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Abstract

Several methodologies exist for solving the inverse
kinematics of a manipulator arm. Basing on screw
theory, it is possible to efficiently obtain complete
and exact solutions. An open-source C++ implemen-
tation of an automated problem solver of this kind is
introduced, and a comparative with selected known
algorithms is established using the TEO humanoid
robot platform by Universidad Carlos III de Madrid.
The Orocos Kinematics and Dynamics Library is
used for geometry and motion-related operations.
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1. SCREW THEORY

The kinematic transformation from task space to joint
configuration in serial-chain manipulators is a com-
mon problem in robotics with a twofold approach.
Closed-form, i.e. algebraic or geometric methods are
desirable due to efficiently and accurately providing
all available solutions. As a drawback, those are
mostly ad hoc techniques that can be applied to
certain robot types, only. Numeric methods, on the
other hand, trade speed, accuracy and completeness
for generalization to any kinematic structure with an
arbitrary number of degrees of freedom, therefore
including redundant robots [1].

It is of interest in the field of robotics to further
explore closed-form methods that allow certain de-
gree of generalization while still retaining the afore-
mentioned advantages. Numeric solutions may not
be suitable for real-time applications due to the un-
certainty of the algorithm convergence. In addition,
singularities can be hard to avoid or mitigate for
certain methods. On the ground of the mathematical
theory of screws, founded upon the theorem of the
displacement of a rigid body [2], a strictly geometric
methodology can be developed to effectively and
efficiently solve inverse kinematics for a range of
common robot architectures [3].

Several mathematical principles lie at the mathemat-
ical basis of screw theory. An arbitrary rotation of
a vector in space Rω, given an axis ω and angle
of rotation θ, can be defined by the Euler-Rodrigues
formula (Equations 1, 2).

Rω(θ) = eω̂θ = I3 + ω̂ sinθ + ω̂2 (1− cosθ) (1)

ω̂ =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 (2)

By further applying the Chasles’ theorem, any rigid
body motion can be described by a translation along
a line and a rotation about that same line. The joint
effect of said translation and rotation motion is re-
ferred to as “screw”, defined by the coordinates of
an axis and the angle of rotation performed about it.

A screw is therefore the mathematical tool that de-
scribes a pose transformation in the context of screw
theory. The differentiation of a screw results in a
“twist” ξ, i.e. an infinitesimal screw, which is encoded
by a translation vector ν and the direction of the
screw (rotation) axis ω as ξ6x1 = [ν ω]

T .

A connection can be established between homoge-
neous and exponential transformations in SE(3) via
the Lie algebra (M.S. Lie, 1842–1899). The exponen-
tial formula, also called matrix exponential, is a link
between the usual representation of robot frames of
reference, commonly encoded through the Denavit-
Hartenberg algorithm [4], and motion described by
screws; see Equations 3, 4.

H(θi) = eξ̂iθi (3)

eξ̂θ =

[
eω̂θ (I − eω̂θ)(ω⃗ × ν⃗) + ω⃗ω⃗T ν⃗θ
0 1

]
(4)

To represent a kinematic chain, a sequence of homo-
geneous transformations between the inertial and tool
frames HST is referred to in the screw theory realm
as the product of exponentials [5] (PoE). Said product
expresses the relative motion of a rigid body and
must be complemented with an additional HST (0)
transformation from base to tip; see Equation 5.

HST (θ) =
∏
i

eξ̂iθi HST (0) (5)

XLIII Jornadas de Automática

864

Robótica

https://doi.org/10.17979/spudc.9788497498418.0864



2. CANONICAL PROBLEMS

The product of exponentials formula defines a se-
quence of steps to be performed in order to obtain
the forward kinematics of the chain given a joint
configuration as input (θi). By roughly following the
reverse order and applying any necessary operations
on both sides of the formula (such as left- or right-
side vector multiplications and substractions), the in-
verse kinematics of the chain are solved as well. Each
step is treated as a separate problem (subproblem)
and approached in a specific way, also accounting
for any simplifications characteristic for that case.

Individually, the subproblems aim to solve a simple,
canonical case using a purely geometric approach. By
combining them and applying (using any convenient
algebraic operations) over the original problem state-
ment given by the product of exponentials, the full
set of joint-space solutions is obtained.

