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and Prof. Ignacio López de Ullibarri, will be held on 30th June, 2022, at the
Faculty of Computer Sciences at the University of A Coruña, with the examining
committee:
President: Prof. Paul Yingwei Peng (Queen’s University, Canada)
Board Member: Prof. Eni Musta (Universiteit van Amsterdam, Netherlands)
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support that have made my study and life in Spain a wonderful time.

I would like to acknowledge Professor Anouar El Ghouch for his warmest wel-
come and valuable suggestions during my research stay at the ISBA, Université
Catholique de Louvain, in Belgium.

I am extremely grateful to my parents for their prayers, caring, and continuing



support. Without their tremendous understanding and encouragement in the
past few years, it would be impossible for me to complete my study.

I am very thankful to my younger sister, Merciana, for keeping me informed
about family issues in her own special way. I also thank my younger brother,
Bongracious, for his thoughtfulness and for providing me with information on
ongoing activities at home. I am truly blessed to have Nelson Ochieng, da Angel
Kidulile, Jacqueline Materu (Adol) and John Mapilya as my closest people all the
time. I also thank my extended family and friends for their support throughout
my academic trajectory.

I do not want to miss this opportunity to thank Manolo, Hugo and Gabi for being
so kind and loving. I am really grateful to have such a family in Spain.

Special thanks are extended to Jim Todd, Leacky Kamau, Innocent Mboya,
Neema Mosha, Zakile Mfumbilwa, and the whole team of the International Bio-
metric Society (IBS) of Tanzania for their encouragement and enthusiasm during
my PhD.

I would like to thank God the Almighty for His guidance throughout my PhD
journey. Also for granting me countless blessings and knowledge. I will keep on
trusting Him for my future. Mungu awabariki ninyi nyote!



Institutional acknowledgement

This research has been partially supported by the Spanish Ministerio de Economı́a
y Competitividad (MINECO) under Grants MTM2014-52876-R and MTM2017-
82724-R, by the Spanish Ministerio de Ciencia e Innovación (MICINN) under
Grant PID2020-113578RB-I00, by the Agencia Galega de Innovación (GAIN)
under Grant IN845D 2020/26, by the Xunta de Galicia through Centro Singular
de Investigación de Galicia accreditation under Grants ED431G 2019/01 and
through the Grupos de Referencia Competitiva under Grants ED431C 2016-015
and ED431C2020-014 and in part by the European Union (European Regional
Development Fund-ERDF).

The author particularly thanks the contracts financed by the research group
MODES from August, 2018 to September, 2021, and by the CITIC from Oc-
tober, 2021 to March, 2022.

The work has been partially carried out at the Université Catholique de Louvain
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Abstract

Classical analysis of time-to-event data assumes that all individuals will eventu-
ally experience the event of interest. However, when there is evidence of long-term
survivors, cure models should be used instead. They assume that the population
of individuals is made up of two distinct groups: those who will and those who
will not experience the event. A common assumption in cure models is that
there is no additional information about the cure status, and the cure indicator
is modelled as a latent variable. But this is not entirely valid in many cases,
when some censored individuals can be identified as cured, for example, based
on a diagnostic test or if the observed lifetime is larger than a cure threshold.
Mixture cure models have been usually estimated using parametric or semipara-
metric models. Recently, a completely nonparametric approach was introduced
under the classical assumption that the cure status in unknown. This PhD thesis
proposes a novel extension of nonparametric mixture cure models to incorporate
the additional information about the cure status. Suitable nonparametric esti-
mators for the main functions are proposed, together with a rough procedure for
checking the validity of the model.





Resumen

Los métodos clásicos de análisis de tiempos de vida asumen que todos los indi-
viduos experimentarán el suceso de interés. Sin embargo, cuando hay evidencia
de la presencia de supervivientes a largo plazo o curados, se deberán usar en
su lugar los modelos de curación. Estos asumen que la población de indivi-
duos se puede dividir en dos grupos: los que experimentarán el suceso y los que
no lo harán. Cuando se aplican los modelos de curación se asume que no se
dispone de información adicional sobre el estado de cura, y el indicador de cura
se modeliza en consecuencia como una variable latente. Sin embargo esto no es
necesariamente cierto en muchos casos, en los que algunos individuos censurados
se pueden identificar como curados, basándose por ejemplo en un test diagnóstico
o si el tiempo de vida supera un determinado umbral. Los modelos de curación
de tipo mixtura se han estimado normalmente usando técnicas paramétricas o
semiparamétricas. Recientemente se ha propuesto un enfoque completamente no
paramétrico para los modelos de curación de tipo mixtura, bajo la hipótesis clásica
de que se desconoce completamente si un sujeto está curado. Esta tesis propone
una extensión a los modelos no paramétricos de curación de tipo mixtura, en la
que se incorporaŕıa la información adicional disponible sobre el estado de cura.
Se proponen estimadores no paramétricos de las principales funciones, aśı como
un sencillo método para comprobar la validez del modelo.





Resumo

Os métodos clásicos de análisis de tempos de vida asumen que todos os individuos
experimentarán o suceso de interese. Con todo, cando hai evidencia da presenza
de supervivientes a longo prazo ou curados, deberansen usar no seu lugar os mo-
delos de curación. Estes asumen que a poboación de individuos pódese dividir en
dous grupos: os que experimentarán o suceso e os que non. Cando se aplican os
modelos de curación, asúmese que para os individuos censurados non se dispón
de información adicional sobre o estado de cura, e o indicador de cura se mode-
liza en consecuencia como unha variable latente. Mais isto non é necesariamente
certo en moitos casos, nos que algúns individuos censurados pódense identificar
como curados, baseándose por exemplo nun test diagnóstico ou se o tempo de
vida supera un determinado valor. Os modelos de curación de tipo mixtura esti-
máronse normalmente usando técnicas paramétricas ou semiparamétricas. Rece-
ntemente propúxose un enfoque completamente non paramétrico para os modelos
de curación de tipo mixtura, baixo a hipótese clásica de que se descoñece com-
pletamente se un individuo está curado. Esta tese propón unha extensión aos
modelos non paramétricos de curación de tipo mixtura, na que se incorporará
información adicional dispoñible sobre o estado de cura. Propóñense estimadores
non paramétricos das principais funcións, aśı como un posible procedemento para
avaliar a validez do modelo.





Preface

The objective of this thesis is to propose a completely nonparametric methodology
in the mixture cure model when the cure status is partially known. A summary
of each chapter is provided below.

Chapter 1 begins with a brief overview of classical survival analysis, also intro-
duces the concepts of censoring and truncation. A thorough review of cure model
is provided with two estimation methods exist in the literature explained in de-
tails – namely mixture cure models and non-mixture cure models. Estimation of
key quantities of interest under the mixture cure model (survival function, cure
probability and latency function) are introduced. Three real datasets are care-
fully described in the last section of the chapter. These data have distinct features
and are analyzed thoroughly in subsequent chapters.

Chapter 2, the main contribution of this thesis, introduces a novel nonparametric
estimator of the conditional survival function in the MCM for right censored data
when the cure status is partially known. The estimator is developed for a setting
with a single continuous covariate but can be extended to multiple covariates. It
extends the estimator by Beran (1981), which ignores cure status information.
An almost sure representation is obtained, from which the strong consistency and
asymptotic normality of the estimator are derived. Asymptotic expressions for
the bias and variance of the proposed estimator demonstrate a reduction in the
variance with respect to Beran’s estimator. A simulation study shows that the
proposed estimator performs better than others for an ample range of covariate
values, if the bandwidth parameter is suitably chosen. A bootstrap bandwidth
selector is proposed. Finally, the estimator is applied to a real dataset studying
survival of sarcoma patients. This work was published in Safari et al. (2021).

Chapter 3 covers the second contribution of the thesis. A new estimator of the
probability of the cure is proposed. The proposed estimator extends that of Xu



viii Preface

and Peng (2014) to the context in which some censored individuals can be con-
sidered as cured. The estimator is shown to be strongly consistent and asymp-
totically normally distributed. Two alternative estimators are also presented,
which have not been previously studied in the literature. The first of them de-
rives from the competing risks approach. The MCM with cure partially known
can be considered as a special competing risks model in which there are two
types of competing events, the event of interest and the cure. The main idea
underlying the second alternative estimator is that, since the cure indicator is
a binary variable, the probability of cure can be written also as the conditional
mean of the cure indicator. As a consequence, nonparametric regression methods
can be applied to estimate this conditional mean. However, under right random
censorship, the indicator of cure is not known for all individuals, since for many
censored individuals it is not known if they will finally experience the event of
interests or not. The application of regression methods in this context requires
handling missing data in the response variable (cure indicator). Simulations are
performed to evaluate the finite sample performance of all these estimators, and
apply them to the analysis of two datasets related to, respectively, survival of
breast cancer patients and length of hospital stay of COVID-19 patients requir-
ing intensive care. This work has been submitted for publication (Safari et al.,
2022a).

The problem of estimating the latency function in the MCM when the cure status
information is partially available is addressed in Chapter 4. A latency estimator
that extends the nonparametric estimator studied in López-Cheda et al. (2017b)
to the case when the cure status is partially available is proposed. The asymp-
totic properties of the proposed estimator are established, and its performance
is studied via a simulation study. Finally, the estimator is applied to a medical
dataset to study the length of hospital stay of COVID-19 patients requiring in-
tensive care. This work has been submitted for publication (Safari et al., 2022b).

An important feature of the proposed estimators is that they are consistent only
under the assumption of conditional independence of the survival and censoring
times. In Chapter 5, a simple nonparametric procedure is proposed to assess how
plausible the independence assumption is when the censoring rate is high. It relies
on the fact that the difference between the proposed MCM-based kernel estimator



ix

of the cure probability and the regression-based estimator should be large under
independence. The motivation comes from the fact that under independence
assumption, only the proposed MCM-based estimator provides a good approxi-
mation of the conditional cure probability. Meanwhile, for the regression-based
estimator to be consistent, the independence assumption must not be fulfilled.

To close the thesis, Chapter 6 provides some general conclusions and identifies
issues that deserve further research. The proofs of theoretical results in Chap-
ters 2 – 4 are relegated to Appendices A – C, respectively.

The results in Chapter 2 have been published in Safari et al. (2021). The results of
each of Chapters 3 and 4 have gathered in manuscripts submitted for publication
in international peer-reviewed journals, as listed below.

1. Safari, W. C., López-de-Ullibarri, I., and Jácome, M. A. (2021). A product-
limit estimator of the conditional survival function when cure status is par-
tially known. Biometrical Journal, 63(5):984 – 1005.

2. Safari, W. C., López-de-Ullibarri, I., and Jácome, M. A. (2022a). Non-
parametric kernel estimation of the probability of cure in a mixture cure
model when the cure status is partially observed. First revision in Statisti-
cal Methods in Medical Research.

3. Safari, W. C., López-de-Ullibarri, I., and Jácome, M. A (2022b). Latency
function estimation under the mixture cure model when the cure status is
available. Submitted.
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Chapter 1

Introduction

Survival analysis refers to the analysis of the length of time until the occurrence
of a well-defined event of interest (survival time). Others refer to such techniques
as time-to-event or event history analysis. Since data can only be collected over
a specified time period, it is likely that not all subjects will have the event by
the end of study period. So the actual survival times for some subjects are
unknown. This phenomenon is referred to as censoring. The use of standard
statistical methods in these data might generate results that have some level of
bias because important information would be left out. Survival data structure
can be viewed as consisting of two important measures such as survival times and
censoring status.
Censoring is divided into three general types: right censoring, left censoring,
and interval censoring (Klein and Moeschberger, 2003; Kalbfleisch and Prentice,
2011). The most common type of censoring encountered in survival analysis
data is right censoring. Right censoring arises when the event of interest is not
observed within the study duration, and it would happen later than the observed
time. This may occur, for example, if an individual drops out of a study before the
event of interest happens, because of the end of study or loss to follow-up. Left
censoring occurs when the event of interest has occurred prior to the observation
time, but it is unknown exactly when. Interval censoring occurs when the actual
event times are unknown, as the event is only known to be located between two
known time points.
The survival time can also be subject to right and/or left truncation (Klein and
Moeschberger, 2003). Left truncation occurs when data is only recorded for
individuals whose survival time exceeds a random time (i.e., left truncation time).

1
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Right truncation occurs when data is only recorded for individuals whose survival
time proceeds a random time (i.e., right truncation time). When both left and
right truncation are present, this is known as double truncation. This thesis is
focused on situations where the event times are subject to right censoring, as this
is the most frequent scenario encountered in the literature.

In classical survival analysis, it is commonly assumed that the event of interest
will always happen if there is a sufficient follow-up time. However, there are
many examples where the event will not occur for all individuals. For instance,
some cancer patients will never relapse or die from cancer, some bank customers
will never default in loan repayment, etc. Those whose event is certain not to
occur are considered “statistically cured” (or long-term survivors) and those who
will experience the event are known to be “uncured” (or susceptible) subjects.
Cure models (Legrand, 2021; Peng and Yu, 2021) have been developed to address
this issue. There are two types of cure models: mixture cure model (MCM) and
non-mixture cure model (NMCM). Both mixture and non-mixture cure models
aim to estimate the survival function of the population.

The MCM, initially proposed by Boag (1949), has received much attention in
recent years. It assumes that the population is a mixture of cured and suscep-
tible individuals. Note that here a “cured” individual is defined as being free of
experiencing the event of interest, not necessarily cured in medical terms. The
goal is to model the probability of cure and the survival function of the uncured
subjects, also called latency. Extensive research has been conducted for the stan-
dard MCM from either a (semi)parametric point of view (Maller and Zhou, 1992;
Amico and Van Keilegom, 2018; Patilea and Van Keilegom, 2020, among others),
or from a completely nonparametric approach (Xu and Peng, 2014; López-Cheda
et al., 2017a,b).

The NMCM, also known as promotion time cure model or bounded cumulative
hazard model, has a proportional hazard model structure. It was firstly intro-
duced by Yakovlev et al. (1993) and later discussed by (Chen et al., 1999; Chen
et al., 2002) and Ibrahim et al. (2001), to name a few. Tsodikov et al. (2003)
provided a review of existing methodology of statistical inference based on the
NMCM. They highlighted two advantages of the NMCM: it presents a much
more biologically meaningful interpretation of the results of the data analysis.
Moreover, it is easy in computations due to its simple structure for the survival
function which can provide a certain technical advantage when developing maxi-
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mum likelihood estimation procedures.

Although MCM and NMCM represent two different modeling approaches and
differences have been underlined in the literature, the two methods are related
and have a meaningful connection (Legrand, 2021; Peng and Yu, 2021). Besides,
there exists a number of works that have unified the MCM and NMCM. Interested
readers are referred to Amico (2018) for an overview of the related research.

The absence of an individual’s cure status (i.e., cured, uncured) is an important
challenge for cure models. A subject whose event is observed is known to be un-
cured. However, censoring prevents from observing whether a censored subject
would eventually experience the event or not. This hinders the classification of
censored observations as cured or uncured. In this situation, it is customary to
assume no additional information on the cure status of the censored individuals,
thus, to model the cure status as a latent variable. Nonetheless, there are situa-
tions where some of the censored individuals can be identified to be immune to
the event of interest, that is, to be cured. For example, diagnostic procedures in
medical studies are available to provide further information on whether a subject
suffering a curable illness can be considered as cured and therefore will not die
from that disease. Also, for some types of cancer it is extremely unlikely to have
any recurrence later than a given time after treatment, known as cure threshold,
and consequently those patients with observed time surpassing the cure thresh-
old can be considered relapse-free, therefore cured from the recurrence (Taylor,
1995). Another example of situations with individuals known to be cured from
the event is the analysis of hospital bed and intensive care unit (ICU) occupancy
(López-Cheda et al., 2021). In this, it is important to estimate the distribution
of the time a patient will be in the hospital ward or ICU. Specifically, modeling
the time a patient stays in the hospital ward until admitted to the ICU. In the
language of cure models, all patients who have died or have been discharged from
the hospital bed without entering the ICU are censored and are known to be
cured from the ICU admission. Accurate estimates of the trajectory of patients
and their length of stay from one hospital facility (ward) to another (ICU) are
crucial for efficient resource management by healthcare authorities particularly
during outbreaks of epidemic diseases such as the novel COVID-19 disease caused
by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

In this kind of examples with a subgroup identified as cured from the event, there
are three groups of observations: the event times (individuals who experienced the
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event during the follow-up time); the “regular” censored times (those who neither
experienced the event by the end of the study nor classified as were cured); and
a new third group, the “cured” censored times (of those acknowledged as cured
from the event). Just modeling the data under the usual cure model framework
will not take advantage of this additional cure status information given by the
third group.

Several authors have explored cure models when the cure status is known for some
censored observations. Under the MCM framework, Nieto-Baraja and Yin (2008)
proposed a Bayesian semiparametric model for survival data with a cure fraction.
They considered a fixed cure threshold, so that observations censored at times
larger than it are assumed to correspond to cured subjects. A semiparametric
approach based on a Cox proportional hazards cure model when cure information
is partially known was studied by Wu et al. (2014). Bernhardt (2016) proposed
a method where the probability of cure is estimated using a logistic model and
the latency is estimated by a flexible accelerated failure time (AFT) model. Un-
der the NMCM, Chen and Du (2018) proposed a method where both the cure
probability and the latency function are estimated by nonparametric smoothing
spline functions. Recently, Lin and Huang (2019) extended a Cox model to in-
vestigate the effects of covariates on the cure probability with different values of
the cure threshold. All these authors have shown that ignoring the known cured
information can lead to biased and inaccurate estimates.

The estimation of the MCM using a completely nonparametric estimator, in the
spirit of the estimator by Kaplan and Meier (1958), has been only addressed
by Laska and Meisner (1992) by defining cure as survival beyond a fixed cure
threshold, and Betensky and Schoenfeld (2001) whose method allows for the
observed cured censoring times to be random. Neither of these nonparametric
proposals can handle covariates.

None of the aforementioned works considered a completely nonparametric MCM
in the presence of known cure status and covariates. Therefore, the goal of this
thesis is to develop a completely nonparametric kernel methodology in the con-
text of MCM when the cure status is partially known. The remainder of this
chapter is dedicated to the introduction of the concepts underlying the research
presented in this work. Section 1.1 presents some basic concepts in the standard
survival models and a review of nonparametric estimators of the survival func-
tion. Section 1.2 introduces the concept of cure in survival data and an overview
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of the nonparametric estimation and testing in the MCM. Different resampling
plans for bootstraping in the presence of cured individuals are presented in Sec-
tion 1.3. Since nonparametric kernel methods critically depend on a smoothing
parameter (or bandwidth), its choice in the MCM is addressed in Section 1.4. In
Section 1.5, the basic notation used in the MCM when the cure status is partially
known is introduced. Additional notation will be introduced in Chapters 2 – 5,
whenever necessary. Three datasets that will be used to illustrate the proposed
methodologies are also described in Section 1.6.

1.1 Standard survival model

1.1.1 Model notation and the basic framework

This section starts by introducing the notation in the classical survival model.
Let Y be the time until the event of interest and X a vector of covariates. The
conditional cumulative distribution and survival functions of Y are defined as
F (t | x) = P (Y ≤ t | X = x), and S(t | x) = 1 − F (t | x) = P (Y > t | X = x),
respectively. Suppose the survival time Y is censored by a random variable C, and
the conditional distribution of C is denoted by G(t | x) = P (C ≤ t | X = x).
The random variables Y and C are assumed to be conditionally independent given
X = x. In the presence of right censoring, only the pair (T, δ) is observed where
T = min(Y, C) and δ = 1(Y < C). The conditional distribution of the observed
time T is denoted by H(t | x) = P (T ≤ t | X = x). Without loss of generality,
hereafter, let us consider a continuous covariate X with density function m(x).

1.1.2 Kaplan-Meier estimator

In this subsection, the problem of estimating nonparametrically the survival func-
tion in a setting without covariates is revised. Kaplan and Meier (1958) were the
first to propose a nonparametric estimator of the survival function, S(t), which
is defined by

Ŝn(t) =
n∏

i=1

(
1 −

δ[i]1
(
T(i) ≤ t

)
n − i + 1

)
(1.1)

where δ[i], i = 1, . . . , n, are the concomitants of the ordered observed times T(1) ≤
· · · ≤ T(n). Kaplan and Meier (1958) showed that the estimator in equation (1.1)
is the nonparametric maximum likelihood estimator of S(t).
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Basic properties of the Kaplan-Meier (KM) estimator, also known as the product-
limit (PL) estimator, are the following:

1. The KM estimator is a right-continuous step function with jumps at the
event times (i.e, δi = 1). The magnitude of the jumps can be expressed as

Ŝn(T(i−1)) − Ŝn(T(i)) = δ[i]

n

i−1∏
j=1

(
1 + 1 − δ[j]

n − j

)
= δ[i]

n − i + 1

i−1∏
j=1

(
1 −

δ[j]

n − i + 1

)

= δ[i]

n − i + 1 Ŝn(T(i−1)).

2. When there are no censored data values, the KM estimator reduces to the
empirical survival function:

S̃n(t) =
n∏

i=1

(n − i)1
(
Y(i) ≤ t

)
n − i + 1 = 1 − 1

n

n∑
i=1

1(Yi ≤ t).

3. The product of the KM estimators of the survival function of the variables
Y and C coincides with the empirical distribution of the observed time T :

1 − Ĥn(t) =
(
1 − F̂n(t)

) (
1 − Ĝn(t)

)
=

n∏
i=1

(
1 −

δ[i]1
(
T(i) ≤ t

)
n − i + 1

)
n∏

i=1

(
1 −

(
1 − δ[i]

)
1
(
T(i) ≤ t

)
n − i + 1

)

=
n∏

i=1

(
1 −

1(T(i) ≤ t)
n − i + 1

)
= 1 − 1

n

n∑
i=1

1(Ti ≤ t).

The asymptotic properties of the KM estimator have been extensively studied in
the literature. Kaplan and Meier (1958) and Efron (1967) showed that the KM
estimator is a weakly consistent estimator of the survival function S(t). Breslow
and Crowley (1974) proved the convergence and the asymptotic normality and
Földes and Rejto (1981) proved the uniform consistency.

1.1.3 Beran estimator

When covariates are available, one can consider the estimation of the conditional
survival function using the estimator by Beran (1981), which represents a direct
extension from the KM estimator to the regression context. The Beran estimator
of S(t | x) is given:

Ŝh(t | x) =
n∏

i=1

(
1 −

δ[i]Bh[i](x)1
(
T(i) ≤ t

)
∑n

j=i Bh[j](x)

)
(1.2)
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where δ[i], i = 1, . . . , n, are the concomitants of the ordered observed times T(1) ≤
· · · ≤ T(n). The weights Bh[i](x) are defined as:

Bh[i] (x) =
Kh

(
x − X[i]

)
∑n

j=1 Kh (x − Xj)
(1.3)

where X[i] is the concomitant of the ordered observed time T(i), i = 1, . . . , n, and
Kh(·) = K(·/h)/h is a kernel function K(·) rescaled with bandwidth h. The
bandwidth h tends to 0 as n → ∞. In the following, alluding to the well-known
Nadaraya-Watson (NW) kernel regression estimator (Nadaraya, 1964a; Watson,
1964), these weights will be referred to as the NW weights.
Beran estimator (1.2) inherits the same properties as its unconditional counter-
part (1.1):

1. In the simplest case, when all the data are observed completely (no censor-
ing), Ŝh(t | x) reduces to the kernel estimator of the conditional survival
function (Nadaraya, 1964b).

2. In case of no covariates, Ŝh(t | x) reduces to the KM estimator (1.1).

3. The product of the Beran estimators for the survival functions of the vari-
ables Y and C is equal to the conditional empirical estimator of the observed
time T :

1 − Ĥh(t | x) = (1 − F̂h(t | x))(1 − Ĝh(t | x))

=
n∏

i=1

(
1 −

δ[i]Bh[i](x)1
(
T(i) ≤ t

)
∑n

j=i Bh[j](x)

)
n∏

i=1

(
1 −

(1 − δ[i])Bh[i](x)1
(
T(i) ≤ t

)
∑n

j=i Bh[j](x)

)

=
n∏

i=1

(
1 −

Bh[i](x)1
(
T(i) ≤ t

)
∑n

j=i Bh[j](x)

)
= 1 −

n∑
i=1

Bh[i](x)1(T(i) ≤ t).

Large sample properties of Beran estimator have been studied extensively (Be-
ran, 1981; Dabrowska, 1987; Dabrowska, 1989; González-Manteiga and Cadarso-
Suárez, 1994; Van Keilegom and Veraverbeke, 1997 Iglesias-Pérez and González-
Manteiga, 1999).

1.2 Mixture cure model

1.2.1 Model notation and formulation

The standard survival model assumes that if there is no censoring, then at some
point all individuals in the study will experience the event of interest. Hence, the
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survival function is a proper survival function:

lim
t→∞

S(t | x) = 0.

