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Abstract

Unfortunately, attacks with firearms such as
handguns have become too common. CCTV
surveillance systems can potentially help to pre-
vent this kind of incidents, but require continuous
human supervision, which is not feasible in
practice. Image-based handgun detectors allow
the automatic location of these weapons to send
alerts to the security staff. Deep learning has
been recently used for this purpose. However,
the precision and sensitivity of these systems
are not generally satisfactory, causing in most
cases both false alarms and undetected handguns,
particularly when the firearm is far from the cam-
era. This paper proposes the use of information
related to the pose of the subject to improve the
performance of current handgun detectors. More
concretely, a human full-body pose classifier has
been developed which is capable of separating
between shooting poses and other non-dangerous
poses. The classified pose is then used to reduce
both the number of false positives (FP) and
false negatives (FN). The proposed method has
been tested with several datasets and handgun
detectors, showing an improvement under various
metrics.

Keywords: Handgun detection, human pose
classification, deep learning, CCTV surveillance,
human pose estimation.

1 Introduction

The use of CCTV surveillance systems is
widespread nowadays. In these systems, a human
operator can observe the images captured by cam-
eras looking for threats or security risks. It has
been demonstrated that early detection of threats
is crucial to reduce the possible damage caused [3].

In this paper we focus on crimes caused by
firearms such as handguns. Unfortunately, these
events have become commonplace in our soci-
ety. Examples of these unacceptable situations
are gunfire incidents on school grounds [4], terror-

ist attacks [15] or mass shootings in public places
like airports, train stations, museums, churches or
government buildings [8].

Several works have proposed the use of machine
learning and computer vision techniques to help
with this situation through the creation of auto-
mated surveillance systems, which can be applied
to the CCTV surveillance images to automatically
detect dangerous situations and notify the security
staff. Novel deep learning methods, specially Con-
volutional Neural Networks (CNN) have achieved
significantly better results than previous machine
learning approaches in many image-based classifi-
cation, detection or segmentation tasks. Because
of this, in recent years several deep learning image-
based handgun detectors have been proposed [7,
11]. Still, when these detectors are applied in a
new scenario, for example a specific CCTV cam-
era, the fact is that the false alarm ratio usually
increases [19].

In addition, detecting handguns in CCTV images
is a challenging task due to the features of these
particular images. Usually, the camera is located
far from the object of interest and the images re-
trieved present poor quality in terms of detail (low
image resolution), blurriness, artifacts or overex-
posure. We have to consider that a handgun is
a relatively small sized object, which hinders its
localization in this context even for security staff.

In this paper, we propose using information re-
lated to the pose of the subject to improve the per-
formance of current handgun detectors. Our main
hypothesis is that the body posture taken during
shooting is characteristic enough to be considered
as useful information to detect handguns. Not
only person location but pose keypoints relative
to a detected person can be successfully obtained
with modern deep learning-based pose estimators,
even in CCTV image conditions. In this work, a
full-body pose classifier has been developed which
is capable of separating between shooting poses
and other non-dangerous poses. The identified
pose information is then applied to reduce both
the number of false positives and the false nega-
tives. In this work, a human pose is considered as
a shooting pose when the individual is actually fir-
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ing a handgun or in the moments leading up to the
shot (carrying a handgun in a non-shooting pose is
not considered as a shooting pose). On the other
hand, the rest of human poses are considered as
non-dangerous poses.

The paper is organized as follows. Related work
is summarized in Section 2. In Section 3, the
datasets used in this study are described. The
details of the proposed method are presented in
Section 4. The experiments and results obtained
are summarized in Section 5. Finally, conclusions
and future work are given in Section 6.

2 Previous Work

Recent deep learning methodologies have been ap-
plied for detecting handguns in surveillance im-
ages. Usually, deep learning detection methods
are divided into two main categories: sliding win-
dow and region proposals. The first approach con-
sists on selecting a large number of region can-
didates from the input image, at multiple scales
and locations. Then, a CNN classifies each one
of the candidate regions. Several authors have
used this approach to successfully detect hand-
guns [5, 7]. On the other hand, region proposal
methods select a lower number of region candi-
dates. The selective search method [17] or the
Region Proposal Network (RPN) are examples of
this family of methods. The first method applies
a variety of complementary image partitionings
to deal with as many image conditions as possi-
ble. The RPN, which is included in the Faster R-
CNN architecture [13], is a fully-convolutional net-
work that simultaneously predicts object bounds
and objectness scores at each position to gener-
ate high quality region proposals. In the seminal
work [11], both sliding window and Faster R-CNN
approaches were tested for handgun detection.
The best results were obtained with the Faster
R-CNN method, using a VGG-16 pre-trained on
the ImageNet dataset. Another dataset composed
of 3000 images of handguns from several YouTube
videos was used for the fine-tuning process.

