
Information Fusion 89 (2023) 1–15

A
1
n

F

A
D
U

A

K
M
O
C
D
R
E

1

b
l
p
s
s
o
o
(
d
o
n
d
i
T
t
t
i
i
s

f
v
o
c

h
R

Contents lists available at ScienceDirect

Information Fusion

journal homepage: www.elsevier.com/locate/inffus

ull length article

One-Class Classification method based on Expanded Non-Convex Hulls
avid Novoa-Paradela ∗, Oscar Fontenla-Romero, Bertha Guijarro-Berdiñas
niversidade da Coruña, CITIC, Campus de Elviña s/n, 15008, A Coruña, Spain

R T I C L E I N F O

eywords:
achine learning
ne-Class Classification
onvex Hull
elaunay triangulation
andom projections
nsemble learning

A B S T R A C T

This paper presents an intuitive, robust and efficient One-Class Classification algorithm. The method developed
is called OCENCH (One-class Classification via Expanded Non-Convex Hulls) and bases its operation on the
construction of subdivisible and expandable non-convex hulls to represent the target class. The method begins
by reducing the dimensionality of the data to two-dimensional spaces using random projections. After that,
an iterative process based on Delaunay triangulations is applied to these spaces to obtain simple polygons
that characterizes the non-convex shape of the normal class data. In addition, the method subdivides the non-
convex hulls to represent separate regions in space if necessary. The method has been evaluated and compared
to several main algorithms of the field using real data sets. In contrast to other methods, OCENCH can deal
with non-convex and disjointed shapes. Finally, its execution can be carried out in a parallel way, which is
interesting to reduce the execution time.
. Introduction

Anomaly detection (AD) is the branch of machine learning that
uilds models capable of differentiating between normal and anoma-
ous data. A priori, this turns anomaly detection into a classification
roblem with only two classes. However, since anomalies tend to occur
poradically, normal data are the ones that prevail in these scenarios,
o it is common that models are required that can be trained with
nly data of the normal class. Assuming all training instances have
nly one class label, in AD is common to use One-Class Classification
OCC) techniques. OCC is a special case of binary classification, where
ata observed during training is from a single positive class. The
bjective is to represent the boundary of the known as positive or
ormal class with high precision in order to be able to classify new
ata by comparing them with these limits. The ideal boundary is often
mprecise, and can even evolve over time, which is a great challenge.
he availability of labeled data to train and validate models along with
he presence of noise in the training set can be another challenge. For
his reason, and although some successful applications can be found
n fields such as medical anomaly detection [1], fraud detection [2],
ntrusion detection [3] or maintenance of industrial systems [4], this is
till a very active line of research.

In AD, the distribution presented by the data sets can be decisive
or the application of certain types of techniques. AD systems play a
ital role in a wide range of real-world applications where the shape
f the normal class will not always be convex. A convex representation
an never provide good characterization of a non-convex distribution,

∗ Corresponding author.
E-mail addresses: david.novoa@udc.es (D. Novoa-Paradela), oscar.fontenla@udc.es (O. Fontenla-Romero), berta.guijarro@udc.es (B. Guijarro-Berdiñas).

so it is necessary to develop specific methods capable of operating
on non-convex data sets. In addition, the distribution of the data can
be composed of several separate regions in space that are difficult to
represent by means of a single hull. This paper presents OCENCH (One-
class Classification via Expanded Non-Convex Hulls), an OCC and AD
method based on the use of random projections [5] of the original
data space to reduce their complexity, followed by a process based on
Delaunay triangulation [6] to geometrically represent the normal class
in these low-dimensional spaces through subdivisible and expandable
non-convex hulls. The limits of the normal class are iteratively adapted
during the training phase. This process is carried out based on a
normalized parameter that controls the adjustment level and can be
easily tuned by the user for each scenario. Furthermore, if in a low-
dimensional space the normal class cannot be accurately represented
by a single non-convex hull, it will be subdivided as many times
as necessary to fit the shape of the data. The developed OCENCH
algorithm allows working with non-convex data sets in a novel way,
offering a robust behavior and remarkable performance, positioning
itself as an alternative for both convex and non-convex problems.

2. Related work

This section summarizes the main types of anomaly detection tech-
niques available in the state-of-the-art [7,8] and focuses on methods
based on non-convex hull, as they are the most related. In anomaly
detection, depending on the way in which the methods approximate
the solution of the problem, we can classify them as follows:
vailable online 6 August 2022
566-2535/© 2022 The Author(s). Published by Elsevier B.V. This is an open access ar
c-nd/4.0/).

ttps://doi.org/10.1016/j.inffus.2022.07.023
eceived 5 November 2021; Received in revised form 20 April 2022; Accepted 28
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

July 2022

http://www.elsevier.com/locate/inffus
http://www.elsevier.com/locate/inffus
mailto:david.novoa@udc.es
mailto:oscar.fontenla@udc.es
mailto:berta.guijarro@udc.es
https://doi.org/10.1016/j.inffus.2022.07.023
https://doi.org/10.1016/j.inffus.2022.07.023
http://crossmark.crossref.org/dialog/?doi=10.1016/j.inffus.2022.07.023&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Information Fusion 89 (2023) 1–15D. Novoa-Paradela et al.

o
c
A
s
A
c
h
v
t
c
a

• Probabilistic methods: these methods assume that the normal
data are generated by a probability distribution function. Their
objective is to estimate this density function from the normal
data to define the boundaries of normality in the data space and
test whether a new sample comes from the same distribution or
not, with the hypothesis that normal data will occur in regions
with high probabilities whilst anomalies in regions with lower
probabilities [9,10]. If the assumptions regarding the distribution
of data are true, in the case of the parametric ones, these tech-
niques provide a statistically justifiable solution. However, this
is not always the case, especially when working with large data
sets with a high number of variables. In addition, the presence of
abnormalities during training may prevent them from obtaining
good results.

• Distance-based methods: These methods rely on well-defined dis-
tance metrics to compute the similarity between two data points.
They assume that normal data are in the form of dense neigh-
borhoods, while anomalies occur in regions far from these neigh-
borhoods [11–14]. They can work in a unsupervised way. The
main disadvantages of these methods are that anomalies can
also form significant groupings with each other and, furthermore,
the computational complexity to group the data is usually a
bottleneck.

• Reconstruction based methods: neural networks can be trained to
capture the shape of normal data if it is used as training data. The
most common type of neural network in AD is the Autoencoder
Network [15], which make this decision by calculating the recon-
struction error, defined to be the distance between the test vector
and the output of the system. They can operate in a supervised
and unsupervised way, without requiring previous information of
the data. However, they are usually computationally expensive
and can present many hyperparameters to tune.

• Methods based on information theory: these methods assume
that anomalies significantly alter the information contained in
the normal data set and, therefore, they process the content of
data sets through measures, such as entropy or relative entropy,
to check whether there are differences in these measures when
potential abnormal data is included [16,17]. These techniques
can work in a unsupervised way and do not assume information
about the distribution of data, however, the confidence in their
predictions is highly dependent on the metric used. In addition,
if the number of anomalies is very low, certain metrics are unable
to detect them due to their low impact.

• Boundary-based methods: they generate a limit based on the
structure of training data that separates the classes in a space.
These classifiers become insensitive to the size and density of
each class, since the classification of the new data is determined
only by its location with respect to the boundary, and not by
its density [18,19]. Some of these techniques need data from
both classes to train (normal and abnormal), which is difficult to
achieve in problems where there are almost no signs of anomalies.
In addition, some methods are sensitive to noise, which can cause
over-adjustments.

This work is focused on boundary-based anomaly detection meth-
ds. A important group of boundary-based techniques that have suc-
essfully solved OCC problems are those based on convex hulls [20,21].
convex hull (CH) is the smallest convex polyhedron that contains a

et of data points. The usefulness of this geometric shape in OCC and
D is to serve as a limit that contains the normal data set and allows the
lassification of new data based on whether they are inside the convex
ull (normal data) or outside (anomaly). However, these systems play a
ital role in a wide range of real-world applications where the shape of
he normal class will not always be convex. As a convex representation
an never provide good characterization of a non-convex distribution,
whole line of research has emerged to work with non-convex shapes
2

using non-convex hulls. The objective of these methods is the same, to
build a non-convex hull around the normal data as a decision boundary.
We can distinguish between two types of approximations depending on
whether they try to calculate the non-convex hull in the original space
or in a dimensionally reduced space:

• Computing the boundary in the original space. Calculating the
limits of the normal class in the original data space despite the
high cost, is a strategy followed by some methods. A common
way to solve the problem is calculating the convex hull and
digging to obtain the non-convex version. For example, DINA
algorithm produces a non-convex hull by removing the hollow
spaces from the 𝑛-dimensional convex hull [22]. To do this, it
uses the normal vectors of the hyperplanes that form the facets
of the structure, giving rise to what is called oriented non-convex
hulls. The normal vector of a facet in a non-convex hull is the
normal vector of the corresponding hyperplane, where this facet
is located, in the direction from this hyperplane towards the space
outside the non-convex hull. Given the facets of an oriented non-
convex hull, the algorithm can determine if a new point is inside
or outside this non-convex hull. Another approach is the one
developed by Park et al. [23], a method that follows the same
philosophy but carries out the digging stage using the closest
data from inside the hull as support. An edge will be pruned if
its size in relation to the distance to its support point exceeds a
certain threshold defined by the user. This threshold influences
the smoothness of the non-convex hulls. Although they can be
appropriate for low dimensional problems, the calculation of non-
convex hulls in high dimensional spaces is computationally very
expensive and challenging, so there are not too many methods of
this type.