Originally, three canonical problems were defined by
Paden and Kahan [6], [7], known as the Paden-Kahan
(PK) subproblems.

• PK1: Rotation about a single axis. Single
solution. Equation 6.

• PK2: Rotation about two subsequent crossing
axes. Dual solution. Equation 7.

• PK3: Rotation about a single axis to a given
distance δ. Dual solution. Equation 8.

e ξ̂ θ p⃗ = k⃗ (6)

e ξ̂1 θ1 e ξ̂2 θ2 p⃗ = k⃗ (7)

∥∥∥e ξ̂ θ p⃗− k⃗
∥∥∥ = δ (8)

The available set of subproblems is not limited to the
above mentioned. Additional cases can be studied and
their resolution proposed, if possible. For instance, an
analogous collection has been introduced by Pardos-
Gotor [3] (PG) targeting prismatic joints, and one
rotation case not included in PK.

• PG1: Translation along a single axis. Single
solution. Equation 6.

• PG2: Translation along two subsequent
crossing axes. Single solution. Equation 7.

• PG3: Translation along a single axis to a
given distance. Dual solution. Equation 8.

• PG4: Rotation about two subsequent parallel
axes. Dual solution. Equation 7.

Cases PK1, PK3 and PG1 are subject to simplifica-
tion. In Equation 6, the screw rotation motion does
not affect any point p that lies on axis ω.

In Equation 8, the same reasoning applies for any
k lying on ω. Regarding PG1, any equidistant pair
of points p, k can be picked. The goal of these
operations is to drop one or more terms of the product
of exponentials, thus simplyfing subsequent steps.
The failure to find a convenient case of simplification
can render the inverse kinematics problem insoluble
through the application of screw theory techniques.

3. OROCOS KDL

Various C++ libraries based on Eigen exist to repre-
sent Lie groups and related mathematical artifacts [8],
[9], [10]. MATLABTM toolboxes can be found that
fulfill the same goal [3], [11]. Graphical interfaces
provide a means to properly visualize and understand
the geometrical implications of screws [12]. However,
a C++ API for solving inverse kinematics problems
in robotics regardless of the mathematical backend
was lacking at the time of conceiving this paper.

To overcome that, the problem solver described in
this work relies on the well-established Kinematics
and Dynamics Library (KDL), part of the Open
Robot Control Software (Orocos) project [13]. This
C++/Python library is widely used among the Robot
Operating System (ROS) community and beyond.

Three components are building blocks of this library:

• A collection of geometric primitives for de-
scribing vectors, rotation matrices, homoge-
neous transformation matrices, twists, etc.
and common operations between them.

• A collection of kinematic families to describe
robot joints, segments, chains and tree struc-
tures. Here, a family of solvers (forward and
inverse kinematics and dynamics) is provided
to target various domains (position, velocity,
acceleration).

• A collection of motion-related classes: paths,
trajectories and velocity profiles.

For the purpose of the problem solver introduced
here, geometric primitives are extensively used to
avoid re-implementing those tools. In fact, its public
API exposes methods to deal with KDL frames and
vectors, and also conversion utilities for that matter.

4. IMPLEMENTATION

A C++ implementation of a closed-form, screw
theory-based algorithm following the previous
premises is described here. It is conceived as an open-
source library; sources are available on GitHub [14].

All seven subproblems introduced earlier have been
implemented and extensively tested on a set of pop-
ular, non-redundant manipulators listed and solved
in [3], in addition to the TEO platform.

