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a b s t r a c t 

Firefighters, emergency paramedics, and airplane pilots are able to make correct judgments and choices 

in challenging situations of scarce information and time pressure. Experts often attribute such successes 

to intuition and report that they avoid analysis. Similarly, laypeople can effortlessly perform tasks that 

confuse machine algorithms. OR should ideally respect human intuition while supporting and improving 

it with analytical modelling. We utilize research on intuitive decision making from psychology to build 

a model of mixing intuition and analysis over a set of interrelated tasks, where the choice of intuition 

or analysis in one task affects the choice in other tasks. In this model, people may use any analytical 

method, such as multi-attribute utility, or a single-cue heuristic, such as availability or recognition. The 

article makes two contributions. First, we study the model and derive a necessary and sufficient condi- 

tion for the optimality of using a positive proportion of intuition (i.e., for some tasks): Intuition is more 

frequently accurate than analysis to a larger extent than analysis is more frequently accurate than guess- 

ing. Second, we apply the model to synthetic data and also natural data from a forecasting competition 

for a Wimbledon tennis tournament and a King’s Fund study on how patients choose a London hospital: 

The optimal proportion of intuition is estimated to range from 25% to 53%. The accuracy benefit of us- 

ing the optimal mix over analysis alone is estimated between 3% and 27%. Such improvements would be 

impactful over large numbers of choices as in public health. 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

1

s

i

e

m

s

s

t  

t

b

b

a

s

m

c

c

r

d

l

s

s

m

i

s

i

b

f

n

M

h

0

. Introduction 

Albert Einstein is quoted as saying that intuitive thinking is a 

acred gift and rational analysis a faithful servant, and protest- 

ng that society honors the servant and forgets the gift. Firefight- 

rs, emergency paramedics, and airplane pilots are often able to 

ake correct judgments and choices in challenging situations with 

carce information and under extreme time pressure. In doing so, 

uch experts cite their intuition as the source of success and report 

hat they avoid analysis ( Klein, 1998 ), as illustrated in the case of

he “miracle on the Hudson”. 

On January 15, 2009, US Airways Flight 1549 captain Sullen- 

erger and co-pilot Skiles had to decide whether their plane, with 

oth of its engines disabled, could land safely back at La Guardia 

irport or they should attempt an emergency landing on the Hud- 

on river. They went for the latter option, based on a thinking pro- 
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ess articulated by Skiles (2009) : “It’s no so much a mathematical 

alculation as visual in that... a point you can’t reach will actually 

ise in your windshield. A point that you are going to overfly will 

escend in your windshield”. Applying this rule of thumb the plane 

anded safely and there were no casualties. As simulations showed 

ubsequently, this was the right decision. Making the right deci- 

ion here is enabled by people’s innate capacity of visually tracking 

oving objects ( Gigerenzer, 2022 ). In general, people can seem- 

ngly effortlessly perform tasks which confuse machine algorithms, 

uch as recognizing visual patterns and inferring the hidden mean- 

ngs of utterances ( Gigerenzer, 2022 ). 

Of course, if experts and laypeople always made great decisions 

ased on their intuitions, there would not have been much need 

or the analyses offered by disciplines such as OR. But this is 

ot the case as work in behavioural operational research ( Kunc, 

alpass, & White, 2016 ), and behavioural operations manage- 

ent ( Donohue, Katok, & Leider, 2018 ) has demonstrated. For 

xample, inventory controllers do not place orders that maxi- 

ize the theoretically expected profit, even when instructed to 

o so and all variables needed for performing the calculation 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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re provided ( Schweitzer & Cachon, 20 0 0 ). In fact, experienced 

rocurement managers do not perform better than university 

tudents ( Bolton, Ockenfels, & Thonemann, 2012 ). As another 

xample, Kefalidou (2011) has reviewed experimental evidence 

hich shows that people can solve vehicle routing problems 

nd perform satisfactorily, but do not achieve the theoretical 

ptimal. 

Ideally, OR should respect human intuition while also sup- 

orting and improving it with analytical modelling. Liebowitz 

2015) suggests that “practitioners use informed intuition, founded 

pon years in business and inspired by trends in big data, to 

avigate the future of business”. This view echoes Aneesh Chopra’s 

 Keiger, 2014 )–the first chief technology officer in the US–who 

roposes that major decisions should be made by marrying gut 

eelings and careful data analysis. As Hämäläinen, Luoma, & Saari- 

en (2013) put it in their behavioural OR manifesto, OR tools and 

rocesses should be augmented by taking into account people’s be- 

aviour and cognition. To heed one of the founding fathers of OR, 

analysis is necessary but not sufficient” ( Koopman, 1977 , p. 202). 

To the best of our knowledge, there are yet no precise answers 

n how to integrate analysis and intuition. The present work aims 

o provide some answers by using mathematical modelling. We 

ake the approach of building a simple model, aiming to derive 

lear and testable insights ( Currie et al., 2020; Katsikopoulos, Dur- 

ach, & Stewart, 2018; Robinson, Worthington, Burgess, & Radnor, 

014; Tako, Tsioptsias, & Robinson, 2020 ). The model is rich, draw- 

ng heavily from theories of intuition in psychology ( Klein, 1998 ; 

igerenzer, 2007 ; Kahneman, 2011 ), and we employ it to pose and 

nswer new prescriptive questions in the realm of how to inte- 

rate intuition with analysis. We do not study the conditions un- 

er which intuition outperforms analysis, or vice versa, on a single 

ask (for answers see Hogarth, 2001; Klein, 1998 ; Gigerenzer, 2007 ; 

ahneman & Klein, 2009 ). Our model addresses decision making 

ver a set of tasks. 

To explain, a brief background is needed. Overarching frame- 

orks of human decision making, such as the “adaptive deci- 

ion maker” ( Payne, Bettman, & Johnson, 1993 ) and the “adap- 

ive toolbox” ( Gigerenzer & Selten, 2002 ), show that, depending on 

he task, decision makers switch between intuitive and analytical 

odes of thinking. The intuitive mode is said to be fast and auto- 

atic, whereas the controlled mode is postulated to be slow and 

nalytical ( Evans (2008) ; Schneider & Shiffrin (1977) –more precise 

efinitions of intuition are discussed in Section 2 ). People match 

ntuitive or analytical methods to tasks so that they satisfy crite- 

ia such as accuracy, effort, and transparency, sometimes balanc- 

ng these criteria ( Payne et al., 1993 ), and other times achieving all

f them at once ( Katsikopoulos, Ş im ̧s ek, Buckmann, & Gigerenzer, 

020 ). 

Individuals, groups, and organizations often face a set of inter- 

elated decision tasks, where the choice of intuition or analysis in 

ne task affects the choice in other tasks. For example, in prod- 

ct development methods Pugh 1990, Katsikopoulos (2009) , Saaty, 

014, decision makers would first compare product designs A and 

 and then would compare designs B and C . If the first comparison

as made by analyzing both designs A and B , it is hard to see how

his analysis can be forgotten and the assessment of B be made in- 

uitively in the second comparison between B and C . The reverse 

rocess is more plausible, meaning that assessing intuitively A and 

 might not preclude analyzing both B and C at a later moment. As 

n the old saying “you never get a second chance to make a good 

rst impression”, the choice of intuition or analysis in one task af- 

ects the choice in other tasks. The same issues can be expected to 

rise when people are asked to make paired comparisons in other 

perational contexts, as in preference-based multi-objective opti- 

ization ( Fowler et al., 2010 ), and more broadly in systems engi- 

eering ( Clausing & Katsikopoulos, 2008 ). We investigate how such 
780 
nterrelated choices should be made in order to maximize, or at 

east improve, accuracy. 

