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The problem of testing the equality of the generating processes of two multivariate time
series is addressed in this work. To this aim, we construct four tests based on a distance
measure between stochastic processes. The metric is defined in terms of the quantile
cross-spectral densities of both processes. A proper estimate of this dissimilarity is the
cornerstone of the proposed tests. The first test employs the asymptotic distribution of
the estimate, which we derive from some standard results on complex random variables
and which is useful in its own right. The bad behaviour of this test when compared with
alternative ones is shown. The three remaining techniques are based on the bootstrap.
Specifically, a particular bootstrap method for spectral densities and extensions of the
moving blocks bootstrap and the stationary bootstrap are used for their construction.
The approaches are assessed in a broad range of scenarios under the null and the alterna-
tive hypothesis. The results from the analyses show that the procedure based on the sta-
tionary bootstrap exhibits the best overall performance in terms of both size and power.
The proposed techniques are used to answer the question about whether or not the dotcom
bubble crash of 2000s permanently impacted the global market behavior.
� 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The problem of comparing two time series arises in a natural way in multiple fields, including machine learning, finance,
computer science, biology, medicine, physics, biology, psychology, among others. For instance, an investor often has to deter-
mine if two particular assets show the same behavior over time based on historical data. In physics, it is usually interesting to
find out to what extent ECG signals from different subjects exhibit similar patterns. A wide variety of data mining and sta-
tistical techniques have been proposed to address this kind of problems, including cluster analysis [1], classification [2], out-
lier detection [3], and comparisons through hypothesis tests [4]. It is worth highlighting that these techniques have mainly
focused on univariate time series (UTS) [5–8], while the study of multivariate time series (MTS) has received less attention
[9,10].

Frequently these techniques require to evaluate dissimilarity between time series, which is not a simple issue due to the
dynamic character of these data objects. In fact, the problem of determining a suitable dissimilarity measure between time
series has become an important research topic during recent years. Lafuente-Rego and Vilar [6] provided a clustering
algorithm for time series based on an innovative distance comparing the so-called quantile autocovariance functions. Other
dissimilarity criteria recently proposed to construct fuzzy clustering procedures include distances between: estimated
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GARCH coefficients [5], B-splines representations [11] and estimated conditional moments [12]. Alonso et al. [13] introduced
cophenetic distances based on linear dependency. Cerqueti et al. [14] proposed a fuzzy clustering approach based on an opti-
mal combination of conditional and unconditional moments. The method was applied to perform clustering of financial time
series obtaining interesting results.

A large number of works in time series data mining have also considered spectral dissimilarity measures due to their high
ability to discriminate between different dependence models. Kakizawa et al. [15] proposed a classification method based on
a divergence measure between spectral matrices characterizing each MTS in a given dataset. Caiado et al. [16] developed
hierarchical and non–hierarchical clustering of UTS on the basis of comparing normalized periodograms. Maharaj and D’Urso
[17] designed a fuzzy clustering technique for UTS using cepstral coefficients, and an extension incorporating weights for
each coefficient was proposed in [18] for clustering financial time series. A consistent estimate of the quantile cross-
spectral density was considered by López-Oriona and Vilar [10] to perform crisp clustering of MTS, extending later this strat-
egy to a fuzzy framework [19–21].

Spectral analysis has also played an important role in the context of hypothesis tests for time series. In particular, the
problem of testing the equality of spectral densities has found a substantial interest in the literature. Swanepoel and Van
Wyk [22] proposed different test statistics to compare the spectral densities of two independent stationary processes,
obtaining the corresponding critical values by means of a bootstrap procedure. Timmer et al. [23] introduced a bootstrap test
for checking for differences between spectral peak frequencies. The procedure consists of drawing new realizations of the
periodograms from two estimated spectra to reestimate the spectra and compute the distribution of the peak frequency dif-
ference. Maharaj [24] devised an approach to compare the evolutionary spectra of two non-stationary time series. Random-
ization tests are carried out on groups of spectral estimates for both related and independent series. Fokianos and Savvides
[25] compared spectral densities of several independent stationary processes by means of a novel semiparametric log-linear
model linking all the spectral densities under study. Dette and Paparoditis [26] proposed a bootstrap procedure to approx-
imate the null distribution of non-parametric test statistics about the spectral density matrix of a MTS. The asymptotic valid-
ity of the proposed approach is established under a set of general assumptions. Preuß et al. [27] proposed a test for
comparing spectral densities of stationary time series with unequal sample sizes. The procedure generalizes a class of tests
[28] based on estimating the L2-distance between the spectral density and its best approximation under the null hypothesis.
Jentsch and Pauly [29] constructed a non-parametric test through an L2-type statistic and calculated the critical values with
the help of randomization methods. More recently, a new approach for comparing the spectral densities of two independent
periodically correlated time series has been provided by Mahmoudi et al. [30].

The aim of the present work is to introduce procedures to test that the quantile cross-spectral densities (QCD) of two
independent MTS are equal. Specifically, let X 1ð Þ

t and X 2ð Þ
t be two independent, d-variate, real-valued strictly stationary

stochastic processes. Fixed a frequency x 2 �p;p½ � and a couple of probability levels, s; s0 2 0;1½ �, denote by f ið Þ x; s; s0ð Þ,
for i ¼ 1;2, the corresponding QCD matrices. The hypotheses we consider can be stated as
H0 : fX 1ð Þ
t

¼ fX 2ð Þ
t

against H1 : fX 1ð Þ
t

– fX 2ð Þ
t
; ð1Þ
where fX 1ð Þ
t

and fX 2ð Þ
t

are the sets of QCD matrices defined by
fX ið Þ
t
¼ f ið Þ x; s; s0ð Þ;x 2 �p;p½ �; s; s0 2 0;1½ �
n o

; for i ¼ 1;2: ð2Þ
In order to perform the hypothesis test in (1), we consider a distance measure between stationary stochastic processes, so-
called dQCD, which has already been used in several MTS data mining tasks [10,19–21]. The distance dQCD works as follows.
First, finite subsets of fX 1ð Þ

t
and fX 2ð Þ

t
in (2) are obtained by using a prefixed set of frequencies and probability levels. Then, dQCD

measures the Euclidean distance between the complex-valued vectors constructed by concatenating the terms of these sub-
sets. Since the null hypothesis is true iff dQCD is zero for every possible set of frequencies and probability levels, a test statistic
based on this metric is a suitable tool to carry out the test in (1).

One of the main advantages of our approach is the high capability of dQCD to describe any kind of dependence structure
behind a given MTS. Compared to the spectral density, the quantile cross-spectral density basically replaces covariances and
means by copulas and quantiles, thus being capable of providing a much richer picture of the underlying serial and cross-
dependency structure [31]. This way, dQCD has potential to detect differences between two stochastic processes which would
stay hidden by using other distances considered in the literature [19]. The tests based on QCD are consistent, in the sense
that, for a prefixed level, their power tends to one when the series have been generated from different processes. Note that
this is not the case with traditional test statistics. For instance, two MTS can have the same cross-correlations (or classical
cross-spectral densities) but different dependence structures.

Several methods for testing the hypotheses in (1) are introduced in this work. The first one is based on the asymptotic
distribution of dQCD. Applying results on the distribution of quadratic forms of normal random vectors, we establish that
dQCD can be asymptotically approximated by using a linear combination of central chi-square variables. However, obtaining
the distribution limit is computationally intensive, which makes the corresponding test quite slow. The second method falls
within the class of frequency domain bootstrap tests. We show that the hypotheses in (1) expressed in terms of dQCD are a
particular case of the general class of hypotheses defined by Dette and Paparoditis [26]. Therefore, we adapt the general
bootstrap procedure proposed in [26] and verify that the set of assumptions required to ensure its asymptotic validity are
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met. The crucial step of the procedure relies on the fact that QCD is the traditional spectral density for a specific bivariate
process, which enables us to generate pseudo-periodogram matrices under the null in order to approximate the distribution
of the test statistic. Lastly, we also consider two additional bootstrap approaches specifically designed to deal with depen-
dent data, namely the moving blocks bootstrap (MBB) [32,33] and the stationary bootstrap (SB) [34]. In both cases, the key
principle is to generate pseudo-series with the aim of mimicking the distribution under the null of a proper estimate of dQCD

without assuming specific parametric models for the generating processes.
The four approaches are compared in terms of size and power by means of a broad simulation study. Several types of gen-

erating processes are considered under the null and alternative hypotheses. Finally, the tests are applied to answer the ques-
tion about whether or not the dotcom bubble burst of 2000s changed the global behaviour of financial markets.

The rest of the article is organized as follows. The distance dQCD between stochastic processes is defined in Section 2. The
four techniques to carry out the test in (1) are presented in Sections 3 and 4. While the asymptotic test is developed in Sec-
tion 3, the bootstrap approaches are described in Section 4. The results from the simulation study performed to compare the
proposed tests are reported in Section 5. Section 6 contains the financial application and Section 7 concludes. The appendices
show how the asymptotic test proposed in Section 3 meets the assumptions required in [26].

2. A distance measure between stochastic processes

Let Xt; t 2 Zf g ¼ Xt;1; . . . ;Xt;d

� �
; t 2 Z

� �
be a d-variate real-valued strictly stationary stochastic process. Denote by Fj the

marginal distribution function of Xt;j; j ¼ 1; . . . ; d, and by qj sð Þ ¼ F�1
j sð Þ; s 2 0;1½ �, the corresponding quantile function. Fixed

l 2 Z and an arbitrary pair of quantile levels s; s0ð Þ 2 0;1½ �2, consider the cross-covariance of the indicator functions

I Xt;j1 6 qj1
sð Þ

n o
and I Xtþl;j2 6 qj2

s0ð Þ
n o

given by
cj1 ;j2 l; s; s0ð Þ ¼ Cov I Xt;j1 6 qj1
sð Þ

n o
; I Xtþl;j2 6 qj2

s0ð Þ
n o� �

;

for 1 6 j1; j2 6 d. Taking j1 ¼ j2 ¼ j, the function cj;j l; s; s0ð Þ, with s; s0ð Þ 2 0;1½ �2, so-called quantile autocovariance function
(QAF) of lag l, generalizes the traditional autocovariance function.