However, when survival data contain a cure fraction, two different types of obser-
vations are considered: those who experience the event and therefore known to be
uncured, and those who will never experience the event and thus be considered
as cured. When considering a cure fraction, it is assumed that the time-to-event
for a cured subject is Y = ∞, in order to represent the fact that the event never
will happen. Let ν = 1(Y = ∞) denote the indicator of being cured from the
event. Note that ν is partially observed because δ = 1 implies ν = 0, but ν is usu-
ally unknown for the censored observations. As a consequence, when t becomes
large, a fraction of the observations is still event-free and the survival function is
improper:

lim
t→∞

S(t | x) > 0.

An informal way to identify the possible presence of cured individuals is to look
at a plateau on the right tail of the survival curve of the KM estimator (Andrei
and Asselain, 1996). If there is a clear long plateau in the right tail, showing the
fact that the survival function is improper, and one can assume that (almost) all
observations in the plateau correspond to cured observations. Figure 1.1 shows,
for a simulated data example with a cure proportion, the KM curves estimated
under the standard survival model and a cure model.

The MCM considers that the population of interest is actually a mixture be-
tween the cured and uncured subgroups. The probability of being cured is
1 − p(x) = P (Y = ∞ | X = x), and the conditional survival function of the
uncured individuals, also known as latency, is the continuous function S0(t | x) =
P (Y > t | Y < ∞, X = x). The MCM writes the survival function S (t | x) as

S (t | x) = 1 − p(x) + p(x)S0 (t | x) . (1.4)

Assuming model (1.4), the cure rate and the latency can be written in terms of
the survival function as follows:

1 − p(x) = lim
t→∞

S(t | x) > 0, S0(t | x) = S(t | x) − (1 − p(x))
p(x) .

Therefore, the availability of a suitable estimator of S(t | x) would yield appro-
priate estimators of the cure probability and the latency directly.
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Figure 1.1: KM curves with 95% confidence intervals (gray lines) and true survival
functions (black lines), estimated under the standard survival model (left) and
using a cure model (right). Events are marked with a solid circle and censored
observations with a cross.

1.2.2 Model identifiability

One key issue in cure models is identifiability. This arises because of the lack of
cure status information at the end of the follow-up period, resulting in difficulties
in distinguishing models with high incidence of susceptibles and long tails of
the latency distribution from low incidence of susceptibles and short tails of the
latency distribution (Li et al., 2001). Following the argumentation of Hanin and
Huang (2014), who discussed in detail the identifiability of the MCM, model
(1.4) is identifiable if the latency function is proper. Thus, it is assumed that
limt→∞ S0(t | x) = 0 for all x. This condition is similar to the zero-tail constraint
in Taylor (1995), López-Cheda et al. (2017a) and other works.

1.2.3 Nonparametric estimation and inference in the clas-
sical mixture cure model

Maller and Zhou (1992) were the first to propose a completely nonparametric
methodology of the MCM. However, their method does not handle covariates.
Wang et al. (2012) proposed a MCM with a nonparametric form in the cure
probability, and to ensure model identifiability, they assumed a nonparametric
proportional hazards model for the hazard function. The estimation was carried
out by an expectation-maximization (EM) algorithm for a penalized likelihood.
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They defined the smoothing spline function estimates as the minimizers of the
penalized likelihood. Patilea and Van Keilegom (2020) employed a nonparamet-
ric form for the latency but the cure probability was specified using a logistic
regression model.

Xu and Peng (2014) extended the existing work of Maller and Zhou (1992) by
proposing a nonparametric cure probability estimator in the presence of a contin-
uous covariate. Their starting point was based on the Beran estimator in (1.2).
They introduced the following kernel type cure probability estimator:

1 − p̂h(x) = Ŝh(T 1
(n) | x) =

n∏
i=1

(
1 −

δ[i]Bh[i](x)∑n
j=i Bh[j](x)

)
(1.5)

where T 1
(n) is the largest uncensored observed time. This estimator was also

studied by López-Cheda et al. (2017a). The asymptotic properties (i.i.d repre-
sentation, the strong consistency and convergence to a Gaussian process) of the
estimator in (1.5) have been studied extensively by Xu and Peng (2014) and
López-Cheda et al. (2017a).

As for the latency, López-Cheda et al. (2017b) proposed the following estimator:

Ŝ0,h(t | x) = Ŝh(t | x) − (1 − p̂h(x))
p̂h(x) (1.6)

where Ŝh(t | x) is the generalized product-limit estimator of S(t | x) in (1.2) and
1 − p̂h(x) is the cure probability estimator in (1.5). In addition, López-Cheda
et al. (2017b) derived the asymptotic properties of their estimator. Hereafter,
the estimator in (1.5) will be referred to XP estimator while the estimator in
(1.6) will be cited as the LC estimator.

Müller and Van Keilegom (2019) proposed a goodness-of-fit test based on the XP
estimator as a diagnostic tool to investigate misspecification of the parametric
model assumption for the cure probability in the MCM. López-Cheda et al. (2020)
proposed a nonparametric covariate hypothesis test for the probability of cure in
the MCM and applied a bootstrap method to approximate the null distribution
of the test statistic.

Note that when the covariate X is a high-dimensional vector X, the nonpara-
metric kernel estimators are affected by the so-called “curse of dimensionality”.
This phenomenon is essentially due to the sparsity of data as the dimension of the
vector increases, which results to dramatically bad performances of the nonpara-
metric kernel estimators. Therefore, other kind of models such as the single-index
Cox MCM (Amico et al., 2019) have been considered in the literature. Single-
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index models are said to be much more flexible than purely parametric models
also do not suffer from the curse of dimensionality. Concretely, the single-index
model assumes that there exists an unknown link function that links Y with X

by a single score (called index) mean regression model. Interested readers are
referred to Amico et al. (2019) for more details.

1.3 Bootstrap procedures

Ever since its introduction by Efron (1981), bootstrap resampling procedures
for censored data have become a widely used technique for confidence interval
construction, testing hypotheses and data driven bandwidth selection. There are
two equivalent resampling algorithms for bootstrapping: “simple method” and
“obvious method”. These methods were studied in detail by Reid (1981) and
Akritas (1986), among others. Li and Datta (2001) extended Efron’s resampling
approaches to incorporate covariates.
In the presence of right censoring, covariates and a cured fraction, López-Cheda
et al. (2017a,b), using similar ideas to those in Li and Datta (2001), suggested
two equivalent bootstrap resampling algorithms under the MCM. They pro-
posed a simple weighted bootstrap method (López-Cheda et al., 2017a), which
is detailed as follows. Generate {X∗

1 , . . . , X∗
n} from the empirical distribution of

{X1, . . . , Xn}. Next, for each i = 1, . . . , n, generate (T ∗
i , δ∗

i ) from the weighted
empirical distribution F̂g (. | X∗

i ) of {(T1, δ1) , . . . , (Tn, δn)} given by

F̂g (t, d | X∗
i ) =

n∑
j=1

Bgj (X∗
i ) 1 (Tj ≤ t, δj ≤ d) ,

where Bgj(x) are the NW weights in (1.3) computed with the pilot bandwidth g.
López-Cheda et al. (2017b) also suggested an obvious weighted bootstrap method.
This procedure is carried out as follows. First, generate {X∗

1 , . . . , X∗
n} from the

empirical distribution of {X1, . . . , Xn}. Given X∗
i , for each i = 1, . . . , n, generate

Y ∗
i from Ŝ0,g (t | X∗

i ) with probability p̂g(X∗
i ) and Y ∗

i = ∞ otherwise. Generate
C∗

i from 1 − Ĝg (t | X∗
i ) for i = 1, . . . , n. Here, Ŝ0,g (t | x) is the estimator of

S0 (t | x) defined in (1.6) and p̂g(x) is the XP estimator in (1.5), and Ĝg (t | x)
is the generalized product-limit estimator of the censoring distribution, all of
them computed with the pilot bandwidth g. Finally, define T ∗

i = min(Y ∗
i , C∗

i )
and δ∗

i = 1 (Y ∗
i < C∗

i ), for i = 1, . . . , n. So, the bootstrap sample is formed as
{(X∗

i , T ∗
i , δ∗

i ) , i = 1, . . . , n}.
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López-Cheda et al. (2017a) assumed that 1 − G (t | x) = 1 − G (t) for all x, t,
and consequently the KM estimator 1 − Ĝn (t) was considered for estimating the
censoring distribution. Besides, López-Cheda et al. (2017a) found no relevant
differences between generating {X∗

1 , . . . , X∗
n} from the empirical distribution of

{X1, . . . , Xn} or fixing X∗
i = Xi, for i = 1, . . . , n, so they considered the latter

one for computational efficiency.

1.4 Bandwidth selection methods

One of important issue in nonparametric kernel estimation is the choice of an ap-
propriate bandwidth, as it is well known that the performance of kernel estimators
depends heavily on this parameter. A wide variety of methods for bandwidth se-
lection of kernel estimators are available in the literature, cross-validation (CV),
plug-in and bootstrap methods being the most common. In the context of MCM,
the finite-sample behavior of the CV bandwidth selector for the estimator of the
cure rate in equation (1.5) was found to be unsatisfactory, as it is highly variable
and tends to undersmooth (López-Cheda et al., 2017a).

Basically, a plug-in bandwidth selector tries to estimate the dominant term of
the mean integrated squared error (MISE) or mean squared error (MSE) of the
kernel estimator, and obtain the optimal bandwidth that minimizes the estimated
dominant term of the MISE or MSE. However, the optimal bandwidth h cannot
be easily estimated in practice, due to the unknown, hard-to-estimate quantities
found in the corresponding error criterion function. This tends to a process that
seems to be more complicated than the original estimation problem.

Bootstrap procedures have been successfully used to address the issue of band-
width selection in the context of MCM (Chown et al., 2020; López-Cheda et al.,
2017a,b). A review of bandwidth selection methods under the MCM can be found
in López-Cheda (2018). In this thesis, the focus is on the bootstrap bandwidth
selector.
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1.5 Mixture cure model when the cure status is
partially available

1.5.1 Model notation

Let Y be the time-to-event of interest. When there is a cured fraction, the
survival function of Y is S(t | x) in (1.4), so Y = ∞ with probability 1 − p(x),
and the survival function of Y is S0(t | x) otherwise. Let ν = 1(Y = ∞) be
the cure indicator. In standard cure models, the cure status is only known for
a subject who experienced the event during the follow-up period (δ = 1) and
thus known to be uncured (ν = 0). For a subject with δ = 0 (censored) the
cure status is unknown, thus ν = 1 is never observed. To accommodate the
possible availability of the cure status information, let the censoring distribution
be an improper distribution function G(t | x) = (1 − π (x)) G0(t | x), so with
probability π (x) the censoring variable is C = ∞, and with probability 1 − π (x)
the value of the censoring variable C corresponds to a random censoring time C0

with proper continuous distribution function G0(t | x).
Hereto, a cured subject (Yi = ∞), whose observed lifetime is always censored,
is known to be cured if Ci = ∞. As a consequence, the cure status νi = 1 is
observed for some censored individuals. Clearly, a cured individual is identified
with probability π (x). Let ξ be a binary random variable which indicates whether
the cure status ν is observed (ξ = 1) or not (ξ = 0). The conditional probability
of observing the cure status is

P (ξ = 1 | X = x) =P (ξ = 1 | Y < ∞, X = x)P (Y < ∞ | X = x)

+ P (ξ = 1 | Y = ∞, X = x)P (Y = ∞ | X = x)

=P (C < Y | Y < ∞, X = x)P (Y < ∞ | X = x)

+ P (C = ∞ | Y = ∞, X = x)P (Y = ∞ | X = x).

If Y and C are independent conditionally on X = x, then the probability of
observing the cure status is

P (ξ = 1 | X = x) = P (C < Y | X = x)p(x) + π(x)(1 − p(x)). (1.7)

The observed data is {(Xi, Ti, δi, ξiνi), i = 1, . . . , n} and it is classified into three
groups:

(a) when the individual is observed to have experienced the event, therefore,
known to be uncured (Xi, Ti, δi = 1, ξiνi = 0);
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(b) when the lifetime is censored and the cure status is unknown
(Xi, Ti, δi = 0, ξiνi = 0);

(c) when the lifetime is censored and the individual is known to be cured
(Xi, Ti, δi = 0, ξiνi = 1),

where

Ti = min(Yi, Ci) [1 − 1(Yi = ∞, Ci = ∞)] + C0i1(Yi = ∞, Ci = ∞). (1.8)

In the present context, when the observed times of the individuals known to be
cured are random, the random variable C0 models these observed cured times. In
the unconditional setting in Betensky and Schoenfeld (2001), besides the lifetime
Y and the censoring variable C, the so-called variable U plays a similar role.
In standard cure models when the cure status is unknown for all the censored
observations (π(x) = 0 and Ci < ∞, ξiνi = 0, for i = 1, . . . , n), then Ti =
min(Yi, Ci) and only groups (a) and (b) are considered.
To further understand the relationship between the notation introduced above
and the usual notation in survival analysis under right censoring, let Ti in (1.8)
be the actual observed times, and let T̃i = min(Yi, Ci) denote the usual observed
time, as it is usually defined in standard survival analysis. Note that T̃i = Ti

for the observations in groups (a) and (b). But if an observation is known to
be cured (ξiνi = 1), then Yi = ∞ and Ci = ∞, and the usual observed time is
T̃i = ∞. Nonetheless, the actual observed time for the individuals known to be
cured is always finite and is recorded as Ti = C0i. Therefore, when an individual
is known to be cured it is guaranteed to observe a cure time C0i, similarly to
Betensky and Schoenfeld (2001).
In summary, if the observed times Ti of the censored individuals known to be
cured are replaced by an extremely large observed time, say infinity, we recover
the observations using the usual definition as T̃i = min(Yi, Ci).

1.6 Motivating examples

In the first example, a dataset of 233 sarcoma patients is studied. It includes
patients who are 20 − 90 years old from the University Hospital of Santiago de
Compostela, Spain (CHUS). Sarcoma is a rare type of cancer that represents 1%
of all adult solid malignancies. If a tumor can be surgically removed to render
the patient with sarcoma free of detectable disease, 5 years is the survival time at
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which sarcoma oncologists assume long-term remissions (Choy, 2014). Overall,
59 patients died from sarcoma, and the remaining 174 patients were censored.
Among censored patients, 18 patients were tumor free for more than five years.
Hence, they were assumed to be long-term survivors. The aim was to estimate the
survival time of the patients until death from sarcoma as a function of covariates
such as the age at diagnosis, sex, tumor site, cancer spread (metastasis) and the
margin status. The variables selected for estimating the survival probabilities
were previously reported to be related to long-term sarcoma survival (Daigeler
et al., 2014; Carbonnaux et al., 2019, among others).

The second example relates to a dataset of patients with breast cancer from
The Cancer Genome Atlas (2021). A total of 898 breast cancer female patients
were diagnosed and followed over time between 1988 and 2013. Information on
demographic and clinical characteristics was collected at baseline. The goal of
our analysis was to estimate the probability of not dying from breast cancer given
specific characteristics of the patient. That is, the event of interest is death from
breast cancer. The observed time-to-event was considered as censored if the event
was not observed within the follow-up time, specifically, if the patient was alive
at the end of the study, cancer-free either alive or dead, or lost to follow-up.
Patients who have been free of cancer for at least 10 years can be considered to
be free from dying of breast cancer (Pan et al., 2017; Barnadas et al., 2018). In
our context, these patients are assumed to be cured, as they will not experience
death from breast cancer. Therefore, they can be classified as long-term survivors
or “known cured observations”. Note that the observed times-to-event of these
“cured” individuals are very large, at least 10 years.

The third example considers the n = 2, 484 COVID-19 patients hospitalized in
Galicia (North-West of Spain) during the first few weeks of the outbreak. The
data was collected by the Galician Healthcare Service (2021). The aim with this
database is not so related to a medical goal like for the previous real data exam-
ples, rather with hospital management. During the first weeks of the pandemic,
it was extremely necessary to plan and properly estimate the occupancy of both
ward beds and ICU occupancy, in order to avoid overloads of the Galician health-
care system. To do this, it was basic to model the length of stay of these patients
in hospital capacities. In particular, it was desired to know the probability that
a patient admitted to the hospital would finally need to be admitted to the ICU,
and the time it would take for these patients to be admitted to the ICU. That is,
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the event of interest was admission to ICU of hospital inpatients. The observed
time-to-event was censored if the patient did not enter ICU during the follow-up
time. Some of these censored patients were discharged or died before admission
to ICU so they would never require ICU admission any more. In our context, this
means that they would never experience the event of interest and can be consid-
ered as cured from the event. Unlike the previous examples, now the observed
times-to-event of these “cured” individuals do not have to be necessarily large,
as patients may die or be discharged after a short stay in the hospital.



Chapter 2

Generalized product-limit
estimator of the survival function

2.1 Introduction

In this chapter, a generalized PL estimator of the survival function in the MCM
when the cure status is partially known is proposed. It is based on a novel kernel
estimator for the conditional cumulative hazard function. The rest of the chapter
is organized as follows. In Section 2.2, (sub)distribution functions are defined and
assumptions needed to construct theoretical results are stated. In Section 2.3,
the estimators are defined and the asymptotic results are presented. Moreover,
the bootstrap method when the cure status is partially known is described and a
bootstrap procedure for bandwidth selection is proposed. Section 2.4 summarizes
the results of a simulation study. An application to the sarcoma data and a
discussion are provided in Sections 2.5 and 2.6, respectively.

2.2 Definitions and assumptions

Let us define the following (sub)distribution functions:

H (t | x) = P (T ≤ t | X = x) , (2.1)

H1(t | x) = P (T ≤ t, δ = 1 | X = x) , (2.2)

H11(t | x) = P (T ≤ t, ξν = 1 | X = x) , (2.3)

H0(t | x) = P (T ≤ t, ξν = 0 | X = x) , (2.4)

J(t | x) = 1 − H (t | x) + H11 (t | x) . (2.5)

17
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The functions H(t | x) and H1(t | x) are the conditional distribution function
of the observed times Ti, and the conditional subdistribution function of the
observed events, respectively. Note that H0(t | x) corresponds to the subdistri-
bution function of the observed times of the individuals not known to be cured,
and it reduces to the conditional distribution function H(t | x) in the usual MCM
when no individuals are known to be cured. Meanwhile, H11(t | x) provides in-
sight about the distribution of cure times, that is, the recorded times Ti of the
individuals known to be cured. Finally, J(t | x) is the survival function of the
observed times defined with the usual definition, that is, the conditional survival
function of T̃ = min(Y, C).
The NW kernel estimators of (2.1) – (2.5) are, respectively,

Ĥh (t | x) =
n∑

i=1
Bhi(x)1 (Ti ≤ t) , (2.6)

Ĥ1
h(t | x) =

n∑
i=1

Bhi(x)1 (Ti ≤ t, δi = 1) , (2.7)

Ĥ11
h (t | x) =

n∑
i=1

Bhi(x)1 (Ti ≤ t, ξiνi = 1) , (2.8)

Ĥ0
h (t | x) =

n∑
i=1

Bhi(x)1 (Ti ≤ t, ξiνi = 0) , (2.9)

Ĵh(t− | x) =
n∑

i=1
Bhi(x)1 (Ti ≥ t) +

n∑
i=1

Bhi(x)1 (Ti < t, ξiνi = 1) . (2.10)

In order to justify our asymptotic results, the following assumptions will be re-
quired (see similar assumptions in Iglesias-Pérez and González-Manteiga (1999)).

Assumption 1. (i) Let I = [x1, x2] be an interval contained in the support of
the density function of X, m(x), such that

0 < γ = inf
x∈Iε

m(x) < sup
x∈Iε

m(x) = Γ < ∞

for some Iε = [x1 − ε, x2 + ε] with ε > 0 and 0 < εΓ < 1.

(ii) There exist a, b ∈ R, a < b, satisfying J (t | x) ≥ θ > 0 for (t, x) ∈
[a, b] × Iε.

Assumption 2. (i) The first derivative with respect to x of m(x) exists and is
continuous in x ∈ Iε.

(ii) The first derivatives with respect to x of H(t | x), H1(t | x) and H11(t | x)
exist and are continuous and bounded in (t, x) ∈ [0, ∞) × Iε.
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Assumption 3. (i) The second derivative with respect to x of m(x) exists and
is continuous in x ∈ Iε.

(ii) The second derivatives with respect to x of H(t | x), H1(t | x) and H11(t | x)
exist and are continuous and bounded in (t, x) ∈ [0, ∞) × Iε.

Assumption 4. The first derivatives with respect to t of H(t | x), H1(t | x) and
H11(t | x) exist and are continuous in (t, x) ∈ [a, b] × Iε.

Assumption 5. The second derivatives with respect to t of H(t | x), H1(t | x)
and H11(t | x) exist and are continuous in (t, x) ∈ [a, b] × Iε.

Assumption 6. The first derivative with respect to x and the second derivative
with respect to t of H(t | x), H1(t | x) and H11(t | x) exist and are continuous in
(t, x) ∈ [a, b] × Iε.

Assumption 7. The (sub)densities corresponding to the (sub)distribution func-
tions H(t | x), H1(t | x) and H11(t | x) are bounded away from 0 in [a, b] × Iε.

Assumption 8. The kernel function K(v) is a symmetrical density with zero
mean, vanishing outside (−1, 1), and the total variation is less than λ < ∞.

Assumption 9. The bandwidth h = (hn) satisfies h → 0, log n/nh → 0, and
nh5/ log n = O(1).

Assumption 10. (i) The fourth derivative with respect to x of m(x) exists and
is continuous in x ∈ Iε.

(ii) The function π(x) has at least two bounded derivatives.

Assumption 11. The bandwidths h1, h2 satisfy ((log n)3/nhi)(hj/(h1 +h2))2 → 0,
for i, j = 1, 2, i ̸= j, as n → ∞.

2.3 Proposed estimator of the survival function

In this section, the proposed estimator of the conditional survival function in the
MCM when the cure status is partially known is introduced. This estimator is
based on the corresponding estimator of the cumulative hazard function Λ(t | x).
The main idea behind the construction of an estimator for Λ(t | x) is the following.
Note that the cumulative hazard function Λ(t | x) can be written as follows:
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Λ(t | x) =
∫ t

0

dF (v | x)
1 − F (v− | x) =

∫ t

0

(1 − G (v− | x)) dF (v | x)
(1 − G (v− | x)) (1 − F (v− | x)) . (2.11)

Observe that, if Y and C are conditionally independent given X = x, the denom-
inator part of (2.11) is(

1 − F
(
v− | x

)) (
1 − G

(
v− | x

))
= P (Y ≥ v, C ≥ v | X = x)

= P (Y ≥ v, C ≥ v, ξν = 0 | X = x)

+P (Y ≥ v, C ≥ v, ξν = 1 | X = x)

= P (T ≥ v, ξν = 0 | X = x) + P (ξν = 1 | X = x)

= P (T ≥ v | X = x) + P (T < v, ξν = 1 | X = x)

= 1 − H
(
v− | x

)
+ H11

(
v− | x

)
. (2.12)

On the other hand, for the numerator in (2.11) note that∫ t

0

(
1 − G

(
v− | x

))
dF (v | x) = P (C ≥ Y, Y ≤ t | X = x)

= P (T ≤ t, δ = 1 | X = x)

= H1 (t | x) . (2.13)

By differentiating (2.13) and plugging it, together with (2.12), into (2.11), it is
readily seen that

Λ(t | x) =
∫ t

0

dH1 (v | x)
1 − H (v− | x) + H11 (v− | x) =

∫ t

0

dH1 (v | x)
J (v− | x) . (2.14)

Now, by replacing in (2.14) H1 (t | x) and J (t | x) with their estimators (2.7) and
(2.10), the following proposed estimator of Λ(t | x) is obtained

Λ̂c
h (t | x) =

n∑
i=1

δ[i]Bh[i] (x) 1
(
T(i) ≤ t

)
∑n

j=i Bh[j] (x) +∑i−1
j=1 Bh[j] (x) 1

(
ξ[j]ν[j] = 1

) , (2.15)

where δ[i], ξ[i] and ν[i] are the concomitants of the ordered observed times T(1) ≤
· · · ≤ T(n) and Bh[i] (x) is defined in equation (1.3).
The distribution function corresponding to Λ(t | x) is given by S(t | x) =
exp (−Λ(t | x)). After considering a Taylor’s expansion of the exponential func-
tion around 0 and evaluating it at each increment of Λ̂c

h(t | x), the corresponding
generalized product-limit estimator of the conditional survival function S (t | x)
when the cure status is partially known is

Ŝc
h (t | x) =

n∏
i=1

1 −
δ[i]Bh[i] (x) 1

(
T(i) ≤ t

)
∑n

j=i Bh[j] (x) +∑i−1
j=1 Bh[j] (x) 1

(
ξ[j]ν[j] = 1

)
 . (2.16)



2.3. Proposed estimator of the survival function 21

In the next sections, the estimator in (2.16) is also referred to as 1 − F̂ c
h(t | x).