• Computing the boundary in a reduced space. Working with high-
dimensional data sets makes it difficult to calculate these struc-
tures due to their high computational cost. One solution is to
reduce the dimensionality of the data set to make these oper-
ations manageable. The most common methods to simplify the
representation of the problem by reducing the dimensionality
of data are Principal Component Analysis [24], Linear Discrim-
inant Analysis [25] or Autoencoder Networks [15]. In the best
of cases, a two-dimensional representation will be obtained in
which the calculation of both convex and non-convex hulls is
a simple operation. However, this remarkable reduction is not
always possible, in most cases it is necessary to use more than two
dimensions in order not to lose information. To achieve a good
two-dimensional representation, some methods opt for the use of
random projections. This random projection technique is based
on the idea that high-dimensional data spaces can be projected
into a lower dimensional space without significantly losing the
data structure if multiple projections are used [26]. An example
of this is NCBoP [21] which, based on the Approximate Polytope
Ensemble (APE) algorithm [20], takes advantage of these reduced
spaces to build non-convex hulls in a simple way.

3. Background

This section summarizes the main ideas of the two methods taken
as the basis for the development of the proposed method: the random
projections used in the APE algorithm developed by Casale et al. to
reduce the complexity of the data sets [20], and the process for the
generation of simple polygons developed by Duckham et al. based on
Delaunay triangulation [6].

Information Fusion 89 (2023) 1–15D. Novoa-Paradela et al.
Fig. 1. Construction of a convex hull from a cloud of points.
Fig. 2. Three 2-D projections of a three-dimensional boundary and a new point (red) that will be classified as an anomaly.
3.1. Approximate polytope ensemble

A convex hull (CH) is the smallest convex polyhedron that contains
a set of data points. Fig. 1 shows the CH of a two-dimensional data
set, in this case the CH is a polygon. The usefulness of this geometric
structure in anomaly detection problems is to represent the normal
class, so that classifying a new data consists of checking whether it is
inside the CH (normal data) or outside (anomaly).

Calculating the CH in high-dimensional spaces is a very expensive
task. Due to this, as some other anomaly detection methods, APE [20]
chooses to project the data into two-dimensional spaces where it will
calculate the limits in a more computationally affordable way.

In the training phase, the APE algorithm projects the normal data
set using random projections and calculates the convex hulls in each
of these two-dimensional spaces. To classify a new data point, first
it is projected in the two-dimensional spaces. Afterwards, for each of
the two-dimensional spaces, given the set of vertices of its CH, it is
possible to check if the point is within the normal class or not. Finally,
a point will be classified as normal only if it is within the CH for every
projection. If in any of the projections the point is outside, it will be
considered anomalous. Fig. 2 shows this idea.

Building a CH in two-dimensional spaces and check if a point falls
inside are common tasks in geometric computing for which there are
very efficient solutions [27]. However the convex nature of this kind of
method makes it unsuitable for non-convex data sets. Furthermore, the
use of a single CH per projection space makes it difficult to represent
disjointed regions.
3

3.2. Generation of simple polygons to characterize the shape of a set of
points

The procedure developed by Duckham et al. [6] makes it possible
to efficiently and flexibly construct the non-convex simple polygon
that characterizes the shape of a set of input points in a plane. This
technique is based on Delaunay triangulation, which allows to model a
data set using a polygonal surface with the following properties:

• All the points are connected to each other and form as many
triangles as possible without their edges crossing.

• Triangles are defined so that the closest points are connected to
each other by an edge.

• The triangles formed are as regular as possible, that is, their minor
angles are maximized and the length of their edges is minimized.

An example of Delaunay triangulation for a half-moon data set can
be seen in Fig. 3.

The properties of triangulation allow to apply a pruning process
to adapt the boundaries to non-convex shapes. This pruning process
iteratively removes those exterior edges of the closure that exceed
a size defined through a parameter 𝑙. The exterior edges are sorted
from largest to smallest, after which it is checked if they exceed the
threshold. If an edge is greater than 𝑙, then it is eliminated, and the
two edges with which it formed a triangle will become part of the
provisional closure. Fig. 4 shows this procedure. The pruning process
will be repeated until no edge of the closure exceeds the size defined
by the 𝑙 parameter. Starting from the triangulation in Figs. 3, 5 shows
an example of how the parameter 𝑙 can influence the adjustment level

Information Fusion 89 (2023) 1–15D. Novoa-Paradela et al.
Fig. 3. Delaunay triangulation (b) of a cloud of points (a).
Fig. 4. Pruning process of an edge: (a) The edge formed by vertices 𝐯1 and 𝐯2 is the longest of the closure (red lines) and exceeds the threshold established by parameter 𝑙,
therefore it must be pruned; (b) The two edges that were part of the triangle in which the pruned edge was located (edge between 𝐯1 and 𝐯3 and between 𝐯2 and 𝐯3) become
part of the new provisional closure.
of a boundary. As can be seen, the data set is non-convex, so the edges
of the interior of the half-moon (the non-convex area) will be the first
to be pruned because they are the largest. A too large 𝑙 value (1.8)
results in insufficiently pruned closures, while too small a value (0.1)
can generate very steep boundaries.

The method achieves excellent results, however, it cannot be pre-
cisely adapted in cases where the data is separated in different areas
of the space (Fig. 6a). These situations, in which it is necessary to
represent more than one isolated region in space, are common in real
problems of AD or OCC. In these scenarios, it would be convenient to
have more than one non-convex hull to be able to represent each region
independently. As seen in Fig. 6c, the results obtained by the method
of Duckham et al. are not the most accurate in these circumstances, as
a single non-convex hull is used to represent the whole set of points.

For all this, in this work we propose an improvement of the Duckam
et al. algorithm for its application in disjointed regions which, together
4

with the idea of random projections described in Section 3.1, has
allowed us to design a new one-class classification algorithm. The
algorithm will drastically reduce the dimensionality of any input data
set using random projections. On these reduced spaces, it will calculate
the closures that best adapt to the data in a flexible way, since they can
be recursively subdivided as many times as necessary to adapt to the
shape of the data. This will allow working not only with both convex
and non-convex data sets, but also with data sets that present connected
and unconnected regions.

4. The proposed method

The main objective of the proposed OCENCH (One-class Classifica-
tion via Expanded Non-Convex Hulls) method is to fit robustly to the
non-convex shape of the data of the normal class during the training
phase to achieve a good performance when the system is classifying

Information Fusion 89 (2023) 1–15D. Novoa-Paradela et al.
Fig. 5. Final non-convex hulls (red) result of applying the pruning process with different values of 𝑙 over a non-convex data set (green) previously triangulated (blue): (a) 𝑙 =
1.8; (b) 𝑙 = 1.6; (c) 𝑙 = 1.2; (d) 𝑙 = 0.6; (e) 𝑙 = 0.2; (f) 𝑙 = 0.1.
new data. This section presents the theoretical foundations of the steps
followed by the method:

• Dimensionality reduction: reduce the complexity of the normal
data set by projecting the normal class data into two-dimensional
spaces.

• Calculation of the non-convex hulls: construction of non-convex
hulls in these two-dimensional spaces to represent the limits of
the normal class.

• Subdivision of non-convex hulls: subdivision of non-convex hulls
to more accurately represent the shape of the data.

• Calculation of the expanded non-convex hulls: expansion of the
final non-convex hulls to smooth the classification of new in-
stances.
5

4.1. Dimensionality reduction

Given a training data set 𝐗 ∈ R𝑑×𝑛 (𝑑 variables × 𝑛 samples)
of normal data, the first step of the algorithm is to reduce its di-
mensionality carrying out projections into 2-D spaces. To project the
data, a certain number of [2 × 𝑑] projection matrices are randomly
generated. The number of projections 𝜏 is the first parameter that
must be defined by the user, taking into account that more projections
implies a representation of the class with greater precision in exchange
for higher computational cost. To determine the appropriate number of
projections for a scenario, it is advisable to experiment with different
values to find a balance between precision and time. As a guide, there
are experimental studies [28–30] based in the Johnson–Lindenstrauss
lemma that allow estimating the appropriate number of projections
based on characteristics such as the size of the data set. Once the pro-
jection matrices have been generated, the training set will be projected

Information Fusion 89 (2023) 1–15D. Novoa-Paradela et al.
Fig. 6. Characterization of two separate point regions using OCENCH: (a) Projected data set; (b) Initial convex hull; (c) Pruned non-convex hull; (d) Subdivided non-convex hulls.
using each of these projection matrices. The steps described below are
applied independently to the convex hull at each of the projections.