Under suitable summability conditions (mixing conditions), the Fourier transform of the cross-covariances is well-
defined and the quantile cross-spectral density (QCD) is given by
fj1 ;j2 x; s; s0ð Þ ¼ 1=2pð Þ
X1
l¼�1

cj1 ;j2 l; s; s0ð Þe�ilx; ð3Þ
for 1 6 j1; j2 6 d;x 2 R and s; s0 2 0;1½ �. Note that fj1 ;j2 x; s; s0ð Þ is complex-valued so that it can be represented in terms of its

real and imaginary parts, which will be denoted by R fj1 ;j2 x; s; s0ð Þ
� �

and I fj1 ;j2 x; s; s0ð Þ
� �

, respectively.

For fixed quantile levels s; s0ð Þ, QCD is the cross-spectral density of the bivariate process

I Xt;j1 6 qj1
sð Þ

n o
; I Xt;j2 6 qj2

s0ð Þ
n o� �

. Therefore, QCDmeasures dependence between two components of the multivariate pro-

cess over different ranges of their joint distribution and across frequencies. In order to obtain a complete representation of
the process, we can evaluate QCD for every couple of components on a range of frequencies X and of quantile levels T, i.e.,
consider the set of matrices
fXt
X;Tð Þ ¼ f x; s; s0ð Þ; x 2 X; s; s0 2 Tf g;
where f x; s; s0ð Þ denotes the d� d matrix in C given by
f x; s; s0ð Þ ¼ fj1 ;j2 x; s; s0ð Þ
� �

16j1 ;j26d
:

Representing Xt through fXt
, we have a valuable picture of both serial dependence and cross-sectional dependence of the

process. Comprehensive discussions about the nice properties of the quantile cross-spectral density are given in Baruník
and Kley [31] and López-Oriona et al. [19].

Based on these arguments, a dissimilarity measure between twomultivariate processes, X 1ð Þ
t and X 2ð Þ

t , could be established
by comparing their respective representations in terms of the QCD matrices, fX 1ð Þ

t
and fX 2ð Þ

t
, evaluated on a common range of

frequencies and quantile levels. Specifically, for a given set of K different frequencies, X ¼ x1; . . . ;xKf g, and r quantile levels,
T ¼ s1; . . . ; srf g, each stochastic process X uð Þ

t ;u ¼ 1;2, is characterized by means of a set of r2 vectors {W uð Þ
si ;si0

;1 6 i; i0 6 rg
given by
W uð Þ
si ;si0

¼ W
uð Þ
1;si ;si0

; . . . ;W
uð Þ
K;si ;si0

� �
; ð4Þ
where each W
uð Þ
k;si ;si0

; k ¼ 1; . . . ;K , denotes the vector of length d2 formed by rearranging by rows the elements of the matrix

f xk; si; si0ð Þ.
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Once the set of r2 vectors W uð Þ
si ;si0

is obtained, they are all concatenated in a vector W uð Þ in the same way as vectors W
uð Þ
k;si ;si0

constitute W uð Þ
si ;si0

in (4). Then, we define the dissimilarity between X 1ð Þ
t and X 2ð Þ

t by means of
dQCD X 1ð Þ
t ;X 2ð Þ

t

� �
¼ kW 1ð Þ �W 2ð Þk; ð5Þ
where kvk ¼ Pn
k¼1

jvkj2
� 	1=2

, with v ¼ v1; . . . ;vnð Þ being an arbitrary complex vector in Cn and j � j stands for the modulus of a

complex number. Note that dQCD in (5) can also be expressed as
dQCD X 1ð Þ
t ;X 2ð Þ

t

� �
¼ kRv W 1ð Þ� ��Rv W 2ð Þ� �k2 þ kIv W 1ð Þ� �� Iv W 2ð Þ� �k2h i1=2

;

where Rv and Iv denote the element-wise real and imaginary part operators, respectively.
Since, in practice, we only have finite-length realizations of the processes X 1ð Þ

t and X 2ð Þ
t , the value of dQCD is unknown and

must be properly estimated.
Let X1; . . . ;XTf g be a realization from the process Xtð Þt2Z so that Xt ¼ Xt;1; . . . ;Xt;d

� �
; t ¼ 1; . . . ; T. For arbitrary

j1; j2 2 1; . . . ; df g and s; s0ð Þ 2 0;1½ �2, Baruník and Kley [31] propose to estimate fj1 ;j2 x; s; s0ð Þ using a smoother of the cross-

periodograms based on the indicator functions I bFT;j Xt;j
� �n o

, where bFT;j xð Þ ¼ T�1PT
t¼1I Xt;j 6 x
� �

denotes the empirical distri-

bution function of Xt;j. This approach extends to the multivariate case the estimator proposed by Kley et al. [35] in the uni-
variate setting. More specifically, the called rank-based copula cross periodogram (CCR-periodogram) is defined by
Ij1 ;j2T;R x; s; s0ð Þ ¼ 1
2pT dj1

T;R x; sð Þdj2
T;R �x; s0ð Þ;
where
dj
T;R x; sð Þ ¼

XT
t¼1

I bFT;j Xt;j
� �

6 s
n o

e�ixt :
The asymptotic properties of the CCR-periodogram are established in Proposition S4.1 of [31]. Likewise the standard cross-
periodogram, the CCR-periodogram is not a consistent estimate of fj1 ;j2 x; s; s0ð Þ. To achieve consistency, the CCR-periodogram
ordinates (evaluated on the Fourier frequencies) are convolved with weighting functions WT �ð Þ. The smoothed CCR-
periodogram takes the form
bGj1 ;j2
T;R x; s; s0ð Þ ¼ 2p

T

XT�1

s¼1

WT x� 2ps
T

� 	
Ij1 ;j2T;R

2ps
T

; s; s0
� 	

; ð6Þ
where
WT uð Þ ¼
X1
v¼�1

1
hT

W
uþ 2pv

hT

� 	
;

with hT > 0 a sequence of bandwidths such that hT ! 0 and ThT ! 1 as T ! 1, andW is a real-valued, even weight function

with support �p;p½ �. Consistency and asymptotic performance of the smoothed CCR-periodogram bGj1 ;j2
T;R x; s; s0ð Þ are estab-

lished in Theorem S4.1 of [31].
By considering the smoothed CCR-periodogram for every component of the vectors W 1ð Þ and W 2ð Þ, we obtain their esti-

mated counterparts Ŵ
1ð Þ

and Ŵ
2ð Þ
, which allow to construct a consistent estimate of dQCD by defining
d̂QCD X 1ð Þ
t ;X 2ð Þ

t

� �
¼ kŴ 1ð Þ � Ŵ

2ð Þk: ð7Þ
The statistic d̂QCD X 1ð Þ
t ;X 2ð Þ

t

� �
has been successfully applied to perform clustering of MTS in crisp [10] and fuzzy [19–21]

frameworks.
In upcoming sections, several procedures to address the problem of testing (1) are constructed. All of them are based on

the distance dQCD defined in (5).

3. Testing for equality of quantile cross-spectral densities on the basis of the asymptotic distribution of bdQCD

The first testing procedure is based on the asymptotic distribution of the estimate bdQCD. Applying an important result

about the distribution of a general quadratic form of a normal random vector, the limiting distribution of bdQCD is stated
and used for testing the hypotheses in (1).
258
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3.1. Distribution of quadratic forms of a normal random vector

In this section, we follow some arguments given in [36]. Let Y ¼ Y1; . . . ;Yp
� �| be a p-variate random vector having a nor-

mal distribution with expectation vector l and covariance matrix R. Given the matrix L 2 Symp Rð Þ, consider the quadratic
form
Q Yð Þ ¼ Y|LY ¼
Xp
i¼1

Xp
j¼1

lijY iYj: ð8Þ
Assuming that R is invertible, the vector Z ¼ R�1=2 Y � lð Þ follows a standard multivariate normal distribution, and we can
write
Q Yð Þ ¼ Z þ R�1=2l
� �|

R1=2LR1=2 Z þ R�1=2l
� �

:

Applying the spectral theorem for symmetric matrices to the symmetric matrix R1=2LR1=2, we have R1=2LR1=2 ¼ P|KP, where P
is an orthogonal matrix (so that PP| ¼ P|P ¼ I), and K ¼ diag k1; . . . ; kp

� �
with positive diagonal entries consisting of the

eigenvalues of the matrix R1=2LR1=2. Define now R ¼ PZ so that R ¼ R1; . . . ;Rp
� �| is multivariate normal with expectation zero

and identity covariance matrix. Taking into account the previous considerations, we can express now the quadratic form as
Q Yð Þ ¼ Z þ R�1=2l
� �|

P|KP Z þ R�1=2l
� �

¼ PZ þ PR�1=2l
� �|

K PZ þ PR�1=2l
� �

¼ Rþ bð Þ|K Rþ bð Þ;
where b ¼ PR�1=2l. Hence
Q Yð Þ ¼ Y|LY ¼
Xp
i¼1

ki Ri þ bið Þ2:
Therefore, the quadratic form Q Yð Þ has the distribution of a linear combination of independent, non-central, chi-square vari-
ables, with the coefficients of the combination given by the eigenvalues of R1=2LR1=2. The distribution function of a linear
combination of independent chi-square variables has been extensively studied (see e.g., [37] for the central case and [38]
for the non-central case). The R-package CompQuadForm [39] provides a framework for working numerically with these
types of distributions.