Unfortunately, although the results shown by
the aforementioned detectors are promising, when
they are deployed in a real surveillance scenario, a
high rate of false positives and missed detections
is to be expected.

In this work, the use of additional information re-
lated to the body pose is proposed to improve the
performance of these handgun detectors. In the
literature, several methods have been proposed for
estimating 2D body poses. For multi-person pose
estimation common approach, also named as top-
down approach, is to first apply a person detector

and then perform a single-person pose estimation
for each detected person [6, 12]. In these meth-
ods, the more people there are, the greater the
computational cost. On the other hand, bottom-
up approaches do not need a person detector and
the computational cost does not depend on the
number of people appearing in the image. Open-
Pose [1] is a multi-person bottom-up pose estima-
tion method based on Part Affinity Fields (PAFs).
These PAFs are a set of 2D vectors which encode
location and orientation of limbs over the image
domain. The OpenPose architecture is able to
jointly learn keypoint locations and keypoint as-
sociations.

In the proposed method, a human pose image-
based classifier is trained to separate between
shooting poses and other non-dangerous poses us-
ing the 2D pose keypoints as estimated with the
OpenPose method.

3 Materials

In this section, the datasets used in the experi-
ments are presented. In order to consider different
contexts and image features, four databases have
been collected and labelled.

3.1 Data sources

• Dataset A: The first dataset is composed
of 2525 handgun images of size 640x480 ex-
tracted from videos of the publicly available
Guns Movies Database [7]. These clips show
a man holding a handgun in various shooting
poses in a single room.

• Dataset B: The second dataset was created
with the popular shooter videogame Watch
Dogs 2 [16] in a PC platform. Through the
novel NVIDIA Ansel feature [10] it is pos-
sible to record in-game clips. In this way,
video sequences can be captured from dif-
ferent positions, distances or angles. More-
over, a wide variety of shooting and non-
shooting character poses can be obtained.
Videos were recorded performing a full ro-
tation of the camera around the subject at
two different heights with 15 character ani-
mations. In this dataset there are 3418 im-
ages of size 3840x2160, including 1445 posi-
tives (images containing handguns) and 1973
negatives (images without handguns).

• Dataset C: The third dataset is a compi-
lation of 2783 images of size 1920x1080 ex-
tracted from 11 YouTube videos, including
2135 positives (people holding handguns and
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(a) Dataset A (b) Dataset B (c) Dataset C (d) Negatives dataset

Figure 1: Dataset samples

shooting in a variety of scenarios and different
camera locations) and 648 negatives.

• Negatives dataset: A negatives dataset
(images without any handgun or non-
shooting pose) is needed to balance and
complete the training, validation and test
datasets. For this purpose, a set of 1240
randomly selected images of size 512x384
from the MADS (Martial Arts, Dancing and
Sports) [20] database were collected. In these
images, people appear with poses of different
activities like dancing Hip Hop or Jazz, prac-
ticing TaiChi or playing football.

In Figure 1 some sample images from all data
sources are shown. The datasets analysed dur-
ing the current study are available from the cor-
responding author on reasonable request.

3.2 Dataset preparation

The images from the previously described
databases have been collected to create the final
dataset used for training and validating the pro-
posed full-body pose classifier, as well as a differ-
ent test set to check overall method performance.

The training dataset is composed of randomly se-
lected positive and negative images from dataset
B. Horizontal flip data augmentation is also ap-
plied to increase the dataset size. In Table 1 the
dataset composition is presented.

Table 1: Training dataset composition after the
data agumentation process. All positive and neg-
ative images have been extracted from dataset B.

Train Valid Test Total
Positive 2400 245 245 2890
Negative 2400 773 773 3936
Total 4800 1018 1018 6836

Also, to check the overall performance of the
method, another dataset is created collecting im-

ages from the rest of the presented databases (A,
C and negatives). Dataset B, which is used to
train the full-body pose classifier, is not included.
In Table 2 the dataset composition is summarized.
Images from each dataset are randomly selected in
order to obtain balance between positive and neg-
ative images.

Table 2: Testing dataset composition. All posi-
tive and negative images have been extracted from
datasets A, C and Negatives.

