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Abstract: The Ria de Coruña (NW Spain) is a wide estuary recently formed by the flooding of the
Mero fluvial valley lowlands during the last postglacial transgression. During the last glacial episode,
with the sea level located more than 100 m below the current one, the final section of the Mero river
and lateral tributaries contributed numerous deposits that the postglacial rise in sea level has partially
flooded. Until now, the presence of these alluvial deposits disconnected from the main network by the
Holocene marine transgression had been misinterpreted, especially for lack of an absolute chronology
that would place them in an adequate paleoclimatic context. For the first time, a deposition age was
assessed in this work by optically stimulated luminescence (OSL) dating back from 128 ka to 51 ka.

Keywords: coastal fluvial sediments; glacioeustasy; optically stimulated luminescence; Upper
Pleistocene; Ria de Coruña (NW Spain)

1. Introduction

The age of alluvial deposits on the Atlantic coast of Galicia (NW Spain) (Figure 1)
is poorly known, despite the fact that they represent the existence of older continental
processes where today marine processes are developing due to sea-level rise during the
transgressive episodes of the Late Pleistocene and Holocene. The only available ages
correspond to fluvial terraces of the lower course of the Miño River [1] and braided-type
deposits of the lower Ulla River [2], both on the south coast, of the Late Pleistocene age,
as some of the few examples dated with suitable techniques on the Atlantic coast of
northwest Spain and northern Portugal related to coastal fluvial sediments and glacio-
eustatic oscillations. It should be mentioned that any regional correlation could include
a high contribution of uncertainty associated with neotectonic processes since this area
has very particular characteristics as it is an extensive plate border with lithospheric
uplift [1]—different from the Cantabrian Coast (N Spain) where the European plate
subducts under the Iberian plate, showing much higher rates of lithospheric uplift that
have been described [3]. For its part, the Atlantic coast of the southern Iberian Peninsula
also presents its tectonic peculiarities due to the collision of the African and Iberian plates.

Regarding the alluvial deposits of the Mero River Basin, some of them are located
on the current sea shore, in the innermost of the Ria de Coruña (Figure 1), a wide estuary
formed by the flooding of the valley lowlands during the Holocene transgression [4]. De-
spite this, their chronology is still unknown. Tentative ages were ambiguously assigned
from the Plio–Quaternary boundary [5,6] to the recent Quaternary [7]. Subsequent geomor-
phological studies on these sediments [4] proposed more recent relative ages by correlating
their formation with sea-level oscillations during the Late Pleistocene. In this sense, the
relative Holocene age assigned by other authors [8] was completely inconsistent. However,
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the impossibility of applying suitable dating techniques to these azoic sediments at that
time prevented a more reliable age from being assigned.
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Figure 1. Atlantic coast of Galicia (NW Spain) and the alluvial deposits studied in the Mero Basin and
Ria de Coruña. S: Metasediments (green area); G: granitoids (blue area). (1, 2 . . . 8): Mero samples,
UTM (WGS84) coordinates and relative height (m).

Thus, the aim of this work was to obtain, for the first time, a depositional age for eight
selected alluvial deposits of the Mero River (Figure 1) by optically stimulated luminescence
(OSL) on quartz grains to situate them in a defined palaeo-climatic context.
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2. Study Area

Mero River drainage basin (A Coruña, Galicia) (Figure 1) is a small network (350 km2)
that originates in the Ria de Coruña. This ria, like the rest of the Galician Rias, are very
particular formations formed as a result of the flooding by the sea of the lower areas of the
valley during the last Holocene transgression [4].