The core of the library is represented by the collection
of C++ classes shown in Figure 1.
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ScrewTheoryIkProblem

+ create(poe: PoeExpression, steps: vector<ScrewTheoryIkSubproblem>):
ScrewTheoryIkProblem

+ solve(H_S_T: KDL::Frame): vector<KDL::JntArray>

PoeExpression

+ PoeExpression(H_S_T: KDL::Frame)

+ append(exp: MatrixExponential)

+ append(poe: PoeExpression)

+ evaluate(q: KDL::JntArray): KDL::Frame

+ toChain(): KDL::Chain

+ fromChain(chain: KDL::Chain): PoeExpression

1

MatrixExponential

- axis: KDL::Vector

- origin: KDL::Vector

+ asFrame(): KDL::Frame

1..*

ScrewTheoryIkProblemBuilder

+ ScrewTheoryIkProblemBuilder(poe: PoeExpression)

+ build(): ScrewTheoryIkProblem

- trySolve(depth: int): ScrewTheoryIkSubproblem

PadenKahanOne

ScrewTheoryIkSubproblem

+ solve(rhs: KDL::Frame, pt: KDL::Frame): Solutions

+ solutions(): int

PadenKahanTwo

PadenKahanThree

PardosGotorOne

PardosGotorTwo

PardosGotorThree

PardosGotorFour
1..*

1

Figure 1: UML class diagram.

In more detail:

• MatrixExponential represents the expo-
nential transformation of a rigid body in space
with a vector describing an axis and the angle
to rotate about it. A helper method asFrame
is provided to evaluate the exponential matrix
for an input θ and return a KDL:Frame
(representing a homogeneous tranformation).

• PoeExpression uses a sequence of
MatrixExponentials to describe a kine-
matic chain represented by the product of ex-
ponentials of the screw axes. The evaluate
method effectively performs forward kine-
matics. Conversion methods fromChain
and toChain are provided to expose this
class as an KDL::Chain.

• ScrewTheoryIkProblem represents the
already configured IK solver instance that
knows what steps need to be performed by
the solve method. Each step is a subclass
of ScrewTheoryIkSubproblem.

• ScrewTheoryIkSubproblem is an inter-
face to specific subproblem implementations.
Here, solve provides as many solutions as
expected by the concrete subclass.

• ScrewTheoryIkProblemBuilder is a
single-method class responsible for the cre-
ation of a ScrewTheoryIkProblem in-
stance. It is used to configure the solver and
to build the subproblems that will be used
to solve the main inverse kinematics problem.

Aditional classes are provided to manage and select
the optimal solution according to predefined criteria,
using a guess joint configuration (usually the current
configuration of the robot) as input. Currently imple-
mented selectors include:

• Least overall angular displacement criterion:
the solution that entails the shortest motion
across all joints is selected.

• Humanoid gait: specifically designed for the
TEO platform, it prevents unnatural leg mo-
tion (such as a knee joint bent backwards). As
a secondary criterion, the previous method is
used on passing candidate solutions.

Besides purely geometrical operations, this library
features a sequential problem solver that aims to
assemble a pipeline of operations on exponential
matrices using previously selected compatible
subproblems. In this process, all appliable and
necessary simplifications are performed in a
brute-force manner, using a set of random points
and several checks on screw axes until a valid
subproblem is found. Since this configuration process
is done by ScrewTheoryIkProblemBuilder,
the actual problem solver represented by
ScrewTheoryIkProblem is aware of the correct
sequence (if possible) of steps since instantiation,
thus aiming to reduce computation efforts in solve.

The pipeline begins with the representation of the
product of exponentials as in Equation 5. Equation 9
represents an intermediate step having all unknown
terms arranged to the left side, and those known
and the invariants to the right side. Progressively,
unknown terms will be moved to the right side either
pre- or post-multiplying.

j+k∏
i=j

e ξ̂i θi =

(
j−1∏
i=1

e ξ̂i θi

)−1

HST (θ)H
−1
ST (0) . . .

. . . ·

 N∏
i=j+k+1

e ξ̂i θi

−1 (9)

N is the number of joints, j the index of the first
unknown term, and k + 1 the number of unknown
terms.

As a limitation to this algorithm, and inherently to the
screw theory methodology, it is not always possible to
obtain inverse kinematics. The implemented collec-
tion of subproblems could be expanded to cover ad-
ditional cases, yet some mechanisms (e.g. redundant
manipulators) will still remain unreachable to this
method. In order to solve TEO limbs, a workaround
was introduced: if the input product of exponentials is
deemed unsolvable, it is reversed (the last exponential
term is now the first and so on) and tested again.



5. SOLUTION SEARCH ALGORITHM

The basics of ScrewTheoryIkProblemBuilder
are described here. The goal is to find a sequence of
subproblems that allow to solve inverse kinematics
given a product of exponentials.