3.2. Asymptotic distribution of bdQCD

Given two independent realizations of length T from the d-variate stochastic processes X 1ð Þ
t and X 2ð Þ

t , consider the distance

measure d̂QCD X 1ð Þ
t ;X 2ð Þ

t

� �
¼ kŴ 1ð Þ � Ŵ

2ð Þk introduced in (7). For the sake of simplicity, the elements of the complex random

vector of smoothed CCR-periodograms Ŵ
ið Þ
; i ¼ 1;2, are indexed by a unique index v ranging from 1 tom ¼ Kd2r2, thus denot-

ing Ŵ
ið Þ ¼ Ŵ

ið Þ
1 ; . . . ; Ŵ

ið Þ
m

� �|
. Note that each value of the index is really associated to a specific 5-tuple of indexes,

v ¼ v1;v2; v3;v4;v5ð Þ, whose components indicate: a pair of probability levels sv1 ; sv2

� �
, with 1 6 v1;v2 6 r, a pair of dimen-

sions jv3
; jv4

� �
, with 1 6 v3;v4 6 d, and a single frequency xv5 , with 1 6 v5 6 K . Analogously, the corresponding vectors of

quantile cross-spectral densities are denoted by W ið Þ ¼ W ið Þ
1 ; . . . ;W ið Þ

m

� �|
; i ¼ 1;2. From Theorem S4.1 in [31], we can state that

the vector E ið Þ ¼
ffiffiffiffiffiffiffiffi
ThT

p
Ŵ

ðiÞ �WðiÞ
� �

; i ¼ 1; 2, asymptotically follows a circularly-symmetric Gaussian distribution character-

ized by the covariance matrix C ið Þ, whose v ; sð Þ-element, for v ; s ¼ 1; . . . ;m, is given by
C ið Þ
v;s ¼ Cov E ið Þ

v ; E ið Þ
s

� �
¼ A Bv;s þ Cv;sð Þ þ f; ð9Þ
where f � 0 is a negligible term provided that the bandwidth hT is chosen accordingly, and
A ¼ 2p
R p
�p W

2 að Þda
� �

;

Bv;s ¼ f ið Þ
jv3 ;js3

xv5 ; sv1 ; ss1
� �

f ið Þ
jv4 ;js4

�xv5 ; sv2 ; ss2
� �

g xv5 �xs5

� �
;

Cv;s ¼ f ið Þ
jv3 ;js4

xv5 ; sv1 ; ss2
� �

f ið Þ
jv4 ;js3

�xv5 ; sv2 ; ss1
� �

g xv5 þxs5

� �
;

ð10Þ
being g xð Þ ¼ I x ¼ 0 mod2pð Þf g the 2p-periodic extension of Kroneckers’s delta function. An estimator bC ið Þ of C ið Þ can be

obtained by replacing in (9) the unknown terms Bv ;s and Cv ;s by the estimates bBv ;s and bCv ;s based on the corresponding
smoothed CCR-periodograms given in (6).

Now, for i ¼ 1;2, denote by
259
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Ĥ
ið Þ ¼ R Ŵ

ið Þ
1

� �
; . . . ;R Ŵ

ið Þ
m

� �
;I Ŵ

ið Þ
1

� �
; . . . ;I Ŵ

ið Þ
m

� �� �|

the estimate of the vector obtained by concatenating the real and imaginary parts in W ið Þ, i.e.,

H ið Þ ¼ R W ið Þ
1

� �
; . . . ;R W ið Þ

m

� �
;I W ið Þ

1

� �
; . . . ;I W ið Þ

m

� �� �|
. From the circularly symmetrical character of the vector E ið Þ and its

asymptotic behavior follows that the real random vector
ffiffiffiffiffiffiffiffi
ThT

p
H
^ ið Þ

�H ið Þ
 !

is asymptotically normally distributed with zero

mean and covariance matrix bR ið Þ given by
bR ið Þ ¼ 1
2

R bC ið Þ
� �

�I bC ið Þ
� �

I bC ið Þ
� �

R bC ið Þ
� �

264
375:
Furthermore, as we deal with independent realizations, it also holds that the vector
ffiffiffiffiffiffiffiffi
ThT

p
Ĥ

1ð Þ �H 1ð Þ
� �

� Ĥ
2ð Þ �H 2ð Þ

� �� �
is

asymptotically normal distributed with zero mean and covariance matrix bR 1ð Þ þ bR 2ð Þ.
Now, since the square of the estimated QCD-distance between X 1ð Þ

t and X 2ð Þ
t can be written as
d̂
2

QCD X 1ð Þ
t ;X 2ð Þ

t

� �
¼ Ĥ

1ð Þ � Ĥ
2ð Þ� �|

Ĥ
1ð Þ � Ĥ

2ð Þ� �
; ð11Þ
we have
 ffiffiffiffiffiffiffiffi
ThT

p
Ĥ

1ð Þ � Ĥ
2ð Þ � H 1ð Þ �H 2ð Þ� �h i|

Ĥ
1ð Þ � Ĥ

2ð Þ � H 1ð Þ �H 2ð Þ� �h i ffiffiffiffiffiffiffiffi
ThT

p
¼

ThT d̂
2

QCD X 1ð Þ
t ;X 2ð Þ

t

� �
� 2 H 1ð Þ �H 2ð Þ� �|

Ĥ
1ð Þ � Ĥ

2ð Þ� �
þ kH 1ð Þ �H 2ð Þk2

h i
:

ð12Þ
The first term of the equality in (12) corresponds to a quadratic form of an asymptotically normal random vector in the terms

of (8). In fact, it is enough to consider Y ¼
ffiffiffiffiffiffiffiffi
ThT

p
Ĥ

1ð Þ � Ĥ
2ð Þ � H 1ð Þ �H 2ð Þ� �h i

;l ¼ 0;R ¼ R̂
1ð Þ þ R̂

2ð Þ
, and L the identity matrix.

Hence, the same arguments employed in Section 3.1 allow us to conclude that
ThT d̂
2

QCD X 1ð Þ
t ;X 2ð Þ

t

� �
� 2 H 1ð Þ �H 2ð Þ� �|

Ĥ
1ð Þ � Ĥ

2ð Þ� �
þ kH 1ð Þ �H 2ð Þk2

h i
!d P2m

i¼1
kiR

2
i ; as T ! 1;

ð13Þ
where k1; . . . ; k2m are the eigenvalues of R ¼ bR 1ð Þ þ bR 2ð Þ and R1; . . . ;R2m are mutually independent standard normal variables.
Therefore, the limit distribution in (13) is a linear combination of central chi-square variables with coefficients determined

by the matrix bR 1ð Þ þ bR 2ð Þ. We denote this distribution by D2
QCD

bC 1ð Þ; bC 2ð Þ
� �

.

3.3. The hypothesis test

The asymptotic distribution derived in (13) can be used to test for equality of the quantile cross-spectral densities of the
stochastic processes X 1ð Þ

t and X 2ð Þ
t , as stated in (1). The hypotheses in (1) are replaced by
H0 : dQCD X 1ð Þ
t ;X 2ð Þ

t

� �
¼ 0 against H1 : dQCD X 1ð Þ

t ;X 2ð Þ
t

� �
> 0; ð14Þ
or, equivalently, by
H0 : d 2
QCD X 1ð Þ

t ;X 2ð Þ
t

� �
¼ 0 against H1 : d

2
QCD X 1ð Þ

t ;X 2ð Þ
t

� �
> 0: ð15Þ
Note that the hypothesis tests in (14) and (15) are not consistent, since the discretisation on the quantile levels does not

guarantee that dQCD X 1ð Þ
t ;X 2ð Þ

t

� �
> 0 if X 1ð Þ

t and X 2ð Þ
t are different stochastic processes. However, in practice, a small set of prob-

ability levels has proven to be enough to capture most types of discrepancies [10,19].
Under the null hypothesis, the two MTS come from the same generating process so that H 1ð Þ ¼ H 2ð Þ. Then, from (13) fol-

lows that the asymptotic distribution of the test statistic under the null becomes
ThT d̂
2

QCD X 1ð Þ
t ;X 2ð Þ

t

� �
�
X2m
i¼1

kiR
2
i : ð16Þ
The null hypothesis must be rejected for large values of the test statistic. Hence, for a given significance level a 2 0;1ð Þ, the
decision rule consists of rejecting H0 if
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ThT d̂
2

QCD X 1ð Þ
t ;X 2ð Þ

t

� �
> D2

QCD
bC 1ð Þ

; bC 2ð Þ
� 	

1�a
;

where D2
QCD

bC 1ð Þ; bC 2ð Þ
� �

1�a
denotes the 1� að Þ-quantile in the distribution D2

QCD
bC 1ð Þ; bC 2ð Þ
� �

.

4. Testing for equality of quantile cross-spectral densities by means of bootstrap procedures

Bootstrap methods provide an alternative way of approximating the null distribution of the test statistic bdQCD. In this sec-

tion, three nonparametric resampling procedures based on bootstrapping bdQCD are introduced. The first test is a frequency
domain bootstrap approach whose asymptotic validity follows from the bootstrap central limit theorem established in
[26]. The remaining two approaches consider well known bootstrap methods for dependent data. The key principle is to
draw pseudo-series capturing the dependence structure without assuming any parametric model.

4.1. A frequency domain bootstrap test

The first bootstrap test follows the general bootstrap methodology developed by Dette and Paparoditis [26]. Specifically,
the following general class of hypotheses is considered in [26]:
H0 :

Z p

�p
ku g xð Þ;xð Þk2 dx ¼ 0 against H1 :

Z p

�p
ku g xð Þ;xð Þk2 dx > 0; ð17Þ
where g xð Þ denotes the spectral density matrix of the underlying m-dimensional stationary process, and
u : D� �p;p½ � ! Cr is some suitable vector-valued function specifying the particular null hypothesis of interest. It is
assumed that D is an open subset of Cm�m containing the spectral density matrices. Then, a test statistic for the general
hypotheses in (17) can be obtained by replacing g xð Þ by a nonparametric estimator bg xð Þ, i.e., by considering
ST uð Þ ¼
Z p

�p
ku bg xð Þ;x� �k2 dx: ð18Þ
Assuming some regularity conditions on the function u (Assumption 2 in [26]), Dette and Paparoditis introduce a general
bootstrap method to correctly approximate the null distribution of ST uð Þ based on two principles: (i) the pseudo-
periodogram matrices generated to construct the bootstrap replicates of the test statistic must satisfy the null hypothesis
even if this hypothesis is not true, and (ii) the prior condition is met when the estimated spectral density matrices used
to generate the pseudo-periodograms satisfy the set of requirements summarized in Condition 1 in [26]. To adjust this
approach to our framework, our aim was to construct suitable estimates of the quantile cross-spectral density matrices sat-
isfying the requirements in Condition 1, which ensures the asymptotic validity of the bootstrap procedure according with
Theorem 1 in [26].

