del análisis de supervivencia y, en particular, de

los modelos de curación útiles en dicho escenario. El análisis de supervivencia es

un conjunto de procedimientos estadísticos que permiten describir y estudiar datos

cuando la variable de interés es el tiempo que transcurre hasta que se produce cierto

evento. La censura tiene lugar cuando una proporción de tiempos hasta el evento de

interés son desconocidos y se denomina censura por la derecha cuando el motivo de

la misma es que el estudio finalice antes de que todos los individuos hayan experi-

mentado el evento de interés. Los modelos de curación son modelos de supervivencia

que incorporan explícitamente la posibilidad de que un sujeto nunca experimente

dicho evento. Se introduce también la estimación no paramétrica de curvas. Se

trata de estimadores flexibles que requieren, a lo sumo, condiciones de continuidad
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y diferenciabilidad para la curva subyacente. Esta sección se centra principalmente

en la estimación de la función de supervivencia condicional, presentando el esti-

mador empírico, el estimador límite-producto para el caso censurado y el estimador

límite-producto generalizado para el caso con covariables. Se incluye una revisión de

los principales métodos de remuestreo basados en bootstrap en los que se considera

la presencia de censura y/o covariables y se detalla brevemente su utilidad en la

selección de parámetros de suavizado mediante la minimización de alguna medida

de error global como el error cuadrático medio integrado.

En el Capítulo 2 se proponen modelos de supervivencia que permiten estimar

la probabilidad de mora como función de la puntuación crediticia en créditos per-

sonales. Sea T la variable que denota el tiempo hasta la caída en mora y X la

puntuación crediticia. Dados x un valor fijo de la puntuación crediticia y b un

horizonte de mora, la probabilidad de mora se escribe formalmente del siguiente

modo:

PD(t|x) = P (T ≤ t + b|T > t, X = x) = 1 − S(t + b|x)
S(t|x) , (A.1)

donde S(t|x) es la función de supervivencia condicional del tiempo hasta la mora,

T . Así, empleando técnicas del análisis de supervivencia para proponer estimadores

de S(t|x) se presentan en este capítulo varios estimadores no paramétricos de la

probabilidad de mora.

Se consideran cuatro estimadores para la función de supervivencia condicional:

el estimador de Beran (1981), el estimador de Van Keilegom-Akritas (Van Keilegom

and Akritas (1999)), el estimador lineal local ponderado propuesto por Cai (2003)

y el estimador de Nadaraya-Watson ponderado presentado en Peláez et al. (2021b).

El estimador de Beran es la generalización del estimador límite-producto al caso con

covariables. El estimador de Van Keilegom-Akritas se basa en ajustar un modelo de

regresión heterocedástico donde la variable respuesta es el tiempo hasta la mora y

la variable predictora la puntuación crediticia. El estimador lineal local ponderado

también se construye a partir de un modelo de regresión realizando, en este caso,

un ajuste lineal local del mismo. Un ajuste constante de dicho modelo de regresión

permite obtener el estimador de Nadaraya-Watson ponderado. Estos estimadores de
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la función de supervivencia se transforman de acuerdo a la expresión dada en (A.1)

para obtener los correspondientes estimadores de la PD. En este capitulo se demues-

tra un resultado general acerca de las propiedades asintóticas de los estimadores de

la PD así construidos. Conocidas las expresiones asintóticas del sesgo, varianza y

covarianza de los estimadores de la supervivencia, mediante este resultado se ob-

tienen las expresiones análogas para el estimador de la PD resultante. Se trata de

expresiones complejas que dependen de varios parámetros poblacionales desconoci-

dos, por lo que dificultan la obtención de una aproximación del MISE. Para analizar

el comportamiento de los estimadores de la PD basados en los estimadores de Beran,

Van Keilegom-Akritas, lineal local ponderado y Nadaraya-Watson ponderado de la

supervivencia, se lleva a cabo un estudio de simulación basado en varios modelos con

diferentes escenarios de censura. Se incluye también el método paramétrico basado

en el modelo de Cox como referencia. Los resultados obtenidos muestran que el

estimador de Beran es el que ofrece las mejores aproximaciones de la PD, en cuanto

a que proporciona un menor error cuadrático medio integrado en la mayor parte

de los escenarios analizados. Además, requiere un menor tiempo de computación.

Los distintos métodos se ilustran mediante su aplicación a un conjunto de créditos

bancarios concedidos por una entidad financiera española entre 2004 y 2006. El

contenido de este capítulo se encuentra publicado en Peláez et al. (2021b).