Mero River basin mainly drains metasediments [9] from Ordes Complex, although
the westernmost sector drains Hercynian granitoids (Figure 1). The Ordes Complex is the
largest of the complexes in NW Iberia [10]. Its central part is occupied by extensive outcrops
of the so-called upper units, up to 12 km thick. One of the units that make up the Ordes
Complex is the Betanzos Unit, a sequence with a flysch appearance, composed mainly
of metamorphic rocks, whose protoliths present characteristics of turbiditic greywackes,
conglomerates, phyllites and calco–silicates, varying to black metapelites and quartzites in
the lower part of the unit. The detailed study of these turbidite sequences suggests that
their sedimentation took place in a deep submarine fan context, observing sedimentary
facies that typically occur in distribution channels and lobes commonly associated with
turbidite systems. The metagrauvakic sequences of the Ordes Complex are classified as
immature feldspathic sandstones from a first sedimentary cycle and present low-grade
metamorphism. In them, the grains are mainly formed by quartz, plagioclase and rock
fragments. They present angular or subangular textures with poor classification within
a shale matrix. These metagreywackes occupy the upper structural levels and are partic-
ularly well exposed along the shoreline, where they outcrop with a shale appearance. A
detailed geochemical study of the metagreywackes of the Ordes Complex confirms their
immature character, as well as their origin from a felsic igneous source with an affinity
for an upper continental crust [10]. The maximum age of sedimentation calculated for the
graywackes of the Ordes Series (c. 510–530 Ma) and the age of magmatism in the upper units
(c. 500–520 Ma), as well as the presence of the abundant diabase dikes that intrude and cut
the series, with age calculated for its formation of circa 510 Ma.

According to previous studies [4], the current disposition of the Mero River drainage
basin over these materials is assumed to be less than 5 Ma ago, at which time the Tertiary
endorheic basins, present at the head of the valley, collapsed and drained their waters
towards the Atlantic, conditioned by tectonic processes related to the Alpine orogeny [4].
In this sense, no neotectonic differences can be observed within the basin [4]. At present,
sedimentary deposits from this period are not found in the basin. Only small outcrops
of alluvial deposits, probably Pleistocene up to +200 m above present sea level (apsl), are
preserved. Among them are the sediments studied here, represented by undated younger
alluvial deposits of variable thicknesses between 3 m and 20 m, formed by quartzite gravels
(>80%) with sand and silt lenses [4,11]. For this work were sampled sand lenses (Figure 2)
of the best-preserved levels at heights between +2 m to +60 m above present sea level
(apsl), some of them located very close to the coastline (in Figure 1 are represented relative
heights). These alluvial deposits would represent the last episode of the dismantling of
the previous rocky materials and the formation of the fluvial valley that gave rise to the
Ria de Coruña. The calculation of their age would extend the geological knowledge and
the evolution of the coast in the study area within the age limit of the dating technique
used here.
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3. Materials and Methods

Sampling for OSL dating was performed on homogeneous sand lenses within the
dated alluvial deposits (Figure 2) by hammering steel cores. In the Luminescence Labo-
ratory of the University of A Coruña, the dry-sieved sand grains (180–250 µm) from the
central part of the core were treated with HCl and H2O2. The dried feldspars and heavy
minerals were removed by density separation using sodium polytungstate solutions with
densities of 2.62 g/cm3 and 2.70 g/cm3. The obtained quartz was HF-etched (40%) to
remove any remaining feldspars. Quartz multigrain aliquots were checked with infrared
(IR) stimulation to ensure the absence of contamination by minerals other than quartz.

Luminescence measurements were performed on small multigrain aliquots (100 grains)
mounted on stainless steel discs in a Risø DA-15 automated TL/OSL reader equipped with
blue light emitting diodes (LEDs) (470 ± 30 nm) for stimulation, a Hoya U-340 filter and
a 9235QA photomultiplier. A 90Sr/90Y beta source of 0.120 ± 0.003 Gy/s was used for
irradiation. The single-aliquot regenerative dose (SAR) protocol [12] was used to estimate
the Des. Preheat tests were carried out to choose the appropriate preheat treatment, and
recovery tests were performed after assessing the Des. The OSL signal was stimulated for
40 s at 125 ◦C. The early background (EBG) [13] from 0.4 s to 4 s natural OSL decay curve
were subtracted from the fast component (first 0.4 s) for signal integration. Descriptive
statistics were used on the Des obtained from individual aliquots using Abanico plots and
normality tests (Kolmogorov–Smirnov (Lillier.); Shapiro–Wilks if n < 50) were performed.
Dose-variation test as a function of aliquot size [14] were performed, from 10, 30, 100, 300
and >700 grains.