More specifically, in Section 2 , we utilize research on intuition 

rom psychology to build a model, which can be analyzed by OR 

ools, for mixing intuition and analysis over a set of interrelated 

ecision tasks. We study the model and mathematically derive an- 

wers to questions such as: How does one theoretically determine 

n which tasks to use intuition and in which to use analysis, in 

rder to maximize overall decision accuracy? Are there interesting 

onditions under which it is theoretically best to exclusively use 

ne of analysis or intuition? In Section 3 , we apply the model to 

ynthetic and natural data and empirically answer questions such 

s: What are the estimated optimal proportions of using each of 

ntuition and analysis? What is the estimated accuracy benefit of 

sing the optimal mix over analysis or intuition alone? Section 4 

oncludes by discussing the contributions of this work, acknowl- 

dging its limitations, and considering future research and imple- 

entation challenges, as well as sketching responses to such chal- 

enges. 

. Theory: optimal mix of intuition and analysis 

This section is structured as follows. First, we review research 

n intuitive decision making in psychology, with an eye towards 

mploying this knowledge to formally model intuition. Then, we 

uild two versions of a mathematical model for mixing intuition 

nd analysis, and study those to derive necessary and sufficient 

onditions for a positive (conversely zero) proportion of intuition 

o be maximizing accuracy. We also relate this work to less-is- 

ore effects in psychology and business. 

.1. Psychology knowledge for modelling intuition, and our modelling 

lan 

There are three main views of intuition in cognitive psychology 

nd judgment and decision making research ( Klein, 2015 ). These 

iews emanate from the naturalistic decision making paradigm 

 Klein, Orasanu, Calderwood, & Zsambok, 1993; Zsambok & Klein, 

014 ), the heuristics-and-biases program ( Gilovich, Griffin, & Kah- 

eman, 2002; Kahneman, Slovic, & Tversky, 1982 ), and the fast- 

nd-frugal-heuristics program ( Gigerenzer, Hertwig, & Pachur, 2011; 

igerenzer & Todd, 1999 ). 

The naturalistic decision making paradigm has studied exten- 

ively the decision making of expert practitioners, as it occurs in 

he field/the wild, that is, outside the scientific laboratory. In this 

iew, intuition is “an expression of experience as people build up 

atterns that enable them to rapidly size up situations and make 

apid decisions without having to compare options” ( Klein, 2015 , p. 

64). For example, experienced firefighters are able to swiftly rec- 

gnize an effective course of action, mentally simulate its effects, 

nd execute it, all without considering inferior alternatives ( Klein 

 Calderwood, 1991 ). 

The heuristics-and-biases program initially focused on the in- 

estigation of the decision making of laypeople in the laboratory, 

nd later tested some of its findings in real-world arenas such 

s the financial market. Kahneman & Klein (2009 , p. 519) jointly 

ontrast the views of intuition in their respective research pro- 

rams: “Intuitive judgments that arise from experience and man- 

fest skill are the province of naturalistic decision making... In 

ontrast, heuristics-and-biases researchers have been mainly con- 

erned with intuitive judgments that arise from simplifying heuris- 

ics, not from specific experience. These intuitive judgments are 

ess likely to be accurate and are prone to systematic biases”. 

A critique of both of these approaches to intuition, which is rel- 

vant to our modelling purposes here, is that they have not gen- 

rated formal models of people’s heuristics ( Gigerenzer & Todd, 
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999; Katsikopoulos et al., 2020 ). This issue has been addressed 

y the fast-and-frugal-heuristics program, which has developed 

athematical and computer models of the heuristics of laypeople 

nd experts, for broadly-construed decision tasks such as multi- 

ttribute choice, classification, and forecasting ( Katsikopoulos et al., 

018; Todd, 2007 ). These models include unit-weight linear re- 

ression as well as lexicographic heuristics such as deterministic 

limination by aspects ( Baucells, Carrasco, & Hogarth, 2008; Hoga- 

th & Karelaia, 2005; Katsikopoulos, 2013 ) and fast-and-frugal de- 

ision trees ( Luan, Schooler, & Gigerenzer, 2011; Martignon, Kat- 

ikopoulos, & Woike, 2008 ). Such models offer precise explications 

f how practitioners can make decisions rapidly and accurately as 

ound in the naturalistic decision making paradigm, and also of 

ow people’s decisions can be inferior as found in the heuristics- 

nd-biases program. In behavioural OR, these models have been 

roposed as prescriptive models of decision making, under some 

onditions ( Keller & Katsikopoulos, 2016; Pande, Papamichail, & 

awalek, 2021 ). 

Because intuition is automatic ( Kahneman, 2011; Kruglanski & 

igerenzer, 2011 ), as candidates for models of intuition, one should 

onsider those models of fast-and-frugal heuristics that are espe- 

ially fast and frugal, so that their output would come to the hu- 

an mind quickly and seemingly effortlessly. An obvious option 

s models that use only a single cue –the psychological term for 

ttribute–Ş im ̧s ek & Buckmann (2015) ; Hogarth & Karelaia (2005) ; 

ahneman & Frederick (2002) ; Katsikopoulos, Ş im ̧s ek, Buckmann, 

 Gigerenzer (2022) ; Slovic, Finucane, Peters, & MacGregor (2007) . 

nterestingly, the idea of single-cue decision making is shared by 

he three views of intuition discussed here. The cue can be binary 

s the recognition or not of a decision option, see Klein & Calder- 

ood (1991) and Goldstein & Gigerenzer (2002) ; or continuous as 

he availability of instances of an event in memory, see Tversky & 

ahneman (1974) and Schooler & Hertwig (2005) . 

Based on the above knowledge, we can now outline our mod- 

lling plan. We will use a binary-cue heuristic to model intuition. 

ote that it makes little sense to model intuition as a single con- 

inuous variable. For example, consider the availability heuristic 

or judging an event’s frequency, where availability is defined as 

he “ease by which instances or occurrences of the event can be 

rought to mind” ( Tversky & Kahneman, 1974 , p. 1127). Schooler 

 Hertwig (2005) proposed measuring “ease” by the speed of re- 

rieval from memory, experimentally or via a cognitive architec- 

ure such as ACT-R. The issue is that such a continuous cue would 

lways discriminate between two options (i.e., one option would 

ave an, ever so slightly, smaller retrieval speed than the other), 

nd analysis would never be used for choosing one of two options. 

his prediction is too extreme. And it would reduce the research 

roblem to a comparison of the accuracy of a single cue with that 

f an analytical method when the two are not mixed, which has 

een studied elsewhere ( ̧S im ̧s ek & Buckmann, 2015; Hogarth & 

arelaia, 2005 ). 

In what follows, we will consider a decision maker who has in 

heir repertoire one single-cue heuristic and one analytical method 

possible extensions to multiple heuristics and analytical meth- 

ds will be outlined in Section 4 , together with alternative ap- 

roaches to modelling intuition). The model applies to any analyt- 

cal method, and to two main cases of using single-cue heuristics 

o capture intuition. It will be clear how the model can be for- 

ulated for any single-cue heuristic. The decision maker employs 

 method selection strategy wherein s/he first attempts to use the 

euristic, and only if this cannot lead to a choice, then s/he em- 

loys analysis. This strategy reflects the primacy of intuition over 

nalysis, which is postulated in Kahneman (2011) System 1/System 

 metaphor. 

