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We propose two techniques for computing the energy spectra for 3D unstructured 
meshes that are consistent across different element types. These techniques can be 
particularly useful when assessing the dissipation characteristics and the suitability of 
several popular non-linear high-order methods for implicit large-eddy simulations (iLES). 
Numerical experiments demonstrate the performance of several element types for iLES 
of the Taylor-Green vortex, where a significantly different dissipation and dispersion 
mechanism for each element type is revealed. The energy spectra results are dependent on 
the technique selected for obtaining them, therefore an additional established technique 
from the literature is also included for comparison to further analyse their similarities and 
their differences. These techniques can be an integral tool for the tuning and calibration 
of non-linear high-order methods that can benefit both explicit and implicit large-eddy 
simulations (LES).

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Turbulent flows present such a broad range of spatial and temporal scales, that even with today’s supercomputers it is not 
feasible to fully resolve and perform Direct Numerical Simulation (DNS) of practical high-Reynolds (Re) number flows. Large-
eddy simulation family of techniques has been established as a high-fidelity method to simulate these flows, by resolving 
the large-scale flow structures, while the smaller unresolved ones are modelled. An increasing number of approaches [1–9]
have resorted to iLES, an approach that employs the unfiltered Navier-Stokes equations while utilising suitable non-linear 
numerical methods that can implicitly act as a filtering mechanism for the small scales that can not be resolved. Within 
the iLES context, developing and tuning several sophisticated numerical methods to successfully act as sub-grid-scale (SGS) 
models at small scales and provide a physically meaningful result, is a formidable task. The main reason is that the “right” 
amount of numerical dissipation is required, to mimic an SGS model, therefore a numerical method with no dissipation or 
excessive dissipation is not suitable.
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High-order non-linear numerical methods have been regularly used for iLES due to their increased accuracy at coarse 
grid resolutions compared to the standard 2nd-order method, their good parallel performance, and high computational ef-
ficiency. High-order methods have also been used for unstructured meshes across several numerical frameworks including 
finite-volume (FV), and finite-element (FE) discontinuous Galerkin, for iLES of complicated geometries [9–12]. Obtaining an-
alytical expressions for the numerical dissipation and dispersion for several non-linear high-order unstructured-grid-based 
numerical methods used in iLES is not feasible. Therefore, the developers are relying on utilising canonical well-established 
test problems (such as the Taylor-Green vortex) with available DNS results, to calibrate the developed methods to exhibit 
this favourable “right” amount of numerical dissipation. A key performance indicator of these methods is obtained by ex-
amining the 3D kinetic energy spectra across several wave numbers to understand if this “right” amount of dissipation is 
properly reflected by the way that the kinetic energy is dissipated. One technical difficulty of dealing with unstructured 
meshes for these tests is that the data location of each cell in the unstructured grid is arbitrary/non-uniform and therefore 
there must be some mapping of non-uniform/arbitrary data to an auxiliary uniform grid to be able to approximate the 3D 
kinetic energy spectra. This task involves several approximations that should be carefully considered during the interpreta-
tion of the obtained results. For unstructured meshes in particular the 3D kinetic energy spectra are frequently neglected 
in the development and application of high-order methods for iLES due to the aforementioned technical difficulty. This 
study introduces two techniques that can be used for any high-order numerical methods employing unstructured meshes 
for obtaining the 3D spectra, and it also compares them with the popular finuFFT [13] technique available. The UCNS3D CFD 
software package [14,15] is employed and the numerical framework is briefly introduced, followed by the methods adopted 
and numerical experiments using the Taylor-Green vortex with several numerical methods.

2. Numerical framework

Considering a 3D domain � consisting of conforming tetrahedral, hexahedral, prism, and pyramid cells, each of which is 
indexed by a unique mono-index i, the Euler governing equations can be written in a vector form as follows

∂

∂t

∫

V i

U dV +
∫

∂V i

Fn dS = 0, (1)

where U = U(x, t) is the vector of conserved variables and, Fn is the non-linear flux in the direction normal to the cells 
interface as given below

U =

⎡
⎢⎢⎢⎣

ρ
ρu
ρv
ρw

E

⎤
⎥⎥⎥⎦ ,Fn =

⎡
⎢⎢⎢⎣

ρun

ρuun + nx p
ρvun + ny p
ρwun + nz p

un(E + p)