We proceed as follows. Let X 1ð Þ
t ¼ X 1ð Þ

t;1 ; . . . ;X
1ð Þ
t;d

� �
; t 2 Z

n o
and X 2ð Þ

t ¼ X 2ð Þ
t;1 ; . . . ;X

2ð Þ
t;d

� �
; t 2 Z

n o
be two d-dimensional strictly

stationary stochastic processes. Given the set of quantile levels T ¼ s1; . . . ; srf g, define the process
Zt ¼ Z 1ð Þ
t ;Z 2ð Þ

t

� �
; ð19Þ
where
Z ið Þ
t ¼ eZ ið Þ

1 s1ð Þ; . . . eZ ið Þ
1 srð Þ; eZ ið Þ

2 s1ð Þ; . . . eZ ið Þ
2 srð Þ; eZ ið Þ

d s1ð Þ; . . . eZ ið Þ
d srð Þ

� �
;

with components
eZ ið Þ
k sj
� � ¼ I X ið Þ

t;k 6 q ið Þ
k sj
� �n o

� sj;
for i ¼ 1;2; k ¼ 1; . . . ; d, and j ¼ 1; . . . ; r, with q ið Þ
k �ð Þ being the quantile function of the k-th variable in the i-th process.

Since Z 1ð Þ
t and Z 2ð Þ

t are independent processes, the spectral density matrix of Zt , let us say gz xð Þ, can be written as
gz xð Þ ¼ g 1ð Þ
z xð Þ 0rd

0rd g 2ð Þ
z xð Þ

 !
;

where 0rd denotes the square zero matrix of order rd, and g ið Þ
z xð Þ denotes the spectral density matrix of Z ið Þ

t ; i ¼ 1; 2, given by
g ið Þ
z xð Þ ¼

f ið Þ
1;1 xð Þ � � � f ið Þ

1;d xð Þ
..
. . .

. ..
.

f ið Þ
d;1 xð Þ � � � f ið Þ

d;d xð Þ

0BBB@
1CCCA; with f ið Þ

l;s xð Þ ¼ f ið Þ
l;s x; su; svð Þ

� �
16u;v6r

: ð20Þ
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Now, denote by vec �ð Þ the operator that vectorizes a matrix concatenating by rows its elements and consider the following
specification for the function u in (17):
u gz xð Þ;xð Þ ¼ vec g 1ð Þ
z xð Þ� �� vec g 2ð Þ

z xð Þ� �
: ð21Þ
We have
ku gz xð Þ;xð Þk ¼ dQCD;x X 1ð Þ
t ;X 2ð Þ

t

� �
;

where the subscript x added to dQCD indicates that the distance is only computed for the frequency x. Hence, the general
hypotheses in (17) become
H0 :

Z p

�p
d2
QCD;x X 1ð Þ

t ;X 2ð Þ
t

� �
dx ¼ 0 vs H1 :

Z p

�p
d2
QCD;x X 1ð Þ

t ;X 2ð Þ
t

� �
dx > 0: ð22Þ
This way, the test for equality of the quantile cross-spectral densities is stated as a particular case of the general specification
introduced in (17) and in terms of QCD-distances. Given realizations of length T from X 1ð Þ

t and X 2ð Þ
t , we proceed as in (18) and

obtain a test statistic, ST uð Þ, replacing d2
QCD;x by their estimates bd 2

QCD;x. In practice, the finite set of Fourier frequencies is used,

thus giving rise to the test statistic d̂
2

QCD X 1ð Þ
t ;X 2ð Þ

t

� �
, or simply d̂QCD X 1ð Þ

t ;X 2ð Þ
t

� �
.

The bootstrap procedure to approximate the distribution of the test statistic d̂QCD X 1ð Þ
t ;X 2ð Þ

t

� �
under the null hypothesis is

sketched as follows.
STEP 1. Given the set of Fourier frequencies xk ¼ 2pk=T; 1 6 k 6 T � 1ð Þf g, generate two sets of T � 1ð Þ independent

matrices
I ið Þ� xkð Þ ¼ bGz xkð Þ1=2W�
k
bGz xkð Þ1=2; i ¼ 1;2;
where bGz xkð Þ is given by
bGz xkð Þ ¼ 1
2
bG 1ð Þ

z xkð Þ þ bG 2ð Þ
z xkð Þ

� �
; ð23Þ
with Ĝ ið Þ
z being the matrix of smoothed CCR-periodograms based on the realization of Z ið Þ

t (i.e., an estimate of the spectral

density matrix g ið Þ
z in (20)) and
W�
k �

WC 1; Idrð Þ 1 6 k 6 T=2
WR 1; Idrð Þ k 2 T=2f g
W�

T�k T=2 6 k 6 T � 1ð Þ;

8><>:

where WC and WR denote the complex and real Wishart distributions and Idr stands for the identity matrix of order dr.

STep 2. Construct the bootstrap quantile cross-spectral density matrices estimates, bG ið Þ�
z xkð Þ; i ¼ 1;2; k ¼ 1; . . . ; T , by

smoothing I ið Þ� xkð Þ in the form
bG ið Þ�
z xkð Þ ¼ 2p

T

XT�1

s¼1

WT xk �xsð ÞI ið Þ� xsð Þ:
STep 3. Based on bG 1ð Þ�
z and bG 2ð Þ�

z , construct the bootstrap version of d̂QCD; d̂
�
QCD.

STep 4. Repeat Steps 1–3 a large number B of times to obtain the bootstrap replicates bd 1ð Þ�
QCD ; . . . ;

bd Bð Þ�
QCD .

STep 5. Given a significance level a, compute the quantile of order 1� a; q�
1�a, based on the set bd 1ð Þ�

QCD ; . . . ;
bd Bð Þ�
QCD

n o
. Then, the

decision rule consists of rejecting H0 if d̂QCD X 1ð Þ
t ;X 2ð Þ

t

� �
> q�

1�a.

A few remarks about the bootstrap procedure are given below.
Remark 1. The approach to build the pseudo-periodogram matrices I ið Þ� xkð Þ in Step 1 is based on the fact that the peri-

odogram matrix I xkð Þ of a strictly stationary process can be approximated by
I xkð Þ ¼ g1=2 xkð ÞU xkð Þg 1=2 xkð Þ;

where the matrices U xkð Þ;1 6 k 6 T � 1ð Þ, are asymptotically independent, complex Wishart distributed if xk – 0 modpð Þ
and real Wishart distributed if xk ¼ 0 modpð Þ (see Section 11.7 in [40]). The spectral density matrix g xkð Þ is replaced by
a proper estimate (see Remark 2 below).
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Remark 2. The average matrix Ĝz xkð Þ is used to construct I ið Þ� xkð Þ; i ¼ 1;2; k ¼ 1; . . . ; T � 1ð Þ. This choice constitutes a cru-
cial point in the bootstrap procedure by ensuring that the estimate used to generate the bootstrap replicates, bg xð Þ in (18),
satisfies the null hypothesis of interest.

Remark 3. Since our hypothesis testing problem fits into the general specification (17), the asymptotic validity of the pro-
posed bootstrap method follows from Theorem 1 in [26], once the requirements of this result are shown to hold. Broadly
speaking, these requirements involve: the existence of the spectral matrices of the underlying processes (Assumption 1),
specific properties of the general function u in (17) (Assumption 2), a set of regularity hypotheses on the kernel function
W and the bandwidth hT (Assumptions 3 and 4, respectively), and lastly a set of requirements imposed on the estimatebg xð Þ (Condition 1). We show in the Appendix that the bootstrap procedure constructed throughout this section verifies
all the required assumptions.

From now on, we will refer to the test presented in this section as FDB (Frequency Domain Bootstrap).

4.2. A test based on the moving blocks bootstrap

In this section, we introduce an alternative bootstrap test based on a modification of the classical moving blocks bootstrap
(MBB) method [32,33]. MBB generates replicates of the time series by joining blocks of fixed length, which have been drawn
randomly with replacement from among blocks of the original realizations. This approach allows to mimic the underlying
dependence structure without assuming specific parametric models for the generating processes.

Given two realizations of the d-dimensional stochastic processes X 1ð Þ
t and X 2ð Þ

t , denoted by Xt
1ð Þ ¼ X 1ð Þ

1 ; . . . ;X 1ð Þ
T

n o
and

Xt
2ð Þ ¼ X 2ð Þ

1 ; . . . ;X 2ð Þ
T

n o
, respectively, the procedure proceeds as follows.

STep 1.Fix a positive integer, b, representing the block size, and take k equal to the smallest integer greater than or equal to
T=b.

STep 2. For each realization, define the block B ið Þ
j ¼ X ið Þ

j ; . . . ;X ið Þ
jþb�1

n o
, for j ¼ 1; . . . ; q, with q ¼ T � bþ 1. Let

�B ¼ B 1ð Þ
j ; . . . ;B 1ð Þ

q ;B 2ð Þ
j ; . . . ;B 2ð Þ

q

n o
be the set of all blocks, that is including those coming from Xt

1ð Þ
and from Xt

2ð Þ
.