To fix ideas, in the next Section 2.2 we assume that intuition 

s captured by the recognition heuristic ( Goldstein & Gigerenzer, 
781 
002 ). This heuristic is one of the most studied single-cue heuris- 

ics that are also formally specified. Other well-known heuristics, 

uch as the affect heuristic ( Slovic et al., 2007 ), can also be viewed

s being based on a single cue (e.g., the affective evaluation of 

n option), but are not mathematically specified. The recognition 

euristic holds that a recognized option is chosen over an un- 

ecognized one. If both options are recognized, then presumably 

ome attribute values of the options are known too, and the deci- 

ion maker applies a method such as multi-attribute utility anal- 

sis. If options are not recognized, then presumably no attribute 

alues are known, and an option is chosen by random guessing. 

his version of the model is applied to synthetic data and a natu- 

al dataset from a forecasting competition for a Wimbledon tennis 

ournament in Section 3 . 

Section 3.3 formulates the model for the more general case 

here intuition is captured by a single-cue heuristic where the 

ue is not special in the sense that recognition is. That is, the cue 

n the heuristic does not constrain the decision maker’s other at- 

ribute information about the options. For example, if the decision 

aker is trying to choose between two medical treatments, and 

ntuitively would go for the treatment after which most people 

eported a health improvement but cannot establish which treat- 

ent this is, other attribute values such as the treatment cost and 

he distance to the hospital can be known and be used. The math- 

matical treatment of this case is similar to the one for the recog- 

ition heuristic case–except that there is no need for guessing–and 

s presented more quickly. In Section 3, this version of the model 

s also applied to the same synthetic data, and to another natural 

ataset from a King’s Fund study on choosing a London hospital. 

.2. Model version 1: intuition as recognition heuristic 

The decision maker makes a choice for every pair of decision 

ptions sampled out of a population of N options. Let { 1 , 2 , . . . , N}
enote the options in decreasing order of “utility”. That is, choos- 

ng i over j is accurate if and only if i < j. For each option i =
 , 2 , . . . ., N, X i is a binary variable denoting whether the decision

aker recognizes the option ( X i = 1 ) or not ( X i = 0 ). Note that X i 
an be viewed as a variable controlled by the decision maker, as 

hen a consumer chooses to learn about products by attending 

o adverts or by actively seeking information. Alternatively, X i can 

e viewed as exogenously determined. The corresponding choice 

ector is X = (X 1 , X 2 , . . . , X N ) . We are interested in determining the

alue(s) of X that theoretically optimize (maximize) accuracy , which 

s the proportion of accurate choices. A decision maker who opti- 

izes accuracy is called optimal . 

For each pair of sampled options i and j and their associated re- 

lizations x i and x j , the heuristic states: “If x i = 1 and x j = 0 , then

hoose i ”. The heuristic defines a partial order over the set of op- 

ions as it does not apply to pairs with x i = x j . If n = 

∑ N 
i =1 x i , then

he proportion of choices made intuitively equals 2 n (N−n ) 
N (N −1) 

, which 

an also be written as 

 I (x ) = 

2 

∑ N 
i =1 x i 

∑ N 
i =1 (1 − x i ) 

N( N − 1) 
, 

here x = ( x 1 , x 2 , . . . , x N ) . 

The accuracy of intuition is 

(x ) = 

∑ N−1 
i =1 

∑ N 
j= i +1 x i (1 − x j ) 

∑ N 
i =1 x i 

∑ N 
i =1 ( 1 − x i ) 

, 

ecause, if i < j, among all pairs with { x i = 1 and x j = 0 } or { x i =
 and x j = 1 } , the heuristic makes an accurate choice only in the

ormer case. 

The analytical method M is defined in a general way, by a com- 

lete order over the set of options. M = (M i, j ) is an N × N matrix,
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nd M i, j equals 1 when the analytical method chooses i over j and 

 otherwise. So, M i, j + M j,i = 1 for all i � = j. 

The analytical method M applies only to pairs with x i = x j = 1 .

hus, the proportion of choices made analytically equals n (n −1) 
N (N −1) 

, 

hich can also be written as 

 M 

(x ) = 

∑ N 
i =1 x i 

(∑ N 
i =1 x i − 1 

)

N(N − 1) 

r as 

2 

∑ N−1 
i =1 

∑ N 
j= i +1 x i x j 

N(N − 1) 
. 

Based on a similar logic as in the expression for α(x ) , the ac-

uracy of analysis equals 

(x , M ) = 

∑ N−1 
i =1 

∑ N 
j= i +1 x i x j M i, j 

∑ N−1 
i =1 

∑ N 
j= i +1 x i x j 

. 

If x = (1 , 1 , . . . , 1) = 1 , then P M 

(1 ) = 1 and the decision maker

xclusively uses analysis. In contrast, it is not possible in our 

inary-cue model for the decision maker to exclusively use intu- 

tion because there does not exist an x such that P I (x ) = 1 ; in fact,

 I (x ) is capped a bit under or over 0.5 (depending on whether N is

ven or odd; for very small N, the cap can be up to 0.67). 

Finally, the decision maker has to guess in a proportion of 

hoices (N−n )(N−n −1) 
N (N −1) 

, which can be written as 

 G (x ) = 

∑ N 
i =1 (1 − x i ) 

(∑ N 
i =1 (1 − x i ) − 1 

)

N( N − 1) 

r as 

2 

∑ N−1 
i =1 

∑ N 
j= i +1 (1 − x i )(1 − x j ) 

N(N − 1) 
. 

Both P M 

(x ) and P G (x ) can range from 0 to 1, subject to the

onstraint that P I (x ) + P M 

(x ) + P G (x ) = 1 . If the decision maker is

iewed as deciding how to set their n , then s/he is effectively set- 

ing the mix of intuition, analysis, and guessing. The accuracy of 

uessing equals 1 / 2 . 

The decision maker’s accuracy equals 

f 1 (x , M ) = α(x ) P I (x ) + β(x , M ) P M 

(x ) + (1 / 2) P G (x ) . (1)

hich, based on the above, reduces to 

f 1 (x , M ) = 

∑ N−1 
i =1 

∑ N 
j= i +1 

[
2 x i (1 − x j ) + 2 x i x j M i, j + (1 − x i )(1 − x j ) 

]

N( N − 1) 
. 

(2) 

Eq. (2) can be used to derive a necessary and sufficient con- 

ition for a positive proportion of intuition (i.e., for some choices 

etween two options) to lead to optimal accuracy, as shown be- 

ow. 

A positive proportion of intuition is optimal if and only if there 

xists an x � = 1 such that, for an arbitrary but fixed M , 

f 1 (x , M ) > f 1 (1 , M ) . (3) 

ote that 

f 1 (1 , M ) = 

∑ N−1 
i =1 

∑ N 
j= i +1 2 M i, j 

N(N − 1) 

nd hence from Eq. (2) , the condition (3) can be written as fol-

ows: 

−1 
 

i =1 

N ∑ 

j= i +1 

[
2 x i (1 − x j ) + 2 x i x j M i, j + (1 − x i )(1 − x j ) 

]
> 

N−1 ∑ 

i =1 

N ∑ 

j= i +1 

M i, j

By expanding this inequality using 

 i (1 − x j ) = x i (1 − x j )(M i, j + M j,i ) 
782 
n the left-hand side and 

 i, j = M i, j [ x i x j + x i (1 − x j ) + (1 − x i ) x j + (1 − x i )(1 − x j )] 

n the right-hand side, and by rearranging terms, the following re- 

ult is obtained. 

roposition 2.1. A positive proportion of intuition is optimal if and 

nly if there exists x � = 1 such that, for an arbitrary but fixed M , 

N−1 ∑ 

i =1 

N ∑ 

j= i +1 

x i (1 − x j ) M j,i −
N−1 ∑ 

i =1 

N ∑ 

j= i +1 

(1 − x i ) x j M i, j 

> 

N−1 ∑ 

i =1 

N ∑ 

j= i +1 

(1 − x i )(1 − x j ) M i, j −
1 

2 

N−1 ∑ 

i =1 

N ∑ 

j= i +1 

(1 − x i )(1 − x j ) . 