Snippet 1 corresponds to the main entry point of the
builder class. Here, solution search (Snippet 2) is
performed first on the input product of exponentials,
and then on the reversed product of exponentials.

Snippet 1 Main builder entry point

1: function BUILD(poe)
2: known poe terms← 0
3: steps← search solutions()

4: if known poe terms is poe.size() then
5: return create(poe, steps)
6: end if

7: poe.reverse self()
8: known poe terms← 0
9: steps← search solutions()

10: if known poe terms is poe.size() then
11: return create(poe, steps)
12: end if

13: return null
14: end function

Snippet 2 dives into the main solution search routine.
A collection of test points is prepared (see Snippet 3)
in order to feed them to simplify (see Section 2) and
try solve (Snippet 4). For pseudocode readability,
these points are not explicitly represented as inputs
to said functions, and further terms test pointsX
refer to points picked from said collection.

The implemented subproblems require a varying
number of points to operate with. Since the algorithm
performs brute force on searching a valid solution,
it first traverses the entire point collection using a
single point at once, then it enters the next stage to
operate with two points at once. No subproblem uses
more than two points, hence here MAX POINTS
is hardcoded to 2 and might be expanded in the future
if more subproblems are incorporated.

In the process of solution search, a simplification is
attempted if possible, then all subproblems are tested
for suitability. If the point (or points) do not lead to a
valid solution, the simplified product of exponentials
is reset to its original state and the next set of points
is tested instead.

Snippet 3 builds the collection of points to operate
with. On iterating over the terms of the product of
exponentials, the origin point of each axis is selected
as well as the point of intersection between axes of
two different terms. To help resolve certain subprob-
lems, a random point on each axis is added, and also
the robot base (origin) and TCP.

Snippet 2 Main solution search routine

1: function SEARCH SOLUTIONS
2: points← search points(poe)
3: init test points(points[0])
4: steps← ∅
5: n points← 1

6: while (n points <= MAX POINTS
7: and unknown poe terms > 0) do
8: refresh simplification state()
9: simplify(poe, depth)

10: subproblem← try solve(poe, depth)

11: if subproblem is not null then
12: steps.insert(subproblem)
13: n points← 1
14: continue
15: end if

16: for stage = 1 : MAX POINTS do
17: if all points tested then
18: reset test points()

19: if stage is n points then
20: n points← n points+ 1
21: break
22: end if
23: else
24: update test points()
25: break
26: end if
27: end for
28: end while

29: return steps
30: end function

Snippet 4 seeks a valid subproblem for its inclusion
in the solver’s pipeline. The characteristics of each
one are taken into account, including the number of
required test points, i.e. n points (either one or two
in the current implementation), and the number of
unknown terms each subproblem is able to solve at
once, i.e. unknown poe terms (also either one or
two). Additional checks are carried out when needed,
such as querying the motion type (rotation or trans-
lation), testing whether screw axes are parallel, etc.

6. EXPERIMENTS

The performance of the proposed screw theory im-
plementation has been compared with two numeric
inverse kinematics solvers found in Orocos KDL. The
kinematic chain tested against corresponds to the 6-
DOF left arm of TEO, a full-size 28-DOF humanoid
robot from Universidad Carlos III de Madrid (Fig-
ure 2). Out of all eight possible solutions, the one
that entails the least joint displacement relative to the
initial configuration is chosen.
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Snippet 3 Point search and validation

1: function SEARCH POINTS(poe)
2: points← ∅
3: points.insert({0, 0, 0})

4: for each e1 ∈ poe do
5: points.insert(e1.get origin())

6: for each e2 ∈ poe do
7: if (parallel axes(e1, e2) or
8: colinear axes(e1, e2)) then
9: continue

10: end if

11: p← intersection(e1, e2)

12: if p exists then
13: points.insert(p)
14: end if
15: end for

16: points.insert(random p on axis(e1))
17: end for

18: points.insert(get TCP (poe))
19: return points
20: end function

Figure 2: TEO humanoid robot

Having the screw theory solver (ST) as baseline, the
selected algorithms are Levenberg-Marquardt (LMA,
using damped SVD) and Newton-Raphson (NR, com-
puting the pseudo-inverse Jacobian via truncated
SVD). An epsilon (eps) parameter quantifies the pre-
cision of operations involving floating point numbers.