Coarse K feldspar grains (180–250µm) and fine grains (<63 µm) were also obtained
and used for IRSL dating [15]. The IRSL50 and post-IR IRSL290 signal was measured on
both grain sizes. The IRSL signals were stimulated for 200 s at 50 ◦C and 290 ◦C, integrating
both the first 5 s and using the last 25 s for background subtraction [16]. However, it was
not possible to obtain Des from the IRLS signals due to the low amount of both coarse
(250–90 µm) and fine (<63 µm) feldspar grains obtained. The scarce grains obtained
provided saturated IRSL signals [11].

The Dr was estimated to use a Camberra-XTRA gamma detector (Ge-Intrinsic) during
46–68 h and counting. Guérin’s conversion factors were used [17]. The alpha contribution
was neglected for quartz dose rates, and the beta dose rate was corrected due to HF
etching [18]. Moisture and water saturation values were assessed for all samples to estimate
average water content. The cosmic dose rate was calculated in accordance with Prescott
and Hutton [19].

The concentration of potassium (and therefore 40K) was also estimated in the fine
(<63 µm) and coarse (63–1000 µm) grains of bulk sediments for each sample by X-ray
fluorescence spectrometry (XRF). The grain size distribution of samples was assessed
by laser diffraction (<250 µm) using a Saturn-DigiSizerII laser detector and dry-sieving
(250–2000 µm). Thus, it was possible to weigh the concentration of K on the silt (2–63 µm)
and sand (63–2000 µm) grains for each sample.

4. Results
4.1. Dose Rate (Drs), OSL Signal and Des

The radioisotope activity concentration of the 238U and 232Th decay series was similar
for all samples (Table 1). Such radioisotope concentration does not depend on the lithology
underlying the deposits (either metasediments or granite). No disequilibrium was observed
in the 238U and 232Th series. Significant variations in 40K activity were observed between
samples, ranging from 78 Bq/ka to 230 Bq/ka (Table 1). The gamma dose component
(Dr-gamma) ranges from 0.2 to 1.3 (Gy/ky), the beta dose component (Dr-beta) ranges from
0.3 to 0.8 Gy/ky and the cosmic dose (Dr-cosmic) values are about 0.15 (Gy/ky) [11]. The
final Drs ranges between 0.68 Gy/ka and 1.83 Gy/ka (Table 1).
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Table 1. Radioisotopic activity (Bq/kg) from 238 uranium, 232 thorium and 40 potassium. Dose-rate
(Dr) and saturation fraction (F) from water content (w = 40 ± 4%) following [20].

Sample 238-U 232-Th 40-K F (w = 40%) Dr (Gy/ka)