As a numerical example, take x = (1 , 1 , . . . 1 , 0) and M such that

 N,i = 1 for all i < N. The condition of Proposition 2.1 holds be-

ause (N − 1) − 0 > 0 − 0 . Additionally, from Eq. (2) , 

f 1 (x , M ) = 

2(N − 1) + 

∑ N−1 
i =1 

∑ N 
j= i +1 2 M i, j 

N(N − 1) 
, 

hich is indeed larger than 

∑ N−1 
i =1 

∑ N 
j= i +1 2 M i, j 

N(N − 1) 
= f 1 (1 , M ) . 

It is important to note that the terms in Proposition 2.1 have 

lear interpretations: 

−1 
 

i =1 

N ∑ 

j= i +1 

x i (1 − x j ) M j,i 

ounts the number of pairs in which intuition is correct when in- 

uition and analysis disagree; 

−1 
 

i =1 

N ∑ 

j= i +1 

(1 − x i ) x j M i, j 

ounts the number of pairs in which analysis is correct when in- 

uition and analysis disagree; 

1 

2 

N−1 ∑ 

i =1 

N ∑ 

j= i +1 

(1 − x i )(1 − x j ) 

ounts the number of pairs in which guessing applies and it is cor- 

ect and 

−1 
 

i =1 

N ∑ 

j= i +1 

(1 − x i )(1 − x j ) M i, j 

ounts the number of pairs in which guessing applies and analysis 

ould have been correct (if analysis, rather than guessing, were 

pplied, which is a counterfactual quantity given the method se- 

ection strategy assumed, but may be computed). 

Putting all this together shows that, the reason for an opti- 

al decision maker to switch from analysis to intuition is not 

ecause intuition is more accurate than analysis as one might 

xpect at a first glance and has also been claimed (see the 

omments in the next paragraph on less-is-more effects). Rather, 

roposition 2.1 says that the reason for it being optimal to use 

ome intuition is that intuition is more frequently accurate than 

nalysis to a larger extent than analysis is more frequently accurate 

han guessing (conditional on the pairs where the two methods, 

n each comparison, are applied). In this sense, for an optimal 

ecision maker to use some intuition, it has to be the case that in- 

uition picks up the slack created by guessing compared to analysis. 

This result connects with the theory of less-is-more effects 

 Goldstein & Gigerenzer, 2002 ), which has been applied to fore- 

asting ( Pachur & Biele, 2007; Scheibehenne & Bröder, 2007 ), 
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nancial investment ( Ortmann, Gigerenzer, Borges, & Goldstein, 

008 ), consumer choice ( Hilbig, 2014 ), and marketing ( Hauser, 

014 ). The differences are that ( Goldstein & Gigerenzer, 2002 ) (i) 

odelled recognition by n and (ii) the accuracy of the heuristic 

nd analysis, respectively α and β , were assumed constant. Our 

odel for the recognition-heuristic case moves from the summary 

tatistic n to the level of individual observations x i and does not 

ssume constant α and β , an assumption challenged theoretically 

 Egozcue, García, Katsikopoulos, & Smithson, 2017; Smithson, 2010 ) 

nd empirically ( Lee, 2015 ). The variable n is the amount of in-

ormation the decision maker has. If n = N, the decision maker 

as maximum information. When maximum accuracy is obtained 

or n ∗ < N, a less-is-more effect occurs. A less-is-more effect maps 

o the optimality of a positive proportion of intuition. The nec- 

ssary and sufficient condition for a less-is-more effect is α > β
 Goldstein & Gigerenzer, 2002 ). This condition says that the reason 

or the less-is-more effect is that intuition is more accurate than 

nalysis. Katsikopoulos (2010) labelled this the “accurate-heuristics 

xplanation” and showed that it does not work when memory is 

mperfect ( Pleskac, 2007 ); additionally, Smithson (2010) showed 

hat the explanation fails if α and β are not constant, even if 

emory were perfect. A subtler explanation is needed, and this 

s provided by Proposition 2.1 . The proposition implies Smithson 

2010) result that the accurate-heuristics explanation is a necessary 

ondition for the less-is-more effect if it is assumed that analysis 

s more accurate than guessing. 

.3. Model version 2: intuition as other (non-recognition) single-cue 

euristics 

Here we also use the set-up and notation of Section 2.2 . But in

his more general case of single-cue heuristics, if the single cue X

sed by intuition is such that x i = x j = 0 for two decision options i

nd j, other attribute values can be known, and thus analysis can 

e used. There is no other difference with version 1 of the model. 

hus, Eq. (1) is now substituted by 

f 2 (x , M ) = α(x ) P I (x ) + β(x , M )[ P M 

(x ) + P G (x )] , (4)

hich reduces to 

f 2 (x , M ) = 

∑ N−1 
i =1 

∑ N 
j= i +1 2[ x i (1 − x j ) + [ x i x j + (1 − x i )(1 − x j )] M i, j ] 

N( N − 1) 
. 

(5) 

As in the recognition-heuristic case, the decision maker cannot 

xclusively use intuition. Unlike the recognition-heuristic case, now 

he decision maker exclusively uses analysis if P M 

(x ) + P G (x ) = 1 ,

hich occurs for x = (1 , 1 , . . . , 1) = 1 or x = (0 , 0 , . . . , 0) = 0 . Ac-

uracy is equal for these two vectors, that is 

f 2 (1 , M ) = f 2 (0 , M ) = 

∑ N−1 
i =1 

∑ N 
j= i +1 2 M i, j 

N(N − 1) 
. 

he necessary and sufficient condition for a positive proportion of 

ntuition to be optimal is now that there exists an x � = 1 , 0 such 

hat, for an arbitrary but fixed M , 

f 2 (x , M ) > f 2 (1 , M ) = f 2 (0 , M ) . (6)

Using Eq. (5) , and performing essentially the same (as in 

ection 2.2 ) algebra on the condition (6) , the following result is 

erived. 

roposition 2.2. A positive proportion of intuition is optimal if and 

nly if there exists an x � = 1 , 0 such that, for an arbitrary but fixed

 , 

∑ N−1 
i =1 

∑ N 
j= i +1 x i (1 − x j ) M j,i > 

∑ N−1 
i =1 

∑ N 
j= i +1 (1 − x i ) x j M i, j . 
783 
This result is very similar to the result in version 1 of the 

odel for the recognition heuristic. The same numerical exam- 

le works, and the terms in Proposition 2.2 can be interpreted 

n the same way as in Proposition 2.1 . The only difference is 

hat the condition for the optimality of a positive proportion of 

ntuition is simpler for the more general case of other (non- 

ecognition) single-cue heuristics capturing intuition. More specif- 

cally, Proposition 2.2 says that the reason for it being optimal to 

se some intuition is that intuition is more frequently accurate than 

nalysis (conditional on the pairs where the two methods are ap- 

lied). 