⎤
⎥⎥⎥⎦ , (2)

where un is the velocity normal to the bounded surface area, defined by un = nxu + ny v + nz w . The total energy E =
ρe + 0.5ρ(u2 + v2 + w2), with the internal energy being e = p(γ −1)−1ρ−1, pressure p and γ the gas constant. Integrating 
Eq. (1) over a mesh element i using a high-order explicit finite-volume formulation, the following equation is obtained as

dUi

dt
= 1

|V i|
N f∑
j=1

Nqp∑
α=1

(
Fnij

(
Un

i j,L(xi j,α, t),Un
i j,R(xi j,α, t)

))
ωα |Sij|, (3)

where Ui is the volume averaged vector of variables

Ui = 1

|V i |
∫

V i

U(x, y, z)dV , (4)

and Fnij is a numerical flux function in the direction normal to the cell interface between a considered cell i and one 
of its neighbouring cells j. N f is the number of faces per element, Nqp is the number of quadrature points used for 
approximating the surface integrals, |Sij | is the surface area of the corresponding face, and Un

i j,L(xi j,α, t) and Un
i j,R(xi j,α, t)

are the high-order approximations of the solutions for cell i and cell j respectively. α corresponds to different Gaussian 
integration points xα and weights ωα over each face. an

i,1 corresponds to the volume averaged volume fraction of cell i at 
time level n. The volume, surface and line integrals are numerically approximated by a suitable Gauss-Legendre quadrature. 
The reconstruction is based on the previous work of Tsoutsanis et al. [16,17] and Tsoutsanis and Dumbser [9], where the 
readers are referred for further details, and two types of schemes are employed in this study, i.e., the central 3rd- and 5th-
order linear schemes, and the Central Weighted Essentially Non-Oscillatory (CWENO) schemes with the 3rd- and 5th-order 
of spatial accuracy.

For the inviscid fluxes, the approximate HLLC (Harten-Lax-van Leer-Contact) Riemann solver of Toro [18] is employed and 
the temporal discretisation employs the 4th-order explicit Strong Stability Preserving (SSP) Runge-Kutta method [19], which 
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Fig. 1. Drawing of 2D Unstructured mesh and the ASM arrangement.

is stable for C F L ≈ 1.5. All the schemes employed are implemented in the well established over several test problems 
[20–28] open-source UCNS3D CFD code [14,15]. It has been developed using object-oriented Fortran 2003, MPI message 
passing interface (MPI), and the Open Multi-Processing (OpenMP) application programming interface (API). The reader is 
referred to [10,15,29] for more details on implementation and performance benchmarks.

3. 3D spectra methodology

The techniques developed for ensuring a unified and transparent spectra analysis across different mesh types and el-
ement types, follow in principle the established FFT [30] techniques for Cartesian meshes, but adapted to unstructured 
meshes. The primary goal is to transfer the quantity of interest Q (such as kinetic energy) from an unstructured mesh to a 
3D auxiliary structured mesh (ASM) of similar grid resolution and then perform the FFT. To better understand the challenges 
associated with this goal, consider the drawing of a 2D unstructured mesh and its corresponding auxiliary 2D structured 
mesh as shown in Fig. 1. From this arrangement, it can be realized that:

1. There are unstructured mesh elements that only a portion of them lies within the (ASM) element of similar resolution.
2. There are ASM elements that might include the cell-centres of more than one unstructured element.
3. In extreme cases there might be ASM elements that might not include any cell-centre of an unstructured element.

Therefore these occurrences must be taken under consideration when developing a technique to map unstructured mesh 
data to ASM.

3.1. Method 1

The first method that we are proposing is to perform an average of the quantity of interest of all the unstructured 
elements whose cell-centre or any vertex lies within the area/volume of the ASM element considered as follows:

1. Identify all the unstructured mesh elements whose cell-centres lie within the volume region occupied by each ASM 
element as shown in Fig. 2. If we encounter the extreme case where none of the cell-centres lies within then we look 
at the vertices of the elements that might lie within the volume region.

2. Perform a simple average of the solutions of the unstructured elements to their corresponding element of the ASM as 
shown below

Q A S M
(i, j,k) =

N∑
j=1

Q j

N
, (5)

where N is the number of elements satisfying the above criterion, and Q A S M
(i, j,k)

being the computed averaged quantity 
of interest, at the ASM element at location (i, j, k)

3. Once the quantity of interest Q has been computed for each element of the ASM then perform the FFT.

In idealized situations, the total volume of the elements satisfying the criterion for Method 1, will be exactly the same 
as the volume of the corresponding ASM element, as shown in Fig. 3.
3
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Fig. 2. Drawing of 2D Unstructured mesh elements and a single ASM element arrangement.