STep 3. Draw two sets of k blocks, n ið Þ ¼ n
ið Þ
1 ; . . . ; n

ið Þ
k

n o
; i ¼ 1; 2, with equiprobable distribution from B. Note that each

n
ið Þ
j ; j ¼ 1; . . . ; k; i ¼ 1; 2, is a b-dimensional MTS, let us say n

ið Þ
1j ; n

ið Þ
2j ; . . . ; n

ið Þ
bj

� �
.

STep 4. For each i ¼ 1;2, construct the pseudo-series Xt
ið Þ�

by taking the first T elements of:
n ið Þ ¼ n
ið Þ
11; n

ið Þ
21; . . . ; n

ið Þ
b1; n

ið Þ
12; n

ið Þ
22; . . . ; n

ið Þ
b2; . . . ; n

ið Þ
1k; n

ið Þ
2k; . . . ; n

ið Þ
bk

� �
:

Then, obtain the bootstrap version bd�
QCD of bdQCD based on the pseudo-series Xt

1ð Þ�
and Xt

2ð Þ�
.

STep 5. Repeat Steps 3 and 4 a large number B of times to obtain the bootstrap replicates bd 1ð Þ�
QCD; . . . ;

bd Bð Þ�
QCD.

STep 6. Given a significance level a, compute the quantile of order 1� a; q�
1�a, based on the set bd 1ð Þ�

QCD ; . . . ;
bd Bð Þ�
QCD

n o
. Then, the

decision rule consists of rejecting H0 if d̂QCD X 1ð Þ
t ;X 2ð Þ

t

� �
> q�

1�a.

Note that, by considering the whole set of blocks B in Step 2, both pseudo-time series Xt
1ð Þ�

and Xt
2ð Þ�

contain information

about the original series Xt
1ð Þ
and Xt

2ð Þ
in equal measure. This way, the bootstrap procedure is able to approximate correctly

the distribution of the test statistic bdQCD under the null hypothesis even if this hypothesis is not true.
From now on, we will refer to the test presented in this section as MBB.

4.3. A test based on the stationary bootstrap

The third bootstrap mechanism to approximate the distribution of bdQCD adapts the classical stationary bootstrap (SB) [34].
This resampling method is aimed at overcoming the lack of stationarity of the MBB procedure. Note that dQCD is well-defined
only for stationary processes, so it is desirable that a bootstrap technique based on this metric generates stationary pseudo-
series.

For two realizations Xt
1ð Þ ¼ X 1ð Þ

1 ; . . . ;X 1ð Þ
T

n o
and Xt

2ð Þ ¼ X 2ð Þ
1 ; . . . ;X 2ð Þ

T

n o
from the d-dimensional stochastic processes X 1ð Þ

t

and X 2ð Þ
t , respectively, the SB method proceeds as follows.

STep 1. Fix a positive real number p 2 0;1½ �.
STep 2. Draw randomly two observations from the set Xt

�
¼ Xt

1ð Þ
;Xt

2ð Þn o
. The drawn observations are of the form X

kið Þ
ji

for

some ki ¼ 1;2; ji ¼ 1; . . . ; T , and i ¼ 1;2. Then, X
kið Þ

ji
is taken as the first element of the pseudo-series Xt

ið Þ�
, i.e., X1

ið Þ� ¼ X
kið Þ

ji
,

for i ¼ 1;2.
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STep 3. Once obtained X l
ið Þ� ¼ X

kið Þ
ji

, for l < T and i ¼ 1;2, the next bootstrap replication �X
ið Þ�
lþ1 is defined as X

kið Þ
jiþ1

with prob-

ability 1� p, and drawn from Xt

�
with probability p. When ji ¼ T , the selected observation is X 2ð Þ

1 if ki ¼ 1 and X 1ð Þ
1 if ki ¼ 2.

STep 4. Repeat Step 3 until the pseudo-series Xt
1ð Þ�

and Xt
2ð Þ�

contain T observations. Based on the pseudo-series Xt
1ð Þ�

and

Xt
2ð Þ�

, compute the bootstrap version bd�
QCD of bdQCD.

STep 5. Repeat B times Steps 2–4 to obtain bd 1ð Þ�
QCD; . . . ;

bd Bð Þ�
QCD.

STep 6. Given a significance level a, compute the quantile of order 1� a; q�
1�a, based on the set bd 1ð Þ�

QCD ; . . . ;
bd Bð Þ�
QCD

n o
. Then, the

decision rule consists of rejecting H0 if d̂QCD X 1ð Þ
t ;X 2ð Þ

t

� �
> q�

1�a.

It is worth remarking that, likewise MBB procedure, a proper approximation of the null distribution of bdQCD is also ensured

here due to consider the pooled time series fXt in the generating mechanism.
From now on, we will refer to the test presented in this section as SB.

5. Simulation study

In this section, we carry out a simulation study conducted to assess the performance with finite samples of the testing
procedures presented in Sections 3 and 4. After describing the simulation mechanism, the main results are discussed.

5.1. Experimental design

The behavior of the testing methods was examined with pairs of MTS realizations, Xt
1ð Þ ¼ X 1ð Þ

1 ; . . . ;X 1ð Þ
T

n o
and

Xt
2ð Þ ¼ X 2ð Þ

1 ; . . . ;X 2ð Þ
T

n o
, simulated from bivariate processes selected to cover different dependence structures. Specifically,

three types of generating models were considered, namely VARMA processes, nonlinear processes, and dynamic conditional
correlation models. In all cases, the deviation from the null hypothesis of equal underlying processes was established in
accordance with two criteria: (i) differences in the coefficients of the generating models (Scenarios 1, 2 and 3), and (ii) dif-
ferences in the covariance structures or in the error distributions (Scenarios 4, 5 and 6). At each scenario, the degree of devi-
ation between the simulated realizations is regulated by specific parameters (d and c) included in the formulation of the
models. The specific generating models concerning each scenario are given below, taking into account that, unless otherwise
stated, the error process �t;1; �t;2ð Þ| consists of iid realizations following a bivariate Gaussian distribution.

Scenario 1. VAR(1) models given by
Xt;1

Xt;2

� 	
¼ 0:1þ d 0:1þ d

0:1þ d 0:1þ d

� 	
Xt�1;1

Xt�1;2

� 	
þ �t;1

�t;2

� 	
:

Scenario 2. TAR (threshold autoregressive) models given by
Xt;1

Xt;2

� 	
¼

0:9� dð ÞXt�1;2I jXt�1;1 j61f g þ d� 0:3ð ÞXt�1;1I jXt�1;1 j>1f g
0:9� dð ÞXt�1;1I jXt�1;2 j61f g þ d� 0:3ð ÞXt�1;2I jXt�1;2 j>1f g

 !
þ �t;1

�t;2

� 	
:

Scenario 3. GARCH models in the form Xt;1;Xt;2ð Þ| ¼ rt;1�t;1;rt;2�t;2ð Þ| with
r2
t;1 ¼ 0:01þ 0:05X2

t�1;1 þ 0:94r2
t�1;1;

r2
t;2 ¼ 0:5þ 0:2X2

t�1;2 þ 0:5r2
t�1;2;

�t;1
�t;2

� 	
� N

0
0

� 	
;

1 qt

qt 1

� 	� �
;

where the correlation between the standardized shocks is given by qt ¼ 0:9� d.

In Scenarios 1–3, Xt
1ð Þ
is always generated by taking d ¼ 0, while Xt

2ð Þ
is generated using different values of d, thus allow-

ing to obtain simulation schemes under the null, when d ¼ 0 also for Xt
2ð Þ, and under the alternative otherwise.

Scenario 4. Models in Scenario 1 with d ¼ 0 for both realizations and covariance matrix of the error process in the form
1 c
c 1

� 	
.

Scenario 5. Models in Scenario 2 with d ¼ 0 for both realizations and different error distributions: a zero-mean Gaussian
distribution for Xt

1ð Þ and a multivariate t distribution with c degrees of freedom for Xt
2ð Þ.

Scenario 6. Models in Scenario 3 with d ¼ 0 for both realizations and different error distributions: a zero-mean Gaussian

distribution for Xt
1ð Þ
and a multivariate t distribution with c degrees of freedom for Xt

2ð Þ
.
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In Scenarios 4–6, the deviation degree is governed by c. In Scenario 4, Xt
1ð Þ

is always generated with c ¼ 0, while Xt
2ð Þ

comes from taking c ¼ 0 or c – 0 depending on whether the null or alternative is respectively required. Since the t distribu-
tion converges to a standard normal distribution as the number of degrees of freedom tends to infinity, the null hypothesis in
Scenarios 5 and 6 corresponds to an arbitrarily large value of c (c ¼ 107), while the alternative is reached using small values
of this parameter.

Note that, unlike Scenarios 1 and 2, Scenario 3 considers realizations with different covariance structure for the error vec-
tors. Therefore, Scenario 6 is constructed in a different way than Scenarios 4 and 5.

Before examining the behaviour of the testing methods in the described scenarios, as a preliminary step, we carried out a
graphical inspection of the quality of the approximations under the null provided by the different approaches. To that aim,
we considered pairs of realizations of length T ¼ 200 coming from the VAR(1) process in Scenario 1 with d ¼ 0. In this setup,

the true finite sample density of the test statistic bd 2
QCD was approximated via Monte Carlo and compared with the asymptotic

density in (16) and with nonparametric density estimates based on 500 bootstrap replicates generated with the FDB, MBB
and SB techniques. All of these densities are shown in Fig. 1.