In 2009 Daniel Kahneman was awarded an honorary doctor- 

te from Erasmus University Rotterdam. In his introduction, deci- 

ion theorist Peter Wakker referred to Kahneman’s work as a ra- 

ional theory of irrationality . Prospect theory ( Kahneman & Tversky, 

979 ) is a mathematically simple revision of expected utility the- 

ry aiming to fit human decision making, and which has served 

s an inspiration for modelling behavioural operations ( Donohue 

t al., 2018 ). The work presented in Section 2 is inspired by Gerd 

igerenzer and colleagues’ work on modelling bounded rationality 

 Gigerenzer & Todd, 1999; Katsikopoulos et al., 2020 ). Paraphras- 

ng Peter Wakker, our mathematically simple model can be said 

o be a first step towards an analytical theory of intuition . How 

ight the model be utilized to improve human decision making? 

ection 3 provides answers. 

. Data: estimation of optimal proportion of intuition and its 

ccuracy benefit 

Propositions 2.1 and 2.2 establish the optimality of a positive 

roportion of intuition under some conditions but do not spec- 

fy what the value of this optimal proportion actually is. What is 

he optimal x ∗ which determines the optimal value of n ∗ = 

∑ N 
i =1 x 

∗
i 
, 

nd in turn the optimal proportion of tasks (choices between pairs 

f options) 2 n ∗(N−n ∗) 
N (N −1) 

that intuition should be used on? And what is 

he accuracy benefit of using the optimal mix of intuition and anal- 

sis over analysis alone? We apply our model to different types of 

ata and empirically estimate these quantities. 

.1. Synthetic data: intuition as recognition and as other single-cue 

euristics 

Synthetic data can provide exact answers because x and M 

re discrete parameters and their spaces can in principle be fully 

numerated—there are 2 N possible x and N! possible M . For N

rom 3 to 9 we exhaustively enumerated all combinations of x and 

 . For N from 10 to 15 we randomly sampled 10,0 0 0 combinations 

f x and M . In all cases we considered only those M with accuracy

reater or equal to 1 / 2 . We repeated this analysis for both versions

f the model. 

For version 1 of the model, Table 1 displays, for all N from 

 to 9, the prevalence of an optimal positive proportion of intu- 

tion, which is the proportion of all M for each N such that x ∗ � = 1

note that guessing is never optimal because it always holds that 

 

∗ � = 0 ). The table also includes the mean optimal proportion of in- 

uition, measured by the mean proportion of tasks 2 n ∗(N−n ∗) 
N (N −1) 

that 

ntuition should be used on as well as the range of this propor- 

ion, both calculated across all M for each N. The calculation of the 

ean includes cases where a zero proportion of intuition is op- 

imal whereas the calculation of the range does not include such 

ases because if it did the range would have started from zero for 

ll N � = 9 . Table 1 also provides the mean accuracy benefit of us-

ng the optimal mix of intuition and analysis over analysis alone, 

hich is the value of f 1 (x ∗, M ) − f 1 (1 , M ) averaged across all M

or each N. In all cases, ties in x ∗ and n ∗ were broken randomly. 

he results are given in percentage points. 
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Table 1 

Synthetic data, with N from 3 to 9 and exhaustive enumeration of all combinations of x and M (with accuracy greater or equal to 1 / 2 ). For model version 1 ( Section 2.2 ), 

we estimated statistical measures characterizing the proportion of intuition in the optimal mix of intuition and analysis, and the accuracy benefit of the mix over analysis 

alone. 

Number of decision options (N) Prevalence of an 

optimal positive 

proportion of 

intuition (%) 

Range of optimal 

positive proportion of 

intuition (%) 

Mean optimal 

proportion of 

intuition (%) 

Mean accuracy 

benefit of optimal 

mix over analysis 

alone (%) 

3 67 67–67 67 25 

4 78 50–67 58 19 

5 92 40–60 55 19 

6 97 33–60 53 21 

7 99 28–57 52 21 

8 99 25–57 51 21 

9 100 22–55 51 21 

Table 2 

Same as in Table 1 , but for model version 2 ( Section 2.3 ). 

Number of decision options (N) Prevalence of an 

optimal positive 

proportion of 

intuition (%) 

Range of optimal 

positive proportion of 

intuition (%) 

Mean optimal 

proportion of 

intuition (%) 

Mean accuracy 

benefit of optimal 

mix over analysis 

alone (%) 

3 67 67–67 67 33 

4 89 50–67 57 25 

5 98 40–60 52 25 

6 100 33–60 51 27 

7 100 28–57 51 27 

8 100 25–57 50 26 

9 100 22–55 50 26 

Table 3 

Same as in Table 1 , but with N from 10 to 15, and estimates being calculated by using 10,0 0 0 randomly sampled combinations of x and M . 

Number of decision options (N) Prevalence of an 

optimal positive 

proportion of 

intuition (%) 

Range of optimal 

positive proportion of 

intuition (%) 

Mean optimal 

proportion of 

intuition (%) 

Mean accuracy 

benefit of optimal 

mix over analysis 

alone (%) 

10 100 20–55 52 22 

11 100 18–54 51 22 

12 100 16–54 51 22 

13 100 15–53 51 22 

14 100 14–53 51 22 

15 100 13–53 51 22 
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Table 1 shows that it is from very likely to certain that the op- 

imal mix of intuition and analysis includes some intuition, espe- 

ially for N from 5 to 9. The optimal proportion of intuition can 

ave a considerable range but it includes its maximum possible 

alue (e.g., 67% for N = 3 ). Consistently, the mean optimal propor- 

ion of tasks where intuition should be used is more than 50% for 

ll N. The mean accuracy benefit of including intuition optimally 

ver using analysis alone is estimated as typically more than 20% . 

The same analysis was repeated for version 2 of the model, 

nd Table 2 displays the results. The range of the optimal pro- 

ortion of intuition and its mean are almost the same as those in 

able 1 . Here analysis has taken the place of random guessing and 

he mean accuracy benefit of including intuition optimally over us- 

ng analysis alone is, for all N, at least 5% higher than in Table 1 ,

ising as high as 33% . 

Tables 3 and 4 display, for all N from 10 to 15, the estimates 

or the same measures as in Tables 1 and 2 , respectively for the

wo model versions. The only difference is that the estimates in 

ables 3 and 4 were calculated by using 10,0 0 0 randomly sampled 

ombinations of x and M (with accuracy greater or equal to 1 / 2 )

or each N. The results are similar to those in Tables 1 and 2 . In

able 3 , the optimal mix should always include some intuition. The 

ean optimal proportion of intuition is close to the maximum pos- 

ible value for each N, which is a bit over 50% . The mean accuracy

enefit of including intuition optimally over using analysis alone 
o

784 
s 22% for all N. In Table 4 , the optimal mix should also always

nclude some intuition. The mean optimal proportion of intuition 

s slightly smaller than in Table 3 , at 50% for all N. The mean ac-

uracy benefit of including intuition optimally over using analysis 

lone is higher by 5% from the benefit in Table 3 . 

Our synthetic data simulations implicitly assume that all x and 

 are equally likely, which cannot be expected to hold in all real 

ecision problems. To address this issue, we also run simulations 

sing natural data. We used two different datasets, one in which 

ntuition is captured by the recognition heuristic ( Section 3.2 ), and 

nother in which intuition is captured by more general single-cue 

euristics ( Section 3.3 ). 

.2. Natural data: intuition as recognition heuristic 

We used data from a forecasting competition for a ten- 

is tournament. Scheibehenne & Bröder (2007) polled 93 tennis 

mateurs—enthusiasts who, for example, played regularly in local 

lubs—and 117 laypeople about whether or not they recognized 

ach one of the N = 128 male players who took part in the 2005

imbledon singles competition. The probability that each player 

s recognized is estimated by the proportion of Scheibehenne & 

röder (2007) participants who recognized the player (see supple- 

ent S1). We estimated three recognition probability distributions, 

ne from the 93 tennis amateurs, one from the 117 laypeople, and 
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Table 4 

Same as in Table 2 , but with N from 10 to 15, and estimates being calculated by using 10,0 0 0 randomly sampled combinations of x and M . 