Fig. 3. Hexahedral (left), prismatic (middle), and tetrahedral (right) cells edges indicated by red colour, their corresponding cell centres illustrated by red 
spheres, and their ASM element edges indicated by dashed black coloured lines. (For interpretation of the colours in the figure(s), the reader is referred to 
the web version of this article.)

3.2. Method 2

The second method that we are proposing is to assign the quantity of interest equal to that of the unstructured element 
whose cell centre is closest to the cell centre of the considered ASM element as follows:

1. Identify which of the unstructured mesh element cell-centres is closer to the cell-centre of the considered ASM element 
as shown in Fig. 2, where the unstructured mesh element with the distance r3 is the closest. If we encounter the 
extreme case where none of the cell-centres lies within then we look at the vertices of the elements that might lie 
within the volume region and their corresponding distance from the cell centre of the ASM element.

2. Assign the solution of the considered ASM equal to the unstructured mesh element previously identified

Q A S M
(i, j,k) = Q j, Unstructured element j is the closest, (6)

and Q A S M
(i, j,k)

being the computed quantity of interest, at the ASM element at location (i, j, k)

3. Once the quantity of interest Q has been computed for each element of the ASM then perform the FFT.

It needs to be stressed that the postprocessing error associated with this method cannot be easily quantified, since the 
closest neighbouring cell will be selected as shown in Fig. 2 with distance r3 from the cell-centre of the corresponding ASM 
cell, while the rest of the computational cells will be neglected. On a first read, neglecting these elements might imply that 
modes that might be present in these cells are completely missed, however, the employed multidimensional reconstruction 
finite-volume method uses several stencils [31] which include all of the cells within the close vicinity and therefore it takes 
their values into account implicitly.

3.3. Method 3

The third method that we will be employing for comparison purposes is the recently established finuFFT [13] technique 
available, which is based upon the “exponential semicircle” kernel. One key characteristic of this approach that should be 
4



P. Tsoutsanis, X. Nogueira and L. Fu Journal of Computational Physics 474 (2023) 111804
Fig. 4. Cutaway sections of the unstructured meshes used for the Taylor-Green vortex flow test problem. A hexahedral, prismatic, purely tetrahedral, and an 
arbitrary tetrahedral-dominant mesh are depicted from left to right respectively.

taken into consideration is that the non-uniform to the uniform type of interpolation involves the transfer of the solution 
to a finer mesh (upsampling), performing the FFT, and then performing a roll-off correction or deconvolution on the corre-
sponding mesh resolution of the ASM. The readers are referred to [13] for details of the technique. In this work we have 
performed the computations with this method using the code that the authors of [13] have developed and made freely 
available in [32]. In particular, we have used the finufft3d1 subroutine, which performs a 3D complex nonuniform FFT of 
type 1 (nonuniform to uniform). More detailed analysis of the parameters influencing the performance of finufft3d1, such 
as the tolerance used, is not pursued in this study, but it might reveal some additional characteristics of this method and it 
is worth pursuing in the future. Here, we have used the default value of the parameters.

As it can be realized from Fig. 2, there is an overwhelming number of possibilities that could be explored for mapping 
the solution from the unstructured mesh to the ASM, including interpolation techniques such as least-squares, and weighted 
least-squares that can already be available in unstructured finite-volume CFD solvers. However the main goal of this study 
is firstly to introduce two simple cost-efficient techniques that can be applied to unstructured mesh solvers across sev-
eral frameworks, secondly compare their performance against a well-established technique of finuFFT [13], and finally, to 
understand how the influential the technique selected is in the interpretation of 3D kinetic energy spectra.

4. iLES of Taylor-Green vortex

The iLES of the 3D inviscid Taylor-Green vortex test problem is employed, for assessing firstly the performance of four 
different types of meshes (hexahedral, prismatic, tetrahedral, and arbitrary tetrahedral mesh) and secondly two classes of 
schemes (central and CWENO) schemes. This test aims to examine the ability of a numerical method to reproduce the 
transition to turbulence. It is a widely used problem for the assessment of the performance of numerical methods within 
the LES context and in particularly for “under-resolved” mesh resolutions [4,6,9,25,26,31,33–36]. The computational domain 
is defined as � = [0, 2π ]3 with periodic boundary conditions. The reader is referred to [6,33,34] for the details of the initial 
conditions.