4.2. Calculation of the non-convex hulls

Once the training data are projected in two-dimensional spaces
(Fig. 6a), the convex hull that surrounds the data is calculated for each
projection using the algorithm proposed by Duckam et al. [6] (Fig. 6b).
Due to the characteristics of this process, the result is a convex hull,
so following the Duckam et al. [6] method, an edge pruning process
is carried out to adjust the limits to non-convex shapes (Fig. 6c). As
commented in Section 3.2, this pruning process iteratively removes
those edges of the closure that exceed a size defined by the user
through a parameter 𝑙. Since projecting the data causes that the size
6

of the hulls is not similar in all the projections, we propose that to
facilitate the choice of the parameter 𝑙 the data of each projection
be normalized independently using a standard scaler with zero mean
and unit variance. That process allows to choose a value of 𝑙 that
consistently fits the data across all projections.

4.3. Subdivision of non-convex hulls

As shown in Fig. 6c, the problem of the method presented by
Duckam et al. is its inability to accurately represent separate regions
in space. However, the use of a single closure is not enough in general
and, therefore, a subdivision process has been implemented that results
in the coexistence of multiple non-convex hulls.

Information Fusion 89 (2023) 1–15D. Novoa-Paradela et al.
Fig. 7. Typical morphology of a Duckham et al. non-convex hull that envelops two separate regions in space generating a region of union (𝐯1 − 𝐯2 − 𝐯3 − 𝐯4).
Fig. 8. Expanded non-convex hull (black lines) obtained from an initial non-convex hull (red lines). The normal data (black dots) will be correctly classified thanks to the use of
the expanded margin.
To design the process of subdivision of closures, the detailed be-
havior of the Duckham et al. algorithm when applied to data sets with
separate regions in space has been analyzed. As can be seen in Fig. 7,
if there is more than one region, the method produces a single closure
that wraps these separate regions in space, keeping them connected
by a union region. This union region is characterized by the lack of
data points in its interior, being formed by only two triangles whose
edges were not pruned in the stage described in Section 4.2, since their
elimination would alter the properties of the triangulation. We can
define these unions as a region of the triangulation composed of two
triangles that make up a quadrilateral, which has two opposite external
edges and has no data points inside.

In this case, the union region is formed by triangles 𝐯1 − 𝐯2 − 𝐯3 and
𝐯2 − 𝐯3 − 𝐯4. An intuitive way to subdivide this non-convex hull in two
would be to eliminate the two external edges 𝐯1 − 𝐯2 and 𝐯3 − 𝐯4 and
the common edge of both triangles 𝐯2 − 𝐯3.

Since the existence of these union regions is very frequent after the
application of the pruning process, it has been decided to implement a
process of subdivision of closures that tries to locate these structures to
treat them in a specific way. To do this, the edges of the closure will be
iteratively traversed to verify the existence of this type of union regions.
If the existence of a union like the one described in Fig. 7 is determined,
it will be eliminated, giving rise to two independent non-convex hulls.
These two new non-convex hulls will be readjusted, if needed, through
the pruning process described in Section 4.2. The subdivision and
pruning processes are repeated iteratively until there are no union
regions and the non-convex hulls are fully adjusted. In Fig. 6d it can be
seen the result of applying this subdivision process. The identification
of several closures will allow a more precise characterization of the
regions.
7

Although the subdivision process is recommended, a subdivision
hyperparameter has been included in the final algorithm to enable or
disable this behavior. Given the existence of scenarios in which it is
known with certainty that there are no disjointed regions, omitting this
subdivision stage could be useful to reduce the algorithm training time.

4.4. Calculation of the expanded non-convex hulls

In some cases, there may be normal data that is wrongly classified as
anomalies because they are very close to the training data but outside
the limits of the non-convex hulls (NCH). To avoid the effect of over-
adjustment of the training data, the method uses a third parameter,
the 𝜆 expansion factor. This parameter allows to generate expandable
non-convex hulls (ENCH), whose purpose is to soften the classification
decision of new data. Fig. 8 shows an example of an ENCH. Each vertex
of the closing boundary will be expanded based on the incenter of the
triangle that it forms with the other two boundary vertices with which
it is connected as will be explained below.

Equations used to calculate the incenters and the ENCH are the
following. Given a list of vertex 𝑉 ⊆ R2 of a NCH and one vertex 𝐯𝑖 ∈ 𝑉
connected with vertices 𝐯𝑖−1 and 𝐯𝑖+1, its expanded version 𝐯𝜆𝑖 is defined
with respect to their incenter point 𝐜𝑖 as:

𝐯𝜆𝑖 = 𝐯𝑖 + 𝑠𝜆
(𝐯𝑖 − 𝐜𝑖)
‖𝐯𝑖 − 𝐜𝑖‖

,∀ 𝐯𝑖 ∈ 𝑉 (1)

where ‖𝐯𝑖 − 𝐜𝑖‖ is the distance between the vertex 𝐯𝑖 and 𝐜𝑖, 𝑠 is the
sign of the expansion and the expansion parameter 𝜆 ∈ [0,+∞). The
incenter 𝐜𝑖 is defined as:

𝐜𝑖 =
𝐯𝑖−1‖𝐯𝑖 − 𝐯𝑖+1‖ + 𝐯𝑖‖𝐯𝑖−1 − 𝐯𝑖+1‖ + 𝐯𝑖+1‖𝐯𝑖−1 − 𝐯𝑖‖ ,∀ 𝐯𝑖 ∈ 𝑉 (2)
‖𝐯𝑖 − 𝐯𝑖+1‖ + ‖𝐯𝑖−1 − 𝐯𝑖+1‖ + ‖𝐯𝑖−1 − 𝐯𝑖‖

Information Fusion 89 (2023) 1–15D. Novoa-Paradela et al.
Fig. 9. Expansion process of two vertices (𝐯2 and 𝐯3) of a NCH (red lines). The interior angle formed by vertex 𝐯2 with vertices 𝐯1 and 𝐯3 is convex (𝛼2 < 180), so the incenter
of the triangle is inside the NCH (𝐜2). However, the interior angle formed by vertex 𝐯3 with vertices 𝐯2 and 𝐯4 is non-convex (𝛼3 > 180), so the incenter of this triangle is outside
the NCH (𝐜3). The incenters allow calculating the direction (yellow lines) in which the vertices should be expanded (𝐯𝜆2 and 𝐯𝜆3), thus obtaining the ENCH (black lines).
The sign of the expansion 𝑠 of a vertex 𝐯𝑖 is defined based on the
internal angle 𝛼 that it forms with the vertices 𝐯𝑖−1 and 𝐯𝑖+1 as:

𝑠 =

{

1, if 𝛼 ≤ 180
−1, if 𝛼 > 180

(3)

Depending on the interior angle 𝛼 that the vertex 𝐯𝑖 forms with the
other two (𝐯𝑖−1 and 𝐯𝑖+1), we can determine if the area where 𝐯𝑖 is
located is convex (𝛼 < 180) or non-convex (𝛼 > 180). This will influence
the expansion of the vertex since the incenter of a non-convex zone
is always located outside the NCH, which will invert the sign of the
expansion operation (Eq. (1)). Fig. 9 exemplifies this behavior.

The parameter 𝜆 specifies a constant contraction (0 < 𝜆 < 1) or
extension (𝜆 > 1) of the NCH with respect to 𝐜𝑖. We will always use 𝜆 > 1
since we are not interested in reducing the NCH. Using a too high 𝜆
value to expand a non-convex vertex could cause the ENCH to intersect
itself, resulting in a complex polygon. To avoid this behavior, after
each expansion, the algorithm checks whether the generated ENCH is a
simple or complex polygon. If the defined value of 𝜆 causes a complex
hull in some projection, the NCH will not be expanded.

4.5. Pseudocode

Algorithm 1 contains the pseudocode for the OCENCH training
phase where the training data will be projected, the NCHs of each
projection will be calculated and, finally, expanded to be able, later
on, to classify new data. In line 4, a matrix is randomly generated to,
in line 5, project the training data into a two-dimensional space. In
line 6, a standardization model is used to normalize the projected data,
and in line 7 the non-convex hulls (NCH) that surrounds these data
are calculated. In line 8, the expanded version of the non-convex hulls
(ENCH) are calculated from the vertices of the NCH and their incenters.
In line 9, the system checks if the chosen 𝜆 value is valid by verifying
if the expanded polygons are simple or complex.