A C Negatives Total
Positive 816 305 0 1121
Negative 0 0 1240 1240

4 Methodology

The proposed method is divided in three main
steps. First, 2D full-body pose information is ob-
tained from images with the OpenPose framework.
Then, after a normalization step, the human pose
is classified by a trained CNN to separate between
shooting poses and other non-dangerous poses.
Finally, the predicted pose is combined with the
image-based handgun detector results to reduce
both false positives and false negatives, see Fig-
ure 2.

4.1 Pose estimation

The 2D human pose can be defined as a set of
2D locations of anatomical keypoints, such as the
eyes, neck, elbows or wrists. OpenPose, which is
the framework used in this step, takes as an input
an RGB image and generates a list of 25 2D key-
points for each person detected in the image. The
predicted confidence for each point is also avail-
able. Along with the previous information, a hand
detector [14] output is also included to produce
the final pose skeleton. The hand detector works
in the same way, 20 keypoints and a bounding
box are generated for each detected hand. Fig-
ure 3 shows an example of the pose information
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Figure 2: Overview of the proposed method. Left block, composed of the handgun detector and the pose
estimator, contains the necessary external components for the proposed method (right block, which is
composed of the human pose classifier and FP+FN filtering process)

obtained with OpenPose. The pose information
is displayed over the original image (Figures 3a
and 3b), along with the bounding box for each
detected hand.

Apart from the individual confidence values for
each keypoint, general confidence is also calcu-
lated for the whole pose, which is a weighted av-
erage of all OpenPose and hand keypoint scores.
Low confidence poses, that are probably due to
false positives or incomplete poses, are rejected.

(a) Input image

(b) OpenPose image

Figure 3: Pose estimation example. Best viewed
in color

4.2 Pose classification

Using the pose information retrieved by Open-
Pose, a human pose classifier has been developed,
which is capable of separating between shooting
poses and other non-dangerous poses. The dataset

used for training this classifier consists of positive
and negative images extracted from dataset B, as
explained in Subsection 3.2.

From this dataset, human pose images are gener-
ated. Variable factors such as the size of the pose
detected, which depends on the distance from the
subject to the camera, the position of the subject
within the image or the image size may adversely
affect the classification of the pose. To handle
these variations and focus only on the relative po-
sition between the keypoints, a normalization pro-
cedure is needed for each detected pose. First, lo-
cal body coordinates are calculated for each pose.
The original neck keypoint j0 is taken as reference
and the distance between the neck and the lumbar
spine keypoint j1 is used as the scale factor for the
normalization. In this way, the new keypoints kn
are calculated following Equation 1:

kn =
jn − j0

|−−→j0j1|
(1)

where jn is the original 2D point and |−−→j0j1| is the
distance between the neck and the lumbar spine
keypoints (j0 and j1).

Finally, synthetic binary images of size 256x256
are created, moving and scaling the local coordi-
nates to fit the new image size. An example of
a normalized pose image (in this case a shooting
pose sample) is presented in Figure 4b, along with
the original OpenPose image (Figure 4a).

The binary pose image is then classified with a
custom CNN-based architecture. It is formed by
two Convolution-MaxPooling layers for the fea-
ture extraction step and a fully connected layer
for the final classification.

The ReLU activation function is applied after
each convolution layer to introduce non-linearity.
Dropout is also used in the fully connected lay-
ers to reduce overfitting and categorical cross en-
tropy is used as loss function. The training process
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(a) Original OpenPose
image

(b) Normalized pose
image

Figure 4: Pose classification example.

was carried out in a NVIDIA GeForce GTX 1060
GPU. The accuracy reached on the test images af-
ter 10 epochs was around 96% using the Adadelta
optimizer.

4.3 Handgun detection

In this work, two image-based handgun detectors
have been used to test the proposed method. The
first detector [18] is based on a Faster R-CNN ar-
chitecture with a ResNet network backbone. The
training dataset was composed of 871 images pro-
vided by the University of Seville [3], which were
acquired from two CCTV cameras located in dif-
ferent college halls.

The second detector tested is also based on a
Faster R-CNN but with a pre-trained VGG-16
network backbone in this case. The training
dataset is composed of 3000 handgun images
downloaded from several web-sites. This dataset
was presented in [11].

In our test dataset both methods show the com-
mon problems of this kind of detectors, essen-
tially an unacceptable rate of false positives and
false negatives. For illustrative purposes, Figure 5
shows an example output for each detector. The
first detector (Figure 5a) is capable of locating the
handgun, but false positives are also detected. In
this case, the use of the detection confidence as
the criterion for removing FPs is not adequate,
as all confidence values are similar. On the other
hand, the second detector (Figure 5b) produces
an extremely large bounding box, being unable to
locate the handgun accurately.