The initial condition corresponds to an initial Mach number M ≈ 0.08, with wavenumber k = 2π/λ = 1. Simulations 
were carried out on a hexahedral, prismatic, purely tetrahedral and an arbitrary tetrahedral-dominant (included pyramids 
at periodic boundaries) mesh with a cell edge resolution equivalent to 643 as shown in Fig. 4. The chosen hexahedral mesh 
consists of elements of equal size and uniform spacing throughout, and therefore corresponds to a purely cartesian/struc-
tured mesh. The rationale behind this choice is so that all the different methods could be tested to ensure that they provide 
5
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Table 1
Mesh characteristics for Taylor-Green vortex test problem.

mesh type edges per domain Length L Total number of cells

hexahedral 64 262,144
prismatic 64 524,288
uniform tetrahedral 64 1,572,864
arbitrary tetrahedral 64 2,013,134

Fig. 5. Time evolution of kinetic energy dissipation rate for the solution of the Taylor-Green vortex computed with a central 3rd-order scheme (C3) and 
a central 5th-order scheme (C5) scheme on several unstructured meshes with a cell edge resolution equivalent to 643. It can be noticed that tetrahedral 
meshes exhibit the closest agreement with the reference DNS results of Brachet [44] followed by the prismatic and hexahedral mesh.

the same results by using a mesh that matches exactly the ASM. Four different types of meshes are used namely hexahe-
dral, prismatic, uniform tetrahedral, and arbitrary tetrahedral consisting of their specifications as detailed in Table 1. In our 
approach, the four meshes selected have an equivalent resolution in terms of their element edge (h), although each of them 
has a different number of cells. Alternatively, one could have selected four meshes with a similar number of cells but that 
would translate to a significantly different edge resolution (h) between them. Both approaches could be viewed as valid, but 
we have chosen to focus on the edge resolution since our reconstruction polynomials include terms related to (h, h2, h3, ...)
which is the approach most commonly used in the literature as seen in [9,12,37–43]. The chosen resolution is such that the 
total number of cells for each mesh are going to be different, but their element edge resolution (h) is approximately the 
same, but this approach is sufficient for comparing unstructured meshes of similar resolution for the purpose of this study. 
It needs to be stressed that the three (hexahedral, tetrahedral, and prismatic) out of the four meshes satisfy the condition 
that the total sum of the volume of the N elements is exactly equal to the volume of each corresponding element from the 
ASM. However, the number of degrees of freedom of each grid is different. The central and CWENO schemes were used with 
a CFL number of 1.3 for the explicit Runge-Kutta 4th-order scheme, up to t = 14 for obtaining the dissipation statistics.

From the time evolution of the kinetic energy dissipation rate as seen in Fig. 5, it can be noticed that the tetrahedral 
meshes provide the closest agreement with the DNS reference results of [44], as opposed to the prismatic and hexahedral 
mesh. It must be highlighted that the dominant double-peak structure observed with the 5th-order central scheme, has 
been previously associated with dispersive properties of the numerical methods in several studies [6,9]. One could easily 
assume that this result is expected because there are more tetrahedral elements in the mesh compared to the hexahedral 
and prismatic mesh. However, this is not the primary reason, since it has been previously documented [26] that the arbitrary 
orientation of tetrahedral elements is the key-contributor to significantly lower dissipation errors compared to hexahedral 
elements. In that previous work [26], it is also demonstrated (Fig. 29 and Fig 30 of this reference) that even a tetrahedral 
mesh of 323, can resolve more features and is less dissipative than a 643 hexahedral mesh containing more elements, unless 
a low-Mach number correction is applied for the hexahedral meshes. The reader is referred to [26] for a detailed description 
of these behaviours.

We are particularly interested in the 3D spectra of the kinetic energy after the dissipation peak (t = 10), where we can 
assess if the dissipation follows the behaviour of Kolmogorov’s (k=-5/3) law, at least for a limited range of wave numbers as 
expected for the under-resolved resolution employed in this study.