It is readily seen that the proposed estimator for the censoring distribution
G (t | x) in the MCM when the cure status is partially known is

1 − Ĝc
h (t | x) =

n∏
i=1

1 −

(
1 − δ[i]

)
1
(
ξ[i]ν[i] = 0

)
Bh[i] (x) 1

(
T(i) ≤ t

)
∑n

j=i Bh[j] (x) +∑i−1
j=1 Bh[j] (x) 1

(
ξ[j]ν[j] = 1

)
 . (2.17)

In an unconditional setting, the estimator in (2.16) becomes (see the proof in
Appendix A)

Ŝc
n (t) =

n∏
i=1

1 −
δ[i]1

(
T(i) ≤ t

)
n − i + 1 +∑i−1

j=1 1
(
ξ[j]ν[j] = 1

)
 . (2.18)

An important feature of these estimators is that observations that are known
to be cured before time T(i) remain in the risk set, i.e., they are counted in the
denominator.

Proposition 2.1 The proposed estimator Ŝc
h (t | x) has the following basic prop-

erties.

1. When there are no censored observations known to be cured, i.e., ξiνi = 0
for i = 1, . . . , n, Ŝc

h (t | x) in (2.16) reduces to Beran’s estimator in (1.2).

2. The survival function estimator in (2.16) is precisely Beran’s estimator in
(1.2) computed with the usual observed times

{(
T̃i, δi

)
, i = 1, . . . , n

}
where

T̃i = Ti if ξiνi = 0 and T̃i = ∞ if ξiνi = 1, that is, if the observed times
of the individuals known to be cured are replaced with an extremely large
value (e.g., infinity):

Ŝc
h (t | x) =

n∏
i=1

1 −
δ[i]Bh[i] (x) 1

(
T̃(i) ≤ t

)
∑n

j=i Bh[j] (x)

 (2.19)

where δ[i] and X[i] are the concomitants of the ordered usual observed times
T̃(1) ≤ · · · ≤ T̃(n).

3. In the specific case when some individuals are considered as cured when
their survival time exceeds a known fixed cure threshold, Ŝc

h (t | x) also
reduces to Beran’s estimator in (1.2).

4. When there is no censoring, Ŝc
h (t | x) reduces to the kernel estimator of the

conditional survival function (Nadaraya, 1964b):

S̃h (t | x) =
n∑

i=1
Bh[i] (x) 1

(
Y(i) > t

)
.
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5. In an unconditional setting and in the particular case where an individual
is known to be cured only if the observed time is greater than a known fixed
time, say d, Ŝc

n (t) in (2.18) reduces to the generalized maximum likelihood
estimator in Laska and Meisner (1992).

The proof of these properties is outlined in Appendix A.

Remark 2.1 The censoring distribution G(t | x) can be estimated using the
usual observations

{(
T̃i, δi

)
, i = 1, . . . , n

}
as follows:

1 − Ĝc
h (t | x) =

n∏
i=1

1 −

(
1 − δ[i]

)
Bh[i] (x) 1

(
T̃(i) ≤ t

)
∑n

j=i Bh[j] (x)

 (2.20)

where δ[i] and X[i] are the concomitants of the ordered usual observed times
T̃(1) ≤ · · · ≤ T̃(n).

Proposition 2.2 It can be shown that the distribution function Ĥ0
h (t | x) satis-

fies the relation

1 − Ĥ0
h (t | x) =

(
1 − F̂ c

h (t | x)
) (

1 − Ĝc
h (t | x)

)
where

1 − Ĥ0
h (t | x) =

n∑
i=1

Bhi (x) 1 (Ti > t, ξiνi = 0)

is the kernel type estimator of 1 − H0(t | x) in (2.4), and 1 − F̂ c
h (t | x) and

1 − Ĝc
h (t | x) are the estimators in (2.16) and (2.17), respectively.

The proof of Proposition 2.2 is given in Appendix A.

Proposition 2.3 The 1− F̂ c
h (t | x) estimator in (2.16) is the nonparametric local

maximum likelihood estimator of 1 − F (t | x).

The proof of Proposition 2.3 is given in Appendix A.

2.3.1 Asymptotic results

In this section, the asymptotic properties of Λ̂c
h(t | x) and Ŝc

h (t | x) are inves-
tigated. Theorems 2.1 and 2.2 below give the asymptotic representations of
Λ̂c

h (t | x) and 1 − F̂ c
h (t | x), respectively. Corollary 2.1 shows that Λ̂c

h (t | x) and
1 − F̂ c

h (t | x) are strongly consistent estimators of Λ (t | x) and 1 − F (t | x), re-
spectively. The asymptotic normality of 1 − F̂ c

h (t | x) is proved in Theorem 2.3.
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Theorem 2.1 (Asymptotic representation of Λ̂c
h (t | x)) Suppose that As-

sumptions 1 – 9 are satisfied. Then, for x ∈ I and t ∈ [a, b],

Λ̂c
h (t | x) − Λ (t | x) =

n∑
i=1

B̃hi (x) ζ (Ti, δi, ξi, νi, t, x) + Rn1 (t, x) ,

where

ζ (Ti, δi, ξi, νi, t, x)

=1 (Ti ≤ t, δi = 1)
J(T −

i | x) −
∫ t

0
(1 (Ti ≥ v) + 1 (Ti < v, ξiνi = 1)) dH1 (v | x)

J2 (v− | x) ,

(2.21)

B̃hi (x) = 1
m (x)

1
nh

K
(

x − Xi

h

)
, (2.22)

and Rn1 (t, x) satisfies

sup
a≤t≤b,x∈I

| Rn1 (t, x) |= O
(
(nh)−3/4 (log n)3/4

)
a.s.

Theorem 2.2 (Asymptotic representation of 1 − F̂ c
h (t | x)) Suppose that

Assumptions 1 – 9 hold. Then, for x ∈ I and t ∈ [a, b],

F̂ c
h (t | x) − F (t | x) = (1 − F (t | x))

n∑
i=1

B̃hi (x) ζ (Ti, δi, ξi, νi, t, x) + Rn2 (t, x) ,

where ζ (Ti, δi, ξi, νi, t, x) is defined in (2.21), B̃hi(x) in (2.22) and Rn2 (t, x) sat-
isfies

sup
a≤t≤b,x∈I

| Rn2 (t, x) | = O
(
(nh)−3/4 (log n)3/4

)
a.s. (2.23)

The sketch of the proofs of Theorems 2.1 and 2.2 is outlined in Appendix A.
As an immediate consequence of these theorems, the following corollary on the
strong consistency of the estimators Λ̂c

h(t | x) and 1 − F̂ c
h(t | x) is obtained.

Corollary 2.1 (Strong consistency) Suppose that Assumptions 1 – 9 hold.
Then, for x ∈ I and t ∈ [a, b],

sup
a≤t≤b,x∈I

| Λ̂c
h (t | x) − Λ (t | x) | = O

(
(nh)−1/2 (log n)1/2

)
a.s.

and

sup
a≤t≤b,x∈I

| F̂ c
h (t | x) − F (t | x) | = O

(
(nh)−1/2 (log n)1/2

)
a.s.

The proof of Corollary 2.1 is outlined in Appendix A.
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Proposition 2.4 (Asymptotic bias and variance) Suppose that Assump-
tions 1 – 9 hold. Then, the bias and variance of the dominant term of 1−F̂ c

h (t | x)
are, respectively,

µh,c(t, x) = h2Bc(t, x) + O
(
h4
)

,

σ2
h,c(t, x) = (nh)−1s2

c(t, x) + O(n−1h), (2.24)

with

Bc(t, x) = (1 − F (t | x))(2Φ′
c (x, t, x) m′ (x) + Φ′′

c (x, t, x) m (x))dK

2m (x) ,(2.25)

s2
c(t, x) = (1 − F (t | x))2Φc

1 (x, t, x) cK

m (x) , (2.26)

where dK =
∫

v2K(v)dv and cK =
∫

K2(v)dv. Besides, Φ′
c (y, t, x) and Φ′′

c (y, t, x)
are the first and second derivatives of Φc (y, t, x) with respect to y:

Φc (y, t, x) = E (ζ (T, δ, ξ, ν, t, x) | X = y)

=
∫ t

0

dH1 (v | y)
1 − H (v− | x) + H11 (v− | x)

−
∫ t

0

1 − H (v− | y) + H11 (v− | y)
(1 − H (v− | x) + H11 (v− | x))2 dH1 (v | x) .

The expressions of Φ′
c (y, t, x) and Φ′′

c (y, t, x) are given in Lemmas D.3 and D.4,
respectively.
The expression of Φc

1 (y, t, x) is given in Lemma D.5, which is

Φc
1 (x, t, x) = E

(
ζ2 (T, δ, ξ, ν, t, x) | X = x

)
=
∫ t

0

dH1 (v | x)
(1 − H (v− | x) + H11(v− | x))2 ,

with ζ (T, δ, ξ, ν, t, x) given in (2.21).

The proof of Proposition 2.4 is outlined in Appendix A.
The following theorem, whose proof is in Appendix A, establishes the asymptotic
normality of 1 − F̂ c

h (t | x).

Theorem 2.3 (Asymptotic normality) Suppose that Assumptions 1 – 9 are
satisfied. For x ∈ I and t ∈ [a, b], it follows that:

(i) If nh5 → 0 and (log n)3/nh → 0, then

(nh)1/2
(
F̂ c

h(t | x) − F (t | x)
)

d→ N(0, s2
c(t, x)).

(ii) If nh5 → C5 > 0, then

(nh)1/2
(
F̂ c

h(t | x) − F (t | x)
)

d→ N(C5/2Bc(t, x), s2
c(t, x)),

with Bc(t, x) given in (2.25), s2
c(t, x) in (2.26) and C is a positive constant.
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2.3.2 Effect of ignoring the cure status information

In this section a theoretical comparison between the estimator 1 − F̂ c
h (t | x) in

(2.16) and Beran’s estimator in (1.2) is made. More precisely, in order to un-
derstand the effect of ignoring the cure status information, the dominant terms
of the bias and variance of Beran’s estimator are compared with those of the
proposed estimator in Proposition 2.4.
The dominant terms of the asymptotic bias and variance of the Beran estimator
are, respectively,

µh(t, x) = h2B(t, x) + O
(
h4
)

(2.27)

σ2
h(t, x) = (nh)−1s2(t, x) + O(n−1h), (2.28)

with

B(t, x) = (1 − F (t | x)) (2Φ′ (x, t, x) m′ (x) + Φ′′ (x, t, x) m (x))dK

2m (x) ,(2.29)

s2(t, x) = (1 − F (t | x))2 Φ1 (x, t, x) cK

m (x) , (2.30)

where Φ′(y, t, x) and Φ′′(y, t, x) are the first and the second derivatives of Φ (y, t, x)
with respect to y (see Lemmas 4 and 5 in López-Cheda et al. (2017b)):

Φ (y, t, x) =
∫ t

0

dH1 (v | y)
1 − H (v− | x) −

∫ t

0

1 − H (v− | y)
(1 − H (v− | x))2 dH1 (v | x) , (2.31)

Φ1 (x, t, x) =
∫ t

0

dH1 (v | x)
(1 − H (v− | x))2 .

The expressions (2.27) – (2.30) for Beran’s estimator are equivalent to the bias
and variance terms (2.24) – (2.26) for Ŝc

h(t | x), replacing Φc(x, t, x) and Φc
1(x, t, x)

with Φ(x, t, x) and Φ1(x, t, x), respectively.
As for the variance, when the cure status information is ignored then H11(t | x) =
0 for all t and x. Therefore, Φc

1(x, t, x) ≤ Φ1(x, t, x).
Notice that, when the same bandwidth is used for both estimators, ignoring the
cure status increases asymptotically the variance of the estimator.
Returning to the bias, by applying Lemma D.3, one has

Φ′
c (x, t, x) = Φ′ (x, t, x) = −S ′ (t− | x)

S (t− | x) ,

where S ′ (t | x) is the derivative of S (t | x) with respect to x, meaning that
the effect of knowing the cure status on the bias is given by Φ′′

c (x, t, x). From
Lemma D.4,

Φ′′
c (x, t, x) = 2

∫ t

0

G′ (v− | x)
1 − G (v− | x)

d

ds

(
S ′ (s | x)
S (s | x)

)∣∣∣∣
s=v−

dv − S ′′(t− | x)
S(t− | x) , (2.32)
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where
G(t | x) = (1 − π(x))G0(t | x)

and S ′(t | x), S ′′(t | x) and G′(t | x) refer to the derivatives with respect to x. If
the cure status is ignored, equation (2.32) reduces to

Φ′′ (x, t, x) = 2
∫ t

0

G′
0 (v− | x)

1 − G0 (v− | x)
d

ds

(
S ′ (s | x)
S (s | x)

) ∣∣∣∣∣
s=v−

dv − S ′′ (t− | x)
S (t− | x) .

In terms of bias, the advantage of knowing the cure status is not straightforward
as it depends on the derivatives of π(x) and G0(t | x). This implies that there is
no guarantee that there will be a gain in terms of bias for the proposed estimator
with respect to Beran’s estimator.

2.3.3 Bootstrap procedures when the cure status is par-
tially known

The purpose of this section is to introduce two equivalent algorithms for boot-
strapping with right censored data when the cure status is partially known. Our
algorithms mimic the bootstrap ideas of Li and Datta (2001). First, the covariate
Xi is resampled with replacement from {X1, . . . , Xn} to obtain {X∗

1 , . . . , X∗
n}.

Then, for each X∗
i the random variables (T ∗

i , δ∗
i , ξ∗

i ν∗
i ) are generated following

ideas similar to those in Li and Datta (2001), using the simple weighted boot-
strap or the obvious bootstrap resampling methods.

The simple weighted bootstrap

Generate {X∗
1 , . . . , X∗

n} from the empirical distribution of {X1, . . . , Xn}. Next,
for each X∗

i generate (T ∗
i , δ∗

i , ξ∗
i ν∗

i ) from the weighted empirical conditional dis-
tribution F̂g(t, d, z | X∗

i ) given by:

F̂g(t, d, z | X∗
i ) =

n∑
j=1

Bgj(X∗
i )1 (Tj ≤ t, δj ≤ d, ξjνj ≤ z) (2.33)

where Bgj(x) are the NW weights (1.3) with bandwidth g.

The obvious bootstrap

Consider the estimators 1 − F̂ c
g (t | x) in (2.16) and Ĝc

g (t | x) in (2.17) of the
survival function 1−F (t | x) and the censoring distribution G (t | x) respectively,
computed with the weights Bgi (x) and the same bandwidth g. Simulate the
bootstrap sample {(X∗

i , T ∗
i , δ∗

i , ξ∗
i ν∗

i ), i = 1, . . . , n} as follows.
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Step 1. Generate {X∗
1 , . . . , X∗

n} from the empirical distribution of {X1, . . . , Xn}.

Step 2. For i = 1, . . . , n, set Y ∗
i = ∞ with probability 1 − F̂ c

g

(
T(n) | X∗

i

)
= 1 −

p̂c
g (X∗

i ), and generate a finite survival time of a susceptible individual oth-
erwise:

Y ∗
i ∼

1 − F̂ c
g (t | X∗

i ) − (1 − p̂c
g (X∗

i ))
p̂c

g (X∗
i ) .

Generate C∗
i = ∞ with probability 1 − Ĝc

g

(
T(n) | X∗

i

)
= π̂c

g (X∗
i ), and

C∗
i ∼

1 − Ĝc
g (t | X∗

i ) − πc
g (X∗

i )
1 − π̂c

g (X∗
i ) otherwise.

Let Ĝ0g (t | x) be the kernel estimator of G0 (t | x), the distribution function
of the observed times of the individuals known to be cured:

Ĝ0g (t | x) =
∑n

i=1 Bgi (x) 1 (Ti ≤ t, ξiνi = 1)∑n
i=1 Bgi (x) 1 (ξiνi = 1) . (2.34)

For each i = 1, . . . , n, generate C∗
0i from Ĝ0g (t | X∗

i ). The bootstrap sample
is {(T ∗

i , δ∗
i , ξ∗

i ν∗
i ) , i = 1, . . . , n} where the bootstrap observed times are

T ∗
i = min (Y ∗

i , C∗
i ) [1 − 1 (Y ∗

i = ∞, C∗
i = ∞)] + C∗

0i1 (Y ∗
i = ∞, C∗

i = ∞)

(2.35)
with

δ∗
i = 1 (Y ∗

i < C∗
i ) , (2.36)

ξ∗
i ν∗

i = 1 (Y ∗
i = ∞, C∗

i = ∞) . (2.37)

Proposition 2.5 Assume there are no ties in the observed times {T1, . . . , Tn}.
Then, the simple weighted bootstrap and the obvious bootstrap are equivalent.

The proof of Proposition 2.5 is given in Appendix A.
The pilot bandwidth g should tend to 0 at a slower rate than the smoothing
bandwidth h. This oversmoothing pilot bandwidth is required for the bootstrap
integrated squared bias and variance to be asymptotically efficient estimators
of the integrated squared bias and variance terms. With right censored data,
Li and Datta (2001) recommend a local pilot bandwidth gx = cxn−1/9 which
coincides with the optimal order obtained by Cao and González-Manteiga (1993)
for the uncensored case. Simulation results in Section 2.4 (see also López-Cheda
et al. (2017a,b) for the usual MCM when cure status is not available) show that
the choice of the pilot bandwidth has a small effect on the selected bootstrap
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bandwidth. We propose to use the same local pilot bandwidth as in López-Cheda
et al. (2017a,b):

gx = d+
k (x) + d−

k (x)
2 1001/9n−1/9, (2.38)

where d+
k (x) and d−

k (x) are the distances from x to the kth nearest neighbor on
the right and left, and k is a suitably chosen integer depending on the sample size.
If there are not at least k neighbors on the right (or left), we use d+

k (x) = d−
k (x)

(or d−
k (x) = d+

k (x)). Following López-Cheda et al. (2017a,b), we suggest setting
k = [n/4].

2.3.4 Bootstrap bandwidth selection

In this section we introduce a bootstrap bandwidth selector to choose the smooth-
ing parameter h of the proposed estimator Ŝc

h(t | x). The bootstrap bandwidth,
h∗

x, is the bandwidth minimizing the bootstrap version of the mean integrated
squared error (MISE). This bootstrap MISE can be approximated using Monte
Carlo by:

MISE∗
x(h) ≃ 1

B

B∑
b=1

∫ (
Ŝc,∗b

h (v | x) − Ŝc
g(v | x)

)2
ω(v, x)dv, (2.39)

where Ŝc,∗b
h (t | x) is the proposed estimator computed with the bth bootstrap

resample, b = 1, . . . , B, and a bandwidth h, and Ŝc
g(t | x) is the same estimator

computed with the original sample and with a pilot bandwidth g. Note that
ω(v, x) is a nonnegative weight function, intended to give lower weight in the
right tail of the distribution. The algorithm to compute the bootstrap bandwidth
for a fixed covariate value x, is as follows:

Step 1. With the original sample and the pilot bandwidth g, compute Ŝc
g(t | x).

Step 2. Choose a dense enough grid of L bandwidths {h1, . . . , hL}.

Step 3. Generate B bootstrap resamples {(X∗(b)
i , T

∗(b)
i , δ

∗(b)
i , ξ

∗(b)
i ν

∗(b)
i ), i = 1, . . . , n},

for b = 1, . . . , B.

Step 4. For the bth bootstrap resample and the bandwidths hl, for l = 1, . . . , L,
compute Ŝc,∗b

hl
(t | x).

Step 5. For hl, l = 1, . . . , L, compute the Monte Carlo approximation of MISE∗
x(hl)

given by (2.39).
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Step 6. The bootstrap bandwidth, h∗
x, is the bandwidth of the grid {h1, . . . , hL}

that minimizes the approximation of MISE∗
x(h) in (2.39).

The bootstrap resamples in Step 3 are generated following any of the two equiv-
alent resampling algorithms introduced in Section 2.3.3. For computational effi-
ciency (see López-Cheda et al., 2017a,b), we fixed X∗

i = Xi instead of resampling
it randomly from {X1, . . . , Xn}.

2.4 Simulation study

The practical performance of Ŝc
h(t | x) was studied through a simulation study.

The estimators considered for comparison are the Beran estimator, Ŝh(t | x),
which ignores the information of the cure status, and the semiparametric estima-
tor, S(t | x; γ̂, β̂), by Bernhardt (2016), which takes advantage of the cure status
information and fits a logistic regression for the cure probability and an AFT
model for the latency function.
Observations were simulated from the conditional survival function S(t | x) =
1 − p(x) + p(x)S0,1(t | x), where

S0,1 (t | x) =


exp (−α (x) t) − exp (−α (x) 4.605)

1 − exp (−α (x) 4.605) 0 ≤ t ≤ 4.605

0 t > 4.605
, (2.40)

with α (x) = exp ((x + 20)/40) .

Two scenarios given by the cure probabilities were considered:

1 − p1(x) = 1 − exp (0.476 + 0.358x)
1 + exp (0.476 + 0.358x) , 1 − p2(x) = 0.5 − 1

16000x3.

The covariate X was uniformly distributed on the interval [−20, 20]. The censor-
ing variable C was generated from an exponential distribution with mean 10/3
with probability 1 − π (x) and C = ∞ with probability π (x). In both scenar-
ios, the proportion of cured individuals that are identified was set to π(x) = 0.2
and π(x) = 0.8. The percentage of censoring was about 47% when π(x) = 0.8
and 48% when π(x) = 0.2 in Scenario 1. In Scenario 2, 51% and 52% of the
observations were censored when π(x) = 0.8 and π(x) = 0.2 respectively. The
average cure probability was 0.467 in Scenario 1 and 0.5 in Scenario 2. Data
were generated such that the censoring times C and the lifetimes Y were inde-
pendent conditionally on X = x. For both scenarios, 1000 datasets of sample
sizes n = 50, 100 and 200 were generated. The Epanechnikov kernel was chosen
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to compute Ŝc
h(t | x) and Ŝh(t | x).

The first goal was to evaluate the performance of Ŝc
h(t | x) in terms of MISE.

MISE was approximated over a grid of bandwidths equispaced in a logarithmic
scale, from h1 = 3 to h100 = 20 in Scenario 1, and from h1 = 4 to h101 = 100 in
Scenario 2. For the weight function, ω(t, x) = 1(ax ≤ t ≤ bx) was chosen where
ax = 0 and bx = τx, the 90th percentile of S0(t | x). Note that the semiparametric
estimator S0(t | x; γ̂, β̂) is expected to perform well in Scenario 1.

Figure 2.1 shows the MISE curves of the three estimators. In Scenario 1, as ex-
pected, S(t | x; γ̂, β̂) behaves well. Nevertheless, both Ŝc

h(t | x) and Ŝh(t | x) are
quite competitive for suitable values of the bandwidth, even beating the semi-
parametric estimator for some values of X close to 0 and 20. In Scenario 2,
both Ŝc

h(t | x) and Ŝh(t | x) outperform S(t | x; γ̂, β̂), as the parametric models
assumed by the semiparametric estimator are not met. Regarding the nonpara-
metric estimators, taking into account the known cure status gives either similar
or better results than ignoring it for most values of X, especially in Scenario 2.
Figure 2.1 also displays the effect of the sample size on the behavior of the es-
timators when π(x) = 0.8. As the sample size increases, the MISE of the three
estimators decreases as expected, while the differences in performance seem to
fade out.
In Table 2.1, the performance of the estimators is compared in terms of the
integrated squared bias, integrated variance and MISE for the covariate values
x = −10, 0 and 10. In both scenarios, at x = −10, the proposed estimator
has smaller integrated squared bias and variance than Beran’s estimator. On
the contrary, for x = 10, the integrated squared bias and variance of Beran’s
estimator is smaller compared to Ŝc

h(t | x) estimator. As expected, the integrated
squared bias and variance estimates for the semiparametric estimator are larger
in Scenario 2.
Figure 2.2 and Table 2.2 provide some insight about the effect of π(x) on the
estimators. It should be noted that when π(x) increases the censoring percent-
age decreases. While the effect of π(x) on Ŝh(t | x) is not straightforward, the
behavior of Ŝc

h(t | x) and S(t | x; γ̂, β̂) improves in general as π(x) increases. The
proposed estimator attains a notable improvement in performance compared to
Beran’s estimator when π(x) = 0.8 in Figure 2.1 as compared to π(x) = 0.2 in
Figure 2.2. Similar results are observed in Table 2.2, where the performance of
the estimators for the covariate values x = −10, 0, 10 is compared in terms of the
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integrated squared bias, integrated variance and MISE.
The performance of the bootstrap bandwidth selector was assessed using B =
1000 resamples and an increased grid of bandwidths from 1.5 to 100 for both
scenarios. Figure 2.3 displays the quartile of the selected bootstrap bandwidths
together with the optimal bandwidth. Corresponding contour plots in Figure 2.4
show the density of the bootstrap bandwidths and the MISE of Ŝc

h(t | x) as a
function of the bandwidth h and the covariate value x. Figure 2.5 shows the MISE
of Ŝc

h(t | x) as a function of the bandwidth h, for four values of the covariate.
Figure 2.3 and Figure 2.4 illustrate that the bootstrap bandwidth approximates
quite well the optimal bandwidth. Note that in Figure 2.4 vertical contour lines
indicate that, given x, the MISE of Ŝc

h(t | x) tends to be constant as a function
of h. Therefore, different bandwidths would yield approximately the same MISE.
In those cases, the bootstrap bandwidth being far from the optimal bandwidth
does not imply a loss of efficiency. Similar results are observed in Figure 2.5. For
example, when x = 0 in Scenario 2, it is evident that the MISE initially decreases
as the bandwidth increases, although afterwards it becomes constant.
To illustrate the effect of the pilot bandwidth g on the selected bootstrap band-
width h∗

x, some simulations with different values of the number of neighbors,
k were performed. Figure 2.6 shows the results for k = [n/3], k = [n/4] and
k = [n/8] when n = 50, π = 0.8 and B = 500. In both scenarios, it is observed
that changing the value of k when computing the pilot bandwidth does not have
a strong effect on h∗

x.
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Figure 2.1: MISE of Ŝc
h(t | x), Ŝh(t | x) (both computed with the optimal band-

width), and S0(t | x; γ̂, β̂) in Scenarios 1 (left) and 2 (right) for π(x) = 0.8, and
n = 50 (top), 100 (center) and 200 (bottom).
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Table 2.1: Integrated squared bias (Ibias2), integrated variance (Ivar) and MISE
of Ŝc

h(t | x), Ŝh(t | x) (both computed with the optimal bandwidth), and S(t |
x; γ̂, β̂) for π(x) = 0.8 and n = 100.