The poor performance reached by these handgun
detectors in our test dataset is also related with
the datasets used for the training step. Some im-
ages from these datasets are significantly different
(e.g., profile handgun images close to the camera)
to the ones tested in our work. These kind of
images are useful for classification purposes, but
not for detecting handguns in CCTV images (ac-

(a) Detector 1.

(b) Detector 2.

Figure 5: Handgun detectors performance
examples

tual video surveillance environments). The Re-
gion Proposal Network (RPN) of the Faster R-
CNN detector will learn extremely large bound-
ing box proposals, preventing the localization of
the small handguns in CCTV images. To solve
this issue both detectors have been retrained with
another custom dataset composed of 1946 im-
ages extracted from dataset C in a balanced
way. Images are resized before the feature ex-
traction step (min dimension set to 600 pixels).
These images have a similar appearance in terms
of camera distance and handgun bounding box
size to the test dataset ones, reaching a higher
performance. Also, two different implementa-
tions for these Faster-RCNN methods have been
tested. Implementation 1 is a Faster-RCNN im-
plementation for Keras-TensorFlow deep learning
library [9] and implementation 2 is the OpenMM-
Lab Detection Toolbox [2], which includes Faster-
RCNN models among others.

However, the number of FP and FN is still unac-
ceptable for an automated handgun detector for
video surveillance applications.

4.4 FP filtering

In the proposed method the information related
to the pose of the subject is used. To reduce the
FP detection rate, only detections close to hand
locations are taken into account.

The selected criterion for this FP filtering stage
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(a) Handgun detector
image

(b) Output image after
FP filtering

Figure 6: FP filtering example.

is the intersection over Union (IoU) between the
hand locations retrieved by the pose estimation
framework and the predicted handgun locations.
This index is a measure that evaluates the over-
lap between two bounding boxes. It is also known
as the Jaccard similarity index, and follows Equa-
tion 2.

IoU =
area(BBa ∩BBb)

area(BBa ∪BBb)
(2)

This metric is applied to establish if a predicted
handgun bounding box is overlapped with the
hand location. In this case, the decision thresh-
old is 0.5. In this way, most false alarms can
be removed. It is important to clarify that this
approach assumes that the handguns will be de-
tected (and the alert will be sent to the security
staff) only if they are held by a person.

Although a large number of FP detections will be
filtered using this approach, there are a few false
positives on the hand areas. To manage this situ-
ation, the detection confidence in these cases will
be modified taking into account the pose classifier
decision. The new detection confidence will be the
average between the handgun detection confidence
and the predicted confidence for a shooting pose.
Thus, if the subject has a shooting pose with a
high confidence and a detected handgun on any
hand area, the detection will be considered as a
true detection with a high probability. On the
other hand, if the pose classifier predicts a non-
dangerous pose, the handgun detection will have
a lower confidence value.

An example of the proposed FP filtering is pre-
sented in Figure 6. The output of the handgun
detector is shown in Figure 6a and Figure 6b shows
the output image after the FP filtering. After the
filtering, only the correct detection is maintained.

4.5 FN filtering

Another significant drawback of the tested detec-
tors is the high rate of undetected handguns. As
in the case of the FP filtering, FNs can be also

(a) Handgun detector
image

(b) Output image after
FN filtering

Figure 7: FN filtering example.

reduced applying the pose information retrieved
from the pose estimation framework and the de-
veloped pose classifier.

If the detector is not capable of locating the hand-
gun (when it is far from the camera or the image
does not have enough detail) but the pose classi-
fier predicts a potentially dangerous pose (identi-
fied as a shooting pose with high confidence), an
artificial handgun area will be added to the detec-
tor output. This artificial detection will be added
to the farthest detected hand with respect to the
pose reference keypoint (neck keypoint) and will
have a fixed confidence value lower than the aver-
age detections (0.8), as it is not a true detection
from the handgun detector.

An example of this FN filtering is shown in Fig-
ure 7. The output of the original handgun detector
is shown in Figure 7a and in Figure 7b the output
image after the FN filtering is presented. After
the process, a new artificial detection is included.
In this particular example, the combination of the
proposed FP and FN filtering will lead to a correct
handgun detection with no FP.