MERO-1 16 ± 9 29 ± 4 226 ± 20 7 ± 1 1.50 ± 0.25

MERO-2 21 ± 12 21 ± 3 82 ± 16 8 ± 2 1.83 ± 0.14

MERO-3 23 ± 11 37 ± 6 113 ± 15 16 ± 4 1.21 ± 0.20

MERO-4 19 ± 9 13 ± 6 91 ± 15 16 ± 4 0.90 ± 0.13

MERO-5 21 ± 10 27 ± 7 127 ± 16 13 ± 4 1.15 ± 0.07

MERO-6 9 ± 1 10 ± 7 78 ± 17 8 ± 2 0.68 ± 0.10

MERO-7 26 ± 2 26 ± 1 115 ± 79 11 ± 2 1.37 ± 0.27

MERO-8 29 ± 13 53 ± 2 126 ± 8 8 ± 2 1.64 ± 0.16

Multigrain aliquots of 100 grains show a better fit to De and lower uncertainty than
the other tested aliquot sizes (10, 30, 300 or >700 grains). In general, the natural OSL
signals show dim signals (<40,000 c/u.t) [11]. This could be related to the origin of the
quartz and the expected differences in radioisotope content and natural radiation (dose
rate) between metasedimentary and granitic lithology in the area [11]. However, sample
Mero-8 from the granitic area also shows lower signals than expected (<60,000 c/u.t)
(Figure 3). However, all signals show a fast decay, with 95% of the counts being recorded
in the first 0.5 s of exposure to blue LEDs. Bleaching tests (between 0.2 s and 1000 s)
were performed, showing a reduction in the signal to background levels (>80%) after 1 s
of exposure to blue LEDs. No linear correlation (neither exponential nor logarithmic) is
observed between signal intensity (natural, regenerated or test-dose) and De of aliquots
(r < 0.65). The signal/test dose ratios (LN/TN) are low (<10), although the growth curves
show a large and steeply sloping linear interpolation region (Figure 3). In addition, dim OSL
signals do not mean higher aliquot rejection in the recovery and recycling tests (the higher
percentage of aliquot rejection is due to aberrant growth curves or non-interpolation) [11],
indicating their reliability. Furthermore, in all samples, there are some aliquots (20%) with
brighter OSL signals (natural, test dose and regenerate), with higher signal/test-dose ratios
and a lower relative error (<10%). The Des from much more sensitive aliquots are very
similar to the central estimators as median, arithmetic mean or weighted mean of the
Central Age Model, CAM [11]. The Des were estimated by using the CAM [21] (Table 2).

Table 2. Dose rate (Dr), equivalent dose (De), overdispersion (OD) and final ages. N:
number of accepted/analysed aliquots. Mero-6 age from central dose (CAM) invalidated by
asymmetric distribution.

Sample N Dr (Gy/ka) De (Gy) OD (%) Age (ka)

MERO-1 59/141 1.50 ± 0.25 98 ± 6 35 ± 5 65 ± 13

MERO-2 36/202 1.83 ± 0.14 108 ± 10 50 ± 7 59 ± 8

MERO-3 43/168 1.21 ± 0.20 115 ± 7 30 ± 5 95 ± 19

MERO-4 51/91 0.90 ± 0.13 95 ± 6 39 ± 5 105 ± 23

MERO-5 51/125 1.15 ± 0.07 89 ± 5 32 ± 5 77 ± 11

MERO-6 65/188 0.68 ± 0.10 32 ± 3 78 ± 7 46.1 ± 12

MERO-7 26/219 1.37 ± 0.27 135 ± 7 13 ± 5 99 ± 22

MERO-8 26/195 1.64 ± 0.16 139 ± 9 28 ± 5 85 ± 12

The relative deviation of the Des ranges between 10 and 20%. The absolute deviation
of the Des shows an increasing linear trend vs. the De. The proportion of aliquots rejected
for exceeding the saturation threshold (≥200 Gy) is below 30%, except for samples Mero-3
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(50%) and Mero-8 (70%). The proportion of rejected aliquots because they did not meet
the SAR recycling test is below 30%, except for Mero-2 (70%). Recovery tests showed
ratios between 0.9 and 1.1, with low overdispersion values (OD-recovery < 5%) [11]. All
samples show highly dispersed distributions (Figure 3) and high OD values from central
dose (De) (Table 2), except for sample Mero-7 (OD = 13 ± 5%). However, these distributions
are non-skewed and unimodal (Figure 3). Normality tests indicate a good fit to a normal
distribution (p < α = 0.05), with the exception of the Mero-6 sample, which shows a highly
skewed distribution [11].
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Figure 3. OSL signal and Des distributions. (Up) Examples of OSL decay curves and growth curves
of Mero-4 and Mero-8 samples. (Down) Abanico plots of samples Mero-1, 3, 4, 5, 7 and 8: standard
estimate (s.e) and (±2σ) standard error (grey area), relative error (r.e), equivalent dose (De) and
accumulate density (n) from each aliquot (black dots).
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4.2. Grain Size Distributions and Concentrations of K