The method to compute the NCH is shown in Algorithm 2, based
on the one developed by Duckham et al. to geometrically represent
the normal class in low-dimensional spaces through non-convex hulls
but improved in this work to be able to perform subdivisions. In line
3, a Delaunay triangulation is made to get the initial convex hull. In
lines 4 to 6, this initial convex hull is pruned (Algorithm 3) to fit the
shape of the data. If necessary, in line 7 the closure will be subdivided
(Algorithm 4) if union regions are detected. If this happens, in lines 8
to 13 the subdivision and pruning processes will alternate until all the
non-convex hulls are fully adjusted.

Algorithm 3, used by Algorithm 2, describes the pruning process of a
NCH based on the 𝑙 parameter. This algorithm modifies that developed
by Duckham et al. by adding the detection of union regions. This is
8

Algorithm 1 : OCENCH training phase
Inputs:
𝐗 ∈ IR𝑑×𝑛 ⊳ Training data set (𝑑 variables × 𝑛 samples)
𝜏 ∈ N+ ⊳ Number of random 2D-projections
𝑙 ∈ IR+ ⊳ Maximum edge length allowed in the NCH
𝜆 ∈ IR+ ⊳ Expansion parameter of the NCH

Output:
𝑀 ⊳ Model composed of 𝜏 𝐸𝑁𝐶𝐻𝑠, projection matrices and

normalizers

1: function train
2: 𝑀 = ∅
3: for 𝑡 = 1… 𝜏 do
4: 𝐏𝑡 ∼ 𝑁(0, 1) ⊳ Random projection matrix [2 × 𝑑]
5: �̄�𝑡 = 𝐏𝑡𝐗 ⊳ Project the data
6: 𝐍𝑡, 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑟𝑡 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝐗𝑡) ⊳ Data normalization
7: 𝑁𝐶𝐻𝑡 = 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑁𝐶𝐻(𝐍𝑡, 𝑙) ⊳ NCH calculation
8: 𝐸𝑁𝐶𝐻𝑡 = 𝑒𝑥𝑝𝑎𝑛𝑑𝑁𝐶𝐻(𝑁𝐶𝐻𝑡, 𝜆) ⊳ ENCH calculation
9: if isSimple(𝐸𝑁𝐶𝐻𝑡) then ⊳ Check if the ENCHs are simple

10: 𝑀 = 𝑀 ∪
(

𝐸𝑁𝐶𝐻𝑡,𝐏𝑡, 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑟𝑡
)

11: else
12: return Error ⊳ Lambda value is not feasible
13: end if
14: end for
15: return 𝑀 ⊳ Returns the final model
16: end function

done while iterating over the edges to prune them, marking those
that could form union regions. On line 16, those edges whose removal
would alter the properties of the triangulation will be added to a list
of candidate edges. This operation does not increase the complexity of
the pruning algorithm, and it greatly benefits the subdivision algorithm
since this list of candidate edges considerably reduces the number of
necessary checks.

Algorithm 4, also used by Algorithm 2, describes the subdivision
process of a NCH based on the 𝑙 parameter. The goal is to use the list of
candidate edges generated by Algorithm 3 to determine if union regions
exist. If so, in lines 12 to 19, the method takes care of subdividing the
NCH in two NCHs, as presented in Section 4.3.

Algorithm 5 describes the expansion process of the NCHs based on
the 𝜆 parameter used in Algorithm 1. For each vertex of the NCH, in
lines 5 to 8, the incenter and the interior angle is calculated, whilst in
lines 9 to 15 the NCH is expanded.

Finally, Algorithm 6 describes the classification phase of the
OCENCH to determine if a new point is normal or is an anomaly. In

Information Fusion 89 (2023) 1–15D. Novoa-Paradela et al.

s
p

1
1

Algorithm 2 : Function used during training to construct, prune and
ubdivide a 2-D non-convex hull from a set of points based on a
arameter 𝑙

Inputs:
𝐍 ∈ IR2×𝑛 ⊳ Projected data (2 variables × 𝑛 samples)
𝑙 ∈ IR+ ⊳ Maximum edge length allowed in the NCH

Output:
𝑁𝐶𝐻 ⊳ 2-D non-convex hull

1: function computeNCH
2: 𝛥,𝐸, 𝑉 , 𝑆 = ∅ ⊳ Auxiliary lists
3: 𝛥[1] = Delaunay triangulation of N
4: E[1] = Boundary edges of 𝛥
5: V[1] = Boundary vertices of 𝛥
6: E[1], V[1], 𝛥[1], S[1] = Pruning(E[1], V[1], 𝛥[1], 𝑙)
7: E, 𝛥, 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 = Subdivision(E, 𝛥, S, 𝑙)
8: while 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 == 𝑇 𝑟𝑢𝑒 do
9: for 𝑖 = 1..𝑙𝑒𝑛(𝐸) do ⊳ For each NCH

10: E[𝑖], V[𝑖], 𝛥[𝑖], S[𝑖] = Pruning(E[𝑖], V[𝑖], 𝛥[𝑖], 𝑙)
11: end for
12: E, 𝛥, 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 = Subdivision(E, 𝛥, S, 𝑙)
13: end while
14: return E
15: end function

Algorithm 3 : Function used during training to prune the edges of a
2-D non-convex hull.

Inputs:
E𝑖 ⊳ Non-convex hull boundary edges
V𝑖 ⊳ Boundary vertices
𝛥𝑖 ⊳ Triangulation
𝑙 ∈ IR+ ⊳ Maximum edge length allowed in the NCH

Output:
FB ⊳ New boundary edges
V𝑖 ⊳ New boundary vertices
𝛥𝑖 ⊳ New triangulation
C𝑖 ⊳ Candidate triangles that could form union regions

1: function Pruning
2: 𝐹𝐵 = ∅ ⊳ List to store the final boundaries edges
3: C𝑖 = ∅ ⊳ List to store potential union regions
4: Sort the list E𝑖 in descending order by length
5: Sort the list V𝑖 of vertices to form a chain of connected vertices
6: while E𝑖 is not empty do
7: 𝐞 ← head(E𝑖)
8: Remove 𝐞 from E𝑖
9: if ‖𝐞‖ > 𝑙 then

10: Find the triangle 𝑡 of 𝛥𝑖 that contains the two vertices of
𝐞 and find its third vertex 𝐯

11: if not (𝐯 in V𝑖) then
12: Remove 𝐞 from the triangulation 𝛥𝑖
3: Insert the other two edges of 𝑡 into E𝑖 in order
4: Insert 𝐯 into V𝑖 in order

15: else
16: Insert 𝑡 into C𝑖
17: end if
18: else
19: Insert 𝐞 into FB
20: end if
21: end while
22: return FB, V𝑖, 𝛥𝑖, C𝑖
23: end function

lines 7–8, if the new point is outside all ENCHs for some projection, it
9

Algorithm 4 : Function used during training to detect and subdivide
2-D non-convex hulls.

Inputs:
E ⊳ NCH boundary edges, one list per NCH
𝛥 ⊳ List of triangulations, one per NCH
C ⊳ Candidate edges that could form union regions, one list per

NCH
𝑙 ∈ IR+ ⊳ Maximum edge length allowed in the NCH

Output:
E ⊳ Updated list of NCH boundary edges
𝛥 ⊳ Updated list of triangulations
𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 ⊳ 𝑇 𝑟𝑢𝑒 if there has been any subdivision or 𝐹𝑎𝑙𝑠𝑒 if not

1: function Subdivision
2: 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 = 𝐹𝑎𝑙𝑠𝑒
3: for 𝑖 = 1… 𝑐𝑎𝑟𝑑(𝐸) do ⊳ For each NCH
4: for 𝐞𝟏 in C𝑖 do ⊳ For each candidate edge of the NCH
5: 𝑡1 = triangle of 𝛥𝑖 that contains the vertices of 𝐞𝟏
6: 𝐯𝟏 = third vertex of 𝑡1
7: 𝑒_𝑙𝑖𝑠𝑡 = list of edges of C𝑖 that contain vertex 𝐯𝟏
8: for 𝐞𝟐 in 𝑒_𝑙𝑖𝑠𝑡 do
9: 𝑡2 = triangle of 𝛥𝑖 that contains the vertices of 𝐞𝟐

10: 𝐯𝟐 = third vertex of 𝑡2
11: if 𝐯𝟐 ∈ 𝐞𝟏 then
12: Remove the edge 𝐞𝟏 from E𝑖 and 𝛥𝑖
13: Remove the edge 𝐞𝟐 from E𝑖 and 𝛥𝑖
14: Remove the edge 𝐯𝟏-𝐯𝟐 from 𝛥𝑖
15: Add new boundary edges to E
16: Divide E𝑖 structure in two and update E
17: Divide 𝛥𝑖 structure in two and update 𝛥
18: 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 = 𝑇 𝑟𝑢𝑒
19: 𝐵𝑟𝑒𝑎𝑘 ⊳ Finish subdivision
20: end if
21: end for
22: end for
23: end for
24: return E, 𝛥, 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒
25: end function

will be classified as an anomaly and it will be not necessary to continue
checking the remaining projections.