5 Experiments and results

The proposed pose-based method has been tested
with the test dataset described in Subsection 3.2.
The handgun detection methods as well as the
implementations used are presented in Subsec-
tion 4.3. Evaluation results for both implemen-
tation 1 (Keras-TensorFlow [9]) and implementa-
tion 2 (Open-MMLab Detection Toolbox [2]) are
shown in Table 3 and Table 4, respectively.

For each detector and implementation, evaluation
metrics have been calculated in four different sit-
uations. The first one, named as “Original” in the
tables, illustrates the detectors performance with-
out any post-processing method applied. The sec-
ond one, labelled as “Filtered (FP)”, shows how
only the pose-based FP filtering method (Subsec-
tion 4.4) significantly reduces the number of false
positives. It can be observed that Precision met-
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Table 3: Evaluation results for detector 1 [18] and detector 2 [11] using the implementation 1 (Keras-
TensorFlow). Precision and recall metrics have been calculated with a 0.5 confidence threshold.

Precision Recall mAP

Detector 1

Original 0.5398 0.5950 52.19
Filtered (FP) 0.8832 0.5421 51.48
Filtered (FN) 0.5687 0.8683 73.34
Filtered (FP+FN) 0.7845 0.8154 74.86

Detector 2

Original 0.1580 0.7392 54.37
Filtered (FP) 0.8759 0.6891 64.85
Filtered (FN) 0.1762 0.8701 58.14
Filtered (FP+FN) 0.7842 0.8208 75.89

Table 4: Evaluation results for detector 1 [18] and detector 2 [11] using the implementation 2 (Open-
MMLab Detection). Precision and recall metrics have been calculated with a 0.5 confidence threshold.

Precision Recall mAP

Detector 1

Original 0.6939 0.7312 64.01
Filtered (FP) 0.8930 0.6953 63.65
Filtered (FN) 0.6623 0.8719 74.74
Filtered (FP+FN) 0.8022 0.8360 75.76

Detector 2

Original 0.3070 0.4247 33.10
Filtered (FP) 0.7648 0.4050 35.22
Filtered (FN) 0.4210 0.8029 64.01
Filtered (FP+FN) 0.7432 0.7832 65.53

ric increases when applying this method, obtain-
ing the highest mark. On the other hand, “Fil-
tered (FN)”, shows the results for the FN filter-
ing method (Subsection 4.5), which increases the
number of detected handguns through the human
full-body pose classifier, obtaining the highest Re-
call values. Finally, “Filtered (FP+FN)” shows
the effect of using both FP and FN filtering meth-
ods combined. In this case, metrics are more bal-
anced in terms of Precision and Recall, achieving
the highest mAP marks.

6 Conclusions

In this work, a new approach to improve the per-
formance of current deep learning-based handgun
detectors is proposed. This method consists of us-
ing human pose information to reduce both false
positive detections and undetected handguns. A
CNN image-based classifier has been trained to
distinguish between shooting poses and other non-
dangerous poses. Then, this predicted pose along
with the pose skeleton itself is used to remove false
alarms and predict the potential undetected hand-
gun locations.

Four datasets have been collected and two well-
known handgun detectors under two different im-
plementations have been applied to demonstrate
the ability of the proposed method to improve the
detection performance. The evaluation metrics

show that in the test images the proposed method
reduces the number of false positives and false
negatives, obtaining significantly higher results in
terms of Precision, Recall and mAP. Although the
proposed method was originally designed to be ap-
plied with CCTV surveillance cameras, the large
variety of images in which the method has been
tested, such as synthetic videogame images, in-
door places with artificial light and outdoor loca-
tions in different contexts and camera positions,
show that this approach can be applied in a wide
number of scenarios.

Despite the promising results achieved, there is
room for improvement. The first major limitation
of the proposed work is related to lack of publicly
available datasets of mass shootings and handgun
assaults, which prevents evaluating the proposed
method under more realistic and challenging con-
ditions (e.g. crowds and hidden body parts).
Regarding the pose estimator used (OpenPose),
although the overall performance is satisfactory,
there are situations in which the pose, completely
or partially, is not detected correctly. Thus, the
next steps of the method, such as the pose clas-
sifier, will not work properly if the estimation is
not sufficiently accurate. On the other hand, the
extra computational cost added by the pose esti-
mator and the pose classifier must be studied in
order to analyze its impact when deployed in real
time systems, as the number of images per second
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that the system is able to process may be affected.
Finally, different ways to encode pose information
or alternative CNN architectures can be studied
to improve the performance of the pose classifier.
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