Number of decision options (N) Prevalence of an 

optimal positive 

proportion of 

intuition (%) 

Range of optimal 

positive proportion of 

intuition (%) 

Mean optimal 

proportion of 

intuition (%) 

Mean accuracy 

benefit of optimal 

mix over analysis 

alone (%) 

10 100 20–55 50 27 

11 100 18–54 50 27 

12 100 16–54 50 27 

13 100 15–55 50 27 

14 100 14–55 50 27 

15 100 13–55 50 27 
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ne from the combined group of 210 participants. In each of three 

imulations, 10 0 0 different x were realized by randomly sampling 

he corresponding recognition distribution 10 0 0 times (values of 

0 to 500 samples were also tested and results differed by 1–

%) and this process was repeated for 500 runs. In all simula- 

ions, there was one M , the Champions-Race ranking produced by 

he Association for Tennis Professionals ahead of the 2005 com- 

etition (see supplement S1). This was the analytical method in 

cheibehenne & Bröder (2007) that achieved the highest forecast- 

ng accuracy of 70% . 

As it is often the case when “hard” OR models are applied 

o the messy real world ( Mingers, 2011 ), applying our model re- 

uired some extra resourcefulness here (the application of the 

odel in the King’s Fund data, as we shall see in Section 3.3 ,

as more straightforward). More specifically, the model needs 

 complete “true” order of all options, but Wimbledon tourna- 

ents do not produce an official ranking of all competing play- 

rs. The finalists are officially ranked—in 2005, Roger Federer was 

rst and Andy Roddick second—but not the other players. We pro- 

uced an order (see supplement S1) based on the results of the 

atches played (see https://www.wimbledon.com/en _ GB/draws _ 

rchive/index.html ), by employing a lexicographic rule , as detailed 

elow. Lexicographic rules are routinely used to rank competitors 

n sports events such as the World Cups in soccer or basketball, us- 

ng attributes such as the number of rounds passed, matches won, 

nd goals scored ( Bennis, Katsikopoulos, Goldstein, Dieckmann, & 

erg, 2012 ). We adapted this approach here and used the follow- 

ng rule: 

(i) Players who reached a round closer to the final are ranked 

higher than the players who reached rounds further away 

from the final (e.g., all players who reached a semi-final are 

ranked higher than all players who reached a quarter-final); 

(ii) Players who reached the same round are ranked according 

to the number of sets they won in this round; 

(iii) Ties are broken according to the number of games won in 

this round; 

(iv) Remaining ties are broken according to the number of sets 

won by the opponent in the previous round; 

(v) Remaining ties are broken according to the number of games 

won by the opponent in the previous round; 

(vi) Remaining ties are broken according to the following rank- 

ings: first Champions-Race, then Wimbledon official seeds, 

and finally the Entry ranking of the Association for Tennis 

Professionals (for details see Scheibehenne & Bröder, 2007 ). 

For all three groups (tennis amateurs, laypeople, and com- 

ined), the prevalence of an optimal positive proportion of in- 

uition is 100%. Table 5 displays the mean optimal proportion 

f tasks 2 n ∗(N−n ∗) 
N (N −1) 

that intuition should be used on as well 

s the range of this proportion across the 500 runs for each 

roup. The table also includes, for each group, the mean accu- 

acy of the optimal mix of intuition and analysis, and of analy- 

is alone. We additionally computed the accuracy of a wisdom- 
785 
f-crowds ( Surowiecki, 2005 ) heuristic for each group, proposed 

y Scheibehenne & Bröder (2007) which ranks players by the 

robability that the player is recognized in the group (see sup- 

lement S1). We do not replicate the accuracies computed by 

cheibehenne & Bröder (2007) because those referred only to the 

atches played, not all possible matches as is the case here. Note 

hat the wisdom-of-crowd heuristic is distinct from the recogni- 

ion heuristic that enters the optimal mix of analysis and intuition 

ecause the former uses probabilities and the latter uses samples. 

Table 5 shows that that the optimal mix of intuition and anal- 

sis includes a very high amount of intuition for the tennis ama- 

eurs, with a mean of 49% (maximum possible value for N = 128 is 

0%), as was the case for synthetic data in the recognition-heuristic 

ase ( Tables 1 and 3 ). For the laypeople, the mean optimal propor-

ion of intuition is about half of that of the amateurs, 22%. The op- 

imal mix’s accuracy is also highest for the tennis amateurs, at 64%. 

his yields a benefit of 5% over the 59% accuracy of using analysis 

lone. The wisdom-of-crowds heuristics performed competitively 

ith the theoretically optimal mix, lagging by 2% on the average, 

nd the heuristics also performed slightly better than analysis, 60% 

ersus 59% on the average. 

These results are consistent with those obtained in the study 

y Scheibehenne & Bröder (2007) , where there was an accuracy 

f 70% for analysis and 68% for heuristics in the amateurs’ group, 

7% in the laypeople group, and 70% in the combined group. Note 

hat our values are lower than Scheibehenne & Bröder (2007) . This 

ight be so because we used the complete lexicographic order of 

ll players, not the partial order produced by the matches played. 

he lexicographic order of all players is influenced by early upsets 

uch as No. 4 seed Rafael Nadal’s loss in the second round to un- 

eeded Gilles Müller. 

.3. Natural data: intuition as other (non-recognition) single-cue 

euristics 

For the application of version 2 of the model where intuition 

s captured by single-cue heuristics other than the recognition 

euristic ( Section 2.3 ), we used data from a King’s Fund study 

n how patients choose a high-quality hospital ( Boyce, Dixon, Fa- 

olo, & Reutskaja, 2010; Fasolo, Reutskaja, Dixon, & Boyce, 2010 ). 

his study aimed at informing the UK government’s effort s to sup- 

ort patients make better use of information for choosing a hospi- 

al for a serious, non-urgent operation, such as a knee or cataract 

peration. To do so, the researchers investigated hospital choices 

ased on an easier-to-understand version of the information avail- 

ble at the NHS Choices website ( Boyce et al., 2010 ). Briefly, 5 real,

nonymized London hospitals, and their actual values on 9 at- 

ributes, were presented to 744 participants in an online experi- 

ent, in order to study hospital choice processes under different 

ehavioural interventions ( Boyce et al., 2010 ). The “true” order of 

he 5 hospitals was provided by a group of NHS experts ( Boyce 

t al., 2010 ). The 9 attributes were those that were suggested as 

ost important for hospital choice by 44 participants in a series 

https://www.wimbledon.com/en_GB/draws_archive/index.html


K.V. Katsikopoulos, M. Egozcue and L.F. Garcia European Journal of Operational Research 303 (2022) 779–789 

Table 5 

Natural data, with N = 128 , one analysis method M (Champions-Race ranking), and 10 0 0 x sampled in each of 500 runs, utilizing data from a forecasting competition 

( Scheibehenne & Bröder, 2007 ) for the 2005 Wimbledon men’s singles tournament. For model version 1 ( Section 2.2 ), we estimated statistical measures characterizing the 

amount of intuition in the optimal mix of intuition and analysis and its accuracy benefit over using analysis alone and wisdom-of-crowds heuristics. 