Because the main operations of the algorithm, such as the construc-
tion of the NCH, are executed independently for each projection, the
implementation of the method (training and classification phases) has
been parallelized through the use of multi-threaded libraries.

5. Results

In this section, several experiments are presented to show the
behavior of the proposed algorithm in real scenarios. In this study we
tested the proposed method against the Non-Convex Boundary over
Projections (NCBoP) method [21], a similar method based on the use of
random projections, as well as against other known machine learning
methods for anomaly detection: Autoencoder (AE) [15], Isolation For-
est (IF) [16], Local Outlier Factor (LOF) [11], One-Class Support Vector
Machine (OCSVM) [19], Robust Covariance (RC) [12] and Support
Vector Data Description (SVDD) [31].

These algorithms have been evaluated over 10 real data sets avail-
able in the UCI Machine Learning Repository [32] and in the ODDS
benchmark [33]. The characteristics of these data sets are summarized
in Table 1. The data have been normalized using standard scalers
with zero mean and unit variance. To assess the performance of each
algorithm, the data has been divided into training and test sets using
a 10-fold cross validation. All algorithms have been trained using only

normal data, while the test phase included data from both classes. The

Information Fusion 89 (2023) 1–15D. Novoa-Paradela et al.
Algorithm 5 : Function used during training to expand a NCH
Inputs:
𝑁𝐶𝐻 ⊳ List of NCHs, output from 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑁𝐶𝐻
𝜆 ∈ IR+ ⊳ Expansion parameter

Output:
𝐸𝑁𝐶𝐻 ⊳ Expanded NCHs

1: function expandNCH
2: 𝐸𝑁𝐶𝐻= ∅ ⊳ List to store the final ENCHs
3: for 𝐜 in 𝑁𝐶𝐻 do ⊳ For each NCH
4: for 𝑖 = 1… 𝑐𝑎𝑟𝑑(𝐜.V) do ⊳ For each vertex of the NCH
5: 𝐸𝑁𝐶𝐻_𝑎𝑢𝑥 = ∅ ⊳ Auxiliary list to store one ENCH
6: Get vertices 𝐯𝑖, 𝐯𝑖−1 and 𝐯𝑖+1 of 𝐜.V
7: Calculate the incenter 𝐜𝑖 for the vertex 𝐯𝑖 using Eq. (2)
8: Calculate the interior angle (𝛼) for the vertex 𝐯𝑖
9: if 𝛼 > 180◦ then

10: sign = -1 ⊳ Non-convex angle
11: else
12: sign = 1 ⊳ Convex angle
13: end if
14: 𝐯𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑑 = 𝐯𝑖 + 𝑠𝑖𝑔𝑛 ∗ 𝜆 ∗ (𝐯𝑖 − 𝐜𝑖)∕||𝐯𝑖 − 𝐜𝑖||
15: 𝐸𝑁𝐶𝐻_𝑎𝑢𝑥 = 𝐸𝑁𝐶𝐻_𝑎𝑢𝑥 ∪

(

𝐯𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑑
)

16: end for
17: Add 𝐸𝑁𝐶𝐻_𝑎𝑢𝑥 to the 𝐸𝑁𝐶𝐻 list
18: end for
19: return 𝐸𝑁𝐶𝐻
20: end function

Algorithm 6 : OCENCH classification phase
Input:
𝐱 ∈ IR𝑑 ⊳ Datum to be classified
𝑀 ⊳ Trained model

Output:
𝑅𝑒𝑠𝑢𝑙𝑡 ∈ {𝑁𝑂𝑅𝑀𝐴𝐿,𝐴𝑁𝑂𝑀𝐴𝐿𝑌 }

1: function classify
2: 𝑅𝑒𝑠𝑢𝑙𝑡 = 𝑁𝑂𝑅𝑀𝐴𝐿
3: for 𝑡 = 1… 𝑙𝑒𝑛𝑔𝑡ℎ(𝑀.𝑃) do ⊳ For each projection
4: 𝐱𝑡 = 𝐏𝑡𝐱 ⊳ Project the new point
5: 𝐧𝑡 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝐱𝑡, 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑟𝑡) ⊳ Normalize the data
6: if not 𝑖𝑠𝐼𝑛(𝐧𝑡, 𝐸𝑁𝐶𝐻𝑡).𝑎𝑛𝑦 then
7: 𝑅𝑒𝑠𝑢𝑙𝑡 = 𝐴𝑁𝑂𝑀𝐴𝐿𝑌 ⊳ The point is an anomaly
8: 𝐵𝑟𝑒𝑎𝑘
9: end if

10: end for
11: return 𝑅𝑒𝑠𝑢𝑙𝑡
12: end function

choice of the parameters of the different methods has been carried out
using grid search, selecting those configurations that produce the best
results. The combinations of parameters that reported the best results
are available in Appendix.

The metric used to measure the performance of the algorithms was
the F1-score that relates precision and recall. In order to obtain more
reliable results the experiments were repeated twice. Table 2 summa-
rizes the mean test results. The chosen statistical test was Nemenyi,
a non-parametric test which makes a pairwise comparison between
models [34,35]. Using a significance level of 5% (𝛼 = 0.05) and the
F1-scores obtained for each data set independently, the best values in
Table 2 have been highlighted in bold. As can be seen, the OCENCH
algorithm presents a very robust behavior, achieving good performance
for most data sets. In five of the ten data sets, the subdivision of the
NCH has been beneficial, increasing the performance obtained by the
method (Annthyroid, Shuttle and Optdigit) or achieving similar results
in a significantly shorter time (Telescope and Miniboone).
10
Table 1
Characteristics of the data sets used.

Dataset Size Anomalies Dimension

Annthyroid 7200 534 (7.4%) 6
Thyroid 3772 93 (2.5%) 6
Shuttle 49 097 3511 (7.2%) 9
Telescope 19 020 6573 (34.5%) 10
Pendigits 6870 156 (2.3%) 16
Cardio 1831 176 (9.6%) 21
Ionosphere 351 126 (35.9%) 33
Miniboone 130 065 36 499 (28.1%) 50
Optdigit 5216 64 (2.9%) 64
MNIST 7603 700 (9.2%) 100

To validate this statement, a statistical test was carried out to
compare the global performance of the algorithms. The chosen test was
again Nemenyi. Using a significance level of 5% and the F1-scores of
the algorithms for the different data sets, OCENCH ranks within the
group of best methods, represented graphically by Fig. 10. As can be
seen, the null hypothesis of algorithms having similar performance is
accepted for OCENCH, LOF, OCSVM, RC, IF, NCBoP and AE, so we can
affirm that in these tests our method was found among the best models.
In addition, we can affirm than OCENCH performance was significantly
better than SVDD.

Table 3 shows the ranking obtained by each algorithm for each
data set according to average test F1-score. To calculate this ranking,
when two algorithms obtained the same average F1-score, they were
assigned the same ranking. For example, in Ionosphere, OCENCH and
AE rank 3rd and 4th based on their F1-score. Since their F1-score has
been the same (85.9), they were both assigned the same position in
the table (3.5). The final average ranking is shown in the last row.
As can be observed, OCENCH was the algorithm that obtained the
best average ranking (2.8) with a considerable difference between the
average ranking of the first three methods (OCENCH, LOF and OCSVM)
and the rest.

Table 4 shows the mean training time of each algorithm (lower
values than 0.05 have been represented as 0.0). As can be seen, the
training time of the methods that use random projections such as
OCENCH or NCBoP is higher than that of most algorithms, however
they are still reasonable times for their use. Test times have not been
included in this work because they are very low for all the algorithms.

6. Ablation study

In order to understand the impact of the different parameters of the
method on its performance, an ablation study has been carried out. As
has been seen, the OCENCH method has four parameters to adapt the
algorithm to the scenario on which it is going to be used:

• Number of projections (𝜏): number of random projections used
to represent the target data set. A very low number of projections
may imply a too simple representation, while a very high number
carries a higher computational cost that in some cases may not
be worth it. The goal is to use a sufficient number of projections
to represent the class accurately while maintaining a feasible
computational cost.

• Subdivision (boolean value): by default it is recommended to
allow the subdivision of closures to represent the data set. If a
priori it is known that the data set does not present disjointed
regions, this subdivision process could be avoided to reduce the
computational cost of the algorithm. In any case, if subdivision
is allowed, it will be carried out by OCENCH automatically only
when necessary.

• Maximum edge size (𝑙): value that regulates the edge pruning
process and, if it is enabled, the subdivision process. Since the

projected data is normalized in each 2-D subspace independently,

Information Fusion 89 (2023) 1–15D. Novoa-Paradela et al.
Fig. 10. Graphical representation of Nemenyi test with 𝛼 = 0.05. The critical distance (CD) obtained was 3.32.
Table 2
Average test F1-score ± standard deviation for the different data sets.