En el Capítulo 3 se propone un estimador doblemente suavizado de la función de

supervivencia condicional. Las estimaciones de la probabilidad de mora obtenidas

mediante los estimadores presentados en el Capítulo 2 son muy razonables, pero

tienen una variabilidad excesiva y son curvas muy rugosas. El origen de esta varia-

bilidad es el cociente de supervivencias que debe hacerse para estimar la PD (veáse

(A.1)). Este cociente magnifica los saltos que caracterizan los estimadores de la fun-

ción de supervivencia, estimadores suaves en la covariable, pero funciones a saltos en

la variable tiempo. Por ello, en este capítulo se propone un estimador no paramétrico

de la función de supervivencia condicional doblemente suavizado, tanto en la covari-

able como en la variable temporal. La técnica aquí presentada es general y permite

suavizar en la variable tiempo numerosos estimadores ya conocidos de la función de
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supervivencia condicional. Sin embargo, este capítulo se centra principalmente en

el estimador suavizado de la supervivencia basado en el estimador clásico de Be-

ran. Se demuestran propiedades asintóticas del estimador no paramétrico con doble

suavizado asociado al estimador de Beran. Se obtiene una representación casi segura

del estimador de Beran suavizado, expresiones asintóticas del sesgo y varianza y la

distribución límite del mismo. Mediante estudios de simulación, se comprueba que

este suavizado supone una considerable reducción del error de estimación. Tam-

bién se estudia la influencia de los dos parámetros de ventana involucrados en el

estimador suavizado. Un pequeño análisis de las funciones de supervivencia de los

tiempos de hospitalización de pacientes de COVID-19 en Galicia proporcionados por

el Servicio Gallego de Salud (SERGAS) muestra las diferencias entre el estimador

clásico de Beran y la propuesta suavizada en la variable tiempo. El contenido de

este capítulo se encuentra publicado en Peláez et al. (2022b).

En el Capítulo 4 se proponen métodos de selección automática del parámetro

de suavizado en la covariable para el estimador de Beran y de los parámetros de

suavizado en la covariable y en la variable tiempo para el estimador de Beran

suavizado de la función de supervivencia condicional. Las técnicas de remuestreo

propuestas se basan en combinar un bootstrap suavizado con un bootstrap con co-

variables. Las ventanas bootstrap se obtienen mediante la minimización de la apro-

ximación bootstrap del error cuadrático medio integrado. Un estudio de simulación

basado en varios modelos y diferentes niveles de censura muestra el comportamiento

de los estimadores de la función de supervivencia con ventanas bootstrap. También

se aborda la obtención de regiones de confianza para la función de supervivencia

condicional, S(t|x), para un valor fijo de x ∈ I ⊆ R y t variando en el intervalo

IT ⊆ R+, utilizando los estimadores de Beran y de Beran suavizado. Se proponen

dos métodos diferentes basados en bootstrap para la construcción de estas regiones

de confianza. El primero de ellos da lugar a regiones de confianza de amplitud

constante y el segundo de ellos a regiones de confianza de amplitud variable. La

necesidad práctica de estos métodos de selección de la ventana se hace patente en el

análisis de tiempos de hospitalización de pacientes de COVID-19 en Galicia, España.
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Las técnicas desarrolladas se emplean para estudiar en profundidad la relación entre

la edad, el sexo y ciertas patologías previas, como obesidad o EPOC, con el tiempo

de recuperación de pacientes infectados con SARS-CoV-2. Los datos fueron propor-

cionados por el Servicio Gallego de Salud y corresponden a ingresos en hospitales

gallegos durante las primeras semanas de la pandemia.

En el Capítulo 5 se presenta un estimador no paramétrico de la probabilidad

de mora con doble suavizado que pretende solucionar el problema de variabilidad

observado en las estimaciones de la PD obtenidas hasta el momento. Este estimador

deriva del estimador suavizado de la supervivencia que se introduce en el Capítulo

3. Por tanto, se trata de un estimador de la PD general, que puede obtenerse a

partir de cualquier estimador doblemente suavizado de la función de supervivencia.

Sin embargo, este capítulo se centra, principalmente, en el estimador de la PD

basado en el estimador suavizado de Beran. A partir de las propiedades asintóticas

del estimador suavizado de Beran para la función de supervivencia se obtienen las

expresiones asintóticas del sesgo y la varianza del estimador de la probabilidad de

mora. También se demuestra la normalidad asintótica de este estimador. El estudio

de simulación realizado muestra que el suavizado de la variable temporal reduce

significativamente el error cometido en la estimación de la PD. Esta técnica implica

un aumento considerable del tiempo de cálculo. Sin embargo, la variabilidad y la

rugosidad de las estimaciones se ven claramente reducidas. Además, las simulaciones

llevadas a cabo permiten concluir que otros estimadores de la PD también presentan

estas mejoras cuando se suavizan en la variable temporal. También se analiza la

relación entre los dos parámetros de suavizado involucrados en el estimador y su

influencia en el error cuadrático medio integrado. La utilidad del doble suavizado

se ilustra mediante el análisis del conjunto de créditos bancarios concedidos por

cierta entidad financiera española correspondientes al periodo 2004-2006, donde se

observan las diferencias entre los estimadores de Beran y Beran suavizado de la PD

en un problema real. El contenido de este capítulo se encuentra publicado en Peláez

et al. (2021a).