Group Range of optimal 

positive proportion of 

intuition (%) 

Mean optimal 

proportion of 

intuition (%) 

Mean accuracy of 

optimal mix (%) 

Mean accuracy of 

analysis (%) 

Mean accuracy of 

wisdom- of-crowds 

heuristic (%) 

Tennis amateurs 44–50 49 64 59 60 

Laypeople 13–29 22 59 59 58 

Combined 29–45 38 61 59 60 

Table 6 

Natural data, with N = 5 , all analysis methods M with accuracy greater or equal to 1 / 2 , and 7 intuition vectors x based on data from a King’s Fund study on hospital choice 

( Boyce et al., 2010; Fasolo et al., 2010 ). For model version 2 ( Section 2.3 ), we estimated, across M , statistical measures characterizing the amount of intuition in the optimal 

mix of intuition and analysis and its accuracy benefit over using analysis alone. The bottom row provides the grand means of prevalence, optimal proportion of intuition, 

and accuracy benefit across x , M , and the selection probability distribution in the right-most column. 

Intuition vector x Prevalence of an optimal 

positive proportion of 

intuition (%) 

Mean optimal proportion of 

intuition (%) 

Mean accuracy benefit of 

optimal mix over analysis 

alone(%) 

Probability of selecting 

intuition vector x 

(1,1,0,0,0) 89 53 20 0.18 

(1,0,0,0,0) 80 53 13 0.12 

(1,0,1,0,0) 73 44 12 0.16 

(0,1,0,0,0) 59 24 6 0.10 

(1,0,0,0,1) 15 9 1 0.18 

(0,1,0,1,0) 15 9 1 0.10 

(0,0,0,0,1) 0 0 0 0.16 
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f focus group meetings ( Fasolo et al., 2010 ), and they were the

ollowing (in decreasing order of the number of times that each 

ttribute was mentioned, in the focus group, as an important con- 

ideration for choosing a hospital): 

(i) Number of MRSA blood infections for patients (MRSA is 

a group of bacteria responsible for difficult-to-treat infec- 

tions); 

(ii) Standardized mortality rate at the hospital; 

(iii) Score of cleanliness of treatment areas; 

(iv) Number of people developing a wound infection after an op- 

eration; 

(v) Risk of having to return to the hospital urgently within one 

month after an operation; 

(vi) Number of people who reported an improvement in their 

health after treated at the hospital; 

(vii) Score of dignity and respect shown to patients; 

(viii) Score of patient involvement in decision making about treat- 

ment; 

(ix) Distance of hospital from patient’s home. 

These 9 attributes were numerically valued in the King’s Fund 

tudy. To apply the model, we binarized the attributes (see sup- 

lement S2) by using a median split over the values of each at- 

ribute on the 5 hospitals. A value of 1 is preferable to a value

f 0. Each attribute can be employed as a single-cue heuristic, 

nd leads directly to the intuitive choice of a hospital, or ne- 

essitates the use of analysis as per the model ( Section 2.3 ). For

xample, if a patient employs the would-infection attribute (iv), 

hen x = (1 , 1 , 0 , 0 , 0) , and intuition is used for 6 pairs ( i = 1 , 2

rossed with j = 3 , 4 , 5 ) and analysis for 4 pairs ( i = 1 , j = 2 ; i =
 , j = 4 ; i = 3 , j = 5 ; i = 4 , j = 5 ). We estimated the probability that

 patient would select a particular attribute (see supplement S2) 

s the proportion of times that this attribute was mentioned in the 

ocus group as an important consideration for choosing a hospital 

in the initial stage of the focus group meetings, see Fasolo et al., 

010 ). 

Selecting each one of the 9 possible attributes leads to 9 pos- 

ible x , of which 7 are distinct (see supplement S2 and Table 6 ).

ach x corresponds to a positive proportion of intuition since all x 
786 
re different from 1 and 0 . We refer to these 7 distinct x as the

ntuition vectors . For all possible analysis methods M (with accu- 

acy greater or equal to 1 / 2 ), we compared the accuracy of using

he mix of intuition and analysis associated with each of the intu- 

tion vectors with the accuracy based on M alone. If an intuition 

ector led to greater or equal accuracy than an M , this comparison 

as counted as an instance of an optimal positive proportion of 

ntuition; otherwise it was counted as an instance of optimal zero 

roportion of intuition. 

Table 6 displays, for all intuition vectors x , the prevalence of 

n optimal positive proportion of intuition, which, for each x is 

he proportion of all M such that f 2 (x , M ) > f 2 (1 , M ) ; if so, then

 

∗ = x , and otherwise x ∗ = 1 . The table also includes, again for

ach intuition vector x , the mean optimal proportion of intuition 

s measured by the mean proportion of tasks 2 n ∗(N−n ∗) 
N (N −1) 

, wher e 

 

∗ = 

∑ N 
i =1 x 

∗
i 
, that intuition should be used on. Table 6 also pro-

ides the mean absolute accuracy benefit of using the optimal mix 

f intuition and analysis over analysis alone, which is the value of 

f 2 (x ∗, M ) − f 2 (1 , M ) , averaged across all M for each intuition vec-

or x . All of these values are given in percentage points. The table 

lso includes, for each intuition vector, the probability that the vec- 

or would be selected by a patient. The bottom row of Table 6 pro-

ides the grand means with respect to this probability distribution, 

or the prevalence of optimal positive proportion of intuition, the 

ptimal proportion of intuition, and the accuracy benefit of the op- 

imal mix over analysis alone. 

Table 6 shows that the performance of intuition varies greatly 

cross the intuition vectors. The prevalence of an optimal positive 

roportion of intuition ranges from 0% to 89% and the mean op- 

imal proportion of intuition from 0% to 53% . That is, some of the 

ttributes suggested by patients in the King’s Fund study are not 

ery accurate single-cue heuristics, as the MRSA attribute which 

as accuracy 50% and the cleanliness attribute which has accu- 

acy 0% (see supplement S2 for all cue accuracies). Consistently, 

he grand mean of prevalence is about half of the values in the 

ther simulations ( Tables 1–5 ). On the other hand, because some 

f the suggested attributes are perfectly accurate single-cue heuris- 

ics, as the wound-infection and the return-risk attributes which 

oth have accuracy 100%, the grand mean of the optimal propor- 
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Table 7 

Summary of results in the four empirical studies (see text for details). 

Simulation study and its key assumptions Prevalence of optimal 

positive proportion of 

intuition (%) 

Optimal proportion 

of intuition (%) 

Accuracy benefit of 

optimal mix over 

analysis alone (%) 

Synthetic, uniformly distr. data; intuition is recognition heuristic 95 53 21 

Synthetic, uniformly distr. data; intuition is not recognition heuristic 95 52 27 

Wimbledon (natural) data; true order had to be estimated 100 36 3 

King’s Fund (natural) data; few intuition vectors tested 48 25 8 
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ion of intuition equals 25% , which is comparable to the values in 

ther simulations ( Tables 4 and 5 ). In fact, the grand mean accu-

acy benefit of the optimal mix over analysis alone, 8% , is higher 

han in the Wimbledon study ( 3% ). 

This relatively high benefit of the optimal mix might decrease 

f the analysis methods were more accurate. To illustrate this, we 

omputed the benefit over two analysis methods suggested in the 

ulti-attribute choice literature when attribute weights have not 

een elicited ( Baucells et al., 2008; Hogarth & Karelaia, 2005; Kat- 

ikopoulos, 2013 ), as in the King’s Fund study. The methods are the 

exicographic rule (see also Section 3.2 ) where attributes are or- 

ered by their accuracy (ties are broken by selection probability), 

nd a linear utility model with unit attribute weights (ties are bro- 

en randomly). Their respective accuracies are 90% and 70%, and 

he mean accuracy benefit of the optimal mix is 3%. Table 7 sum- 

arizes the main results of the two synthetic and the two natu- 

al empirical studies. All values are grand means computed across 

he variables N, M , x (in the Wimbledon study, results are averaged 

cross the amateur and laypeople groups). We also include key, 

nd in some cases limiting, assumptions of the studies. 