Dataset OCENCH NCBoP AE IF LOF OCSVM RC SVDD

Annthyroid 77.5 ± 0.9 51.0 ± 1.7 78.9 ± 2.6 84.2 ± 1.7 72.4 ± 0.7 66.8 ± 0.4 85.9 ± 0.5 63.5 ± 4.4
Thyroid 93.4 ± 1.1 89.9 ± 1.0 87.5 ± 1.7 94.9 ± 1.4 92.7 ± 1.4 92.4 ± 1.4 95.0 ± 1.1 83.9 ± 3.3
Shuttle 99.2 ± 0.2 97.5 ± 0.1 86.3 ± 0.4 98.1 ± 0.2 95.2 ± 0.6 96.9 ± 0.4 96.3 ± 0.3 85.0 ± 10.7
Telescope 70.1 ± 0.9 69.7 ± 0.7 66.7 ± 1.1 63.5 ± 2.7 71.0 ± 0.4 66.6 ± 0.4 70.7 ± 0.4 66.8 ± 0.1
Pendigits 93.73 ± 1.1 92.9 ± 1.1 82.4 ± 1.3 93.6 ± 1.4 95.2 ± 0.9 94.2 ± 0.7 84.1 ± 1.3 96.4 ± 0.6
Cardio 94.3 ± 1.4 92.0 ± 1.9 86.7 ± 1.5 90.7 ± 1.1 89.7 ± 1.6 92.3 ± 0.7 79.5 ± 1.7 80.5 ± 3.1
Ionosphere 85.9 ± 2.6 84.3 ± 4.3 85.9 ± 3.5 82.8 ± 3.5 85.2 ± 3.6 87.9 ± 2.4 80.1 ± 2.7 89.8 ± 2.3
Miniboone 76.6 ± 0.5 49.9 ± 2.3 71.9 ± 0.3 64.0 ± 1.9 72.2 ± 0.6 67.9 ± 0.2 68.5 ± 0.3 69.6 ± 1.8
Optdigit 84.3 ± 1.4 74.7 ± 1.9 71.5 ± 0.6 72.2 ± 6.4 95.8 ± 0.8 85.2 ± 0.6 75.7 ± 1.6 66.7 ± 0.2
MNIST 80.2 ± 0.9 73.7 ± 1.6 72.5 ± 0.3 78.0 ± 1.1 88.9 ± 0.4 93.7 ± 0.6 82.7 ± 2.2 73.7 ± 5.4
Table 3
Ranking of the algorithms for the different data sets.

Dataset OCENCH NCBoP AE IF LOF OCSVM RC SVDD

Annthyroid 4 8 3 2 5 6 1 7
Thyroid 3 6 7 2 4 5 1 8
Shuttle 1 3 7 2 6 4 5 8
Telescope 3 4 6 8 1 7 2 5
Pendigits 4 6 8 5 2 3 7 1
Cardio 1 3 6 4 5 2 8 7
Ionosphere 3.5 6 3.5 6 5 2 8 1
Miniboone 1 8 3 7 2 6 5 4
Optdigit 3 5 7.5 6 1 2 4 7.5
MNIST 4 6.5 8 5 2 1 3 6.5

Avg. Rank 2.8 5.6 5.9 4.7 3.3 3.8 4.4 5.5

it is only necessary to define a single value for this parameter that
will be used universally in all these subspaces. A too small value
will cause a very extreme fit to the shape of the data, which can
cause an excessive number of subdivisions with the consequent
computational cost, while a too large value could cause a poorly
adjusted representation, making it difficult to subdivide the clo-
sures. The objective is to use a maximum edge size that allows
the class to be represented accurately while maintaining a feasible
computational cost.

• Expansion parameter (𝜆): to avoid the effect of over-adjustment of
the training data for the anomaly detection problem, it is possible
to expand the final closures in a controlled way. This process is
computationally inexpensive and in certain scenarios it can be
beneficial, such as in cases where there are not a large number
of instances of the class to be modeled.

To show the influence of the parameter selection on the perfor-
mance of the OCENCH algorithm (F1-score), several experiments have
been carried out using the data sets tested in this work and the best
parameter combinations for each of them Appendix. These experiments
are aimed to study the influence of each of the parameters on the
performance of the algorithm when the other three parameters take a
11
fixed value. The parameters that have been studied are the number of
projections, the maximum edge size 𝑙 and the 𝜆 expansion factor. The
boolean parameter Subdivision is always on, it is not modified.

Since the data are normalized, to study the behavior of the param-
eter 𝑙, it has taken values between 0.1 and 1.7, with increments of
0.1. As can be seen in Fig. 11, the range of values with which the
best results are obtained for these 10 scenarios is between 0.1 and
1.1. However, there is a particular subrange of values of 𝑙 for each
data set in which the best performance of the algorithm is obtained,
for example 𝑙 ∈ [0.3, 1.1] in the case of Thyroid. Using a grid search
with the proposed generic values is an easy way to estimate the best
operating range for this parameter that controls the level of adjustment
of the closures and their subdivision.

To study the influence of the number of projections on the perfor-
mance of the algorithm, between 5 and 2000 projections have been
used. Fig. 12, whose horizontal axis is on a logarithmic scale, shows
the results obtained. As can be seen, the number of projections required
to characterize the data set varies considerably depending on the
characteristics of each scenario (Table 1). In any case, as with the 𝑙
parameter, there is a subrange of values for each data set in which
the best performance of the algorithm is obtained. Using an initial grid
search with a number of projections in the interval [5, 2000] is an easy
way to estimate the best operating range for this parameter.

To study the influence of the expansion factor on the performance of
the algorithm, values between 0.0001 (0.01%) and 2 (200%) have been
used. Fig. 13, whose horizontal axis is on a logarithmic scale, shows the
results obtained. In all but three of the data sets (Pendigits, Miniboone
and Annthyroid), the expansion has improved the performance of the
algorithm compared to using the original NCHs. Using an initial grid
search with values in the interval [0, 2] is an easy way to estimate if
expansion is beneficial to algorithm performance and if so, determine
the best value for 𝜆.

7. Conclusion

The developed OCENCH algorithm allows working with non-convex
and disjointed data sets in a novel way, offering a robust behavior in the

Information Fusion 89 (2023) 1–15D. Novoa-Paradela et al.
Table 4
Average training time ± standard deviation for the different data sets.

Dataset OCENCH NCBoP AE IF LOF OCSVM RC SVDD

Annthyroid 329.5 ± 9.1 622.9 ± 14.7 2.6 ± 0.7 0.2 ± 0.0 0.1 ± 0.0 0.5 ± 0.0 1.1 ± 0.2 50.7 ± 1.3
Thyroid 1.7 ± 0.1 16.8 ± 2.7 1.1 ± 0.1 0.4 ± 0.0 0.0 ± 0.0 0.1 ± 0.0 0.8 ± 0.1 8.9 ± 1.6
Shuttle 7.6 ± 1.4 0.7 ± 0.0 1.5 ± 0.8 0.6 ± 0.0 0.7 ± 0.0 0.2 ± 0.0 3.5 ± 0.7 125.8 ± 9.6
Telescope 75.8 ± 3.2 193.2 ± 8.7 1.51 ± 0.2 0.0 ± 0.0 0.2 ± 0.0 0.5 ± 0.0 3.2 ± 0.9 264.8 ± 43.9
Pendigits 0.9 ± 0.0 0.5 ± 0.0 2.6 ± 0.6 0.5 ± 0.0 0.3 ± 0.0 0.2 ± 0.0 1.8 ± 0.0 53.5 ± 3.2
Cardio 0.5 ± 0.0 0.8 ± 0.0 1.1 ± 0.1 0.3 ± 0.0 0.1 ± 0.0 0.0 ± 0.0 0.6 ± 0.1 1.2 ± 0.1
Ionosphere 0.1 ± 0.0 0.0 ± 0.0 5.8 ± 1.9 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.0 0.0 ± 0.0
Miniboone 139.4 ± 4.2 494.2 ± 19.1 3.4 ± 0.5 0.7 ± 0.0 1.4 ± 0.0 55.1 ± 4.2 17.2 ± 2.6 76.1 ± 3.6
Optdigit 11.6 ± 2.7 252.7 ± 9.8 2.1 ± 0.4 0.2 ± 0.0 0.4 ± 0.0 0.4 ± 0.0 2.7 ± 0.0 13.6 ± 0.9
MNIST 1.7 ± 0.0 133.3 ± 1.2 10.5 ± 2.3 1.4 ± 0.0 0.7 ± 0.0 0.2 ± 0.0 9.1 ± 0.2 30.0 ± 1.4

Avg. Rank 5.2 5.3 5.4 1.6 1.2 1.7 4.4 6.5
Fig. 11. Influence of 𝑙 on the F1-score when the number of projections and the 𝜆 expansion factor are fixed.
Fig. 12. Influence of the number of projections on the F1-score when 𝑙 and the 𝜆 expansion factor are fixed.
different tests carried out. Its performance is remarkable, positioning
itself as an alternative for both convex and non-convex problems. In
addition, OCENCH is easily configurable through its parameters, it only
12
needs normal data to be trained and is not necessary to know a priori
the percentage of anomalies in the data set. The models generated
with this algorithm are light on memory requirements, since it is not

Information Fusion 89 (2023) 1–15D. Novoa-Paradela et al.
Fig. 13. Influence of the expansion factor on the F1-score when the number of projections and 𝑙 are fixed. The lines are drawn up to the maximum possible value without
generating complex polygons.
necessary to store all the data used for the creation of the non-convex
hulls. The model only needs the information of the vertices of each non-
convex hull to determine if a new data is inside or outside the normal
class. Finally, the algorithm has been implemented using specialized
libraries so that it can be executed in parallel. The calculations of each
projection are carried out independently, so its parallelization allows
drastically reducing the execution time of the training and classification
phases.