Initially we employ the central 5th-order scheme (C5) scheme with the hexahedral mesh which is uniform and matches 
exactly the ASM mesh with the three methods. All the methods should produce the exactly same result, and as expected, 
6
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Fig. 6. Kinetic energy 3D spectra at t = 10 for the solution of the Taylor-Green vortex computed with a central 5th-order scheme (C5) scheme on hexahedral 
mesh with a cell edge resolution equivalent to 643 obtained with all the methods. It can be noticed that all the methods produce exactly the same result 
as expected.

Fig. 7. Kinetic energy 3D spectra at t = 10 for the solution of the Taylor-Green vortex computed with a central 5th-order scheme (C5) scheme on several 
unstructured meshes with a cell edge resolution equivalent to 643 obtained with Method 1. It can be noticed that tetrahedral meshes exhibit the smallest 
dissipation followed by the prismatic and hexahedral mesh.

all of them do, as can be seen in Fig. 6. We need to stress that the primary motivation for this particular test is to separate 
the error of the scheme from the error of the post-processing, and all the methods exhibit the exact same results in 
this uniform mesh, which implies that the post-processing error is the same for all of the methods and that we can truly 
appreciate the error of the scheme. However, for unstructured meshes, this is not possible, and recent comprehensive studies 
on dispersion-dissipation relationships have highlighted that even when employing approximate dispersion relations for 2D 
and 3D unstructured meshes, and even for linear schemes, it may lead to results that are not understandable and therefore 
of unclear value at present [45].

Employing Method 1 and the Central 5th-order scheme for obtaining the kinetic energy 3D spectra at t = 10 it can 
be initially noticed that tetrahedral meshes exhibit the smallest dissipation and therefore have the closest agreement with 
Kolmogorov’s theoretical behaviour for the largest range of wave numbers followed by the prismatic and hexahedral mesh 
as shown in Fig. 7.

Since there is a perfect mapping between the hexahedral mesh and the ASM, we now focus on comparing the obtained 
3D spectra with the different methods on the other types of meshes. We examine firstly the differences between the three 
7
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Fig. 8. Kinetic energy 3D spectra at t = 10 for the solution of the Taylor-Green vortex computed with a central 5th-order scheme (C5) scheme and CWENO5 
schemes with different central stencil weights obtained with different methods on prismatic mesh with a cell edge resolution equivalent to 643. It can be 
noticed that lower values of central stencil linear weight λ1 increases the dissipation for the CWENO 5th-order scheme and Method 2 and Method 3
provide the least dissipative behaviour, followed by Method 1.

methods using a Central 5th-order scheme, and secondly the influence of the central stencil linear weight λ1 for the CWENO 
5th-order scheme. A very large value of λ1 translates to smaller dissipation since the central stencil has the largest influence 
in smooth regions of the flow and eventually resembles more the central 5th-order scheme, while a lower value translates 
to a more dissipative method that resembles more a 2nd-order upwind method as reported by Tsoutsanis and Dumbser [9], 
where the reader is referred for more details for the present implementation. Therefore we ultimately want to understand 
how this change in the dissipation characteristics of the CWENO method is reflected on each type of mesh, and for each 
method used to obtain the 3D spectra.

Starting with the prismatic mesh results as shown in Fig. 8 when using a Central 5th-order scheme, the similarities 
across the different methods end at high-wave numbers (k > 20), where Method 1 provides the most dissipative behaviour 
at high-wave numbers which is indicative of the averaging process employed in this context which acts as a filtering 
8
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Fig. 9. Kinetic energy 3D spectra at t = 10 for the solution of the Taylor-Green vortex computed with a central 5th-order scheme (C5) scheme and CWENO5 
schemes with different central stencil weights obtained with different methods on tetrahedral mesh with a cell edge resolution equivalent to 643. It can 
be noticed that with Method 2 and Method 3 a wider range of scales is resolved compared to Method 1 for the central scheme, while the Method 1
provides the most dissipative results.

mechanism. The Method 2 on the other hand by using the closest neighbour values -that are computed by a high-order 
reconstruction that takes into account the values of all the elements in the stencils- provides results that exhibit less 
dissipation and a more desirable slope for high-wave numbers as well and are in good agreement with Method 3 that is 
based on the finufft [13] algorithm. When looking at the CWENO 5th-order results, where it is previously documented [9]
that low values of λ1 increase dissipation Method 3 tails-off at higher frequencies slightly earlier than Method 2 and 
therefore this needs to be further investigated for the other meshes.