Ŝc
h(t | x) Ŝh(t | x) S(t | x; γ̂, β̂)

Scenario x
h Ibias2 Ivar MISE h Ibias2 Ivar MISE Ibias2 Ivar MISE

×103 ×103 ×103 ×103 ×103 ×103 ×103 ×103 ×103

1
-10 5.998 0.135 1.211 1.346 5.998 0.201 1.399 1.600 0.000 0.316 0.317

0 71.464 0.081 1.675 1.756 46.957 0.034 1.736 1.770 0.183 4.942 5.126
10 11.744 0.242 2.752 2.994 12.247 0.261 2.688 2.949 0.221 2.265 2.486

2
-10 23.981 0.053 2.106 2.160 22.049 0.134 2.407 2.542 1.694 2.372 4.066

0 28.368 0.092 1.357 1.449 25.010 0.258 1.442 1.700 0.137 1.645 1.782
10 27.201 0.054 1.361 1.415 29.585 0.074 1.296 1.369 2.598 2.055 4.654

Table 2.2: Integrated squared bias (Ibias2), integrated variance (Ivar) and MISE
of Ŝc

h(t | x), Ŝh(t | x) (both computed with the optimal bandwidth), and S(t |
x; γ̂, β̂) in Scenario 1 for π(x) = 0.2, 0.8, and n = 100.

π(x) x

Ŝc
h(t | x) Ŝh(t | x) S(t | x; γ̂, β̂)

h Ibias2 Ivar MISE h Ibias2 Ivar MISE Ibias2 Ivar MISE
×103 ×103 ×103 ×103 ×103 ×103 ×103 ×103 ×103

0.2
-10 5.998 0.140 1.290 1.431 5.998 0.157 1.339 1.495 0.001 0.332 0.333
0 60.413 0.081 1.750 1.831 53.262 0.054 1.764 1.817 0.229 5.485 5.714
10 11.744 0.248 2.849 3.097 11.744 0.238 2.852 3.090 0.088 2.278 2.365

0.8
-10 5.998 0.135 1.211 1.346 5.998 0.201 1.399 1.600 0.000 0.316 0.317
0 71.464 0.081 1.675 1.756 46.957 0.034 1.736 1.770 0.183 4.942 5.126
10 11.744 0.242 2.752 2.994 12.247 0.261 2.688 2.949 0.221 2.265 2.486

−20 −10 0 10 20

0
20

40
60

80
10

0

Scenario 1

Covariate X

B
an

dw
id

th
 h

Optimal bandwidth
25th
Median
75th

−20 −10 0 10 20

0
20

40
60

80
10

0

Scenario 2

Covariate X

B
an

dw
id

th
 h

Optimal bandwidth
25th
Median
75th

Figure 2.3: Median, first and third quartile of the bootstrap bandwidths for
Ŝc

h(t | x) in Scenarios 1 (left) and 2 (right) for π(x) = 0.8 and n = 100. The
optimal bandwidth is displayed for reference.



34 Chapter 2. Generalized product-limit estimator of the survival function

−20 −10 0 10 20

0.
00

0
0.

00
5

0.
01

0
0.

01
5

Scenario 1, π(x) = 0.2, n = 100

Covariate X

M
IS

E

Proposed
Beran
Semiparametric

−20 −10 0 10 20
0.

00
0

0.
00

5
0.

01
0

0.
01

5

Scenario 2, π(x) = 0.2, n = 100

Covariate X

M
IS

E

Proposed
Beran
Semiparametric

Figure 2.2: MISE of Ŝc
h(t | x), Ŝh(t | x) (both computed with the optimal band-

width), and the semiparametric estimator in Scenarios 1 (left) and 2 (right) for
π(x) = 0.2 and n = 100.

Figure 2.4: Contour plots of the MISE of Ŝc
h(t | x) as a function of the bandwidth

h and the covariate value x in Scenarios 1 (left) and 2 (right) for π(x) = 0.8 and
n = 100. For each covariate value, the optimal bandwidth is marked with a cross.
The density of the bootstrap bandwidths h∗

x is shown in gray shades (where a
darker gray represents a higher density).
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Figure 2.6: Median of the bootstrap bandwidths for Ŝc
h(t | x) when using three

different pilot bandwidths computed with k = [n/3], [n/4] and [n/8] in Scenarios 1
(left) and 2 (right) for π(x) = 0.8 and n = 50. The optimal bandwidth is displayed
for reference .
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h(t | x) as a function of the bandwidth h for covariate

values x = −10, 0, 5, 10 in Scenarios 1 (left) and 2 (right) for π(x) = 0.8 and
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2.5 Real data analysis

The practical performance of the proposed estimators of the conditional survival
function, Ŝc

h(t | x) in (2.16) and its unconditional counterpart Ŝc
n(t) in (2.18), is

illustrated by applying the estimators to the sarcoma data. Table 2.3 shows the
main demographic and clinical characteristics of the sarcoma patients.
Based on the asymptotic normality of the estimators, 95% confidence intervals
(CI) of the conditional survival function have been constructed. Estimates of
the standard error of the estimators have been obtained using the bootstrap
procedure. More in detail, the 100(1 − α)% CI of the (conditional) survival
function with Ŝc

h(t | x) and Ŝc
n(t) were defined as, respectively,

Ŝc
h(t | x) ∓ z1− α

2
ŝeB

(
Ŝc

h(t | x)
)

and

Ŝc
n(t) ∓ z1− α

2
ŝeB

(
Ŝc

n(t)
)

,

zβ is the βth quantile of the standard normal, and ŝeB

(
Ŝc

h(t | x)
)

and ŝeB

(
Ŝc

n(t)
)

are, respectively, the bootstrap estimates of the standard errors of Ŝc
h(t | x) and

Ŝc
n(t) computed with B = 1000 bootstrap resamples.

Figure 2.7 compares the estimates obtained with Ŝc
h(t | x), which takes into ac-

count the 18 long-term survivors, those obtained with Ŝh(t | x), which ignores
individuals known to be cured and treats them as simply censored observations.
Both estimators were computed using the corresponding bootstrap bandwidth
selector introduced in Section 2.3.3 using B = 1000 resamples. The semipara-
metric estimator S(t | x; γ̂, β̂) was also considered for reference. All estimators
show that the survival curve decreases when age increases from 40 to 90 years.
The largest differences between Ŝc

h(t | x) and Ŝh(t | x) were found at the right
tail of the distribution, where the survival curve for Ŝc

h(t | x) is slightly higher.
Since the cure probability can be obtained as the limit of S(t | x) when t → ∞
using the proposed estimator of the survival curve will yield in higher estimates
of the probability of cure.
On the other hand, the survival curve estimated by S(t | x; γ̂, β̂) tends to de-
crease much slower than those obtained with Ŝc

h(t | x) and Ŝh(t | x), suggesting
that further testing is required to provide evidence that assumptions in the semi-
parametric model are fulfilled.
Figure 2.7 at the bottom shows the survival curves of the sarcoma patients strat-
ified by margin status. In this case, the proposed estimator in an unconditional
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Table 2.3: Demographic and clinical characteristics of sarcoma patients. Also
given are the numbers of died patients (Death), patients known to be cured
(Cured) and patients with unknown cure status (Unknown).

Characteristic n (%) Death
Censored

Cured Unknown

Age†

< 60 105 (45.3%) 25 9 71
≥ 60 127 (54.7%) 33 9 85

Sex
Male 100 (42.9%) 25 7 68
Female 133 (57.1%) 34 11 88

Tumor site†

Retroperitoneal 86 (37.2%) 28 4 54
Extremities 70 (30.3%) 14 5 51
Other sites 75 (32.5%) 16 9 50

Metastatic†

No 112 (67.1%) 11 9 92
Yes 55 (32.9%) 32 3 20

Margin status†

Negative 133 (65.8%) 26 12 95
Positive 69 (34.2%) 17 3 49

† Contains a few missing data.

setting, Ŝc
n(t), is applied and the KM estimator is considered as reference. The

survival curves tend to decrease with time in both subgroups. The positive margin
survival curve decreases slightly faster than the negative margin survival curve.
In addition, the distinction between Ŝc

n(t) and the KM estimator is found at the
right tail of the distribution with the survival curves estimated with Ŝc

n(t) being
slightly higher than the KM curves. For example, the survival probability, at the
tail of the distribution, for patients with negative margins is around 0.51 when
estimated by Ŝc

n(t), while it is around 0.47 when estimated with the KM estima-
tor. Again, the estimated probability of cure is slightly higher when the survival
curve is fitted taking into account the known cured subjects.

2.6 Discussion

The proposed estimator of the survival function takes advantage of the additional
cure status information that Beran’s estimator ignores, by considering the indi-
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Figure 2.7: (Top panels) Survival estimates for sarcoma patients aged 40 and 90
years obtained using Ŝc

h(t | x) and its 95% CI, Ŝh(t | x), both computed with
the bootstrap bandwidth, and S(t | x; γ̂, β̂). (Bottom panel) Survival estimates
stratified obtained using Ŝc

n(t) with its 95% CI and Ŝn(t).

viduals known to be cured always in the risk set, regardless of the values of their
observed times. This is tantamount to shifting the observed times Ti of the in-
dividuals known to be cured arbitrarily to the right (in the limit, T̃i = ∞) and
computing Beran’s estimator with these modified observed times. If the observed
times Ti of all these cured individuals are very large, e.g., when a subject is con-
sidered cured when the observed time surpasses a cure threshold, shifting these
times Ti arbitrarily to the right has no effect, and the estimation of the survival
function with the proposed estimator or with Beran’s estimator ignoring the cure
status is equivalent.
Although the proposed estimator utilizes the cure status information and shows
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good results both theoretically and practically, it is not without limitations. It
is competitive over Beran’s estimator in terms of the MISE, showing a generally
better behavior. But when the sample size is small, the simulation results showed
that for some values of the covariate it does not result in an improvement, but,
a slightly worse performance in terms of MISE. The clear gain in terms of the
integrated variance could be cancelled out by the integrated squared bias, which
depends on the conditional probability of individuals identified as being cured
and the conditional censoring distribution.
The performance of the semiparametric estimator by Bernhardt (2016) strongly
depends on the plausibility of the parametric models assumed for either the cure
rate or the latency fuction. Besides, our numerical experience indicates that if the
sample size is small (less than 100), it is challenging to obtain stable estimates
for the model parameters.
Approaches to include the cure information in the estimation of the MCM are
scarcely developed in the literature. Many of them are based on a cure threshold,
in which an individual is assumed to be cured from the event when the observed
time-to-event surpasses a threshold, that is, the event was not observed for a
fixed period time (see, e.g., Laska and Meisner, 1992; Nieto-Baraja and Yin,
2008). The proposed methodology not only encompasses this setup, but also
generalizes it, as it can be applied when a subject is considered cured based on
external information, that is, when the “cured” censored times are random.





Chapter 3

Kernel estimator of the cure
probability

3.1 Introduction

When there is evidence of existence of long-term survivors and the cure status is
known for some cured individuals, it is often of interest to estimate the probability
of cure, which is the complementary of the probability of the event of interest. To
properly estimate the cure probability when the cure status is partially available, a
kernel estimator of the conditional cure probability based on the MCM is proposed
in this chapter. This estimator extends the XP estimator to incorporate the cure
status information.
A different approach for modeling survival data with a cure fraction when cure is
randomly observed is a competing risks model, in which the event of interest and
being identified as cured are competing risks failures, and only the minimum of
the times of the corresponding risks is observed (Betensky and Schoenfeld, 2001;
Nicolaie et al., 2019). The probability of cure is simply the cumulative incidence
function of the competing risk given by cure, evaluated at the last observed time.
The previous approaches for estimating the cure rate are methodologies where
the time-to-event is of interest. Alternatively, note that the cure probability can
be written as a function of a covariate X and it can be regarded as the conditional
expectation of the cure status. As a consequence, standard regression techniques
can be used to model the probability of cure, whereby these methods are relatively
simple to implement. Since the survival times are subject to right censoring, the
cure status is partially observed. In fact, denoting ν the cure status, ν = 0 when

41
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the event is observed, ν = 1 when cure is observed, and ν is missing for some
censored observations. In the latter case, the individual will either experience
the event (the observation is censored and susceptible) or never experience the
event (the observation is censored and non-susceptible in the future). Therefore,
this turns the estimation of the cure probability into a regression problem with
missing response values. The most commonly used regression-based techniques
to deal with missing data are inverse probability weighting (IPW) (Horvitz and
Thompson, 1952; Robins et al., 1994; Lipsitz et al., 1998, among many others)
and multiple imputation (MI) (Aerts et al., 2002; Rubin, 2004; Carpenter and
Kenward, 2012; Wei et al., 2012). In the IPW approach (Seaman and White,
2013), only complete observations are included in the analysis, and weights are
used to adjust the set of complete observations so it is representative of the en-
tire sample. In the MI approach (Seaman et al., 2012), missing observations
are replaced by values that are randomly drawn from the observed data, given
some sampling scheme. Then, one can perform standard regression with the
imputed data. Commonly used imputation methods for missing response values
include semiparametric imputation (Wang et al., 2004), nearest neighbor imputa-
tion (Andridge and Little, 2010), and kernel-based techniques (Aerts et al., 2002;
Cheng, 1994; Hsu et al., 2016). Aerts et al. (2002) applied the nonparametric
kernel regression imputation scheme to estimate the unconditional mean. In this
chapter, an estimator of the conditional cure probability based on a regression
fit with multiple imputation for the unknown cure status is introduced as an al-
ternative to the proposed MCM based nonparametric estimator. Note that the
aforementioned imputation methods are strongly dependent on the proportion of
missing data, giving unreliable estimations when there is a substantial level of
missingness.

The rest of the chapter is organized as follows. In Section 3.2, a kernel estimator
of the cure probability based on the MCM is proposed and its asymptotic proper-
ties are studied. Also, a bootstrap bandwidth selector is proposed. In Section 3.3,
alternative estimators of the cure rate based, respectively, on the competing risks
and nonparametric multiple imputation approaches are presented. The perfor-
mance of these estimators is illustrated with a simulation study in Section 3.4.
The estimators are applied to the breast cancer and COVID-19 datasets in Sec-
tion 3.5. Finally, a discussion is provided in Section 3.6.
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3.2 Proposed estimator of the cure rate

The cure rate is the probability that the event will not happen:

1 − p(x) = P (Y = ∞ | X = x) = lim
t→∞

P (Y > t | X = x) = lim
t→∞

S(t | x).

A suitable estimator of the cure rate 1 − p(x) could easily be derived as the limit
as t tends to infinity of an estimator of S(t | x). Starting from the generalized
product-limit estimator in (2.16), the following estimator for the cure probability,
1 − p (x), when the cure status is partially known is proposed:

1 − p̂c
h (x) =

n∏
i=1

1 −
δ[i]Bh[i] (x)∑n

j=i Bh[j] (x) +∑i−1
j=1 Bh[j] (x) 1

(
ξ[j]ν[j] = 1

)
 , (3.1)

where δ[i], ξ[i] and ν[i] are the concomitants of the ordered observed times T(1) ≤
· · · ≤ T(n), and Bh[i] (x) is defined in equation (1.3). Note that the estimator
in (3.1) is Ŝc

h

(
T 1

(n) | x
)
, with Ŝc

h (t | x) the estimator of the survival function
proposed in (2.16), and T 1

(n) = max
i:δi=1

Ti the largest uncensored observed lifetime.

Proposition 3.1 The estimator 1 − p̂c
h (x) has the following basic properties.

1. When there are no censored observations known to be cured, i.e., ξiνi = 0
for i = 1, . . . , n, 1 − p̂c

h (x) reduces to the XP estimator in (1.5).

2. In the specific case that some individuals are classified as cured when their
survival time exceeds a known fixed cure threshold, 1 − p̂c

h (x) reduces to
the XP estimator.

3. When there is no censoring, all the cure status indicators νi are observed
(ξi = 1, i = 1, . . . , n). In this case, 1 − p̂c

h (x) reduces to the NW estimator
of the cure probability:

1 − p̂NW
h (x) =

n∑
i=1

Bhi (x) 1 (νi = 1) =
∑n

i=1 Kh (x − Xi) νi∑n
j=1 Kh (x − Xj)

. (3.2)

It must be kept in mind that when there is no censoring, the XP estimator
will be zero.

4. In an unconditional setting, the proposed estimator is

1 − p̂c
n =

n∏
i=1

1 −
δ[i]

n − i + 1 +∑i−1
j=1 1

(
ξ[j]ν[j] = 1

)
 . (3.3)
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In the particular case where an individual is known to be cured only if the
observed time is greater than a known fixed time, 1 − p̂c

n reduces to the
generalized maximum likelihood estimator in Laska and Meisner (1992):

1 − p̂n =
n∏

i=1

(
1 −

δ[i]

n − i + 1

)
. (3.4)

Moreover, if there are no individuals known to be cured, then 1−p̂c
n becomes

the unconditional version of the XP estimator.

The proof of these properties is outlined in Appendix B.

Proposition 3.2 The estimator 1 − p̂c
h (x) in (3.1) is the nonparametric local

maximum likelihood estimator of 1 − p(x).

The proof of Proposition 3.2 is given in Appendix B.

3.2.1 Asymptotic results

In this section, the asymptotic properties of 1 − p̂c
h(x) are studied. The required

assumptions are listed in Section 2.2. Further define τH (x) = inf{t : H (t | x) =
1}, τS0 (x) = inf{t : S0 (t | x) = 0} and τG0 (x) = inf{t : G0 (t | x) = 1}. Note
that τH (x) = max {τS0 (x) , τG0 (x)}. Let τ0 = supx∈I τS0 (x), then it is required
that

τ0 < τG0 (x) for any x with probability 1. (3.5)

The condition (3.5) relies on the assumption that the follow-up is long enough for
the support of the latency function S0(t | x) to be contained within the support
of the distribution G0(t | x). This implies that all observations censored after
the largest uncensored observed lifetime correspond to cured subjects, as the
susceptible subjects will experience the event within the follow-up period. This
condition guarantees that the proposed estimator does not overestimate the true
probability of cure. A similar condition has been used in the related literature
(Laska and Meisner, 1992; Xu and Peng, 2014; López-Cheda et al., 2017a,b). Xu
and Peng (2014) pointed out that if G0(t | x) has a heavier tail than S0 (t | x),
then the condition (3.5) can be relaxed. Maller and Zhou (1994) proposed a test
to assess whether a condition analogous to (3.5) is fulfilled in an unconditional
setting. It is based on the difference between the largest observed time T(n) and
the largest uncensored time T 1

(n). If this interval is large, then there is sufficient
follow-up time and (3.5) can be assumed. In the presence of covariates, one
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may divide a given dataset into several subgroups according to the values of the
covariates and apply this test in each subgroup.
The next theorem establishes an asymptotic representation for 1 − p̂c

h(x). The
proof is included in Appendix B.

Theorem 3.1 (Asymptotic representation) Suppose that Assumptions 1 – 9
and condition (3.5) hold, then for x ∈ I,

(1 − p̂c
h(x)) − (1 − p(x)) = (1 − p(x))

n∑
i=1

B̃hi (x) ζ (Ti, δi, ξi, νi, τ0, x) + Rn (x) ,

where ζ (Ti, δi, ξi, νi, t, x) is given in (2.21), B̃hi (x) is defined in (2.22), and Rn (x)
satisfies

sup
x∈I

| Rn (x) |= O
(
(log n)3/4 (nh)−3/4

)
a.s. (3.6)

The following corollary establishes the strong consistency of the estimator 1 −
p̂c

h(x).

Corollary 3.1 (Strong consistency) Suppose that Assumptions 1 – 9 and con-
dition (3.5) hold. Then, for x ∈ I,

sup
x∈I

| p̂c
h (x) − p (x) |= O

(
(nh)−1/2 (log n)1/2

)
a.s.

The corollary can be proved by considering the asymptotic representation in
Theorem 3.1 and following similar arguments as those used in the proof of Corol-
lary 2.1 for the estimator 1−F̂ c

h(t | x) when t = T 1
(n). The next proposition, whose

proof is in Appendix B, gives asymptotic expressions for the bias and variance of
the estimator 1 − p̂c

h (x).

Proposition 3.3 (Asymptotic bias and variance) Suppose that Assump-
tions 1 – 9 and condition (3.5) hold, then, the asymptotic bias and variance of the
dominant term of 1 − p̂c

h (x) are, respectively,

µh,c(x) = h2Bc(x) + O
(
h4
)

and σ2
h,c(x) = 1

nh
s2

c(x) + O

(
h

n

)
.

The function Bc(x) in the dominant term of the bias is

Bc(x) = (c1,c(x) + c2,c(x)) dK (3.7)

with dK =
∫

v2K(v)dv,

c1,c(x) = 2(1 − p(x))′m′(x) + (1 − p(x))′′m(x)
2m(x) , (3.8)
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and

c2,c(x) = (1 − p(x))
∫ τ0

0

G′(v− | x)
1 − G(v− | x)

d

ds

(
S ′ (s | x)
S (s | x)

)∣∣∣
s=v−

dv. (3.9)

Here p′(x), p′′(x), S ′(t | x) and G′(t | x) refer to the derivatives with respect to x.
The function s2

c(x) in the dominant term of the variance is

s2
c(x) = (1 − p (x))2

m (x)

∫ τ0

0

dH1 (v− | x)
(1 − H (v− | x) + H11(v− | x))2 cK , (3.10)

with cK =
∫

K2(v)dv.

The following theorem establishes the asymptotic normality of 1 − p̂c
h (x). The

proof is included in Appendix B.

Theorem 3.2 (Asymptotic normality) Suppose that Assumptions 1 – 9 and
condition (3.5) are satisfied, then for x ∈ I it follows that:

(i) If nh5 → 0 and (log n)3/(nh) → 0, then

(nh)1/2 (p̂c
h(x) − p(x)) d→ N(0, s2

c(x)).

(ii) If nh5 → C, where C > 0 is a constant then

(nh)1/2 (p̂c
h(x) − p(x)) d→ N(C5/2Bc(x), s2

c(x)),

where Bc(x) is defined in (3.7) and s2
c(x) in (3.10).

3.2.2 Effect of ignoring the cure status information

The use of the information given by the cure status has an impact on both the
bias and variance of the proposed estimator of the cure probability 1 − p̂c

h(x).
When the cure status is ignored in the estimation procedure and the observed
times of the individuals known to be cured are considered as simple censored
times, the asymptotic expressions of the bias and variance of the XP estimator
of the cure rate, 1 − p̂h(x), are:

µh(x) = h2B(x) + O
(
h4
)

and σ2
h(x) = 1

nh
s2(x) + O

(
h

n

)
,

where B(x) = (c1,c(x) + c2(x)) dK , with c1,c(x) in (3.8),

c2(x) = (1 − p(x))
∫ τ0

0

G′
0(v− | x)

1 − G0(v− | x)
d

ds

(
S ′ (s | x)
S (s | x)

)∣∣∣
s=v−

dv, (3.11)

and

s2(x) = (1 − p (x))2

m (x)

∫ τ0

0

dH1 (v− | x)
(1 − H (v− | x))2 cK .
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The cure status information affects the bias of the proposed estimator only in the
second term of Bc(x) in (3.7). If the cure status information is ignored, the term
1 − π(x) in G(t | x) disappears and results to c1(x) in (3.11). Therefore, in terms
of bias, the gain of knowing the cure status is not straightforward as it depends
on the derivatives of (1 − π(x)) and G0(t | x).
The effect of considering the cure status information on the variance is through
the function H11(t | x) of s2

c(x) in (3.10). When the cure status information
is ignored, then H11(t | x) = 0 and, therefore, s2

c(x) ≤ s2(x) for all x. As a
consequence, when the known cure status is taken into account for estimating the
cure probability, the variance of the proposed estimator decreases asymptotically
with respect to the XP estimator.