As future work, it would be interesting to develop and test a version
of the algorithm that could detect the existence of empty regions inside
dense regions to be able to fit more precisely in these scenarios, such
as rings or concentric rings. Furthermore, it could also be interesting to
test the algorithm in edge computing environments.

CRediT authorship contribution statement

David Novoa-Paradela: Conceptualization, Methodology, Investi-
gation, Software, Writing. Oscar Fontenla-Romero: Conceptualiza-
tion, Methodology, Investigation, Software, Supervision, Writing. Bertha
Guijarro-Berdiñas: Conceptualization, Methodology, Investigation, Su-
pervision, Writing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work has been supported by the grant Machine Learning on
the Edge - Ayudas Fundación BBVA a Equipos de Investigación Científica
2019; the National Plan for Scientific and Technical Research and
Innovation of the Spanish Government (Grant PID2019-109238GB-C2);
and by the Xunta de Galicia, Spain (Grant ED431C 2018/34) with
the European Union ERDF funds. CITIC, as a Research Center of the
University System of Galicia, is funded by Consellería de Educación,
Universidade e Formación Profesional of the Xunta de Galicia, Spain
through the European Regional Development Fund (ERDF) and the
Secretaría Xeral de Universidades (Ref. ED431G 2019/01). Funding for
open access charge: Universidade da Coruña/CISUG.
13
Appendix. Parameters used during training

This appendix contains the values of the parameters used in the
grid search and those finally chosen as the best for each method and
data set in the experiments carried out in this study (Tables 1–3). The
combinations of parameters that obtained the best results are listed
below in Table A.5.

• OCENCH

– Number of projections (𝜏).
– Maximum edge size (𝑙).
– Expansion parameter (𝜆).
– Subdivision (boolean value)

• Non-Convex Boundary over Projections (NCBoP) [21].

– Number of projections.

• Autoencoder (AE) [15].

– Network architecture.
– Epochs.
– Contamination of the data set (𝑐).

• Isolation Forest (IF) [16].

– The number of base estimators in the ensemble.
– Contamination of the data set (𝑐).

• Local Outlier Factor (LOF) [11].

– Number of neighbors.
– Contamination of the data set (𝑐).

• One-Class Support Vector Machine (OCSVM) [19].

– An upper bound on the fraction of training errors and a
lower bound of the fraction of support vectors (𝜈).

– Kernel type: Linear, Polynomial or RBF.
– Kernel coefficient 𝛾 (in the case of polynomial and RBF

kernels).
– Degree (in the case of polynomial kernel).

• Robust Covariance (RC) [12].

Information Fusion 89 (2023) 1–15D. Novoa-Paradela et al.

R

Table A.5
Parameters used for training.

Dataset OCENCH NCBoP AE IF LOF OCSVM RC SVDD

Annthyroid Proj: 500, 𝑙: 0.2,
Extend: 0, Subdivision:
True

Proj: 10000 Layers: [10, 10, 8,
10, 10],
Epochs: 100, 𝑐: 0.4

Estimators: 100,
𝑐: 0.2

Neighbors: 15,
𝑐: 0.4

𝜈: 0.2, 𝛾: 0.17,
Kernel:
Polynomial,
Degree: 5

𝑐: 0.2 Pos.: 0.1, Neg.: 0.1,
Kernel: Gaussian,
Width: 8

Thyroid Proj: 200, 𝑙: 1,
Extend: 0.05,
Subdivision: False

Proj: 500 Layers: [5, 2, 5],
Epochs: 100 , 𝑐: 0.3

Estimators: 200,
𝑐: 0.05

Neighbors: 15,
𝑐: 0.1

𝜈: 0.5, 𝛾: 8,
Kernel: RBF

𝑐: 0.05 Pos.: 0.1, Neg.: 0.1,
Kernel: Gaussian,
Width: 8

Shuttle Proj: 50, 𝑙: 1.5,
Extend: 0.001,
Subdivision: True

Proj: 50 Layers: [6, 4, 6],
Epochs: 100, 𝑐: 0.3

Estimators: 200,
𝑐: 0.01

Neighbors:
100,
𝑐: 0.1

𝜈: 0.05, 𝛾: 2−4,
Kernel: RBF

𝑐: 0.05 Pos.: 0.1, Neg.: 0.1,
Kernel: Gaussian
Width: 8

Telescope Proj: 200, 𝑙: 0.3,
Extend: 0.0005,
Subdivision: True

Proj: 2000 Layers: [10, 5, 10],
Epochs: 100, 𝑐: 1

Estimators: 5,
𝑐: 0.2

Neighbors: 15,
𝑐: 0.2

𝜈: 0.1, 𝛾: 4,
Kernel: poly,
Degree: 5

𝑐: 0.6 Pos.: 0.1, Neg.: 0.1,
Kernel: Gaussian,
Width: 8

Pendigits Proj: 100, 𝑙: 20,
Extend: 0, Subdivision:
False

Proj: 50 Layers: [10, 8, 6, 8,
10]
Epochs: 100, 𝑐: 0.4

Estimators: 200,
𝑐: 0.1

Neighbors: 15,
𝑐: 0.1

𝜈: 0.05, 𝛾: 1,
Kernel: RBF

𝑐: 0.35 Pos.: 0.05, Neg.:
0.05,
Kernel: Gaussian,
Width: 4

Cardio Proj: 200, 𝑙: 20,
Extend: 0.3,
Subdivision: False

Proj: 50 Layers: [5, 2, 5],
Epochs: 100 𝑐: 0.3

Estimators: 200,
𝑐: 0.2

Neighbors:
100,
𝑐: 0.2

𝜈: 0.05, 𝛾: 0.06,
Kernel: RBF

𝑐: 0.35 Pos.: 0.1, Neg.: 0.1,
Kernel: Gaussian
Width: 2−4

Ionosphere Proj: 5, 𝑙: 0.9,
Extend: 0.1,
Subdivision: False

Proj: 10 Layers: [10, 5, 10],
Epochs: 100, 𝑐: 0.3

Estimators: 15,
𝑐: 0.2

Neighbors: 15,
𝑐: 0.35

𝜈: 0.05, 𝛾: 2−3,
Kernel: RBF

𝑐: 0.2 Pos.: 0.05, Neg.:
0.05,
Kernel: Gaussian
Width: 1

Miniboone Proj: 200, 𝑙: 0.2,
Extend: 0, Subdivision:
True

Proj: 5000 Layers: [10, 5, 10],
Epochs: 100, 𝑐: 0.3

Estimators: 100,
𝑐: 0.2

Neighbors:
100,
𝑐: 0.5

𝜈: 0.05, 𝛾: 2−10,
Kernel: RBF

𝑐: 0.8 Pos.: 0.1,
Neg.: 0.1,
Kernel: Linear

Optdigit Proj: 20, 𝑙: 0.5,
Extend: 0.05,
Subdivision: True

Proj: 5000 Layers: [10, 7, 5, 7,
10],
Epochs: 100, c: 1

Estimators: 50,
𝑐:0.2

Neighbors: 50,
𝑐: 0.1

𝜈: 0.1, 𝛾: 2−9,
Kernel: RBF

𝑐: 0.5 Pos.: 0.1,
Neg.: 0.1,
Kernel: Linear

MNIST Proj: 200, 𝑙: 1.6,
Extend: 0.05,
Subdivision: False

Proj: 2000 Layers: [10, 7, 5, 7,
10],
Epochs: 100, 𝑐: 1

Estimators: 200,
𝑐: 0.2

Neighbors: 15,
𝑐: 0.1

𝜈: 0.1, 𝛾: 2−4,
Kernel: RBF

𝑐: 0.2 Pos.: 0.4,
Neg.: 0.4,
Kernel: Linear
– Contamination of the data set (𝑐).

• Support Vector Data Description (SVDD) [31].