It is clear from Fig. 1 that, whereas the bootstrap approaches provide a reliable estimation of the underlying density, the
asymptotic distribution yields a very poor approximation. The same graphical inspection was also carried out in other sce-
narios considering moderate values for the series length and similar conclusions were reached. In addition, the computation
times associated with the bootstrap methods are far below the ones for the asymptotic distribution. Specifically, computa-
tion of the densities in Fig. 1 took approximately 3.85, 1.58 and 1.64 min for the procedures FDB, MBB and SB, respectively,
and 150.19 min in the case of the asymptotic distribution. Based on these arguments, and although the asymptotic distribu-

tion of bdQCD could be useful for several purposes, we decided to eliminate the asymptotic test from the simulation study.
To assess empirically the size and power behavior of the different bootstrap methods, 200 replications of pairs of realiza-

tions Xt
1ð Þ
and Xt

2ð Þ
coming from the processes at each scenario were obtained. Realizations Xt

2ð Þ
were generated according

to the specific values of d and c given in Table 1.
Fig. 1. Comparison between the true finite sample density of bd 2
QCD under the null in Scenario 1 (T ¼ 200) and the approximations provided by its asymptotic

distribution (top left) and the bootstrap methods FDB (top right), MBB (bottom left) and SB (bottom right).
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At each trial, B ¼ 200 bootstrap replicates were considered to approximate the distribution of the test statistic under the

null hypothesis. In all cases, we selected the bandwidth hT ¼ T�1=3 to compute bdQCD and its bootstrap replicates. This choice
ensures the consistency of the smoothed CCR-periodogram as an estimate of QCD (Theorem S4.1 in [31]) and the asymptotic
validity of the FDB method (Assumption 4 in [26]). As for the two remaining methods, we chose b ¼ T1=3 and p ¼ T�1=3 for the
block size in MBB and the probability in SB, respectively, since both values led to the best overall behavior of both procedures
in our numerical experiments. Note that these choices are also consistent with the related literature. For instance, [41]
addressed the issue of selecting b in the context of bias and variance bootstrap estimation, concluding that the optimal block
size is of order T1=3. On the other hand, since the mean block size in SB corresponds to 1=p, it is reasonable to select p of order
T�1=3.

Simulations were carried out for different values of T. Our results showed that the three bootstrap procedures exhibit rel-
atively high power when low to moderate sample sizes are used. However, larger samples sizes are necessary to reach a rea-
sonable approximation of the nominal level. For this reason, the results included in next section correspond to
T 2 500;1000f g, in the case of the null hypothesis, and T 2 100;200;300f g, in the case of the alternative hypothesis. In all
cases, the results were obtained for a significance level a ¼ 0:05.
5.2. Results and discussion

The results under the null hypothesis are summarized in Table 2, where the simulated rejection probabilities of the pro-
posed bootstrap tests are displayed.

Table 2 clearly shows that the three bootstrap techniques exhibit different behaviors under the null hypothesis. The fre-
quency domain-based test FDB is rather conservative when T ¼ 500, providing rejection rates substantially lower than the
theoretical ones. However, when increasing the value of the series length, the rejection levels of this test get close to 0.05.
The MBB method provides rejection probabilities greater than expected for both values of T. In fact, the deviation from the
theoretical significance level is more marked when T ¼ 1000, particularly for Scenarios 3 and 5. The remaining technique SB
seems to adjust the significance level quite well in all the analysed scenarios, which makes this test the most accurate one in
terms of size approximation.

The estimated rejection probabilities under the set of considered alternative hypotheses are provided in Table 3, for Sce-
narios 1, 2 and 3, and in Table 4, for Scenarios 4, 5 and 6.

In all cases, the three bootstrap procedures lead to greater rejection rates when increasing the series length and the devi-
ation from the null hypothesis, thus showing a reasonable behavior. The MBB method attains the largest rates except for
Scenario 6, where this technique exhibits poor efficacy. It is particularly remarkable the instability showed by MBB in this
scenario for T ¼ 300 and c ¼ 1=3, where the method behaves totally unexpectedly. The good performance of MBB in terms of
power was expected, since it showed rejection probabilities larger than the significance level under the null (see Table 2).
The remaining procedures FDB and SB exhibit a very similar overall behavior. In fact, their rejection rates are very close
to each other in Scenarios 1, 2, 3 and 4. On the other hand, the approach based on the stationary bootstrap SB attains higher
power in Scenario 5, whereas the method FDB outperforms its counterpart in Scenario 6. In fact, FDB is the best performing
approach in this scenario.
Table 1
Deviation parameters used to generate the second realization at each simulation scenario. Parameter values leading to the null hypothesis are indicated by
adding (null).

Scenario Parameter d Scenario Parameter c

1 0 (null), 0.1, 0.2, 0.3 4 0 (null), 0.3, 0.6, 0.9
2 0 (null), 0.2, 0.4, 0.6 5 107 (null), 3, 2, 1
3 0 (null), 0.4, 0.8, 1.2 6 107 (null), 1, 2/3, 1/3

Table 2
Simulated rejection probabilities under the null hypothesis for a ¼ 0:05.

Scenario

T Method 1 2 3 4 5 6

500 FDB 0.025 0.020 0.035 0.020 0.020 0.030
MBB 0.080 0.070 0.080 0.075 0.075 0.060
SB 0.055 0.055 0.050 0.030 0.045 0.050

1000 FDB 0.060 0.030 0.060 0.045 0.040 0.040
MBB 0.070 0.095 0.130 0.095 0.125 0.065
SB 0.040 0.060 0.060 0.040 0.055 0.045
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Table 3
Simulated rejection probabilities of the bootstrap tests under several alternative hypotheses determined by the deviation parameter d in Scenarios 1, 2 and 3.

Scenario 1 Scenario 2 Scenario 3

d d d

T Method 0:1 0:2 0:3 0:2 0:4 0:6 0:4 0:8 1:2

100 FDB 0.060 0.395 0.905 0.340 0.695 0.950 0.030 0.150 0.895
MBB 0.160 0.575 0.980 0.540 0.775 0.990 0.080 0.395 0.950
SB 0.100 0.465 0.960 0.325 0.690 0.910 0.055 0.230 0.870

200 FDB 0.060 0.610 0.990 0.595 0.875 0.985 0.050 0.505 0.965
MBB 0.185 0.790 0.995 0.780 0.925 1 0.185 0.725 1
SB 0.095 0.695 0.990 0.625 0.885 0.985 0.080 0.455 0.965

300 FDB 0.115 0.730 1 0.765 0.965 1 0.135 0.730 1
MBB 0.225 0.835 1 0.885 0.990 1 0.255 0.840 1
SB 0.130 0.770 1 0.805 0.955 1 0.155 0.695 1

Table 4
Simulated rejection probabilities of the bootstrap tests under several alternative hypotheses determined by the deviation parameter c in Scenarios 4, 5 and 6.

Scenario 4 Scenario 5 Scenario 6

c c c

T Method 0:3 0:6 0:9 3 2 1 1 2=3 1=3

100 FDB 0.080 0.365 0.910 0.115 0.390 0.830 0.085 0.195 0.360
MBB 0.200 0.670 0.970 0.220 0.545 0.900 0.090 0.140 0.195
SB 0.075 0.400 0.905 0.190 0.510 0.905 0.085 0.175 0.280

200 FDB 0.095 0.550 0.990 0.215 0.485 0.915 0.275 0.480 0.895
MBB 0.245 0.845 1 0.435 0.675 0.965 0.190 0.310 0.355
SB 0.100 0.635 0.995 0.335 0.610 0.995 0.210 0.345 0.765

300 FDB 0.225 0.850 1 0.220 0.565 1 0.625 0.865 0.995
MBB 0.365 0.955 1 0.450 0.770 1 0.415 0.610 0.250
SB 0.160 0.840 1 0.375 0.730 1 0.470 0.675 0.980
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In summary, MBB shows the best performance in terms of power but an overrejecting behavior in terms of size. On the
contrary, FDB and SB display worse effectiveness under the alternative hypothesis but they respect the nominal level under
the null hypothesis. In particular, SB achieves rejection rates very close to the significance level. Therefore, this technique
could be said to exhibit the best overall behavior according to both size and power.
6. A case study. Did the dotcom bubble change the global market behaviour?

In this section, the proposed bootstrap procedures are used to check whether the well-known dotcom bubble crash
caused a permanent effect on the behaviour of financial markets worldwide. After providing some background on the dot-
com bubble crash and presenting the considered dataset, the bootstrap tests are applied and the main conclusions stated. We
want to remark that the following analysis is not aimed at giving financial advice, but at showing how the proposed tests can
be useful for deriving economical implications.

6.1. The dotcom bubble crash

Historically, the dotcom bubble was a rapid rise in U.S. technology stock equity valuations exacerbated by investments in
Internet-based companies during the bull market in the late 1990s. The value of equity markets grew substantially during
this period, with the Nasdaq index rising from under 1000 to more than 5000 between the years 1995 and 2000. Things
started to change in 2000, and the bubble burst between 2001 and 2002 with equities entering a bear market. The crash that
followed saw the Nasdaq index tumble from a peak of 5048.62 on March 10, 2000, to 1139.90 on October 4, 2002, a 76.81%
fall. By the end of 2001, most dotcom stocks went bust.

The dotcom bubble grew out of a combination of the presence of speculative or fad-based investing, the abundance of
venture capital funding for startups, and the failure of dotcoms to turn a profit. Investors poured money into Internet star-
tups during the 1990s hoping they would one day become profitable. Many investors and venture capitalists abandoned a
cautious approach for fear of not being able to cash in on the growing use of the Internet. In the year 1999, 39 of all venture
capital investments were going to Internet companies. That year, most of the 457 initial public offerings (IPOs) were related
to Internet companies, followed by 91 in the first quarter of 2000 alone. As it is stated in Porras [42]: ‘‘There were many con-
tributing factors to the dot-com bust, but overall, the key reason was the high growth expectations that never materialized.
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The long-term potential of the sector overshadowed the short-term viability of specific companies”. Companies that
famously survived the bubble include Amazon, eBay, and Priceline.

It is worth remarking that, although the dotcom bubble took place originally in the United States, the global economy was
substantially affected by this phenomenon. For instance, Kohn and Pereira [43] showed that European and US financial mar-
kets exhibited very high correlation during the dotcom bubble, thus confirming the presence of spillover effects between
them. Chen and Poon [44] found that the dotcom bubble tremendously affected several Asian stock market indexes and some
indexes pertaining to the developed world. Specifically, investors in these countries showed a much less willingness to put
money into the market due to the dotcom burst, this phenomenon lasting approximately six months. In summary, the dot-
com bubble produced a severe effect over the whole global economy.