Most of the dated samples correspond to silty sands (ranging the silt between 40%
and 80% of the sample). The only exception is sample Mero-8 (granitic lithology) with 80%
sand-sized grains (63–1000 µm). The major elements are SiO2 (≥40%) and Al2O3 (≥20%),
Fe2O3 (<5%) and K2O (<2%) [11]. A negative linear trend (r = −0.8) was observed between
the beta doses (Dr-beta) and overdispersion values (OD). In the sample from the granitic
lithology (Mero-8), the potassium is concentrated in the sandy-sized grains (85%). In the
samples from the metasedimentary area of the basin, potassium (and therefore, 40K) is
concentrated in the silty-size grains (>75%) (Figure 4a,b). In these latest samples (Figure 4c),
a positive linear correlation (r = 0.91) between the proportion of K in silts (2–63 µm) and
the Dr-beta component. Despite the small data, linear correlation analyses indicate that a
slight increase in potassium (1%) leads to a considerable decrease (20%) in overdispersion
(Figure 4d).
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Figure 4. Potassium distribution and overdispersion of metasedimentary samples. (a) Potassium
distribution in sand fraction (f: fine; m: medium; c: coarse) and silt-clay fraction. (b) Proportion of
potassium weighted by the proportion of silt and sand fractions. (c,d) Linear correlation of samples
with high OD: (c) Dr-beta vs. K in silts; (d) OD vs. K in silts. (M: Mero basin samples).

5. Discussion

The OSL signals of all the studied samples are dim, not different in quartz grains of
sediments of either the metasedimentary or granitoid areas of the Mero basin. A higher
concentration of uranium, thorium and potassium radioisotopes [22,23] would be expected
in sediments of the granitoid area, as observed on the gamma radiation map of the area [24]
(although these measurements were taken at 50 cm above the ground). Such a high cor-
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relation between high gamma radiation and concentration of radioisotopes in granitoid
lithologies has been frequently observed in the region [1,25], ranging the Drs between
3 and 5 Gy/ky for fluvial deposits with bright OSL signals. In contrast, the estimated Drs
for the Mero basin is low and similar among samples, including for the sample located in
the granitoid area (Mero-8) (Table 1). The used quartz grains highly come from Precambrian
metasediments [9,10] and Variscan granitoids [26]. The alluvial deposits studied [4] corre-
spond to a late stage of relief dismantling at the end of the Pleistocene, during which runoff
acted on a highly weathered rocky substrate that provided clays, sands and fragments of
quartz and quartzite. The brief transport that they suffered justifies the bad selection of the
sediments and the low rolling of the quartz and quartzite fragments. They correspond to
a wet periglacial stage of the Late Pleistocene [27]. It is possible that such circumstances
could lead to radioisotope leaching (above all for U, Th and K), and this could explain the
low Drs obtained [11]. Moreover, no correlation or dependence is observed between signal
intensities and Drs in the samples.

The characteristics of the OSL signal from quartz grains have been related to the
original lithology [28,29] or their degree of weathering [30], as well as the sedimentary
transport [31] at a local or even regional scale [32,33]. In the present work, no differences
were observed in the signal characteristics and the type of quartz according to its lithologic
origin (metasediments or granitoids). The response of quartz grains from sediments
deposited downstream (Mero-2 or Mero-4) is similar to that of quartz grains upstream
(samples Mero-1 or Mero-6) (Figure 1). The quartz grains analysed in a nearby basin from
similar Hercynian granitoids [2] also show low sensitivity, unlike quartz grains from other
basins in the region [1]. Both the dim signals and OSL signal sensitivity hindered the
use of single-grain for dating, which provides uncertainty for each grain [34]. However,
for all samples, the Des of the most sensitive aliquots (with brighter OSL signals, higher
normalisation ratios and a lower relative error) were found to be similar to the central
estimators (median, arithmetic mean or weighted mean of the CAM) [11]. Thus, the CAM
is considered for assessing the Des, provided that the data fit a normal type distribution
(symmetrical and unimodal) [21,35]. In this sense, sample Mero-7 shows a normal-type
distribution and low overdispersion value (13%). Thus, we can take this sample age as a
reference age to assess the age estimates of the other samples using the CAM. Due to the
high OD values observed (Table 1) for the other samples, we compared and discussed the
possible factors that hypothetically contribute to such OD [36].