. Discussion 

.1. Contributions 

Throughout the life of OR, it has been pointed out that formal 

odels of optimization do not necessarily mesh with human deci- 

ion making ( Ackoff, 1979; Kimball, 1958; Mingers, 2011 ). As men- 

ioned earlier, management students and procurement profession- 

ls place inventory orders that deviate from analytically derived 

rders; as another example, practitioners adjust the output of fore- 

asting software ( Goodwin, Moritz, & Siemsen, 2018 ), and so on as 

he fields of behavioural operations demonstrate ( Donohue et al., 

018; Kunc et al., 2016 ). Why do such discrepancies occur? First, 

eople’s intuitions might just be systematically inferior to analysis. 

 second possibility is that people rightly distrust that a model 

an capture well a particular decision making situation, as when 

he probability distribution of demand is assumed to be known in 

nventory control models ( Ward, Chapman, & Klein, 1991 ). 

In some situations, both factors can play a role, and then 

t would be reasonable to rely on both intuition and analysis 

 Syntetos, Kholidasari, & Naim, 2016 ). Ward et al. (1991) strongly 

rgue that inventory control is such a situation. These authors try 

o make the standard OR model of the newsvendor problem more 

ntuitive to decision makers by replacing the demand distribution 

ith a small number of concrete scenarios, and by employing a 

rocess for working through the computations with the decision 

akers. Similar approaches have been followed in other contexts 

here there are both harms and benefits to using human intu- 

tion, as when solving traveling salesperson problems ( Kefalidou, 

011 ). For instance, Kefalidou (2017) explores how human interac- 

ion with a visual computer interface can help improve upon intu- 

tive solutions to capacitated vehicle routing tasks. 

Approaches such as the above aim at integrating intuition and 

nalysis by making the modelling more palatable to decision mak- 
787 
rs, and in some sense also less formal. The present article takes 

 complementary approach. It presents the first, to our knowledge, 

athematical model of mixing intuition and analysis. A novelty of 

he present approach is that we considered in depth how knowl- 

dge from the psychology of intuitive decision making can be mod- 

led. The models were analyzed and led to closed-form expres- 

ions, and then they were applied computationally to laboratory 

nd field data. The results suggest that including intuition opti- 

ally in a mix can provide substantial benefits over using analysis 

lone. 

In sum, the present approach combines concepts from be- 

avioural science with standard OR methodologies. Of course, as 

he first stage in an innovative program, there are limitations to 

ur approach, which in turn introduce challenges for future work. 

.2. Limitations and challenges 

We opted for developing a simple model, in order to get 

lear and testable first insights ( Katsikopoulos et al., 2018; Tako 

t al., 2020 ). Now, to the extent that human intuition might be 

 complex phenomenon ( Sinclair, 2011 ), playing a complex part 

n decision making, more complex models of integrating intu- 

tion and analysis might be needed down the line. This hypothe- 

is seems to resonate with Koopman’s views (1977), who, unlike 

lein (2015) and Gigerenzer (2007) , sees intuition as transcend- 

ng pattern recognition and gut feeling, even though it has to be 

oted that Koopman primarily considered mathematical intuition. 

n this subsection, we discuss building further, possibly more com- 

lex, models for meeting research and implementation challenges 

et unmet by our approach. Research challenges refer to develop- 

ng rich theoretical models, and implementation challenges refer 

o applying these models usefully in processes of decision analysis 

nd support in the field. 

More complex models could employ rich formal structures for 

apturing intuitive decision making, including neural networks 

 Glöckner & Betsch, 2008 ) and cognitive architectures ( Marewski & 

ehlhorn, 2011 ), also taking into account group and organizational 

ontexts ( Hoffrage & Marewski, 2015 ). A possibility is to train neu- 

al networks by generating big (synthetic) data from psychologi- 

al models of human decision making, and building ensembles of 

uch networks and other machine learning models ( Bourgin, Pe- 

erson, Reichman, Russell, & Griffiths, 2019 ). This route is worth 

xploring, but care should be taken to ensure transparency–for ex- 

mple, many psychological models are in fact black boxes and thus 

ay hinder discussion in sensitive contexts such as law, health, 

nd wealth ( Katsikopoulos, 2022 ), and additionally, ensemble mod- 

ls can confuse practitioners ( Lessmann, Baesens, Seow, & Thomas, 

015 ). 

More specific research challenges relate to the assumptions that 

he toolbox of the decision maker consists of one heuristic, one an- 

lytical method, and one method-selection strategy. These assump- 

ions often do not hold, neither for relatively straightforward deci- 

ions ( Gigerenzer & Selten, 2002; Katsikopoulos et al., 2020; Payne 

t al., 1993 ), nor for more involved ones, with multiple attributes, 

riteria, or objectives ( Durbach & Stewart, 2012; Fowler et al., 2010; 
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rench, Maule, & Papamichail, 2009 ). The set-up of the interrelated 

ecision tasks might also be made richer, including sequential or 

trategic aspects. In general, there is a need of scaling up the math- 

matical model of mixing intuition and analysis. This would also 

llow testing the robustness of the empirical findings ( Table 7 ). 

Consider next challenges of implementation. Even though the 

resent model may be considered simple and transparent by aca- 

emic standards, this definitely does not need to be the case from 

he point of view of practitioners and the decision analysts or fa- 

ilitators who work with them ( Franco & Montibeller, 2010 ). This 

s crucial because if people do not understand a model, even if it 

s meant to celebrate and support their intuition, they are likely to 

esist or ignore it. Furthermore, experts might feel threatened by 

ttempts to model their intuition formally; for some profession- 

ls, a mystique surrounding their processes and tools is a valu- 

ble asset that they could choose to keep inaccessible, at least to a 

ood extent ( Goodwin, 2022 ). On the other hand, there have been 

rojects where researchers were able to work together with practi- 

ioners and develop successful and intuitive, and at the same time 

ormal, models of fast-and-frugal heuristics, in areas such as pre- 

icting impending heart attacks, decreasing civilian casualties in 

eace keeping operations, forecasting the incidence of influenza, 

r financially regulating investment banks ( Katsikopoulos et al., 

020 ). 

In other words, considering implementation, making models 

ore complex might make the interaction with practitioners more 

hallenging. Thus, a trade-off might exist between meeting both 

esearch and implementation challenges with regards to choosing 

he right level of model complexity. 

Ultimately, integrative models such as the one presented here 

ight be more acceptable and also effective in situations where 

nalysts and practitioners agree that conditions for intuitive ex- 

ertise are met partially, but not fully. Such conditions include 

pportunities to learn the statistical regularities of the decision 

nvironment ( Hogarth, 2001; Todd & Gigerenzer, 2011 ), and meta- 

ognitive abilities of people to know what they know and what 

hey do not know ( Kahneman & Klein, 2009 ). 

In conclusion, we can return to Albert Einstein and Aneesh 

hopra. The marriage of intuition and analysis might at times be 

rying, but it can be a great one, where partners help each other 

mprove and are mutually valued. In pursuing such aims, interdis- 

iplinary formal modelling can help and provide good counsel. 

upplementary material 

Supplementary material associated with this article can be 

ound, in the online version, at doi: 10.1016/j.ejor.2022.03.005 . 
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