Concerning the time period of the dotcom bubble, the majority of authors consider the dotcom bubble to take place in the
period 1996–2000 [45]. In addition, it is assumed that the bubble burst period was between 2000 and 2002, since, as stated
before, the Nasdaq index fell by 76.81% in October 4, 2002.

6.2. The considered data

To analyse the effects of the dotcom bubble in the global economy, we considered three well-known stock market
indexes, which are briefly described below.

	 S&P 500. This index is comprised of 505 common stocks issued by 500 large-cap companies and traded on stock
exchanges in the United States. The S&P 500 gives weights to the companies according to their market capitalization.

	 FTSE 100. This market index includes the 100 companies listed in the London Stock Exchange with the highest market
capitalization. It is also a weighted index with weights depending on the market capitalization of the different firms.

	 Nikkei 225. This index is a price-weighted, stock market index for the Tokyo Stock Exchange. It measures the perfor-
mance of 225 large, publicly owned companies in Japan from a wide array of industry sectors.

We focus on the trivariate time series formed by the daily stock prices of the three mentioned indexes. The data were
sourced from the finance section of the Yahoo website1. As our goal is to determine whether the dotcom bubble distorted
the global market behaviour, we split this MTS into two separate periods: before and after the bubble burst. To this aim, we
consider the periods from 1987 to 2002 and from 2003 to 2018, respectively. In addition, we only select dates corresponding
to trading days for the three indexes and forming two periods of the same length. Based on these considerations, the first period
covers the simultaneous trading days from January 2, 1987 to July 25, 2002, and the second period includes the simultaneous
trading days from July 26, 2002 to December 28, 2018. In this way, each MTS is constituted by 3928 daily observations.

Two remarks concerning the considered data are given below.

Remark 4. Note that each of the selected periods corresponds to approximately 16 years of observations. We assume that
a 16-year period is enough to capture the daily behaviour of the global economy concerning stock markets with a high
degree of accuracy. In fact, other works have considered substantially shorter daily series to perform statistical analyses
[46–48]. In addition, as we are studying the effect of the dotcom bubble burst occurring in 2000–2002, it would not be pos-
sible to choose a much longer interval than 16 years for the second period.

Remark 5. The selected multivariate time series involves the most well-known indexes of the American, European and
Asian continents, whose economies were affected by the dotcom bubble crash to some extent as stated in Section 6.1. There-
fore, it is reasonable to assume that the considered MTS is a good representative of the global markets and a suitable choice
to analyse the impact of the dotcom bubble in the worldwide economy.

Fig. 2 shows the closing prices of the three stock indexes from January 2, 1987 to December 28, 2018. The vertical line at
each panel accounts for the end of the dotcom bubble burst, splitting each series in the two considered periods. The three
indexes indicate a bull market during the years preceding 2000, followed by a bear market after 2000, thus corroborating the
correlation between the American, European and Asian stock markets during the dotcom bubble and the subsequent burst.

Since the series of closing prices are not stationary in mean, we proceed to take the first difference of the natural loga-
rithm of the original values, thus obtaining series of so-called daily returns, which are depicted in Fig. 3. The new series exhi-
bit common characteristics of financial time series, so-called ‘‘stylized facts”, as heavy tails, volatility clustering and leverage
effects. It is worth emphasizing that the distance dQCD has proven specially useful when dealing with this kind of series in
some contexts as clustering [10], outlier detection [49] and classification [50].

Two MTS are constructed by considering simultaneously the three UTS in Fig. 3 before and after the dotcom bubble crash
(vertical line). Firstly, we check if both MTS are independent, since this assumption is required by the three bootstrap pro-
cedures. Note that, as we are considering two disjoint periods from the same MTS, it suffices to show that the original series
is serially independent. Hence, we focus on testing
1 http
Hij
0 : qij lð Þ ¼ 0 against Hij

1 : qij lð Þ– 0; ð24Þ
s://es.finance.yahoo.com
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Fig. 2. Daily closing prices of the S&P 500 (top panel), FTSE 100 (middle panel) and Nikkei 225 (bottom panel) stock market indexes from January 2, 1987 to
December 28, 2018. The vertical line indicates the end of the dotcom bubble burst.
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for i; j 2 1;2;3f g, where qii lð Þ ¼ Corr Xt;i;Xtþl;i
� �

is the autocorrelation at lag l for the i-th component of the underlying process,
and qij lð Þ ¼ Corr Xt;i;Xtþl;j

� �
; i – j, is the cross-correlation at lag l between the i-th and the j-th components. The tests in (24)

were executed by considering the well-known sample versions of the auto and cross-correlations along with their corre-
sponding asymptotic distributions under the null hypothesis. We selected the values of l 2 20;100;200f g to summarize
the serial dependence structure of the process for moderate to large values of the lag. Table 5 contains the corresponding
p-values.

Most of p-values in Table 5 indicate that the null hypothesis is not rejected at a significance level a ¼ 0:05. Only 3 p-values
in Table 5 are below 0.05, but this could be due to the fact that we are performing several tests simultaneously. In fact, if we
compute the corresponding adjusted p-values by means of classical methods as Bonferroni’s, Holm’s or Hommel’s, all the
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Fig. 3. Daily returns of the S&P 500 (top panel), FTSE 100 (middle panel) and Nikkei 225 (bottom panel) stock market indexes from January 2, 1987 to
December 28, 2018. The vertical line indicates the end of the dotcom bubble burst.

Á. López-Oriona and José A. Vilar Information Sciences 616 (2022) 255–275
new quantities are far greater than 0.05, and take the value of 1 in many cases. Therefore, we cannot reject the null hypoth-
esis in any setting.

It is worth highlighting that similar results are obtained when all values of l are selected to be greater than 20 (although
the corresponding p-values are not shown in the manuscript for the sake of simplicity). Note that the previous analyses do
not guarantee independence between the last 20 observations of the first series and the first 20 observations of the second
series. In fact, some amount of dependence exists between those two periods, but this is a minor issue because we are deal-
ing with series of approximately 4000 observations. Therefore, independence can be assumed between both trivariate series
in Fig. 3.
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Table 5
For a given lag l, the entry associated with the i-th row and the j-th column of the corresponding subtable provides the p-value for the ijð Þ-th test in (24).

l ¼ 20 l ¼ 100 l ¼ 200

0.100 0.047 0.278 0.335 0.040 0.715 0.411 0.833 0.376
0.079 0.385 0.185 0.900 0.985 0.011 0.138 0.885 0.411
0.466 0.566 0.759 0.357 0.057 0.368 0.563 0.995 0.115
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After verifying the assumption of independence, the equality of generating processes of both MTS was checked by using
the bootstrap tests proposed throughout the manuscript based on B ¼ 500 boostrap replicates.

6.3. Results

The p-values obtained by means of the methods FDB, MBB and SB were all 0. Therefore, the three bootstrap techniques
indicate rejection of the null hypothesis at any reasonable significance level. This suggests that the whole MTS exhibits a
different dependence structure at each of the considered periods. A direct implication of this fact could be that the dotcom
bubble crash in the early 2000s provoked a permanent change in the behavior of the global economy.

Note that the methodology presented here can be applied to any pair of financial MTS created by splitting a longer MTS.
This way, we are providing a procedure of broad applicability, since it is not uncommon in Economics to study the impact of
pivotal occurrences (e.g., crashes, wars, election of a new president. . .) by analysing the market behaviour before and after
the event. Indeed, given the high ability of the distance dQCD to discriminate between dependence patterns of financial time
series, we encourage researchers and practitioners in the field of Finance to consider the techniques presented in this
manuscript.
7. Conclusions

In this work, we addressed the problem of testing the equality of two multivariate stochastic processes in terms of depen-
dence structures. For that purpose, we first defined a distance measure between multivariate processes based on comparing

their quantile cross-spectral densities, called dQCD. Then, four tests considering a proper estimate of this dissimilarity (bdQCD)
were proposed.

The first test uses the asymptotic distribution of bdQCD, which was established from standard results on complex random

variables and Theorem S4.1 in [31]. Derivation of this asymptotic distribution is valuable in its own right, since bdQCD has been
successfully used to perform several MTS data mining tasks as clustering [10], classification [50] or outlier detection [49].
However, the slow convergence to the limit distribution, together with the significant amount of noise generated in the esti-
mation of the asymptotic covariance, lead to a quite inaccurate test and rather useless from a practical point of view. The
poor performance of the asymptotic test motivates the construction of alternative procedures capable of better approximat-
ing the underlying finite sample distribution of the test statistic. To this aim, we proposed to use several bootstrap
procedures.

The second test (FDB) performs bootstrap in the frequency domain. Specifically, we formulated a general class of hypothe-
ses introduced by [26] in terms of the distance dQCD. The cornerstone of the procedure is an asymptotic property of the peri-
odogrammatrix of a multivariate series. The remaining two tests are extensions of the well-known moving blocks bootstrap
(MBB) and stationary bootstrap (SB), respectively.

The three bootstrap techniques were evaluated by means of a simulation study including a wide variety of generating
processes. Several settings under the null and alternative hypotheses were considered. The results indicate that the MBB test
achieves the highest power but does not respect the nominal size. In contrast, FDB and SB show worse rejection rates under
the alternative hypothesis but avoiding over-rejection under the null. Specifically, the test based on the stationary bootstrap
SB exhibits the best overall performance with respect to both size and power.

In order to illustrate the usefulness of the proposed bootstrap tests, they were used to answer the question about whether
or not the dotcom bubble burst of 2000s changed the behaviour of the global economy. To that aim, a trivariate MTS con-
taining returns of stock market indexes was considered and split into two periods, before and after the crash. The tests were
applied to check the equality of generating processes of the corresponding twoMTS. In the three cases, the null hypothesis of
equality got rejected, suggesting that the dotcom bubble crash provoked a permanent impact in the worldwide markets.