For the tetrahedral mesh results as shown in Fig. 9 when using a Central 5th-order scheme, the similarities between 
the different methods are greater compared to the prismatic mesh. Similarly as before the Method 1 provides the most 
dissipative behaviour at high-wave numbers, and the Method 2 and Method 3 provide results that exhibit less dissipation 
and a better agreement with the Kolmogorov’s slope and are quite similar to each other even at high frequencies. Examining 
9
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Fig. 10. Kinetic energy 3D spectra at t = 10 for the solution of the Taylor-Green vortex computed with a central 5th-order scheme (C5) scheme and CWENO5 
schemes with different central stencil weights obtained with different methods on tetrahedral-arbitrary mesh with a cell edge resolution equivalent to 643. 
It can be seen that a wider range of wave numbers is captured with this mesh compared to the other ones, and a better agreement with the Kolmogorov’s 
slope is attained. Method 2 and Method 3 technique provides the closest agreement with the Kolmogorov’s slope for low-dissipation variants of the 
CWENO5 schemes.

the behaviour of the methods at the CWENO 5th-order results, a sightly more pronounced tail-off is observed for Method 
3 compared to Method 2 as the dissipation increases (and the central stencil linear weight decreases), where the Method 
1 provides similar behaviour as before. This behaviour can be attributed to under-sampling for the high frequencies of
Method 3 or the missing of some of the content from Method 2 due to the nearest neighbour strategy used.

Finally for the arbitrary tetrahedral mesh results as shown in Fig. 10 there is a significant difference between the aver-
aging employed for Method 1 from Method 2 and Method 3 that are quite similar for the Central 5th-order scheme. 
Interestingly enough both Method 2 and Method 3 exhibit a tail-off for the CWENO5 method with low central stencil 
weight values, and it is slightly more pronounced for Method 2. This is the mesh that due to its arbitrariness, the variation 
of the number of cells contained within the volume of the corresponding ASM can range from 2 to 9 in some cases. There-
10
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fore selecting only one of them through Method 2 implies that the values from the remaining cells are ignored, hence it 
results in an under-sampling that is evident for the CWENO 5th-order method with low central stencil weight.

It can be summarised with a great degree of confidence that if the FFT process involves either under-sampling due to 
the type of mesh involved and the method chosen (e.g. Method 2) or oversampling and projection similar to Method 3, 
then at high-wave numbers the expected dissipation due to the grid-resolution is not manifested as expected and as seen 
in hexahedral mesh. On the contrary, it is expressed by a tail-off before the grid-size limit which is more pronounced with
Method 3 on prismatic and uniform tetrahedral mesh, and more pronounced with Method 2 on the arbitrary tetrahedral 
mesh. On the other hand the filtering/averaging ingredient of Method 1, consistently exhibits the same behaviour where 
its dissipative nature is dependent on the number of elements that are contained within each control volume of the ASM 
cells, and therefore the filtering is the most excessive in the tetrahedral meshes followed by the prismatic mesh.

In particular, the hexahedral mesh is the most sensitive to the choice of linear weight, followed by the prismatic mesh 
and the tetrahedral mesh which is the least sensitive, and this is due to the increased numerical dissipation at low-Mach 
number regions for multidimensional reconstructions. The 3D energy spectra can complement the calibration of several nu-
merical methods intended for iLES, towards providing the right amount of dissipation for restoring the physical consistency 
[3,10,35].

5. Conclusions

For a numerical scheme to be suitable for iLES, it should exhibit just the “right” amount of dissipation, across all the 
wave numbers and during the entire simulation. For this reason, the presented methods could prove a useful tool for 
calibrating these schemes. Unfortunately due to the non-uniform data associated with unstructured meshes, several ap-
proximations are required to perform a 3D FFT for the energy spectra of turbulent flow simulations in a way that we can 
understand the performance of several schemes. When realizing the differences across the different schemes, and pursuing 
improvements for their dissipation/dispersion characteristics, it is of paramount importance to understand the underlying 
approximations used for the method employed for the 3D FFT, otherwise, we might be driven to the wrong conclusions. 
The presented methods highlight this last argument. This is particularly important for tuning and calibrating high-order 
non-linear schemes for unstructured meshes where the dissipation can be adjusted based on the cell-local kinetic energy 
dissipation rate as previously documented in [4], an approach we plan to further investigate in the context of unstructured 
methods.
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