3.2.3 Bootstrap bandwidth selection

Here, a bootstrap bandwidth selector is proposed to choose the smoothing pa-
rameter h for the cure rate estimator 1 − p̂c

h(x). The principle is to select the
bandwidth h that minimizes MSE∗

x(h), the bootstrap version of the MSE approx-
imated by Monte Carlo as:

MSE∗
x(h) ≃ 1

B

B∑
b=1

(p̂c,∗b
h (x) − p̂c

g(x))2, (3.12)

where 1 − p̂c,∗b
h (x) is the proposed estimator computed with the bth bootstrap

resample and bandwidth h. In addition, 1 − p̂c
g(x) is the proposed estimator

computed with the original sample and a given pilot bandwidth g. The algorithm
to compute the bootstrap bandwidth for a fixed covariate value x is as follows:

Step 1. With the original sample and the pilot bandwidth g, compute 1 − p̂c
g(x)

in (3.1).

Step 2. Choose a dense enough grid of L bandwidths {h1, . . . , hL}.

Step 3. Generate B bootstrap resamples {(X∗(b)
i , T

∗(b)
i , δ

∗(b)
i , ξ

∗(b)
i ν

∗(b)
i ) : i = 1, . . . , n},

for b = 1, . . . , B.

Step 4. With the bth bootstrap resample and the bandwidth hl compute 1 −
p̂c,∗b

hl
(x), for l = 1, . . . , L,

Step 5. For hl, l = 1, . . . , L, compute the Monte Carlo approximation MSE∗
x(hl)

given by (3.12).
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Step 6. The bootstrap bandwidth, h∗
x, is the bandwidth of the grid {h1, . . . , hL}

that minimizes MSE∗
x(h) in (3.12).

The bootstrap resamples in Step 3 are generated following any of the two equiv-
alent resampling algorithms introduced in Section 2.3.3. For computational effi-
ciency (see López-Cheda et al., 2017a,b), we fixed X∗

i = Xi instead of resampling
it randomly from {X1, . . . , Xn}. It is suggested to use (2.38) for the pilot band-
width g.

3.3 Alternative estimators of the cure rate

In this section we introduce some alternative estimators for the estimation of
the cure rate with covariates. These estimators derive from the extension of
unconditional estimators of the cure probability in the literature to the context
with a continuous covariate X.

3.3.1 Competing risks estimators

The competing risks model considers that an individual is exposed to J types
of failure or competing risks. For j ∈ {1, . . . , J}, let Yj the time until the
failure of type j happens, and consider the random pair (YF , D), where YF =
min(Y1, . . . , YJ) is a non-negative random variable representing the time until the
first failure, and D takes a value from the set {1, 2, . . . , J} to indicate the type of
failure. Let C be a censoring variable. Under right random censoring, the observa-
tions (YF , D) will be incomplete if follow-up ends before any failure occurs. In this
situation only (T, ∆) is observed, where T = min(YF , C) = min(Y1, . . . , YJ , C) is
the possibly censored observed time, and ∆ = 1(YF < C)D is the type of event
in the case a terminal event occurs and ∆ = 0 indicates that the failure type
is unknown and the failure time is right-censored. The censoring mechanism is
assumed to be non-informative (Lagakos, 1979). This competing risks model as-
sumes that an individual will fail from a particular risk j ∈ {1, . . . , J}, chosen
by a stochastic mechanism at the outset. This general competing risks model
usually assumes that all patients will eventually experience one of the J possible
types of risks if there is sufficient follow-up and, therefore, do not consider the
possibility of cure.
In the MCM with cured individuals randomly observed, Betensky and Schoenfeld
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(2001) stated that the event of interest and cure can be regarded as two competing
risks, in which cures are random and only the minimum between the cure and
event times is observed. The probability of cure is then simply the cumulative
incidence function of the cure evaluated at the largest observed time, or just 1
minus the cumulative incidence function of the event of interest.

In this section, we adopt this perspective and introduce a competing risks model
for the MCM when the cure status is partially observed in the presence of co-
variates. Here, as in Betensky and Schoenfeld (2001), the observed times of
the individuals known to be cured are considered as a competing risks for the
event of interest. Let {YE, Yc} be the latent failure times of 2 type failures: the
event of interest (E) and the classification of an individual as cured (c). Let
YF = min (YE, Yc) be the time of the first failure and C the censoring time. For
right censored competing risks data, let T = min (YE, Yc, C) be the observed time,
and the uncensoring indicator ∆ = 1 (YF < C) D where D ∈ {1, 2} is the type of
risk. In this context, the observed sample in the MCM with the cure status par-
tially known {(Ti, δi, ξiνi) , i = 1, . . . , n} can be written as {(Ti, ∆i) , i = 1, . . . , n},
where

∆i =


0 if δi = 0, ξiνi = 0 (censored)
1 if δi = 1, ξiνi = 0 (event observed)
2 if δi = 0, ξiνi = 1 (known to be cured).

The cumulative incidence function (CIF) of the event of interest E is the proba-
bility that a failure of type 1 occurs at or before time t:

F1 (t | x) = P (YF ≤ t, D = 1 | X = x) .

The CIF of the second competing risk (individual known to be cured) is the
probability that a failure of type 2 occurs at or before time t:

F2 (t | x) = P (YF ≤ t, D = 2 | X = x) .

The probability of cure is then simply the cumulative incidence function of the
competing risk cure (c) evaluated at infinity or the complementary of the cumu-
lative incidence function of the event of interest (E) evaluated at infinity:

1 − p (x) = P (YE = ∞ | X = x) = 1 − lim
t→∞

F1(t | x).

Equivalently,

1 − p(x) = P (Yc < ∞ | X = x) = lim
t→∞

F2(t | x).

The conditional version of the estimators of the CIFs in Klein and Moeschberger
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(2003) are the following (see Effraimidis and Dahl, 2014):

F̂1,h (t | x) =
n∑

i=1

δ[i]Bh[i] (x) 1
(
T(i) ≤ t

)
∑n

j=i Bh[j] (x)

i−1∏
k=1

1 −

(
δ[k] + ξ[k]ν[k]

)
Bh[k] (x)∑n

j=k Bh[j] (x)


=

n∑
i=1

δ[i]Bh[i] (x) 1
(
T(i) ≤ t

)
∑n

j=i Bh[j] (x) Ŝh

(
T −

(i) | x
)

, (3.13)

F̂2,h (t | x) =
n∑

i=1

ξ[i]ν[i]Bh[i] (x) 1
(
T(i) ≤ t

)
∑n

j=i Bh[j] (x)

i−1∏
k=1

1 −

(
δ[k] + ξ[k]ν[k]

)
Bh[k] (x)∑n

j=k Bh[j] (x)


=

n∑
i=1

ξ[i]ν[i]Bh[i] (x) 1
(
T(i) ≤ t

)
∑n

j=i Bh[j] (x) Ŝh

(
T −

(i) | x
)

, (3.14)

where Ŝh (t | x) is the Beran estimator obtained by treating any of the competing
risks as an event. It may be shown that the sum of the cumulative incidences for
all competing risks, F̂1,h (t | x) and F̂2,h (t | x), is F̂h (t | x) = 1 − Ŝh (t | x) where
Ŝh (t | x) is the aforementioned Beran’s estimator.

Proposition 3.4 The estimation of the conditional CIFs given in (3.13) and
(3.14) allows us to model the conditional cure probability. Thus, the conditional
probability of cure 1 − p (x) can be estimated by

1 − p̂1,h (x) = 1 − lim
t→∞

F̂1,h(t | x)

= 1 −
n∑

i=1

δ[i]Bh[i] (x)∑n
j=i Bh[j] (x) Ŝh

(
T −

(i) | x
)

, (3.15)

1 − p̂2,h (x) = lim
t→∞

F̂2,h ( t | x) =
n∑

i=1

ξ[i]ν[i]Bh[i] (x)∑n
j=i Bh[j] (x) Ŝh

(
T −

(i) | x
)

. (3.16)

If the last observation is an event or an observed cured individual, then 1 −
p̂1,h (x) = 1 − p̂2,h (x). If, however, the last observation is censored, 1 − p̂1,h (x)
and 1 − p̂2,h (x) are not equivalent. In this case, 1 − p̂1,h (x) is an upper bound
for the cure rate 1 − p (x) and 1 − p̂2,h (x) is a lower bound. Note that, in the
absence of censoring,

1 −

(
δ[k] + ξ[k]ν[k]

)
Bh[k] (x)∑n

j=k Bh[j] (x) = 1 −
Bh[k] (x)∑n

j=k Bh[j] (x) =
∑n

j=k+1 Bh[j] (x)∑n
j=k Bh[j] (x)

and therefore

Ŝh

(
T −

(i) | x
)

=
i−1∏
k=1

1 −

(
δ[k] + ξ[k]ν[k]

)
Bh[k] (x)∑n

j=k Bh[j] (x)

 =
i−1∏
k=1

∑n
j=k+1 Bh[j] (x)∑n

j=k Bh[j] (x)

=
n∑

j=i

Bh[j] (x) .
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So the cure probability estimator is

1 − p̂2,h (x) = 1 −
n∑

i=1

δ[i]Bh[i] (x)∑n
j=i Bh[j] (x) Ŝh

(
T −

(i) | x
)

= 1 −
n∑

i=1

δ[i]Bh[i] (x)∑n
j=i Bh[j] (x)

n∑
j=i

Bh[j] (x) = 1 −
n∑

i=1
δ[i]Bh[i] (x)

=
n∑

i=1
ξ[i]ν[i]Bh[i] (x) .

Similarly,

1 − p̂2,h (x) =
n∑

i=1
ξ[i]ν[i]Bh[i] (x) .

That is, the cure rate estimators reduce to the sum of the weights of the individ-
uals known to be cured.
This approach to the estimation of the cure rate can be viewed as arising from
a redistribution to the right algorithm (Efron, 1967). In particular, the mass of
Bhi (x) initially assigned to the censored observations (neither event nor observed
to be cured) is redistributed equally to all subjects at risk for the event and cure
at the time of censoring. The cure rate is then simply the weighted sum of the
mass attached to each subject that is cured.

3.3.2 Multiply imputed NW estimator

The proposed estimator in (3.1) is based on the relationship between the cure
probability 1 − p(x) and the survival function S(t | x). So, to estimate the
probability of not experiencing the event it requires the observations {(Ti, δi), i =
1, . . . , n}. Nonetheless, the cure probability can also be written as 1 − p(x) =
E(ν | X = x), i.e., the conditional expectation of the cure status ν, or equivalently
1 − p = E(ν) for an unconditional setting. An estimator based on this latter
relationship would only require the observed values of the covariate X and the
cure status ν, dismissing the observed values of (T, δ).
The NW estimator is one of the most frequently used estimators in nonparametric
regression. So, the estimator in (3.2) might be considered for the estimation of
the cure probability 1 − p(x) = E(ν | X = x). Similarly, the unconditional cure
probability 1 − p = E(ν) might easily be estimated using the empirical estimator
1 − p̂ = ∑n

i=1 νi/n. These methods require that the cure status ν is completely
observed. However, in the present setup, the cure status ν remains unknown for
some of the censored observations. There has been extensive work dealing with
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estimating the unconditional and conditional mean in a regression setting when
the response variable is only partially observed (Hsu et al., 2016; Verhasselt et al.,
2019; Vakulenko-Lagun et al., 2020).
Aerts et al. (2002) developed a fully nonparametric local multiple imputation
(MI) procedure to estimate the unconditional mean of a variable in the presence of
missing response data. When the cure status is not completely observed because
of censoring but it is partially available, their methodology can be applied to
the estimation of 1 − p. To the best of our knowledge, the MI methodology in
Aerts et al. (2002) has not been extended to estimate the conditional mean. In
this section an estimator for the cure probability in the presence of a covariate
1 − p(x) is proposed.
It is important to define the nature of the missingness mechanism, as it highly
influences the performance of statistical techniques that deal with missing data.
The MI estimator (Aerts et al., 2002) requires the strongly ignorable missing at
random (siMAR) assumption (Rosenbaum and Rubin, 1983), which implies that
given ν and X, the probability that the cure status is observed depends only on
the covariate X but not on the response variable ν:

E(ξ | X) = E(ξ | X, ν). (3.17)

This is weaker than missingness completely at random (MCAR) since dependence
on the observed variable X is allowed. It is important to note that this siMAR
condition is not fulfilled under the MCM model with the cure status partially
known if Y and C are conditionally independent given X = x, as the probability
of observing the cure status is different for the cured (ν = 1) and the susceptible
(ν = 0) individuals, and therefore it depends on the cure status:

E(ξ | X, ν = 1) =P (ξ = 1 | X, Y = ∞) = P (C = ∞ | X, Y = ∞) = π(X),

E(ξ | X, ν = 0) =P (ξ = 1 | X, Y < ∞) = P (Y < C | X, Y < ∞)

=P (Y < C, C < ∞ | X, Y < ∞) + P (C = ∞ | X, Y < ∞)

=P (Y < C | X, Y < ∞, C < ∞)(1 − π(X)) + π(X).

Unless P (Y < C | X, Y < ∞, C < ∞) = 0, which yields the time of all the
susceptible individuals to be censored, the siMAR condition in (3.17) cannot
be assumed if Y and C are independent conditionally on X = x. Nonetheless,
note that the higher the value of π(X) = P (C = ∞ | X), the smaller the
difference between E(ξ | X, ν = 1) and E(ξ | X, ν = 0), and the closer the
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siMAR assumption to hold.
The main idea in the approach of Aerts et al. (2002) is to use the assumed regres-
sion relationship between X and ν to impute locally the missing observations of
ν. This idea is extended to estimate the conditional expectation for a continuous
covariate X. An outline of the algorithm is:

Step 1. (Resampling step) Fix an integer M , for m = 1, . . . , M perform a non-
parametric resampling of the observed data. That is, for each observation
i = 1, . . . , n, if the cure status is observed (ξi = 1) generate ν

∗(m)
i from

the distribution L (Xi) with cumulative distribution function
n∑

j=1
Bξ

g1j (Xi) 1 (νj ≤ u)

where Bξ
g1j(x) are the kernel weights with bandwidth g1:

Bξ
g1j(x) = ξjKg1(x − Xj)∑n

i=1 ξiKg1(x − Xi)
.

Step 2. (Imputation step) Given the resampled data from Step 1., the missing
values of ν are imputed using local resampling. More specifically, condi-
tionally on the resampled data {(Xi, ν

∗(m)
i , ξi) : i = 1, . . . , n}, a second

distribution L∗ (Xi) is constructed, with cumulative distribution function
n∑

j=1
Bξ

g2j (Xi) 1
(
ν

∗(m)
j ≤ u

)
where the kernel weights Bξ

g2j(x) are computed with a second bandwidth
g2. Then, if νi is missing, generate ν+,m

i from L∗(Xi).

Step 3. (Computation of the final estimator) For ν̃m
i = ξiνi + (1 − ξi)ν+,m

i , let
1 − p̂m

n = (1/n)∑n
i=1 ν̃m

i be the empirical estimator of the cure proba-
bility with the mth augmented dataset. The multiple imputation (MI)
estimator for the cure probability 1 − p is

1 − p̂MI
n = 1

M

M∑
m=1

(1 − p̂m
n ). (3.18)

Analogously, let us define 1 − p̂m
h (x) = ∑n

i=1 Bhi(x)ν̃m
i as the NW es-

timator in (3.2) computed with bandwidth h and the mth augmented
dataset. The final multiply imputed NW (MI-NW) estimator for the
cure probability 1 − p(x) is

1 − p̂MI-NW
h (x) = 1

M

M∑
m=1

(1 − p̂m
h (x)). (3.19)
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Note that Step 1 is needed to fully account for all uncertainty in predicting
the missing values by adding extra variability into the multiply imputed values
(Efron, 1994). Under conditions similar to those in Cheng (1994), Aerts et al.
(2002) showed that the proposed estimator of 1 − p in (3.18) is consistent, and
provided asymptotic expressions for the bias and variance. Next, the asymptotic
expressions of the bias and variance for the MI-NW estimator in (3.19), following
the ideas in Aerts et al. (2002) are derived. The proof is deferred to Appendix B.

Proposition 3.5 Suppose that the siMAR condition and Assumptions 1 (i), 2
(i), 3 (i), 8 and 10 hold. Also, the bandwidths h, g1, g2 satisfy h → 0, g1 → 0,
g2 → 0, nh → ∞, ng1 → ∞ and ng2 → ∞ as n → ∞. The asymptotic bias of
1 − p̂MI-NW

h (x) is

µMI-NW
g1,g2,h (x) =h2c1,c(x) +

(
g2

1 + g2
2

)
c2,MI-NW(x) + o

(
(h2 + g2

1 + g2
2)2
)

,

where c1,c(x) is defined in (3.8), and

c2,MI-NW(x) = (1 − π (x)) [π (x) (1 − p (x)) m (x)]′′

2m (x) π (x) dK . (3.20)

If the bandwidths are g1/h → C1 and g2/h → C2, then the asymptotic variance
is

σ2
h,MI-NW (x) = 1

nh

1 − p(x)
m(x)

(
cK(1 − π (x))p (x)

Mπ (x)

+
{

π(x)cK + (1 − π(x))
[
cK,C1,C2 + 1 − π(x)

π(x) dK,C1,C2

+ (1 − p(x))
(

cK + 2cK,C2 + 1 − π(x)
π(x) (cK,C1,C2 + 2dK,C1,C2)

)]})

+ 2
ng1

(1 − p (x))2 1 − π (x)
π (x) K (0) + o

(
(Mnh)−1

)
+ o

(
(nh)−1

)
+ o

(
(ng1)−1

)
, (3.21)

where cK,C =
∫∫

K(u)K(v)K(u + Cv)dudv,

cK,C1,C2 =
∫∫∫

K(u)K(v)K(w)K(u + C1v + C2w)dudvdw

and

dK,C1,C2 =
∫∫∫

K(u)K(v)K(w)K(u + C1v + C2(u + w))dudvdw.

The term h2c1,c(x) in the bias, which also appears in the bias µh,c(x) of the pro-
posed estimator in (3.8) and in the bias µh(x) of the XP estimator, is the dominant
term of the bias of the NW estimator of 1 − p(x), while (g2

1 + g2
2) c2,MI-NW(x), the

second term in the bias, stems from the multiple imputation procedure in Steps 1
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and 2 above. The comparison in terms of bias of the proposed estimator of the
cure probability in Section 3.2 and the MI-NW estimator is a trade-off between
the terms c2,c(x) in (3.9) and c2,MI-NW(x) in (3.20).
As for the variance, note that if C1 = C2 = 0 then cK,C2 = cK,C1,C2 = dK,C1,C2 =
cK , whereas if C1 = ∞ or C2 = ∞, then cK,C2 = cK,C1,C2 = dK,C1,C2 = 0. It
should be noted that the comparison, in terms of variance, between the proposed
estimator and the MI-NW estimator is not straightforward. It is easy to prove
that in the case of no missingness, the dominant term of the bias reduces to that
of the NW estimator c1,c(x), whereas the leading term of the variance becomes
(1/nh)(σ2(x)+µ2(x))/m(x), where σ2(x) = Var(ν | X = x) = p(x)(1−p(x)) and
µ(x) = E(ν | X = x) = 1 − p(x).

3.4 Simulation study

A simulation study was conducted to assess the finite sample performance of the
proposed estimator, 1 − p̂c

h(x). The estimator 1 − p̂c
h(x) is compared with:

(a) the competing risks estimators 1 − p̂1,h(x) (CR1) in (3.15) and 1 − p̂2,h(x)
(CR2) in (3.16),

(b) the XP estimator 1 − p̂h(x) in (1.5), which does not include the cure status
information,

(c) the MI-NW estimator 1 − p̂MI-NW
h (x) in (3.19) with M = 5 multiple impu-

tations, which requires siMAR assumption (untrue in the MCM if Y and C

are conditionally independent given X = x),

(d) the semiparametric estimator 1 − p(x; γ̂) by Bernhardt (2016), which con-
siders a logistic regression model to fit the probability of cure with an EM
algorithm for estimating the regression parameter γ.

Data were generated from the MCM, where the latency part was modeled using
the truncated exponential distribution in (2.40). Six different scenarios charac-
terized by the cure probability function, 1 − p(x), were considered. As can be
seen in Table 3.1, the cure probability displays a wide range of functions forms.
The proportion of individuals identified as being cured was set to π(x) = 0.2 and
0.8. The censoring time C was generated, independently of X and Y , so that
C = ∞ with probability π(x), and with probability 1 − π(x), C was generated
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Table 3.1: Characteristics of the simulated scenarios.

Scenario 1 − p(x) % censoring % cured
π(x) = 0.2 π(x) = 0.8

1 Logistic function (1 + exp (0.476 + 0.358x))−1 48.0 47.0 46.0
2 Cubic function 0.5 − x3/16000 52.0 51.0 50.0
3 Linear function 0.5 − 0.025x 51.0 50.4 50.0
4 Low constant 0.2 22.6 20.5 20.0
5 High constant 0.8 80.8 80.3 80.0
6 Convex function 0.0025x2 36.0 34.0 33.3

from a Weibull distribution with shape parameter α = 2, scale parameter β = 2,
and density function

g(t; β, α) = βα−βtβ−1 exp (−t/α)β .

The covariate X was uniformly distributed on the interval [−20, 20]. Note that
S0(t | x) is truncated at τ0 = 4.605, so that the support for C is larger than
the support of Y in order to fulfill condition (3.5). Depending on the scenario,
the percentage of censored observations ranged from 22.6% (in Scenario 4 with
π(x) = 0.2) to 80.8% (in Scenario 5 with π(x) = 0.2). For each scenario, 1000
datasets of sample sizes n = 50, 100 and 200 were generated.

Two different designs were considered. They differ with respect to the distribution
of the observed times of the individuals known to be cured, represented by H11(t |
x). In the first design, Design 1, the observed lifetimes of the individuals known to
be cured were simulated to be falling within the largest censored times. Under this
setup, no big differences are expected between the proposed survival estimator
(equivalent to Beran’s estimator computed with the observed cure times shifted
to be arbitrarily large time) or ignoring the known cure status (Beran’s estimator
computed with the unmodified observed times). This design was intended to
reflect the pattern of the observed lifetimes of the patients known to be cured
in the breast cancer data. In the second design, Design 2, the distribution of
the observed times of the known cured patients in COVID-19 data is mimicked.
In this case the known cured observations were simply chosen at random among
the censored observations. Large differences are now expected between using the
available cure status with the estimator 1 − p̂c

h(x) and ignoring that information
with XP estimator 1 − p̂h(x).

The first goal was to evaluate the small sample size performance of 1 − p̂c
h(x)

in terms of the squared bias, variance and MSE when the optimal bandwidth is
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used. For all the nonparametric estimators, the search for the optimal bandwidth
h was performed in a grid of 21 values ranging from 1.5 to 100 and equispaced
on a logarithmic scale. Besides, the pilot bandwidths required by the MI-NW
estimator for the local resampling step (g1) and the imputation step (g2) were
searched in a grid of 11 bandwidths equispaced from 1.5 to 100 on a logarithmic
scale. The Epanechnikov kernel was used.

The MSE of 1 − p̂c
h(x), 1 − p̂1,h(x), 1 − p̂2,h(x), 1 − p̂h(x) and 1 − p̂MI-NW

h (x), all
of them computed with the corresponding optimal bandwidths, and the MSE of
1 − p(x; γ̂) when n = 100, π(x) = 0.8 for Design 1 are illustrated in Figure 3.1.
Summarizing all the scenarios, in general the proposed estimator 1 − p̂c

h(x) has
smaller MSE than XP estimator 1 − p̂h(x) for most values of X. This shows the
loss of efficiency incurred in if the known cures are not incorporated in the esti-
mation methodology. As expected, in Scenario 1, the semiparametric estimator
behaves well since it fits a logistic regression for the cure probability. However,
the estimator 1− p̂c

h(x) is competitive for a wide range of values close to x = −20
and x = 20, and even beats 1 − p(x; γ̂) for some values of the covariate around
x = 0. The estimator 1 − p̂c

h(x) outperforms 1 − p(x; γ̂) in Scenarios 2 – 6, where
the underlying logistic model assumption for the cure probability in 1 − p(x; γ̂)
is not met. Finally, it must be noted that 1 − p̂c

h(x) is quite competitive with
respect to 1 − p̂1,h(x), 1 − p̂2,h(x) and 1 − p̂MI-NW

h (x), showing in general a better
behavior.