The approaches introduced in this manuscript suffer from two main limitations. First, the assumption of independence
between both time series can be hard to fulfil in practice, since many real MTS exhibit some degree of cross-dependence

or even spatial relationships. Second, when the dimension d is large, obtaining the bootstrap replicates of bdQCD becomes com-
putationally intensive, making the corresponding tests quite slow. In this regard, future work could address the construction

of efficient hypothesis tests under the general case of an arbitrary dependence relation between Xt
1ð Þ
and Xt

2ð Þ
. In addition,

the corresponding tests could be particularly adapted to deal with financial time series by considering the specific features of
this type of objects, since the problem of testing for independence between two MTS frequently arises in the fields of Eco-
nomics and Finance.
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Appendix A. About the asymptotic validity of FDB

In Section 4.1, the test for equality of quantile cross-spectral densities was stated as a particular case of the general class
of spectral hypotheses (17). In order to testing (17), Dette and Paparoditis [26] propose a general bootstrap procedure to
approximate the distribution of the test statistic
ST uð Þ ¼
Z p

�p
ku bg xð Þ;x� �k2 dx;
and establish the conditions to ensure its asymptotic validity (see Theorem 1). In our setting, we also adopt the test statistic
ST uð Þ for the specification of the function u given in (21), which allows us to establish ST uð Þ in terms of the QCD-distance
since
ku gz xð Þ;xð Þk ¼ dQCD;x X 1ð Þ
t ;X 2ð Þ

t

� �
:

This way, the FDB procedure fits into the framework considered in [26] and involves the QCD-distance. In what follows, we
are going to show that the set of assumptions required in Theorem 1 in [26] are fulfilled, thus concluding the asymptotic
validity of the FDB algorithm. We first check the assumptions about the underlying stochastic process, the function u,
the kernel W and the bandwidth hT . Finally, we verify the assumptions concerning the version of the estimate ĝ xð Þ used
to generate the bootstrap replicates.

Appendix B. Assumptions on the stochastic processes, the function u, the kernel function and the bandwidth

Assumption 1 in [26] is related to the vector moving average representation of the multivariate stochastic process defin-
ing the hypotheses in (17). This assumption ensures the existence of the spectral density matrix g xð Þ. Throughout this
manuscript, it is also assumed the existence of the quantile cross-spectral density matrices of the strictly stationary pro-
cesses X 1ð Þ

t and X 2ð Þ
t . This way, the existence of the spectral density matrices of the process Zt in (19) is also guaranteed.

Assumption 2 in [26] comprises four conditions concerning the function u in (17). Below we state these conditions
sequentially and verify that they are appropriately met.

1. The function u V ;xð Þ is holomorphic with respect to V and satisfies ku V|;�xð Þk ¼ ku V ;xð Þk.
Note that u : D� �p;p½ � ! Cr2d2 , with D an open subset of C2r2d2�2r2d2 containing the spectral density matrices evalu-

ated in x 2 �p;p½ �. For a spectral matrix V ¼ v ij
� � 2 D and x 2 �p;p½ �;u V ;xð Þ ¼ u11 V ;xð Þ; . . . ;urd;rd V ;xð Þ

� �|
, with

uij V ;xð Þ ¼ v ij � v iþrd;jþrd, for i; j ¼ 1; . . . ; rd.
By virtue of Hartogs’ Theorem, it suffices to show that each uij is holomorphic with respect to each one of the variables
v rs in V independently. But this is clearly fulfilled since fixed i; jð Þ 2 1; . . . rdf g � 1; . . . ; rdf g, we have
@uij=@v ij ¼ 1; @uij=@v iþrd;jþrd ¼ �1 and @uij=@v rs ¼ 0 for all r; sð Þ – i; jð Þ.
On the other hand, by definition we have
vec g 1ð Þ
z xð Þ|� �� vec g 2ð Þ

z xð Þ|� � ¼ vec g 1ð Þ
z xð Þ� �� vec g 2ð Þ

z xð Þ� �
;

which, jointly with the QCD property fj1 ;j2 x; s; s0ð Þ ¼ fj1 ;j2 �x; s; s0ð Þ, for all x 2 R; j1; j2 2 1; . . . ; df g and s; s0 2 0;1½ �, where z
stands for the complex conjugate of z 2 C, allows to conclude the equality k/ V|;�xð Þk ¼ k/ V ;xð Þk.
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2. The function u V ;xð Þ and its first derivative with respect to v ¼ vec Vð Þ;DVu V ;xð Þ ¼ @u V ;xð Þ=@v , are piecewise Lip-
schitz continuous in x.
Note that each of the coordinate functions uij �ð Þ can be expressed as

uij V ;xð Þ ¼ F1 xð Þ � F2 xð Þ;

where F1 and F2 define some QCD for fixed variables and probability levels concerning the processes X 1ð Þ
t and X 2ð Þ

t , respec-
tively. To show the Lipschitz continuity of uij, it suffices to show the same property for Fk, and, in turn, for

p xð Þ ¼ e�ilx; l 2 Z, due to the definition of QCD in (3). The function p xð Þ is indeed Lipschitz continuous. Taking
x1;x2 2 R;x1 6 x2, we have
je�ilx1 � e�ilx2 j ¼ j
Z x2

x1

�ile�ilxdxj 6
Z x2

x1

j � ile�ilxjdx ¼ l2 x2 �x1ð Þ;
thus concluding that l2 is the Lipschitz constant for the function p xð Þ.
The Lipschitz continuity of DV/ V ;xð Þ with respect to x is obvious since the Jacobian matrix of u taking into account the
derivatives with respect to v ¼ vec Vð Þ is a constant matrix formed by 0s and 1s, and so it does not depend on the value
of x.

3. There is a positive constant g such that, for all x 2 �p;p½ �, the ball Bg;x ¼ V 2 C2d2r2�2d2r2 : kg xð Þ � Vk 6 g
n o

is con-

tained in D and
supx2 �p;p½ �supV2Bg;x jju V ;xð Þjj < 1.

This result holds in view of the continuity of the function u in D ¼ C2d2r2�2d2r2 � �p;p½ �, which is a compact set.
4.
R p
�p kDVu g xð Þ;xð Þkdx > 0. Condition 4 holds because DVu g xð Þ;xð Þ is a real constant matrix with at least one element
different from zero.

Assumption 3 refers to the kernel function W used to compute the smoothed CCR-periodograms in (6). Specifically, W is
required to be a bounded, symmetric, Lipschitz continuous and non-negative kernel with compact support �p;p½ � and sat-
isfying

R p
�p W xð Þdx ¼ 2p. Throughout this manuscript this assumption was also supposed to hold and in fact the kernel func-

tions used in the numerical experiments satisfied the previous conditions. In particular, the Epanechnikov kernel was
considered in the simulation study of Section 5.

Assumption 4 concerns the bandwidth hT employed for the spectral estimates. It is assumed that hT ! 0 as T ! 1 such

that hT � T�b for some 1=4 < b < 1=2. In this way, the rate at which the bandwidth hT is allowed to converge to 0 as T ! 1
ensures that the bias in estimating g xð Þ vanishes sufficiently fast without affecting the asymptotic distribution of the test
statistic (18). In our analyses, we used hT ¼ T�1=3 so that Assumption 4 is verified. It is worth noting that this bandwidth also
fulfils the assumption of Theorem S4.1 in [31] concerning the existence of constants c > 0 and k 2 N such that

hT ¼ o T�1= 2kþ1ð Þ
� �

and hTT
1�c ! 1 as T ! 1 .

Appendix C. Assumptions on the version of the estimate used to generate the bootstrap replicates

These assumptions are encompassed within the so-called Condition 1 (see Section 3 in [26]). Particularly, the three
assumptions refer to the version of the non-parametric estimate ĝ xð Þ in (18) employed in the generation of the bootstrap
replicates. Note that, following Section 4.1, this estimate is constructed as
ĝz xð Þ ¼ Ĝz xð Þ 0rd

0rd Ĝz xð Þ

 !
; x 2 �p;p½ �; ð25Þ
where Ĝz xð Þ is given in (23). Hence, we must verify that assumptions in Condition 1 are met for ĝz. Below we state the three
assumptions and check their fulfillment.

1. ĝz is Hermitian and non-negative definite.

The Hermitian character of ĝz is derived from the Hermitian character of Ĝz, which is in turn obtained from the Her-
mitian character of the smoothed CCR-periodogram in (6). The reasoning concerning the non-negative definitess char-
acter is analogous.

2. ĝz satisfies u ĝz xð Þ;xð Þ ¼ 0 for almost all x 2 �p;pð �.
Note that u ĝz xð Þ;xð Þ ¼ vec Ĝz xð Þ

� �
� vec Ĝz xð Þ

� �
¼ 0.

3. ĝz xð Þ converges in probability to a limit gl xð Þ. For almost x 2 �p;pð �, the limit satisfies that
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Cu;l xð Þ gl xð Þ| 
 gl xð Þ� � ¼ Cu xð Þ g xð Þ| 
 g xð Þf g;
Cu;l �xð Þ| gl xð Þ| 
 gl xð Þ� � ¼ Cu �xð Þ| g xð Þ| 
 g xð Þf g; ð26Þ
where
Cu xð Þ ¼ DVu g xð Þ;xð ÞDVu g xð Þ;xð Þ;
Cu;l xð Þ ¼ DVu gl xð Þ;xð ÞDVu gl xð Þ;x� �

:
ð27Þ
The convergence in probability of ĝz xð Þ is clear from the convergence in probability of the smoothed periodogram as an esti-
mate of the spectral density. In fact, the quantity ĝz xð Þ converges in probability to the average spectral density of the pro-
cesses Z 1ð Þ

t and Z 2ð Þ
t .

To show (26), note that both DVu g xð Þ;xð Þ and DVu gl xð Þ;x� �
are the same constant matrix, i.e., they do not depend on V

or x. Therefore Cu and Cu;l are also the same constant matrix.
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