– Positive penalty.
– Negative penalty.
– Kernel type: Linear, Polynomial or Gaussian.
– Width (in the case of gaussian kernel).
– Degree (in the case of polynomial kernel).

eferences

[1] S. Khan, T. Yairi, A review on the application of deep learning in system health
management, Mech. Syst. Signal Process. 107 (2018) 241–265.

[2] S. Sorournejad, Z. Zojaji, R.E. Atani, A.H. Monadjemi, A survey of credit card
fraud detection techniques: data and technique oriented perspective, 2016, arXiv:
1611.06439.

[3] G. Vigna, C. Kruegel, Host-based intrusion detection, 2005.
[4] D. Ramotsoela, A. Abu-Mahfouz, G. Hancke, A survey of anomaly detection in

industrial wireless sensor networks with critical water system infrastructure as
a case study, Sensors 18 (8) (2018).

[5] S. Vempala, The Random Projection Method, American Mathematical Society,
2004.

[6] M. Duckham, L. Kulik, M. Worboys, A. Galton, Efficient generation of simple
polygons for characterizing the shape of a set of points in the plane, Pattern
Recognit. 41 (10) (2008) 3224–3236.

[7] V. Chandola, A. Banerjee, V. Kumar, Anomaly detection: a survey, ACM Comput.
Surv. 41 (3) (2009) 15:1–15:58.

[8] S.S. Khan, M.G. Madden, One-class classification: Taxonomy of study and review
of techniques, Knowl. Eng. Rev. (2013) abs/1312.0049. arXiv:1312.0049.

[9] G. Thatte, U. Mitra, J. Heidemann, Parametric methods for anomaly detection
in aggregate traffic (Extended version), IEEE/ACM Trans. Netw. 19 (2011).

[10] Dit-Yan Yeung, C. Chow, Parzen-window network intrusion detectors, in: Object
Recognition Supported By User Interaction for Service Robots, Vol. 4, 2002, pp.
385–388, vol.4.
14
[11] M. Breunig, H.-P. Kriegel, R.T. Ng, J. Sander, LOF: identifying density-based local
outliers, in: ACM Sigmoid International Conference on Management of Data, ACM
SIGMOD Record, 2000, pp. 93–104.

[12] D. Peña, F.J. Prieto, Multivariate outlier detection and robust covariance matrix
estimation, Technometrics 43 (3) (2001) 286–310.

[13] P. Soucy, G.W. Mineau, A simple KNN algorithm for text categorization, in: IEEE
International Conference on Data Mining, 2001, pp. 647–648.

[14] K. Khan, S.U. Rehman, K. Aziz, S. Fong, S. Sarasvady, DBSCAN: past, present
and future, in: 5th IEEE International Conference on the Applications of Digital
Information and Web Technologies, 2014, pp. 232–238.

[15] M. Ma, C. Sun, X. Chen, Deep coupling autoencoder for fault diagnosis with
multimodal sensory data, IEEE Trans. Ind. Inf. 14 (2018) 1137–1145.

[16] F.T. Liu, K.M. Ting, Z. Zhou, Isolation forest, in: 2008 Eighth IEEE International
Conference on Data Mining, 2008, pp. 413–422.

[17] E. Keogh, J. Lin, A. Fu, HOT SAX: efficiently finding the most unusual time series
subsequence, in: 5th IEEE International Conference on Data Mining (ICDM’05),
2005, pp. 1–8.

[18] N. Cristianini, J. Shawe-Taylor, An introduction to support vector machines: and
other Kernel-based learning methods, Cambridge University Press, New York,
NY, USA, 2000.

[19] G. Ratsch, S. Mika, B. Scholkopf, K. Muller, Constructing boosting algorithms
from SVMs: an application to one-class classification, IEEE Trans. Pattern Anal.
Mach. Intell. 24 (9) (2002) 1184–1199.

[20] P. Casale, O. Pujol, P. Radeva, Approximate polytope ensemble for one-class
classification, Pattern Recognit. 47 (2) (2014) 854–864.

[21] E. Jove, J.-L. Casteleiro-Roca, H. Quintián, J.-A. Méndez-Pérez, J.L. Calvo-Rolle,
A new method for anomaly detection based on non-convex boundaries with
random two-dimensional projections, Inf. Fusion 65 (2021) 50–57.

[22] P. Li, O. Niggemann, Non-convex hull based anomaly detection in CPPS, Eng.
Appl. Artif. Intell. 87 (2020) 103301.

[23] J.-S. Park, S. Oh, A new concave hull algorithm and concaveness measure for
n-dimensional datasets, J. Inf. Sci. Eng. 29 (2012) 379–392.

[24] H. Hotelling, Analysis of a complex of statistical variables into principal
components., J. Educ. Psychol. 24 (6) (1933) 417–441.

[25] S. Ioffe, Probabilistic linear discriminant analysis, in: A. Leonardis, H. Bischof, A.
Pinz (Eds.), Computer Vision - European Conference on Computer Vision 2006,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2006, pp. 531–542.

http://refhub.elsevier.com/S1566-2535(22)00089-6/sb1
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb1
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb1
http://arxiv.org/abs/1611.06439
http://arxiv.org/abs/1611.06439
http://arxiv.org/abs/1611.06439
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb3
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb4
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb4
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb4
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb4
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb4
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb5
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb5
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb5
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb6
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb6
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb6
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb6
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb6
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb7
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb7
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb7
http://arxiv.org/abs/1312.0049
http://arxiv.org/abs/1312.0049
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb9
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb9
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb9
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb10
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb10
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb10
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb10
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb10
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb11
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb11
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb11
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb11
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb11
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb12
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb12
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb12
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb13
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb13
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb13
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb14
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb14
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb14
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb14
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb14
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb15
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb15
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb15
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb16
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb16
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb16
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb17
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb17
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb17
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb17
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb17
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb18
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb18
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb18
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb18
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb18
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb19
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb19
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb19
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb19
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb19
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb20
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb20
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb20
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb21
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb21
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb21
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb21
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb21
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb22
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb22
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb22
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb23
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb23
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb23
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb24
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb24
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb24
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb25
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb25
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb25
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb25
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb25

Information Fusion 89 (2023) 1–15D. Novoa-Paradela et al.
[26] W.B. Johnson, J. Lindenstrauss, Extensions of Lipschitz mappings into a Hilbert
space, Contemp. Math. 26 (1984) 189–206.

[27] C.B. Barber, D.P. Dobkin, D.P. Dobkin, H. Huhdanpaa, The quickhull algorithm
for convex hulls, ACM Trans. Math. Software 22 (4) (1996) 469–483.

[28] S. Dasgupta, A. Gupta, An elementary proof of a theorem of Johnson and
Lindenstrauss, Random Struct. Algorithms 22 (1) (2003) 60–65.

[29] S. Dasgupta, Experiments with random projection, in: Conference on Uncertainty
in Artificial Intelligence, 2013, abs/1301.3849. arXiv:1301.3849.

[30] E. Bingham, H. Mannila, Random projection in dimensionality reduction: ap-
plications to image and text data, in: Proceedings of the Seventh ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, in: KDD ’01,
Association for Computing Machinery, New York, NY, USA, 2001, pp. 245–250.
15
[31] D.M. Tax, R.P. Duin, Support vector data description, Mach. Learn. 54 (2004)
45–66.

[32] A. Asuncion, D. Newman, Uci machine learning repository, 2007, https://archive.
ics.uci.edu/ml/index.php.

[33] S. Rayana, Odds library, 2016, http://odds.cs.stonybrook.edu/, Revised at
23/03/2021.

[34] J. Demšar, Statistical comparisons of classifiers over multiple data sets, J. Mach.
Learn. Res. 7 (1) (2006) 1–30.

[35] S. García, F. Herrera, An extension on ‘‘Statistical comparisons of classifiers over
multiple data sets’’ for all pairwise comparisons, J. Mach. Learn. Res. 9 (89)
(2008) 2677–2694.

http://refhub.elsevier.com/S1566-2535(22)00089-6/sb26
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb26
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb26
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb27
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb27
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb27
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb28
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb28
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb28
http://arxiv.org/abs/1301.3849
http://arxiv.org/abs/1301.3849
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb30
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb30
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb30
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb30
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb30
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb30
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb30
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb31
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb31
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb31
https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php
http://odds.cs.stonybrook.edu/
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb34
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb34
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb34
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb35
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb35
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb35
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb35
http://refhub.elsevier.com/S1566-2535(22)00089-6/sb35

	A One-Class Classification method based on Expanded Non-Convex Hulls
	Introduction
	Related work
	Background
	Approximate polytope ensemble
	Generation of simple polygons to characterize the shape of a set of points

	The proposed method
	Dimensionality reduction
	Calculation of the non-convex hulls
	Subdivision of non-convex hulls
	Calculation of the expanded non-convex hulls
	Pseudocode

	Results
	Ablation study
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix. Parameters used during training
	References