The MSE results obtained for Design 2 are presented in Figure 3.2. Note that
while the performance of 1 − p̂c

h(x), 1 − p̂1,h(x), 1 − p̂2,h(x), 1 − p̂MI-NW
h (x) and

1−p(x; γ) is affected by the design, that of 1−p̂h(x) is not affected as it ignores the
information provided by the observations identified as cured. As in Design 1, 1 −
p̂c

h(x) outdoes 1 − p̂h(x) for most values of X. The differences in the squared bias
between 1−p̂c

h(x) and the competing estimators are quite apparent in Scenarios 1 –
3 and 6. As it can be seen, in all the scenarios 1 − p̂c

h(x) outperforms 1 − p̂1,h(x)
and 1 − p̂2,h(x). Table 3.2 collects the MSE, squared bias and variance of all the
estimators. The estimators 1 − p̂c

h(x) and 1 − p̂MI-NW
h (x) are competing with each

other with the overall better performance reflected in 1 − p̂c
h(x).

When n = 200 in Design 2, it can be seen that the differences in squared bias are
much smaller for 1 − p̂c

h(x), 1 − p̂1,h(x), 1 − p̂2,h(x), 1 − p̂MI-NW
h (x) and 1 − p(x; γ̂),

see Figure 3.3 (top) and Table 3.3. Regarding the variance, 1 − p̂c
h(x) performs

better in most scenarios.
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Figure 3.3 (bottom) and Table 3.4 show the simulation results when n = 100 and
π(x) = 0.2. Interestingly, when π(x) = 0.2, 1 − p̂c

h(x) is still efficient and even
beats 1 − p̂h(x) for most values of X. Besides, 1 − p̂MI-NW

h (x) and 1 − p̂2,h(x)
perform poorly due to a significant increase in both squared bias and variance,
which leads to poor MSE results. This suggests that there is an advantage in
applying 1 − p̂c

h(x) even when one has a few individuals identified as being cured.
A simulation study was conducted to evaluate the practical performance of the
bandwidth selector discussed in Section 3.2.3, using B = 1000 resamples and a
grid of bandwidths from 1.5 to 100. Figure 3.4 shows the quartile of the selected
bootstrap bandwidth h∗

x for Scenarios 1 – 6 under Design 2. The optimal band-
width was also computed and was compared to h∗

x. The performance of h∗
x varies

depending on the scenario, but in general it seems to perform well in all scenarios.
The choice of the bandwidth seems to be more important in Scenarios 1 – 3 and
6, as different bandwidths result in slightly different MSE. In Scenarios 4 and 5,
different bandwidths yield approximately the same MSE. In this case, the boot-
strap bandwidth being relatively far from the optimal bandwidth does not entail
a significant loss of efficiency, see Figure 3.5.
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Figure 3.1: MSE of 1− p̂c
h(x), 1− p̂1,h(x), 1− p̂2,h(x), 1− p̂MI-NW

h (x), 1− p̂h(x) (all
of them computed with the optimal bandwidth), and 1 − p(x; γ̂) in the simulated
scenarios and under Design 1, for π(x) = 0.8 and n = 100.
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Figure 3.2: MSE of 1 − p̂c
h(x), 1 − p̂1,h(x), 1 − p̂2,h(x), 1 − p̂MI-NW

h (x), 1 − p̂h(x)
(all computed with the optimal bandwidth), and 1 − p(x; γ̂) in the simulated
scenarios and under Designs 2 for π(x) = 0.8 and n = 100.
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Figure 3.3: MSE of 1 − p̂c
h(x), 1 − p̂1,h(x), 1 − p̂2,h(x), 1 − p̂MI-NW

h (x), 1 − p̂h(x)
(all computed with the optimal bandwidth), and 1 − p(x; γ̂) in Scenario 1 and
under Design 2, for π(x) = 0.8, n = 50, 200 and π(x) = 0.2, n = 100.
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Figure 3.4: Median, first and third quartile of the bootstrap bandwidths for
1 − p̂c

h(x) in Scenarios 1 – 6 and under Design 2, for π(x) = 0.8 and n = 100. The
optimal bandwidth (black solid line) is displayed for reference.
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Figure 3.5: Contour plots of the MSE of 1− p̂c
h(x) as a function of the bandwidth

h and x in Scenarios 1 – 6 under Design 2 for π(x) = 0.8 and n = 100. For each
x, the optimal bandwidth is marked with a cross. The density of the bootstrap
bandwidths h∗

x is shown in gray shades (where a darker gray represents a higher
density).
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3.5 Real data analysis

To illustrate the practical performance of 1 − p̂c
h(x) in (3.1) and 1 − p̂c

n in (3.3),
these estimators were applied to breast cancer and COVID-19 datasets described
in Sections 1.6.

3.5.1 Breast cancer data

When analyzing the survival of the breast cancer patients, it is of great interest
to study the clinical effect of well-established clinicopathologic prognostic factors
(Duffy et al., 2017; Colomer et al., 2018) of the patients. The aim of the analysis
presented here was to estimate the probability of not dying from breast cancer
(probability of cure when the event of interest is death from breast cancer) de-
pending on cancer stage, number of positive lymph nodes, menopausal status,
margin status and age at diagnosis. In this dataset, only 42 (4.7%) patients died
from cancer within the follow-up period. The observed times until death from
breast cancer for the remaining patients were right-censored. In this censored
group, 20 patients (2.2%) were cancer free for more than 10 years, suggesting
they might be cured from the event “death because of cancer”. This results in
a very high missingness rate, 93.1%, for the cure indicator, ν. Maller and Zhou
(1992) test (p-value < 0.001) provides evidence supporting condition (3.5), clearly
set forth the use of 1 − p̂c

h(x) and 1 − p̂c
n.

The probability of not dying from breast cancer 1 − p for different groups of
patients according to the aforementioned covariates was estimated using:

(a) the estimator in (3.3) with its ŝeB(1 − p̂c
n);

(b) the empirical estimator 1 − p̂ = ∑n
i=1 ξiνi (∑n

i=1 ξi)−1 with its ŝe(1 − p̂),
which discards the patients with unknown cure status;

(c) the unconditional competing risks estimators 1 − p̂1,n with its ŝeB(1 − p̂1,n),
1 − p̂2,n with its ŝeB(1 − p̂2,n);

(d) the MI estimator in (3.18) with its ŝeB(1 − p̂MI
n ) and M = 20;

(e) the unconditional XP estimator 1 − p̂n in (3.4) with its ŝe(1 − p̂n).

The results are given in Table 3.5.
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For consistency, standard errors ŝeB(1 − p̂c
n), ŝeB(1 − p̂1,n), ŝeB(1 − p̂2,n), and

ŝeB(1 − p̂MI
n ) were computed using the bootstrap resampling procedure in Sec-

tion 2.3.3. To the best of our knowledge, there is no any specifically tailored
bandwidth selector for 1 − p̂MI

n . Thus, in this analysis the pilot bandwidths g1

and g2 for Steps 1 and 2 were selected using the cross-validation selector of Bow-
man et al. (1998), available in an R package kerdiest (Quintela-del Ŕıo and
Estévez-Pérez, 2012). The standard error ŝe(1 − p̂n) was computed with Green-
wood’s formula using the R package survival.
The empirical estimator 1− p̂ seems to underestimate the true 1−p. Note that all
the patients with unknown cure status are excluded, so the estimate is computed
with a considerably reduced sample size. If the excluded patients are not MCAR,
the reduced sample might not be representative. The unconditional MI-NW
estimator uses the complete sample as it takes into consideration the patients
with unknown cure status, but it still appears to be performing poorly because
93.1% of patients have missing cure status. The unconditional XP estimator,
1 − p̂n, does consider the censored observations, however, it dismisses the cure
status information so it still underestimates the true cure probabilities. The
estimators 1 − p̂c

n, 1 − p̂1,n and 1 − p̂2,n make use of the available information of
the cure status giving a reasonably accurate estimates.
The estimated probability of not dying from breast cancer as a function of a
continuous covariate like age, is given in Figure 3.6. The estimator 1 − p̂c

h(x)
is compared with the competing risks estimators 1 − p̂1,h(x), 1 − p̂2,h(x), and
the XP estimator 1 − p̂h(x), all computed with the bootstrap bandwidth selector
discussed in Section 3.2.3 using B = 1000 resamples. It is also compared with the
semiparametric estimator 1 − p(x; γ̂) and the MI-NW estimator 1 − p̂MI-NW

h (x)
computed with M = 20. Note that the bandwidth h for the MI-NW estimator was
chosen via an improved cross-validation bandwidth selector for the NW estimator
(Hurvich et al., 1998), using the R package np (Tristen and Jeffrey, 2008).
Figure 3.6 also shows the 95% CI of the cure probabilities derived by the estimator
1 − p̂c

h(x). To estimate these CI, the bootstrap procedure similar to Section 2.5
was used to estimate the standard error of 1 − p̂c

h(x), ŝeB (1 − p̂c
h(x)) with B =

1000 bootstrap resamples. The 100(1 − α)% CI of 1 − p̂c
h(x) is estimated as

1 − p̂c
h(x) ∓ z1− α

2
ŝeB (1 − p̂c

h(x)) ,

where zβ is the βth quantile of the standard normal.
Although 1 − p(x; γ̂) shows that the probability of not dying from breast can-
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(ŝ

e B
)

(ŝ
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Figure 3.6: Estimation of the probability of not dying from breast cancer pa-
tients by using 1 − p̂c

h(x) and its 95% CI, 1 − p̂1,h(x), 1 − p̂2,h(x), 1 − p̂h(x) (all
computed with the bootstrap bandwidth), 1 − p̂MI-NW

h (x) (computed using the
cross-validation bandwidth), and 1 − p(x; γ̂).

cer increases with age, the curves from the other estimators suggest that the
logistic model assumed in the semiparametric estimator might not be appropri-
ate. Specifically, they indicate an increment of that probability only for younger
to middle age patients. The estimators 1 − p̂c

h(x), 1 − p̂1,h(x), 1 − p̂2,h(x), and
1− p̂h(x) suggest no effect of the age on the probability for elderly patients, while
1−p̂MI-NW

h (x) implies that the probability decreases with the age in older patients.

Observe that the probability of not dying from breast cancer given by 1 − p̂h(x),
an estimator that disregards the available information about the cure status, is
equal or lower than the probability estimated with 1 − p̂c

h(x). This means that
the probability of not dying from breast cancer is likely to be underestimated
by 1 − p̂h(x). Nonetheless, the differences between 1 − p̂c

h(x) and 1 − p̂h(x) are
subtle, as the proportion of the identified known cures is small. When the last
observation is an event or known to be cured, the estimator 1 − p̂c

h(x) produces
the same estimate as the competing risks estimators 1 − p̂1,h(x) and 1 − p̂2,h(x).

Finally, regarding the MI-NW estimator, it shows a similar trend as 1 − p̂c
h(x)

and 1 − p̂h(x), although the estimated probabilities are substantially smaller. As
pointed out before, the performance of 1−p̂MI-NW

h (x) worsens significantly because
of the extremely high proportion of patients with missing cure status.
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3.5.2 COVID-19 data

Since the COVID-19 pandemic started in the beginning of 2020, countries around
the world are experiencing a large number of incident cases, with many patients
requiring hospitalization wards. Although most infected people presented with
mild disease, there were many severe cases that required long stays in ICU, over-
whelming the healthcare systems with critical consequences on the disease mortal-
ity. An accurate knowledge of the duration of hospitalization, and the prediction
of the probability that a hospitalized inpatient would require a bed in ICU, are key
for understanding the hospital demand for beds and crucial for decision-making
and suitable planning.
As mentioned in Section 1.6, the second dataset contains the 10, 454 confirmed
COVID-19 cases reported by the Galician Healthcare Service (2021) between
March 6 and May 7, 2020. The time of interest is the length of stay in hospital
ward until admission to ICU, and the aim of this analysis was to estimate the
probability of admission to ICU from hospital ward given age and sex as covariates
of interest, see Table 3.6. Of the 2, 484 hospitalized cases, 104 (4.2%) patients
were excluded from analysis because they were admitted and discharged on the
same date or they were admitted directly to the ICU, resulting in a length of stay
in hospital ward of 0 days. For the remaining 2, 380 hospitalized patients for at
least one day, 1, 063 (44.7%) were 75 years of age or above and 1, 262 (53.0%) were
males. A total of 1, 638 (68.8%) patients were discharged alive before entering
ICU, and 328 (13.8%) had died before entering ICU. None of them will require
admission to ICU eventually, so all of them can be considered as “cured” from
the event of interest, that is, admission to ICU. Note that “cure” means being
free of experiencing admission to ICU, not cured in medical terms.
A total of 197 patients of the 2, 380 inpatients in hospital ward required admission
to ICU, which gives an empirical estimated probability of admission to ICU of
p̂ = 197/2380 = 0.083. However, the true number of patients requiring ICU
is expected to be larger than 197, as some of the 217 (9.1%) inpatients still in
hospital bed at the end of the study might eventually need admission to the ICU.
This shows that p̂ = 0.083 might underestimate the probability of admission to
ICU, motivating the use of alternative estimators than can handle censoring such
as the proposed estimator. It is assumed that condition (3.5) applies, as the
result of the test of Maller and Zhou (Maller and Zhou, 1992) suggests (p-value
< 0.001).
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Figure 3.7: Estimation of the probability of admission to ICU for hospitalized
COVID-19 patients estimated using 1 − p̂c

h(x) and its 95% CI, 1 − p̂1,h(x) , 1 −
p̂2,h(x), 1 − p̂h(x) (all computed with the bootstrap bandwidth), 1 − p̂MI-NW

h (x)
(computed using the cross-validation bandwidth), and 1 − p(x; γ̂).

Table 3.6 shows the estimated probabilities p of requiring ICU, given by the
proposed estimator p̂c

n, the unconditional competing risks estimators p̂1,n, p̂2,n, the
empirical estimator p̂, the MI estimator p̂MI

n with M = 20, and the unconditional
XP estimator p̂n. It should be noted that only 9.1% patients are still in hospital
bed at the end of the study, for whom eventual admission to ICU is unknown
(missing cure status). Therefore, the proportion of individuals with the observed
cure status is high.
In this situation, the estimators p̂c

n, p̂1,n and p̂MI
n are expected to perform nicely,

and the results by p̂ are likely to improve as the biased performance towards
insufficient cure status information fades away. On the other hand, the estimator
p̂2,n tends to overestimate low probability of requiring ICU. In addition, XP esti-
mator is expected to perform poorly since it dismisses the significant information
given by the observed cured individuals.
As it can be seen in Table 3.6, the estimated probabilities of admission to ICU
given by the empirical estimator, the MI estimator and the proposed estimator
are very similar. This suggests that it is possible that the missing data mechanism
from this dataset is close to strongly ignorable missing at random. On the other
hand, the estimated probabilities given by the XP estimator p̂n seem to be too
high.
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Figure 3.7 shows the estimated probability of requiring admission to ICU de-
pending on the age, obtained using the estimator 1 − p̂c

h(x), the competing risks
estimators 1− p̂1,h(x), 1− p̂2,h(x), the XP estimator 1− p̂h(x), all computed using
the bootstrap bandwidth selector as in the breast cancer example, the semipara-
metric estimator 1 − p(x; γ̂), and the MI-NW estimator 1 − p̂MI-NW

h (x) computed
using the same bandwidths selectors as in the breast cancer example. Although
the semiparametric estimator suggests a uniformly decreasing effect of the age on
the probability of admission to the ICU, the other three estimators indicate that
the logistic assumption for the cure probability might not be acceptable, as the
curve patterns are characterized by a constant to a slightly increasing probability
of admission to the ICU for younger patients (below 55 years), a sharp increase
of the probability for middle age patients (from 55 to 69 years) and a decrease
for elderly patients (70 years or older). For the aforementioned reasons, the XP
estimator seems to overestimate the probability of ICU admission, now as a func-
tion of the age. Regarding the MI-NW estimator, the pattern of the estimated
probability is consistent with that of the proposed estimator. However, it seems
to underestimate the probability of admission to ICU for young-to-middle age
patients. This is due to the low percentage of observed admissions to ICU in pa-
tients of those ages, resulting in an estimation with a high percentage of missing
response.

3.6 Discussion

A novel nonparametric estimator of the conditional probability of cure is pro-
posed for the MCM when some censored individuals can be observed to be cured
from the event. It reduces to well-known estimators in the literature for the un-
conditional setting, when there is a cure threshold, if there is no observed cured
individuals, and when there is no censoring. In contrast to regression based es-
timators, the proposed estimator is based on the MCM. It uses the available
information of the observed times, and therefore can lead to substantial gain in
efficiency.
When compared with the XP estimator, also based on the MCM but disregarding
the information given by the cure status, it has been demonstrated that the
estimator of the probability of cure proposed in Section 3.2 has always smaller
asymptotic variance. The advantage in terms of bias is not guaranteed, as it
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depends on the conditional probability of knowing the cure status information
and the censoring distribution. On the other hand, simulations and the analysis
of two real data examples show that our estimator yields significant improvement
compared to XP estimator, for which the cure status information is ignored.
In Section 3.3.1, the cure rate can alternatively be estimated using a competing
risks model, with the event as the type of failure of interest and the cure as
a competing risk. The basic assumption in this competing risks model is that
failure, cure, and censoring variables are independent conditional on the covariate,
and that either failure or cure will occur with probability one although they may
not be observed (Betensky and Schoenfeld, 2001). The main disadvantage of this
approach is that if the last observation is not an event nor an observed cured
individual, then the estimator of the cure rate is not unique, and only upper and
lower bounds are provided.
The multiply imputed NW estimator, introduced in Section 3.3.2, performs well
when the proportion of observed events is high, that is, for low percentages of
missing events, but it performs poorly when there is heavy missingness. In this
setup, high levels of missingness are linked to low values of π(x) = P (C =
∞ | X = x), which results in a clear violation of the siMAR assumption, and
consequently biased estimates. Besides, the MI-MW estimator is computationally
quite expensive, particularly when the sample size is large, and it requires the
selection of three different bandwidths.
It should be noted that the semiparametric estimator by Bernhardt (2016) is
somewhat affected when the logistic assumption is violated and it might be chal-
lenging to obtain stable estimates for the model parameters if the sample size is
small.
Finally, the empirical estimator of the unconditional cure probability, which dis-
regards the observations with unknown cure status, clearly underestimates the
true probability and it cannot handle continuous covariates.
As discussed in Section 3.3.2, the probability of cure can be estimated as a re-
gression function with the cure indicator as the response. The proposed MI-NW
estimator imputes the missing values of the cure status. We are aware of the
existence of other ways of dealing with missingness in the response. To name
one of them, the problem can also be addressed using inverse probability weight-
ing method (Wang et al., 2010; Seaman et al., 2012; Seaman and White, 2013).
However, it has not been considered in this chapter for the estimation of the cure
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rate because the performance is expected to be similar to that of the MI-NW
estimator, and the efficiency of this method is expected to depend largely on the
level of missingness in the data.
In summary, the proposed estimator in Section 3.2 performs well when there are
individuals known to be “cured” from the considered event, and is efficient under
high proportion of missingness in the cure status. Moreover, it does not assume
any parametric assumption for the cure probability. Also, it can be applied when
the cure identification does not rely necessarily on the observed time-to-event
being larger than a cure threshold, when there is not any individual known to be
cured or without censoring.





Chapter 4

Nonparametric latency estimator

4.1 Introduction

While in Chapter 3 the interest was on estimating the probability of cure or
its complement (the probability of the event), the focus of this chapter is on
estimating the latency function. The latency function can be estimated using
either a (semi)parametric approach (Maller and Zhou, 1992; Patilea and Van
Keilegom, 2020; Amico and Van Keilegom, 2018, among others) or a completely
nonparametric method (López-Cheda et al., 2017b). Peng and Yu (2021) provide
a comprehensive discussion on the different procedures for estimating the latency
function in the standard MCM.
Few authors have developed methods to estimate the latency function when the
cure status is available in the MCM. Wu et al. (2014) modeled the latency part
using Cox proportional hazards model, whereas Bernhardt (2016) considered the
AFT model. Completely nonparametric estimation of the latency function, with-
out covariates, has been addressed by Laska and Meisner (1992).
The aim of this chapter is to develop a fully nonparametric estimator of the
conditional latency function in the MCM when the cure status is partially avail-
able. The proposed estimator extends the nonparametric latency estimator of
López-Cheda et al. (2017b). This chapter proceeds as follows. In Section 4.2, a
nonparametric estimator of the conditional latency function is proposed and the
asymptotic properties of the estimator are studied. Also, a bootstrap bandwidth
selector is proposed. In Section 4.3, the results of a simulation study carried out
to evaluate the finite sample performance of the estimator are presented. An
application to the COVID-19 data is delineated in Section 4.4. A discussion is

77
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given in Section 4.5.

4.2 Proposed estimator of the latency function

From the definition of the survival function in MCM, given in (1.4), the latency
function can be written in terms of the survival function and the cure probability
as follows:

S0 (t | x) = S (t | x) − (1 − p(x))
p(x) . (4.1)

Following similar ideas as in López-Cheda et al. (2017b), equation (4.1) is used to
motivate a nonparametric estimator of the latency function, by replacing S (t | x)
and 1 − p(x) with the estimators Ŝc

h2 (t | x) in (2.16) and 1 − p̂c
h1 (x) in (3.1),

respectively, where the bandwidths h1 and h2 are allowed to be distinct. To
estimate S0 (t | x), the estimator below is proposed:

Ŝc
0,h1,h2 (t | x) =



Ŝc
h2 (t | x) − (1 − p̂c

h1(x))
p̂c

h1(x) if 0 ≤ t ≤ T 1
(n) and

Ŝc
h2 (t | x) > 1 − p̂c

h1(x)
0 otherwise.

(4.2)

Clearly, the condition Ŝc
h2 (t | x) > 1 − p̂c

h1(x) in (4.2) is added to ensure the
non-negativity of the estimator.
Note that if h1 = h2 = h then the proposed estimator in (4.2) reduces to the
following estimator:

Ŝc
0,h(t | x) = Ŝc

h (t | x) − (1 − p̂c
h(x))

p̂c
h(x) . (4.3)

Although the estimator in (4.3) has the advantage of providing legitimate esti-
mates of a survival function with a more straightforward definition than that of
the estimator in (4.2), it might not be flexible enough when the optimal band-
widths for Ŝc

h (t | x) and 1 − p̂c
h(x) are quite different. Both estimators (4.2) and

(4.3) extend the method in Laska and Meisner (1992) for randomly observed
cured individuals.
In the unconditional case, the estimator in (4.2) becomes

Ŝc
0,n (t) = Ŝc

n (t) − (1 − p̂c
n)

p̂c
n

, (4.4)

where Ŝc
n (t) is given in (2.18) and 1 − p̂c

n in (3.3).
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4.2.1 Asymptotic results

In this section, the asymptotic properties of the estimator Ŝc
0,h1,h2 (t | x) are es-

tablished. From them, the asymptotic properties of the estimator with a single
bandwidth in (4.3) are immediately derived by just considering h1 = h2 = h.
The next theorem gives an asymptotic representation for Ŝc

0,h1,h2 (t | x). Its proof
is provided in Appendix C.

Theorem 4.1 (Asymptotic representation). Suppose that Assumptions 1 –
9 hold, then, for x ∈ I and t ∈ [a, b] such that Ŝc

h2(t | x) > 1 − p̂c
h1(x), an iid

representation for Ŝc
0,h1,h2 (t | x) is

Ŝc
0,h1,h2 (t | x) − S0 (t | x) =

n∑
i=1

ηh1,h2 (Ti, δi, ξi, νi, t, x) + Rn (t, x) , (4.5)

where

ηh1,h2 (Ti, δi, ξi, νi, t, x) = − S(t | x)
p(x) B̃h2i(x)ζ (Ti, δi, ξi, νi, t, x)

− (1 − p(x))(1 − S(t | x))
p2(x) B̃h1i(x)ζ (Ti, δi, ξi, νi, τ0, x)

(4.6)
with ζ (Ti, δi, ξi, νi, t, x) in (2.21),

B̃hji (x) = 1
m (x)

1
nhj

K

(
x − Xi

hj

)
, for j = 1, 2,

and Rn (t, x) can be shown to satisfy

sup
a≤t≤b,x∈I

| Rn (t, x) |= O
(
(nh)−3/4 (log n)3/4

)
a.s.

In the next proposition, the asymptotic bias and variance of the dominant term
in the iid representation of Ŝc

0,h1,h2(t | x) are studied.