5.1. Overdispersion Analysis

Dim OSL signals at high doses and low normalisation ratios in quartz grains have
sometimes been correlated with a limited proportion of luminescence-sensitive traps
and/or a low contribution from the fast component of the OSL signal [37,38]. At pro-
longed doses over time, this limitation can result in a natural OSL signal (LN) of similar
intensity to the natural OSL signal of the test dose (TN), albeit within the recommended
ratio (1/3LN = TN) [11,12]. Considering that the dose induced in the test dose represents
10% of the De [11,12], these low-sensitive quartz grains would not accurately reflect the real
differences between signal and dose, which would result in a generalised reduction in the
normalisation ratios (LN/TN). As the growth curve is constructed by plotting the normalised
signal vs. dose–response, low normalisation ratios at increasing doses lead to a low slope
of the linear segment of the dose–response curve. Interpolation of this normalised signal
with errors in such low-slope curves can lead to high uncertainty of the De of individual
aliquots [39,40]. When this occurs in most accepted aliquots (individual Des), it results in
high variability between individual data, above what could be expected [37,38]. As a result,
high OD values of the CAM could be obtained. This is the main reason for rejecting aliquots
that interpolate above 200 Gy, taking this value as the saturation threshold [11], at which the
estimates of the Des become unreliable [41], although the Des estimated by including these
aliquots (>200 Gy) are similar [11]. On the other hand, the number of rejected aliquots in
the recovery and recycling tests is very low and lower than those of aliquots with abnormal
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behaviour (aberrant growth curves) [11]. These characteristics of the OSL signal are coupled
with rapid bleaching of the signal (see Section 5.1.1). Considering all these aspects and
the low sensitivity and fast decay of the OSL signal, we used the early background (EBG)
signal-integration method [13]. The EBG maximises the contribution of the fast component
of the OSL signal [42], providing suitable dose–response curves for signal interpolation in
cases of low OSL sensitivity [11] and low normalisation ratios with high error (between
10 and 20%). This error is due to intrinsic factors, such as counting statistics, reproducibility
and luminescence sensitivity [37,43]. When interpolating normalised signals with high
error in the dose–response curves, a high error in the obtained Des is expected (in our
samples, ranging between 5 and 20%), and the error increases with dose, so it is expected to
be higher in older samples [44]. However, recovery tests (with an OD < 5%) evidenced that
the De uncertainty due to intrinsic factors does not contribute substantially to the increase
in OD [11], which has high values (>23%), with the exception of sample Mero-7 (13%).
Thus, the analysis of other possible extrinsic factors, such as incomplete bleaching or beta
microdosimetry, is necessary to check the most suitable age model.

5.1.1. Incomplete Bleaching

A possible cause of high OD values in fluvial deposits (20–30%) is incomplete bleaching
of the OSL signal [45,46]. In such cases, the use of the CAM will overestimate the burial
age [36]. Bleaching tests [41] on quartz grains show a 90% of decay of the OSL signal after
1 s of exposure to blue LEDs. As a cross-check with IRSL ages has not been possible [47]
due to the low amount of K-feldspar coarse and fine grains and the saturation of IRSL
signals [11], we alternatively observed the Des distributions [48]. Abanico plots [49] show
wide but non-skewed and unimodal distributions (Figure 3). The normality tests performed
also suggest a good fit to a normal distribution (p < α = 0.05), with the sole exception of
the Mero-6 sample, with high skewness. We assumed such distributions as an indicative
absence of incomplete bleaching as a cause of the high OD, except in sample Mero-6.