The results for three different target poses are pre-
sented in Table 1. The initial “guess” joint con-
figuration corresponds to the left elbow rotated by
90 degrees pointing forward. The target cartesian
poses (to be passed as input to the IK solvers)
are derived via forward kinematics from the fol-
lowing approximate joint configurations, in de-
grees: 1. random pose far from the initial guess:
(−45, 45, 45,−75, 45,−90); 2. close to several joint

Snippet 4 Find a valid subproblem

1: function TRY SOLVE(poe, n points)
2: unknown poe terms← analyze(poe)
3: e1← get last term(poe)
4: e2← get next to last term(poe)

5: if unknown poe terms is 1 then

6: if n points is 1 then

7: if (e1.type is rotation and
8: not lies on axis(e1, p1)) then
9: return PK1(e1, p1)

10: end if

11: if e1.type is translation then
12: return PG1(e1, p1)
13: end if

14: end if

15: if n points is 2 then

16: if (e1.type is rotation and
17: not lies on axis(e1, p1) and
18: not lies on axis(e1, p2)) then
19: return PK3(e1, p1, p2)
20: end if

21: if e1.type is translation then
22: return PG3(e1, p1, p2)
23: end if

24: end if

25: else if (unknown poe terms is 2 and
26: n points is 1) then

27: if (e1.type is rotation and
28: e2.type is rotation and
29: not parallel axes(e1, e2) and
30: intersecting axes(e1, e2)) then
31: return PK2(e1, p1)
32: end if

33: if (e1.type is translation and
34: e2.type is translation and
35: not parallel axes(e1, e2)) then
36: return PG2(e1, e2, p1)
37: end if

38: if (e1.type is rotation and
39: e2.type is rotation and
40: parallel axes(e1, e2) and
41: not colinear axes(e1, e2)) then
42: return PG4(e1, e2, p1)
43: end if

44: end if

45: return null
46: end function
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limits: (−90, 20,−45, 90,−90, 45); 3. close to the
initial guess: (−30, 0, 0,−60, 0, 0). The mean elapsed
time after 105 solve iterations on an Intel® CoreTM i7-
10700F CPU is obtained (compiled with GCC 9.3.0).

TABLE 1: Performance of IK algorithms.

Algorithm
Mean elapsed time (µs)

Pose 1 Pose 2 Pose 3

ST (baseline) 5.16 5.13 5.13
LMA (eps : 10−5) 66.46 212.85 53.05
LMA (eps : 10−3) 55.22 155.96 44.10
NR (eps : 10−5) 74.29 – 31.46
NR (eps : 10−3) 66.02 – 23.70

Results for the ST solver are consistent. Numeric
solvers converge faster the closer the target pose is to
the initial guess. In extreme situations, close to joint
limits, the NR solver is unable to converge.

Accuracy has been not deemed critical for the se-
lected set of parameters (the worst scenario given
eps = 10−3 rendered deviations well under one
millimeter). A degradation has been observed when
using eps = 10−2, with no significant improvement
in elapsed times.

7. CONCLUSIONS

In this paper, an inverse kinematics solver benefiting
from screw theory mathematical fundamentals as a
fast, efficient and effective closed-form method has
been introduced. It has been proven on a real robot
platform that it performs better than widely used
numeric solvers by at least one order of magnitude.

In addition, it is easy to use as it only requires the
description of a kinematic chain expressed in terms
of a product of exponentials (or a Denavit-Hartenberg
standard representation of homogeneous transforma-
tion matrices) to produce an internal, correctly or-
dered pipeline of steps iterating over each canonical
subproblem. Other solvers would assume that said
pipeline was previously determined and solved by
a human so that only an input frame must be fed
into the algorithm. Since automatic simplification and
subproblem selection is performed on initialization,
no penalty is imposed on runtime.

These features allow the presented solver to merge
the best of two worlds: easy-to-generalize numeric
solvers (although known limitations exist) and fast,
efficient and accurate closed-form solvers.
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