Proposition 4.1 (Asymptotic expression of the bias and variance) Sup-
pose that Assumptions 1 – 9 are satisfied, then, the asymptotic bias and variance
of the dominant term of Ŝc

0,h1,h2 (t | x) are, respectively,

µc
h1,h2(t, x) = h2

1Bc,1(t, x) + h2
2Bc,2(t, x) + O

(
h4

1

)
+ O

(
h4

2

)
, (4.7)

and

σ2
c,h1,h2(t, x) = 1

nh1
s2

c,1(x) + 1
nh2

(
s2

c,2(t, x) + 2s2
c,3(t, x)

)
+ O(n−1h2) + O((nh2)−1h1). (4.8)

The dominant terms in the bias given in (4.7) are

Bc,1 (t, x) = 1 − S (t | x)
2p2 (x) m (x)dK

[
2 (1 − p (x))′ m′ (x) + (1 − p (x))′′m (x)

]
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− (1 − p (x)) (1 − S (t | x))
p2 (x) dK

∫ τ0

0

G′ (v− | x)
1 − G (v− | x)

d

ds

(
S ′ (s | x)
S (s | x)

) ∣∣∣∣∣
s=v−

dv

(4.9)
and

Bc,2(t, x) = dK

2p (x) m (x)
(
2S ′

(
t− | x

)
m′ (x) + S ′′

(
t− | x

)
m (x)

)
− S (t | x) dK

p (x)

∫ t

0

G′ (v− | x)
1 − G (v− | x)

d

ds

(
S ′ (s | x)
S (s | x)

) ∣∣∣∣∣
s=v−

dv, (4.10)

where dK =
∫

v2K(v)dv and S ′(t | x), S ′′(t | x), (1 − p(x))′ and (1 − p(x))′′ refer
to the derivatives with respect to x.
The dominant terms in the variance given in (4.8) are

s2
c,1(t, x) =(1 − p(x))2 (1 − S(t | x))2

p4(x)m(x)

∫ τ0

0

dH1(v | x)
(1 − H(v | x) + H11(v | x))2 cK (4.11)

s2
c,2(t, x) = S2(t | x)

p2(x)m(x)

∫ t

0

dH1(v | x)
(1 − H(v | x) + H11(v | x))2 cK (4.12)

s2
c,3(t, x) =(1 − p(x)) (1 − S(t | x)) S(t | x)

p3(x)m(x)

∫ t

0

dH1(v | x)
(1 − H(v | x) + H11(v | x))2

×
∫

K(v)K(vh1

h2
)dv, (4.13)

where cK =
∫

K2(v)dv.

The proof of Proposition 4.1 is given in Appendix C.

Remark 4.1 Up to a factor depending on t and x, the terms Bc,1(t, x) in (4.9) and
Bc,2(t, x) in (4.10) are the dominant terms of the bias of the estimators Ŝc

h2 (t | x)
and 1 − p̂c

h1(x) given in (2.25) and (3.7), respectively. Similarly for the variance,
the term s2

c,1(t, x) in (4.11) corresponds to the asymptotic variance of 1− p̂c
h1(x) in

(3.10), and s2
c,2(t, x) in (4.12) corresponds to the asymptotic variance of Ŝc

h2 (t | x)
in (2.26). The last term s2

c,3(t, x) in (4.13) stands for the covariance of 1 − p̂c
h1(x)

and Ŝc
h2 (t | x).

Theorem 4.2 (Asymptotic normality). Suppose that Assumptions 1 – 9 and
11 are satisfied, then, for x ∈ I and t ∈ [a, b] such that Ŝc

h2(t | x) > 1 − p̂c
h1(x), it

follows that

(i) If nh5
1 → 0 and nh5

2 → 0, then√
nh1h2

h1 + h2

(
Ŝc

0,h1,h2 (t | x) − S0 (t | x)
)

d−→ N(0, s2
c(t, x)),
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where

s2
c(t, x) =



s2
c,1(t, x) if h1

h2
→ 0

s2
c,2(t, x) if h2

h1
→ 0

C2s
2
c,1(t, x)

C1 + C2
+

C1

(
s2

c,2(t, x) + 2s2
c,3(t, x)

)
C1 + C2

if h1

h2
→ C1

C2
(4.14)

with s2
c,1(t, x), s2

c,2(t, x) and s2
c,3(t, x) given in (4.11) – (4.13), and C1 and C2

are constants.

(ii) If nh5
1 → 0 and nh5

2 → C5
2 > 0, then√

nh1h2

h1 + h2

(
Ŝc

0,h1,h2 (t | x) − S0 (t | x)
)

d−→ N(0, s2
c,1(t, x)).

(iii) If nh5
1 → C5

1 > 0 and nh5
2 → 0, then√

nh1h2

h1 + h2

(
Ŝc

0,h1,h2 (t | x) − S0 (t | x)
)

d−→ N(0, s2
c,2(t, x)).

(iv) If nh5
1 → C5

1 > 0 and nh5
2 → C5

2 > 0, then√
nh1h2

h1 + h2

(
Ŝc

0,h1,h2 (t | x) − S0 (t | x)
)

d−→ N(Bc(t, x), s2
c(t, x)),

where

Bc(t, x) =
√

C1C2

C1 + C2

(
C2

1Bc,1(t, x) + C2
2Bc,2(t, x)

)
,

with Bc,1(t, x) and Bc,2(t, x) defined in (4.9) and (4.10), and s2
c(t, x) is given

in (4.14).

The proof of Theorem 4.2 is in Appendix C.

4.2.2 Effect of ignoring the cure status information

In this section, the effect of ignoring the cure status information is discussed by
comparing the dominant terms of the bias and variance of the proposed esti-
mator, Ŝc

0,h1,h2 (t | x), with those of the LC estimator, Ŝ0,h (t | x) given in (1.6).
The LC estimator is a particular case of the proposed estimators Ŝc

0,h1,h2 (t | x)
and Ŝc

0,h (t | x), only when a single bandwidth is used and any possibly avail-
able information about cure status is not considered in the estimation procedure.
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Theorem 2 in López-Cheda et al. (2017b) presents asymptotic expressions for the
bias and variance of the LC estimator, which are, respectively,

µh(t, x) =h2(B1(t, x) + B2(t, x)) + O
(
h4
)

(4.15)

and

σ2
h(t, x) = 1

nh

(
s2

1(t, x) + s2
2(t, x) + 2s2

3(t, x)
)

+ O(n−1h). (4.16)

The expressions B1(t, x) and B2(t, x) in (4.15) correspond to the terms Bc
1(t, x)

and Bc
2(t, x) in (4.9) – (4.10) after replacing G(t | x) with G0(t | x):

B1 (t, x) = 1 − S (t | x)
2p2 (x) m (x)dK

[
2 (1 − p (x))′ m′ (x) + (1 − p (x))′′m (x)

]
− (1 − p (x)) (1 − S (t | x))

p2 (x) dK

∫ τ0

0

G′
0 (v− | x)

1 − G0 (v− | x)
d

ds

(
S ′ (s | x)
S (s | x)

) ∣∣∣∣∣
s=v−

dv

and

B2(t, x) = dK

2p (x) m (x)
(
2S ′

(
t− | x

)
m′ (x) + S ′′

(
t− | x

)
m (x)

)
− S (t | x) dK

p (x)

∫ t

0

G′
0 (v− | x)

1 − G0 (v− | x)
d

ds

(
S ′ (s | x)
S (s | x)

) ∣∣∣∣∣
s=v−

dv,

where dK =
∫

v2K(v)dv and S ′(t | x), S ′′(t | x), (1 − p(x))′ and (1 − p(x))′′ refer
to the derivatives with respect to x.

As the asymptotic bias of the proposed estimator depends on the derivatives of
1 − π(x) and G0(t | x), it is not straightforward to evaluate the exact gain of
considering the cure status information in terms of bias.

On the other hand, the functions s1(t, x), s2(t, x) and s3(t, x) are derived from
sc,1(t, x), sc,2(t, x) and sc,3(t, x) in (4.11) – (4.13) by replacing H11(t | x) with 0.
When the cure information is included in the estimation, then H11(t | x) ≥ 0
and therefore s2

c,i(t, x) ≤ s2
i (t, x), for i = 1, 2, 3. So, ignoring the cure status

information can increase the variance.

A generalization of the LC estimator in (1.6) in which two different bandwidths
are used is

Ŝ0,h1,h2 (t | x) =


Ŝh2 (t | x) − (1 − p̂h1(x))

p̂h1(x) if 0 ≤ t ≤ T 1
(n) and

Ŝh2 (t | x) > 1 − p̂h1(x)
0 otherwise.

(4.17)
Henceforth, it will be referred to as LC2b. Note that the LC2b estimator has not
yet been considered elsewhere.
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4.2.3 Bootstrap bandwidth selection

In this section, a bootstrap selection method for the bandwidths h1 and h2 of the
estimator Ŝc

0,h1,h2 (t | x) is proposed. The principle of bootstrap-based bandwidth
selection methods is to minimize a bootstrap estimate of the MISE. The bootstrap
MISE can be approximated by

MISE∗
x(h1, h2) ≃ 1

B

B∑
b=1

∫ (
Ŝc,∗b

0,h1,h2(v | x) − Ŝc
0,g1x ,g2x

(v | x)
)2

ω(v, x)dv, (4.18)

where Ŝc,∗b
0,h1,h2(t | x) is the estimator computed with the bth bootstrap resample

using the bandwidths h1 and h2, and Ŝc
0,g1x ,g2x

(t | x) is the estimator computed
with the original sample using the pilot bandwidths g1x and g2x . Note that ω(v, x)
is a nonnegative weight function, intended to give lower weight to the right tail
of the distribution.
Specifically, the steps to compute the bootstrap bandwidths for a fixed covariate
value x are:

Step 1. With the original sample and the pilot bandwidths g1x and g2x , compute
Ŝc

0,g1x ,g2x
(t | x) in (4.2).

Step 2. Choose two dense enough grids of bandwidths, {h11, . . . , h1L} and
{h21, . . . , h2L}.

Step 3. Generate B bootstrap resamples
{(X∗(b)

i , T
∗(b)
i , δ

∗(b)
i , ξ

∗(b)
i ν

∗(b)
i ) : i = 1, . . . , n}, for b = 1, . . . , B.

Step 4. With the bth bootstrap resample and the bandwidths h1j and h2k com-
pute Ŝc,∗b

0,h1j ,h2k
(v | x), for j, k = 1, . . . , L.

Step 5. For h1j and h2k, j, k = 1, . . . , L, compute the MISE∗
x(h1j, h2k) given by

(4.18).

Step 6. The bootstrap bandwidths, h∗
1x and h∗

2x, are the bandwidths from the
grids {h11, . . . , h1L} and {h21, . . . , h2L} that minimize MISE∗

x(h1j, h2k).

The bootstrap resamples in Step 3 are generated following any of the two equiv-
alent resampling algorithms introduced in Section 2.3.3. For computational effi-
ciency (see López-Cheda et al., 2017a,b), we fixed X∗

i = Xi instead of resampling
it randomly from {X1, . . . , Xn}. For the pilot bandwidths g1x and g2x the boot-
strap bandwidth selectors in Sections 2.3.4 and 3.2.3, respectively, are proposed.
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Table 4.1: Characteristics of the simulated scenarios.

Scenario Setting % censoring % cured
p(x) S0(t | x) π(x) = 0.2 π(x) = 0.8

1 p1(x) S0,3(t | x) 52.0 48.2 46.0
2 p2(x) S0,3(t | x) 37.5 24.3 20.0
3 p3(x) S0,3(t | x) 84.5 81.2 80.0
4 p1(x) S0,1(t | x) 51.0 48.0 46.0
5 p4(x) S0,2(t) 45.8 36.5 33.3

A similar bootstrap procedure can be used to select the bandwidth h of the
estimator Ŝc

0,h (t | x) in (4.3). For choosing the local pilot bandwidths g1x and
g2x , we propose the same expressions as that in Sections 2.3.4 and 3.2.3.

4.3 Simulation study

A simulation study has been conducted to evaluate the finite sample performance
of the estimators Ŝc

0,h1,h2 (t | x) in (4.2) and Ŝc
0,h (t | x) in (4.3). Particularly, the

effect of varying the proportion of individuals identified as cured, π(x), the sample
size, n, and the form of p(x) and S0(t | x) is studied. The comparisons were
made among five estimators: the proposed estimator Ŝc

0,h1,h2 (t | x), its simplified
version with a single bandwidth Ŝc

0,h (t | x), the LC estimator Ŝ0,h (t | x), the
LC2b estimator Ŝ0,h1,h2 (t | x), and the semiparametric latency estimator, S0(t |
x; β̂), proposed by Bernhardt (2016). The semiparametric estimator includes
the information of the identified cured individuals but does not benefit from the
flexibility of the nonparametric estimator, its performance strongly depends on
the adequacy of the AFT approach to model the latency function.
The proportion of individuals identified as being cured was set to π(x) = 0.2
and 0.8. The censoring time C was generated, independently of Y given X,
so that with probability π(x) then C = ∞, and with probability 1 − π(x) the
value of C was generated from a Weibull distribution with shape parameter α =
2 and scale parameter β = 2. The covariate X was uniformly distributed on
[−20, 20]. Four different models for the probability of the event p(x) are assumed:
a logistic regression model p1(x) = (0.476 + 0.358x) / (1 + exp (0.476 + 0.358x)) ;
the second and third models assume the constant functions p2(x) = 0.8 and
p3(x) = 0.2; and the last one assumes a quadratic function p4(x) = 1 − 0.0025x2.

Further, three different latency functions were defined as follows. The latency
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functions S0,1 (t | x) in (2.40), and

S0,2 (t) =


exp (−t) − exp (−4.605)

1 − exp (−4.605) if 0 ≤ t ≤ 4.605

0 otherwise.
,

correspond to the truncated exponential function. The other latency function
from an AFT model with lognormal distribution:

S0,3 (t | x) =


Ψ (4.305 + 0.15x) − Ψ (log t − (0.3 − 0.15x))

1 − Ψ (4.305 + 0.15x) if 0 ≤ t ≤ 4.605

0 otherwise,
where Ψ(·) is the survival function of the standard normal distribution. This is
the parametric model for the latency function that the semiparametric estimator
S0(t | x, β̂) assumes for the estimation of S0(t | x). Table 4.1 shows the char-
acteristics of the scenarios simulated in our study, which result from combining
different models for p(x) and S0(t | x). Scenarios 1 – 3 are intended to assess the
effect of the form of p(x) on the estimation of the latency function. Specifically,
Scenario 1 considers the parametric functions assumed by the semiparametric
estimator in Bernhardt (2016), so its performance is expected to be quite good.
Note that Scenarios 2 – 5 serve to evaluate the performance of the semiparamet-
ric estimator when the parametric model assumptions are unsatisfied for either
p(x), S0(t | x) or both. Finally, in Scenario 5 the forms of neither the probability
of the event p(x) nor the latency S0(t | x) match the models assumed by the
semiparametric estimator.
For each scenario, 1000 datasets of sample sizes n = 50, 100 and 200 were gener-
ated. The search of the optimal bandwidths (h1, h2) and h for the nonparametric
estimators was performed in grids of 51 values from 5 to 100, equispaced in
a logarithmic scale. The Epanechnikov kernel was used. As weight function,
ω(t, x) = 1(0 ≤ t ≤ wx) was considered, where wx is the 90th percentile of
S0(t | x).
The integrated squared bias, integrated variance and MISE for each estimator in
every scenario were approximated. Figure 4.1 displays the MISE when n = 100
and π(x) = 0.8 for Scenarios 1 – 5. As expected, in Scenario 1 the semiparametric
estimator behaves well for most values of the covariate X. The semiparametric
estimator also gives acceptable results in Scenarios 2 and 3 because of the AFT
model in S0,2(t | x) and the cure probability function is constant. Nevertheless, in
these scenarios, the estimators Ŝc

0,h1,h2 (t | x) and Ŝc
0,h (t | x) are highly competitive

and beat the S0(t | x; β̂) for a wide range of values of the covariate. Moreover, the
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estimators Ŝc
0,h1,h2 (t | x) and Ŝc

0,h (t | x) outperform S0(t | x; β̂) in Scenarios 4 –
5 because the underlying logistic and/or AFT model assumptions for the cure
probability and the latency are violated.

In most scenarios, observe that the Ŝc
0,h1,h2 (t | x) and Ŝc

0,h (t | x) outperform
Ŝ0,h1,h2 (t | x) and Ŝ0,h (t | x). Clearly, the estimator Ŝc

0,h1,h2 (t | x) displays a bet-
ter performance than the simplified version Ŝc

0,h (t | x), specially in Scenarios 1,
4 and 5 where the cure probability function is not constant. The conclusion is
the same when the cure status information is ignored, the overall better perfor-
mance of Ŝ0,h1,h2 (t | x) over Ŝ0,h (t | x) implies that the use of two bandwidths is
preferable at most times.

Figure 4.2 (top) and Table 4.3 show the effect of the sample size on the behavior
of the estimators, comparing the results when n = 50, 100, 200 and for π(x) = 0.8
in Scenario 4. As the sample size increases, the differences between the MISE of
all estimators decrease. Table 4.3 lists the effect of the sample size on the MISE
and the integrated squared bias and variance. For this scenario, the integrated
variances of the estimator Ŝc

0,h1,h2(t | x) are smaller than Ŝ0,h1,h2(t | x) and Ŝ0,h(t |
x) for all sample sizes. These differences decrease as the sample size n increases.

Figure 4.2 (bottom) and Table 4.4 provide some insight about the effect of the
cure status π(x) on the estimators. The behavior of Ŝc

0,h1,h2 (t | x), Ŝc
0,h (t | x) and

S0(t | x; β̂) generally improves as π(x) increases. The estimator Ŝc
0,h1,h2 (t | x)

substantially outperforms Ŝ0,h1,h2 (t | x) and Ŝ0,h (t | x) in all scenarios.

The performance of the bootstrap bandwidth selector was assessed using a total
of 1000 samples, B = 500 bootstrap resamples and a grid of 51 bandwidths
equispaced in a logarithmic scale, from hi1 = 5 to hi51 = 100, for i = 1, 2.
Figure 4.3 shows the contour plots of the MISE and the density of the selected
bootstrap bandwidths h∗

1x
, h∗

2x
for the covariate values x = −2, 2, 8 and 14. For

this sample size and this scenario, the bootstrap bandwidth selector seems to
perform well.
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Figure 4.1: MISE of Ŝc
0,h1,h2 (t | x), Ŝc

0,h (t | x), Ŝ0,h1,h2 (t | x) Ŝ0,h (t | x) (all com-
puted with the optimal bandwidth(s)), and S0(t | x; β̂) in the simulated scenarios
for π(x) = 0.8 and n = 100.



88 Chapter 4. Nonparametric latency estimator

Ta
bl

e
4.

2:
In

te
gr

at
ed

sq
ua

re
d

bi
as

(I
bi

as
2 )

,i
nt

eg
ra

te
d

va
ria

nc
e

(I
va

r)
an

d
M

IS
E

of
Ŝ
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Figure 4.2: MISE of Ŝc
0,h1,h2 (t | x), Ŝc

0,h (t | x), Ŝ0,h1,h2 (t | x), Ŝ0,h (t | x) (all
computed with the optimal bandwidth(s)), and S0(t | x; β̂) in Scenario 4 for
π(x) = 0.8, n = 50, 200 and π(x) = 0.2, n = 100.
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Figure 4.3: Contour plots of the MISE of the proposed estimator in Scenario 4
as a function of the two bandwidths, h1, h2. The optimal bandwidth where the
minimum MISE is reached is marked with a cross. The joint density of the
bootstrap bandwidths h∗

1,x, h∗
2,x is also shown in shades of gray, where a darker

gray represents a greater density.
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4.4 Real data analysis

The performance of the estimators Ŝc
0,h1,h2 (t | x) in (4.2), Ŝc

0,h (t | x) in (4.3) and
Ŝc

0,n (t) in (4.4) is illustrated using the COVID-19 data, which was introduced
in Sections 1.6 and 3.5.2. Accurate estimates of the trajectory of a patient and
the lengths of stay (LoS) from one hospital facility (ward, ICU) to another for
proper capacity planning are crucial for healthcare authorities. The total LoS
of a patient is divided into several stages according to the patient pathway, and
each time can be modeled separately (Currie et al., 2020; Garćıa-Vicuña et al.,
2021).

For illustration purposes, one specific LoS is considered, the time of a patient in
hospital ward until admission to ICU given sex and age as covariates of interest.
The latency curves for middle-aged (58 years) and older (74 years) patients were
estimated using the estimators Ŝc

0,h1,h2 (t | x), Ŝc
0,h (t | x) (both computed with the

bootstrap bandwidth selector in Section 4.2.3), S0(t | x; β̂), and the estimators
Ŝ0,h1,h2 (t | x) and Ŝ0,h (t | x) computed with the R package npcure (López-Cheda
et al., 2021).

The latency function was estimated separately for males and females with Ŝc
0,n (t),

the unconditional version of S0(t | x; β̂), and the unconditional version of the LC
estimator Ŝ0,n (t), which ignores a substantial percentage of patients who did
not require ICU. Table 3.6 demonstrates the percentage of patients known to
be cured from ICU admission is very high, (82.6%). Thus, the non-inclusion of
such information in the estimation procedure is expected to give inefficient and
possibly biased estimates.

The results are displayed in Figure 4.4. The estimates of the conditional latency
functions for the fixed ages show that the survival curves using Ŝc

0,h1,h2 (t | x),
Ŝc

0,h (t | x) and S0(t | x; β̂) are closer to each other, which suggests that the AFT
semiparametric model might be appropriate for modeling the LoS until admission
to ICU. Meanwhile, the curves estimated using Ŝ0,h1,h2 (t | x) and Ŝ0,h (t | x) ap-
pear to be overoptimistic, revealing that ignoring the substantial information of
the cured individuals may provide biased estimates. The same conclusion applies
to the estimates of the latency function for men and women.
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Figure 4.4: Latency estimates of the time in hospital ward until admission to
ICU of COVID-19 patients requiring ICU aged 58 and 74 years obtained using
Ŝc

0,h1,h2 (t | x), Ŝc
0,h (t | x), Ŝ0,h (t | x), Ŝ0,h (t | x) (all computed using the bootstrap

bandwidths), and S0(t | x; β̂). Also shown are the latency estimates by gender,
both computed using Ŝc

0,n (t), Ŝ0,n (t) and the unconditional version of S0(t | x; β̂).

To provide some insight about the source of these differences between the pro-
posed estimator of the latency function that includes the cure status knowledge,
and the LC estimator that disregards that available information, Figure 4.5 shows
the estimated survival curves for middle-aged (58 years) and older (74 years) pa-
tients computed using the estimator Ŝc

h (t | x) and Ŝh (t | x). Also it shows the
probabilities of requiring ICU estimated using 1 − p̂c

h(x) and 1 − p̂h(x).
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Figure 4.5: (Top panels) Survival estimates of the time in hospital ward until
admission to ICU of COVID-19 patients aged 58 and 74 years obtained using
Ŝc

h (t | x) and Ŝh (t | x). (Bottom panel) Probability estimates of admission to
ICU computed using 1 − p̂c

h(x) and 1 − p̂h(x), all computed with the bootstrap
bandwidths.

There are large differences between the estimates of probability of ICU admission
obtained with 1 − p̂c

h(x) and 1 − p̂h(x) for patients aged 58 years and only small
differences for patients aged 74 years. Meanwhile, the estimators Ŝc

0,h1,h2 (t | x)
and Ŝ0,h (t | x) (Figure 4.4) show that the latency estimates are similar when
age increases from 58 to 74 years. Notable difference seen in the latency curves
obtained with Ŝc

0,h1,h2 (t | x) and Ŝ0,h (t | x) comes from the estimated survival
curves in Figure 4.5 (top panels). Survival estimates of the time in hospital ward
until admission to ICU obtained with Ŝc

h (t | x) coincide with Ŝh (t | x) at the
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very beginning. Conversely, as the proportion of patients known to be “cured” is
very high, the survival curve estimated with Ŝc

h (t | x) tends to level-off quicker
than that estimated with Ŝh (t | x). This difference is reflected in the latency
curves estimated by Ŝc

0,h1,h2 (t | x) and Ŝ0,h (t | x), which are simply the estimated
survival curves rescaled as proper survival functions.

4.5 Discussion

This chapter proposes a completely nonparametric approach to estimate the la-
tency function in the MCM when the cure status information is available for a
subset of the censored observations. The main advantage of the proposed esti-
mator is the flexibility it gives to the procedure since, unlike other alternatives in
the literature, it handles any type of covariates without the need of assuming any
(semi)parametric model. The asymptotic properties of the estimator were stud-
ied, and a procedure for the selection of the bandwidths was provided, showing
its good performance in practice.
The effect of including the cure status information in the estimation procedure
was demonstrated to be clearly beneficial by comparing the proposed estimator
with the nonparametric estimator by López-Cheda et al. (2017b). It has been
proved that including the known cures in the estimation reduces the variance
asymptotically. The gain in terms of bias is not straightforward from a theoretical
point of view, as it depends on the conditional probability of knowing the cure
status information and the censoring distribution. Nevertheless, the simulation
results show great improvement in terms of bias for all the scenarios.