5.1.2. Beta-Microdose Variability and Overdispersion

Another extrinsic factor that may contribute to high OD is a heterogenous beta micro-
dosimetry, due to a heterogeneous distribution of potassium (and 40K), as the main source
of beta radiation in the studied samples [50]. The concentration of K in samples is low
(<5%) in the sediments from the metasedimentary area of the basin. Such K is mostly
present in the silty-sized grains (Figure 4a,b), and a positive linear trend is observed with
the beta dose component and the total dose rates (Dr-Total y Dr-beta). Conversely, a negative
trend is observed between Dr-beta and the overdispersion (OD), as well as the proportion of
potassium in fines and the OD (Figure 4c,d). This trend would indicate differences between
the (beta) dose effectively absorbed by different quartz grains, although it is impossible
to know the dose that absorbs each grain. In some single-grain analyses under similar
circumstances (absence of partial-bleaching, beta-microdose variability and high OD) [51],
an underestimation of the age by CAM of 8% was observed [51] by not including in the
model the differences between the estimated average dose (Dr-Total) and the actual dose
absorbed by each grain. Given the impossibility of using single-grain (due to the dim OSL
signal of quartz grains), the signal of multigrain aliquots (100 grains) was analysed in this
work. This means that a sum of OSL signals from different grains was analysed and this
type of variation is not only homogenised [44,52] but also reduced [11]. Proof of this would
be the Mero-7 sample, with an OD of 13% (Table 1), and according to the recovery test,
5% of this OD would be explained by intrinsic factors). Therefore, the CAM age for this
Mero-7 sample would be representative of the sedimentation process dated here.

5.1.3. Burial Ages

For sample Mero-7, most individual Des are within the 95% c.i. of the estimated CAM
(Figure 3), providing a low OD value (13%). This is the sample with the lowest percentage
(<10%) of aliquots rejected by trespassing saturation threshold (De > 200Gy), although
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the calculated De from CAM, including or excluding these aliquots, are very similar [11].
Considering that there is no evidence of incomplete bleaching, the estimated burial age of
99 ± 22 ka for this sample (Table 1) is assumed as reliable. This result is helpful in checking
the other OSL ages based on their stratigraphic correlation (see relative heights in Figure 1),
with the oldest deposits corresponding to those at the highest relative heights. Relative
heights are measured with respect to the main channel of the Mero River. In cases where
the paleochannel remains covered under the sea waters and its sediments, the geometrical
calculation of the angle (α) and the height (sin α) between two outcrops of the same deposit
(e.g., Mero-2 and Mero-3 in Figure 5a,b) is carried out [11].
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Figure 5. (a) Chronology of alluvial sediments from lower Mero River and relative heights from the
main paleochannel. (b) Alluvial deposits from Peninsula de Sada tributaries (Mero4–Merox and
Mero3–Mero2), with a sea level of −40 m below present sea level (bpsl), 110 ky ago. Mero-x: undated
sample (most probably older than 120 ky) at 120 m (relative height). The triangles show the slope
(tangent line) between samples and the bottom of the Ria de Coruña (then emerged) and represented
by the hypothetical Mero river palaeo-channel. Elevation model and bathymetry from [53].