En el Capítulo 6 se proponen métodos de selección automática del parámetro
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de suavizado en la covariable para el estimador de Beran y de los parámetros de

suavizado en la covariable y en la variable tiempo para el estimador de Beran

suavizado de la PD. Las ventanas bootstrap se obtienen mediante la minimización

de la aproximación bootstrap del error cuadrático medio integrado. Las técnicas de

remuestreo empleadas para ello son las presentadas en el Capítulo 4. El rendimiento

de las técnicas propuestas se analiza mediante simulaciones en diferentes escenarios,

obteniendo resultados prometedores. El método para obtener regiones de confianza

de amplitud variable basadas tanto en el estimador de Beran como en el estimador

de Beran suavizado para la función de supervivencia también se extiende en este

capítulo para obtener regiones de confianza de la curva de probabilidad de mora,

PD(t|x), para un valor fijo de x ∈ I ⊆ R y t cubriendo el intervalo IT ⊆ R+. Un

estudio de simulación nos permite analizar el comportamiento de estas regiones de

confianza basadas en bootstrap y comparar los resultados obtenidos mediante los

estimadores de Beran y Beran suavizado. Por último, los selectores automáticos

de la ventana y los estimadores con ventanas bootstrap se utilizan para analizar

la función de probabilidad de mora condicional a la puntuación crediticia para un

conjunto de datos de créditos alemanes públicamente accesible. El contenido de este

capítulo se encuentra publicado en Peláez et al. (2022a).

En el Capítulo 7 se discuten técnicas para estimar la PD basadas en modelos

de curación. El tiempo hasta la caída en mora podría enfrentarse no sólo a un

problema de censura por la derecha, sino también a la presencia de curación. Po-

drían existir clientes que nunca caen en mora, es decir, no importa cuánto tiempo

se observe a tales individuos, nunca experimentarán el evento de interés. Los mode-

los de curación consideran la existencia de un grupo de individuos curados que no

son susceptibles de caer en mora. Se considera el estimador no paramétrico de la

función de supervivencia propuesto por López-Cheda et al. (2017a) y López-Cheda

et al. (2017b) basado en modelos de curación de tipo mixtura y se transforma para

obtener el estimador no paramétrico de modelos de curación (NPCM) de la PD. Se

analizan las propiedades asintóticas del estimador NPCM de la PD: se obtiene una

representación casi segura del estimador y expresiones asintóticas del sesgo y la va-
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rianza, así como su normalidad asintótica. Su comportamiento se compara mediante

simulación con el estimador de Beran de la PD, el estimador de Beran doblemente

suavizado y con métodos paramétricos basados en modelos de curación como el de

riesgos proporcionales y el de tiempo de fallo acelerado. Los resultados obtenidos

muestran que el estimador NPCM proporciona buenas estimaciones de la PD, re-

duciendo el error cometido por las alternativas semiparamétricas. El estimador de

Beran de la PD es competitivo con el estimador NPCM en la mayoría de los esce-

narios. El estimador de Beran doblemente suavizado es, de nuevo, la alternativa que

proporciona un menor error de estimación en todos los escenarios analizados. Para

ilustrar el uso de los estimadores de Beran, Beran suavizado y el estimador NPCM,

se realiza un análisis estadístico del conjunto de préstamos alemanes citado previa-

mente. El contenido de este capítulo se encuentra en revisión para su publicación

en Peláez et al. (2022c).

En el Capítulo 8 se resumen las principales conclusiones del trabajo elaborado

a lo largo de esta tesis doctoral y se detallan las líneas de trabajo que se pretenden

abordar en el futuro. Consideramos que la principal contribución de esta tesis es la

propuesta del estimador suavizado en la covariable y en la variable tiempo basado

en el estimador de Beran para la función de supervivencia que permite estimar la

curva de la PD reduciendo el error de estimación de forma notable. El análisis en

profundidad de las propiedades asintóticas de este estimador, así como la propuesta

de selectores automáticos para los parámetros de suavizado constituyen elementos

importantes de esta disertación. En el futuro trataremos de resolver el problema de

la selección automática de las ventanas involucradas en el estimador no paramétrico

basado en modelos de curación. También se analizará su comportamiento cuando

este estimador se suaviza en la variable tiempo. El uso de modelos de curación

con cura parcialmente conocida y la extensión de los resultados de esta memoria

al caso multidimensional mediante técnicas, por ejemplo, de single-index, son ideas

atractivas para futuras investigaciones. Una línea interesante que podría tener uti-

lidad práctica es la construcción de contrastes de clasificación basados en la PD o

contrastes de hipótesis para la comparación de curvas de la PD. Finalmente, nos
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gustaría que el software desarrollado a lo largo de esta tesis estuviese disponible

públicamente, por lo que en un futuro inmediato tenemos la intención de elaborar

un paquete de R.
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