This more logical estimate also coincides with the slope (tg α) from the drainage
divide to the bottom of the ria, adding the thickness of the sedimentary cover [54,55].
For the deposits located in the innermost area of the Ria de Coruña, the Mero-7 sample
(99 ± 22 ky) is located at +50 m (relative heights for all of them). Samples Mero-8
(85 ± 12 ky) and Mero-5 (77 ± 11 ky) are located at a +40 m, and Mero-1 (65 ± 13 ky) is
located at +30 m. In the outermost area of the ria, Mero-3 deposit (95 ± 19 ky) is located at
+100 m, while the correlative deposit of Mero-2 (59 ± 8 ky) is located at +60 m (Figure 5a).
All samples show chronological coherence. Mero-4 deposit (105 ± 24 ky), located at +60 m,
is correlative to another outcrop (Mero-x, undated) located at +120 m, probably older
(Figure 5a). These ages fit the depositional age established for other continental deposits
preserved on the Galician coast (Table 2). Such is the case of the alluvial deposits dated by
OSL at the mouth of the Ulla River [2] (Figures 1 and 6), as well as the lower terrace levels
of the Rio Miño (Figures 1 and 6), with minimum ages estimated by OSL and IRSL [1];
these latter data are also consistent with the different terrace levels dated by cosmogenic
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nuclides over 650 ky [1]. Finally, all these ages were also coherent with the coastal fluvial
deposits dated by OSL on the north coast of Portugal [56,57] (Table 3).
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Figure 6. Chronology of alluvial deposits in the lower Mero River and global climate record for the
last 120 ky. Temperature variation from Vostok ice cores [58] (grey line) and isotopic record (d18-O)
from Greenland [59] (pink line). Global sea-level oscillations [60] (blue line). Age of alluvial and
fluvial deposits on the Atlantic coast of Galicia dated by OSL and IRSL: lower Mero River (this paper),
lower Ulla River [2] and lower Miño River [1].

Table 3. OSL and IRSL age ranges for coastal fluvial sediments on NW Iberian.

Location Formation Age (ka) Technique Reference

Lower Mero River
(A Coruña, Galicia)

Alluvial 128-51 OSL (this paper)

Lower Ulla River
(Pontevedra,

Galicia)
Alluvial 92-37 OSL [2]

Lower Miño River
(Pontevedra,

Galicia)

Fluvial terraces 57-27 OSL
[1]

Fluvial terraces 120-108 IRSL

Lower Neiva River
(North Portugal)

Fluvial 90-40 OSL [56,57]

Within a palaeoclimatic context, these alluvial deposits were formed at the beginning
of the marine regression of the Last Glacial episode (Upper Pleistocene). Throughout this
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stage, the sea level fell 40 m 90 ky ago, 80 m 65 ky ago and more than 100 m 20 ky ago
(Figure 6).

This caused the oceanic waters to retreat and the outermost parts of the valley to be
abandoned by the sea, which remained fully emerged for more than 100 ky (Figure 5b).
Thus, where we can see the Ria de Coruña today, there was a fluvial valley during that
period where continental processes developed, resulting in this type of sediments.

6. Conclusions

The OSL signal from quartz grains included in the coastal alluvial deposits of the Mero
River Basin in the Ria de A Coruña (NW Spain) has allowed the estimation of a depositional
age between 120 ky and 51 ky. Therefore, they are Upper-Pleistocene sediments and not
Plio-Quaternary or Holocene.

The analysed OSL signal from multigrain aliquots is characterised by a low intensity
which is most probably related to low luminescence sensitivity, although this intrinsic
factor contributes less than 5% to the increase in overdispersion (OD recovery) according
to the recovery tests. For samples coming from metasedimentary lithology and affected
by high overdispersion values (OD > 20%) with respect to the central dose, a negative
trend is observed, from which an increase in the proportion of potassium in silt leads to an
increase in Dr-beta and a decrease in OD. Statistical analysis of the data reveals the presence
of unimodal and symmetrical distributions, with a good fit to a normal distribution. Based
on these results, the absence of incomplete bleaching is interpreted as an extrinsic factor
contributing to an increase in OD, and the CAM central age model is used to calculate a
reliable De.

There is chronological coherence between the ages calculated for the alluvial deposits
of the Lower Mero River, as well as the age of other alluvial and fluvial coastal deposits on
the NW Iberian Atlantic coast. Based on this chronology, these sediments of continental
origin, many of them located on the present-day shoreline, were deposited as the sea level
fell during the Last Glacial episode when the Ria de Coruña was transformed into a fluvial
valley over 100,000 years.
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