Chapter 5

A simple nonparametric testing
procedure

5.1 Introduction

In general, when analyzing time-to-event data under right censoring, one can
never observe the survival time Y and the censoring time C jointly for a given
individual. This makes the relation between the survival time and the censoring
time unidentifiable. However, a relation between Y and C needs to be assumed to
identify the model. Most procedures in survival analysis, including the methods
in this thesis, make the key assumption of independent censoring to ensure iden-
tifiability. This assumption implies that the mechanism that induces censoring is
entirely unrelated to the event of interest. Under independence censoring, these
methods used to model survival data by integrating the information coming from
both the censored and uncensored observations (see Klein and Moeschberger,
2003; Kalbfleisch and Prentice, 2011, among others).
Independence between Y and C is quite natural and holds very frequently in most
contexts. One example is when the censoring mechanism is administrative, given,
for instance, by the end of the study, as the loss of information after that date is
not related to the survival time. Another example is the loss to follow-up when
the reason for the dropout is not related to the survival time (the patient moved
to another country, changed contact details, changed the mind and withdraw the
study, etc.). Finally, there is also independence when the censoring mechanism
is given by a competing risks not related to the event of interest (e.g., the event
of interest is death from a given disease and the patient died in a car accident).

97
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Nonetheless, there might be situations where the independence between the sur-
vival time and the censoring time is not realistic. In practice, some covariates
might be associated to both lifetime and censoring mechanism, inducing depen-
dent censoring. Besides, in medical studies a patient may quit if the health state
gets worse because of treatment, so the event (death, relapse) would be close to
happen, suggesting a positive correlation between censoring and survival times.

Dependent censoring often hampers analysis in such a way that the estimates ob-
tained using methods that require independence assumption are not valid. Thus,
ignoring dependent censoring when it is present typically produces biased esti-
mates. To account for this, Lin et al. (1998), Othus et al. (2009), Ma et al. (2015)
and Bernhardt (2016), among others, developed cure models in the presence of
dependent censoring. In particular, Bernhardt (2016) proposed a semiparametric
mixture cure model that accommodates different censoring distributions for the
cured and uncured groups. He also proposed a likelihood ratio test for checking
if it is necessary to model different censoring distributions for the cured and un-
cured individuals. The mentioned tests, however, require a priori assumption on
the censoring distribution.

Although independence between survival and censoring times is the most crucial
assumption for guaranteeing unbiased inference in survival analysis, it is hardly
ever tested. The problem is that it cannot be tested when the data include only
the possibly censored observed time and a censoring indicator, as a distribution of
Y and C that reconciles the assumption of independence can always be obtained
with the observed data (Tsiatis, 1975). So, there is not any formal test statistic
to test whether the censoring time is independent of the survival time without
assuming further assumptions. The few tests that have been developed rely on
extra information that is not typically available to the researcher, or impose
equally tenuous auxiliary assumptions. For example, the test of Lee and Wolfe
(1998) uses a Cox proportional hazards regression model with a time-dependent
covariate and involves further follow-up of a subset of lost-to-follow-up censored
subjects. The test of Huang et al. (2004) requires a specific clustered correlation
structure among units and imposes independent censoring within each cluster.
Frandsen (2019) proposed a test that requires data to include the observed times,
censoring times for each observation (censored and uncensored) and covariates,
in which, censoring times are assumed to be conditionally independent of the
survival times.
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In practice, the only way to check the assumption of independence without assum-
ing any further model or extra information is by doing some sensitivity analysis,
studying the effect of assuming different degrees of dependent censoring on the
parameter estimates (Siannis et al., 2005; Huang and Zhang, 2008; Jackson et al.,
2014). In this chapter, a sensitivity analysis of the plausibility of the assump-
tion of independence in the MCM when the cure status is partially known is
performed, without requiring any parametric assumption. The procedure relies
upon the expected performance of the estimator of the probability of cure pro-
posed in Section 3.2 and the MI-NW estimator described in Section 3.3.2. The
motivation comes from the fact that, under the independence assumption, only
the estimator proposed in Section 3.2 provides a good approximation of the con-
ditional cure probability. Therefore, large differences between both estimators
are expected under independence.
This is an open incomplete study, planned to be finished with a comprehensive
simulation study and possibly some theoretical results that might support the
proposal.
This chapter is organized as follows. Section 5.2 motivated the simple test pro-
posed to assess the plausibility of the independence assumption. In Section 5.3
a method for implementing the test is introduced. A bootstrap procedure for
approximating the null distribution is recommended in Section 5.4.

5.2 Motivation

In the MCM with partially known cures defined in Section 1.5.1, the survival
time Y is a random variable with P (Y = ∞ | X = x) = 1−p (x) and distribution
function for the susceptible individuals F0 (t | x) = 1 − S0(t | x). Besides, the
censoring time C is a random variable with P (C = ∞ | X = x) = π (x) and the
distribution function for the finite censoring times is G0 (t | x). In this model, the
conditional censoring rate is:

P (δ = 0 | X = x)

= P (C ≤ Y | X = x)

= P (C ≤ Y | X = x, Y < ∞) P (Y < ∞ | X = x)

+P (C ≤ Y | X = x, Y = ∞) P (Y = ∞ | X = x)

= P (C ≤ Y | X = x, Y < ∞, C < ∞) P (C < ∞ | X = x, Y < ∞)
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×P (Y < ∞ | X = x) + P (C ≤ Y | X = x, Y = ∞) P (Y = ∞ | X = x)

= P (C ≤ Y | X = x, Y < ∞, C < ∞) P (C < ∞ | X = x, Y < ∞) p (x)

+ (1 − p (x)) .

When the independence assumption holds, the conditional censoring rate is

P (δ = 0 | X = x) = (1 − π (x)) p (x)
∫ τ0

0
S0 (v | x) dG0 (v | x)

+ (1 − p (x)) . (5.1)

Additionally, the probability of observing the cure status is, for a cured individual

P (ξ = 1 | X = x, Y = ∞) = P (C = ∞ | X = x, Y = ∞)

while for an uncured observation it is

P (ξ = 1 | X = x, Y < ∞)

=P (Y < C | X = x, Y < ∞)

=P (Y < C | X = x, Y < ∞, C < ∞) P (C < ∞ | X = x, Y < ∞)

+ P (Y < C | X = x, Y < ∞, C = ∞) P (C = ∞ | X = x, Y < ∞) .

Under conditional independence of the survival time and the censoring time, the
probability of observing the cure status is

P (ξ = 1 | X = x, Y = ∞) = π (x)

for the cured individuals, and

P (ξ = 1 | X = x, Y < ∞) = π (x) + (1 − π (x))
∫ τ0

0
S0 (v | x) dG0 (v | x)

for the uncured individuals. Therefore, the probability of observing the cure sta-
tus is different in the cured and uncured subgroups (unless

∫ τ0
0 S0 (v | x) dG0 (v | x) =

0, which means that all susceptible individuals are censored, so the estimation is
not possible). Specifically, the lower π (x) and the larger

∫ τ0
0 S0 (v | x) dG0 (v | x),

the more different the probability of observing the cure status in the cured and
uncured individuals. In other words, for a fixed cure rate 1 − p(x), the higher the
conditional censoring rate in (5.1), the more different the conditional probabilities
of observing the cure status.

The probability of observing the cure status being equal for the cured and uncured
observations is a key assumption for the MI-NW estimator of the cure probability
studied in Section 3.3.2:

E (ξ | X, ν) = E (ξ | X) .

If that assumption is not met, the MI-NW estimator is clearly biased. Therefore,
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in the MCM with cures partially known, under conditional independence of Y

and C, the MI-NW estimator is expected to perform badly, especially for high
levels of censoring, while the proposed estimator 1 − p̂c

h (x) in (3.1) is consis-
tent and asymptotically unbiased. As a consequence, large differences between
the proposed cure rate estimator and the MI-NW estimator are expected if the
assumption of independence holds, specially when the censoring rate is high.

5.2.1 Sensitivity analysis

In this section, a simulation study is conducted to show the effect of different
degrees of dependence in the correlation between Y and C, by comparing the
estimator of the cure probability 1 − p̂c

h(x) in (3.1) and the MI-NW estimator
1 − p̂MI-NW

h (x), in (3.19).

The covariate X was generated from a U [−5, 5]. For generating the survival times
Y and the censoring times C under possible dependence, consider a bivariate
normal variable(

Z1

Z2

)
∼ N

(0
0

)
,

 1 ρ

ρ 1

 with − 1 ≤ ρ ≤ 1 .

The lifetimes Y were constructed as follows:

Y | X =

 ∞ with probability 1 − p (X)
exp (Z1) with probability p (X)

with the cure rate given by

1 − p (x) = 1 − exp (0.476 + 0.358x)
1 + exp (0.476 + 0.358x) .

The censoring times C were simulated to possibly depend on the survival time Y

as follows.

If Y < ∞ then



C = ∞ with probability π (X) (1 − ρ) 1 (ρ ≥ 0)

+ (π (X) − (1 − π (X)) ρ)

×1 (ρ < 0) ,

C = exp (µC + σCZ2) otherwise.
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If Y = ∞ then



C = ∞ with probability (π (X) + ρ (1 − π (X)))

×1 (ρ ≥ 0) + π (X)

× (ρ < 0) 1 (1 + ρ) ,

C = exp (µC + σCZ2) otherwise.

After simulating each pair of times (Yi, Ci) for i = 1, . . . , n the observation (Ti, δi, ξiνi)
is constructed as

Ti = min (Yi, Ci) 1(ξiνi = 0) + exp(µC + σCZ2i)1(ξiνi = 1),

δi = 1 (Yi < Ci) ,

ξiνi = 1(Yi = ∞, Ci = ∞).

The parameter ρ controls the degree of correlation between the survival times Y and
the censoring times C. The value ρ = 0 corresponds to the independence assumption,
with P (C = ∞ | X) = π (X). Positive values of ρ represent positive correlation; when
Y = ∞ then P (C = ∞ | X) increases to π (X) + ρ (1 − π (X)), while when Y < ∞
then P (C = ∞ | X) decreases to π (X) (1 − ρ). Likewise, negative values of ρ represent
negative correlation.
Under independent censoring, the censoring rate in (5.1) in this simulated scenario is

P (δ = 0 | X = x) = (1 − π (x)) p (x) (1 − E (Φ (µC + σCZ2))) + (1 − p (x)) .

For fixed x, the level of censoring increases as π(x) and µC decrease. Finally, σC

controls the dispersion in the censoring times.
The estimator 1 − p̂c

h (x) is compared with 1 − p̂MI-NW
h (x) when estimating the cure

probability for x = −2, whose value is 1 − p (−2) = 0.56. Different settings were
considered by varying the values of π (x), µC and ρ. For each simulation setting, 100
datasets are generated for the sample size n = 100. The same bandwidth, h = 3.981 was
used for both estimators. For the pilot bandwidths required for the MI-NW estimator,
the same bandwidths g1 = g2 = 3.981 were considered.
The censoring rate, controlled by π(x) and µC , plays a key role in the performance of
both estimators. The effect of π (x) on the behavior of 1 − p̂c

h(x) and 1 − p̂MI-NW
h (x)

is shown in Figure 5.1 under independence (ρ = 0), and in Figure 5.2 under strong
positive dependence (ρ = 0.9). Under independence censoring, 1 − p̂c

h (x) is unbiased
giving a good estimates even for high censoring rates (small values of π (x)). On the
other hand, 1 − p̂MI-NW

h (x) is clearly biased when the censoring rate is large (small
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to moderate values of π (x)), although the estimates improve as π (x) approaches 0.9.
Under strong positive dependence, both estimators perform similarly, producing biased
estimates regardless of the value of π (x). The effect of the censoring rate is given
by µC , for π (x) = 0.5, is shown in Figure 5.3 under independence (ρ = 0) and in
Figure 5.4 under strong positive dependence (ρ = 0.9). The estimates are different
under independence and quite similar under positive dependence. Finally, the effect of
the dependence between Y and C, is given by the value of ρ. As shown in Figure 5.5
when the censoring rate is high (µC = 0, π (x) = 0.2), and in Figure 5.6 when the
censoring rate is low (µC = 0, π (x) = 0.5).
Under independence censoring, 1 − p̂c

h (x) is asymptotically unbiased. Note that when
the censoring rate is low, the MI-NW estimator can perform either similarly (when
π (x) is very high, so the siMAR assumption is close to be acceptable and the MI-
NW estimator is also asymptotically unbiased), or quite differently (when µC is large,∫ τ0

0 S0 (v | x) dG0 (v | x) is high and the siMAR assumption is very unlikely, so the MI-
NW estimator is asymptotically biased). Consequently, testing the plausibility of the
independence assumption by comparing both estimators is not straightforward when
the censoring rate is low.
However, when the censoring rate is high (low values of π (x) or µC) the siMAR as-
sumption is far of being fulfilled, and 1 − p̂MI-NW

h (x) is expected to be clearly biased.
In this case, the conclusions are a little bit more direct, under independence both es-
timators are quite different (see results for π (x) = 0.1 to 0.4 in Figure 5.1) while they
are quite similar under dependence (see Figure 5.2). This fact can be used to introduce
a test to be applied for high levels of censoring, by comparing the estimates 1 − p̂c

h (x)
and 1 − p̂MI-NW

h (x).
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Figure 5.1: Estimation of 1−p (−2) = 0.56 (black horizontal line) using 1− p̂c
h(x)

(Proposed) and 1 − p̂MI-NW
h (x) (MINW), computed with m = 100 samples of size

n = 100 and the same bandwidth h = 3.981, for different values of π (x), when
µC = 0 and under independence (ρ = 0).
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Figure 5.2: Estimation of 1−p (−2) = 0.56 (black horizontal line) using 1− p̂c
h(x)

(Proposed) and 1 − p̂MI-NW
h (x) (MINW), computed with m = 100 samples of size

n = 100 and the same bandwidth h = 3.981, for different values of π (x), when
µC = 0 and under strong positive dependence (ρ = 0.9).
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π(x) = 0.5, ρ = 0

E
st

im
at

ed
 p

ro
ba

bi
lit

y

0.0

0.2

0.4

0.6

0.8

1.0

Proposed MINW

●

●

●

●

 = µC 0

Proposed MINW

●

●

●●

●●

 = µC 1

●
●

 = µC −2

0.0

0.2

0.4

0.6

0.8

1.0

●
●

●

 = µC −1

Figure 5.3: Effect of the rate of censoring, given by different values of µC , in the
estimation of 1−p (−2) = 0.56 (black horizontal line) using 1− p̂c

h(x) (Proposed)
and 1 − p̂MI-NW

h (x) (MINW), computed with m = 100 samples of size n = 100
and the same bandwidth h = 3.981, when π (x) = 0.5 and under independence
(ρ = 0).
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Figure 5.4: Effect of the rate of censoring, given by different values of µC , in the
estimation of 1−p (−2) = 0.56 (black horizontal line) using 1− p̂c

h(x) (Proposed)
and 1 − p̂MI-NW

h (x) (MINW), computed with m = 100 samples of size n = 100
and the same bandwidth h = 3.981, under strong dependence (ρ = 0.9) when
π (x) = 0.5.
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Figure 5.5: Effect of the degree of dependence given by different values of ρ, in the
estimation of 1−p (−2) = 0.56 (black horizontal line) using 1− p̂c

h(x) (Proposed)
and 1 − p̂MI-NW

h (x) (MINW), computed with m = 100 samples of size n = 100
and the same bandwidth h = 3.981, when π (x) = 0.2 and µC = 0.
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Figure 5.6: Effect of the degree of dependence given by different values of ρ, in the
estimation of 1−p (−2) = 0.56 (black horizontal line) using 1− p̂c

h(x) (Proposed)
and 1 − p̂MI-NW

h (x) (MINW), computed with m = 100 samples of size n = 100
and the same bandwidth h = 3.981, when π (x) = 0.5 and µC = 0.

5.3 Proposed test statistic
The performance of the MI-NW estimator could be considered as a measure of how
plausible the siMAR assumption is, and consequently, of how unlikely the assumption
of independence between Y and C is, by computing the distance between 1 − p̂c

h(x) in
(3.1) with bandwidth h, and 1 − p̂MI-NW

h3
(x) in (3.19) using a bandwidth h3, possibly

different to the bandwidth for 1 − p̂c
h(x), and the pilot bandwidths (g1, g2). When

the censoring rate is high, if the difference between 1 − p̂c
h (x) and 1 − p̂MI-NW

h3
(x) is



110 Chapter 5. A simple nonparametric testing procedure

large there is not evidence against the independence between Y and C, while a very
small difference between 1 − p̂c

h (x) and 1 − p̂MI-NW
h3

(x) would suggest that the siMAR
assumption is plausible, and that there is not independence between Y and C.
The test for checking H0, that is Y and C are conditionally independent, is based on the
difference between the proposed estimator for the cure rate and the MI-NW estimator:

Th,h3 (x) = nh1/2
(
p̂c

h (x) − p̂MI-NW
h3 (x)

)2
. (5.2)

The asymptotic distribution of the test statistic in (5.2) will be derived (future research)
under the null hypothesis. But it is expected that the test based on the asymptotic
distribution does not work well in practice, due to the slow convergence rate. On
the contrary, the bootstrap method has been shown in the literature to give accurate
estimations of the level in hypothesis tests. In the next section, a bootstrap procedure
is proposed to approximate the critical values of the test.

5.4 Bootstrap approximation of the null distri-
bution

The following bootstrap procedure is proposed in order to approximate the critical
values of the test in (5.2). Let B be the number of bootstrap samples, the proposed
bootstrap procedure consists of the following steps.

Step 1. Simulate the bootstrap sample
{(

X∗,b
i , T ∗,b

i , δ∗,b
i , ξ∗,b

i ν∗,b
i

)
, i = 1, . . . , n

}
, for

b = 1, . . . , B, using the resampling methods of Section 2.3.3.

Step 2. For b = 1, . . . , B, use the bootstrap sample{(
X∗,b

i , T ∗,b
i , δ∗,b

i , ξ∗,b
i ν∗,b

i

)
, i = 1, . . . , n

}
, and the bandwidths h for 1 − p̂c

h (x)
and (g1, g2, h3) for 1 − p̂MI-NW

h3
(x), to compute the test statistic T ∗b

h,h3
(x) in

(5.2).

Step 3. Order {T ∗1
h,h3

(x) , . . . , T ∗B
h,h3

(x)} and select the [αB]th order statistic as the
critical value, where α is the level of the test. Reject H0 with level α if
Th,h3 (x) is smaller than the critical value.

In a scenario without a cured fraction, Li and Datta (2001) considered the analogous
obvious bootstrap algorithm with a single pilot bandwidth h0 = h0F = h0G for boot-
strapping the Beran estimate of the conditional survival function S(t | x) and the
censoring distribution G(t | x). They proved that the optimal order for the pilot h0
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is n−β with 1
10 < β < 1

5 , so h0 goes to zero at a slower rate than the optimal band-
width for Beran’s estimator, whose optimal order is n−1/5. Specifically, according to
Li and Datta (2001), the order for the pilot bandwidth h0 that showed satisfactory
results is h0 ∼ n−0.11. The choice of the pilot bandwidths deserves a thorough analysis,
but in practice, in accordance with Li and Datta (2001), one single pilot bandwidth
h0 = chn−0.11 = h × n0.09 is proposed where h = chn−1/5 is the bandwidth used in the
estimation of the proposed estimator 1 − p̂c

h(x) in the computation of the test statistic.

5.5 Bandwidth selection
Anderson et al. (1994) acknowledged that the performance of kernel-based tests is af-
fected by the selection of the bandwidth, and noticed that the bandwidth must be
constant for the test to perform well in terms of power and significance level. Still,
methods for bandwidth choice in testing problems have received relatively little atten-
tion in literature.
Smoothing-based statistics are a very natural way of testing the goodness-of-fit of the
data to a given model specification. However, it is recognized that the choice of the
bandwidth may greatly influence the final shape of a smooth estimator, while having
a big impact in testing for significance too. The goal in testing problems is different in
nature to approximating the underlying population curve, since one will be interested
in the construction of a powerful test statistic rather than a good estimator. Optimal
data-driven smoothing selectors in the sense of integrated deviations from the target
function may not be appropriated in testing problems.
Cao and Van Keilegom (2006) proposed to select the bandwidth that maximizes the
power by means of a double-bootstrap procedure; Lindsay et al. (2014) offer a method
for selecting the bandwidth that maximizes the power of the test, (see also Gao and
Gijbels, 2008; Mart́ınez-Camblor and de Uña-Álvarez, 2013, among others)
Here the suggestion is that the bandwidth h for computing 1 − p̂c

h (x) and the band-
width h3 and (g1, g2), for computing 1 − p̂MI−NW

h3
(x), are proposed to coincide. The

recommendation is to consider a set of suitable values for the bandwidth h = g1 = g2 =
h3 = chn−1/5 and proceed from there.





Chapter 6

Conclusions and future work

This thesis encompasses the attention-raising cure models in survival analysis, when
the cure status, usually unknown in standard MCM due to censoring, is partially known
for some censored observations. With covariates, this situation has been addressed in
the literature only from a parametric or semiparametric point of view.
Theoretical results provided contribute to the field of MCM from a nonparametric ap-
proach, illustrate the potential of the proposed methodology, and provide encouraging
perspectives for enhancement in MCM when some censored individuals can be classified
as cured from the event. The simulations confirm these results under different settings.
In particular, when the proportion of knowing cured observations is high the proposed
estimators show better results. Applications to three medical data complete the thesis.
As most methods developed in survival analysis, the proposed estimators in Chapters 2 –
4 require the conditional independence between the survival and censoring times given
the covariates. This assumption is quite natural and holds in most practical studies.
However, there could be situations where lifetimes might be correlated to the censoring
distribution. The lack of a formal test for independence without requiring further
conditions makes that this assumption is hardly ever tested in practice. In Chapter 5,
a simple idea is proposed to assess how plausible the independence assumption is when
some individuals are identified to be cured, and the censoring rate is high. Future
work related to this point encompasses an extensive simulation study to check the
performance of the proposed testing procedure. In addition, the bootstrap bandwidth
selection method will be proposed and studied through a simulation study.
The proposed methods are tailored for ordinary right censored time-to-event data.
Nonetheless, observations may suffer from other types of censoring, or even from trun-
cation. Approaches that handle these complexities merit further investigation.
In many cases researchers have sought to go beyond a single continuous covariate to
multiple covariates. Future exploration is of interest in case of a MCM with cured indi-
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viduals randomly observed, in presence of multiple covariates. Let X be a d-dimensional
vector (X1, . . . , Xd) of mixed discrete, categorical and/or continuous variables. Note
that when there are many covariates, the sparseness of data gives rise to the well known
“curse of dimensionality”, which implies that massive amounts of data will be required
for accurate estimate as the number of covariates d increases. Different approaches are
available in the literature, that enable handling multiple covariates. We briefly discuss
both approaches in turn.
In the first approach, the vector of covariates X can be handled using a multivariate
kernel function K defined on Rd depending on a bandwidth parameter hn → 0 (Liang
et al., 2012). Li and Racine (2008) introduced a nonparametric kernel estimator to
estimate the joint multivariate cumulative distribution function of mixed discrete and
continuous variables, using a generalized multivariate kernel defined as the product of
univariate kernels. The multivariate kernel to be used in the estimation is defined as
Kh(x) = ∏d

k=1 Khk
(xk − Xk), where Khk

(.) is a univariate kernel computed with the
univariate covariate Xk and the corresponding optimal bandwidth hk. If one choose
to use this type of multivariate kernel, then an optimal bandwidth must be chosen for
each univariate component of the covariate X.
Alternative approach is to restrict the form of the effect of the covariates to a single-
index. This approach is particularly attractive since the original multidimensional
covariate vector X is replaced by a 1-dimensional single-index (the linear combination
βtX). The coefficients β characterize the relative importance of X. Contrarily to the
product kernel, this procedure does not suffer from the curse of dimensionality problems
as it summarizes the covariate vector X into a single index. Single-index models are
well-studied in the survival analysis literature (Wang et al., 2007; López, 2009; López
et al., 2013). The model expresses the covariate vector X as a function of a linear
combination of univariate covariates g(βtX). Amico et al. (2019) proposed a kernel
estimator, based on the NW weights, for estimating g(.) in the context of MCM. The
ideas of considering multiple covariates using the single-index (Amico et al., 2019) can
be extended to our methodology.
The problem of goodness-of-fit test to assess the aptness of the assumed parametric form
was recently studied in the standard MCM. Müller and Van Keilegom (2019) proposed
a test to study whether the cure rate, as a function of the covariates, satisfies a certain
parametric model. Meanwhile, Geerdens et al. (2020) proposed a test procedure to
assess the parametric form imposed on the latency function. Both proposals ignore the
cure status information. Therefore, a possible future work would consist in extending
these proposals to include the cure status information that these methods ignore.
The development of a variable-selection procedure in the MCM when the cure status is
partially known is also of interest. Covariate significance tests for the survival function,
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cure probability and latency function will be proposed, based on the same ideas in
which the covariate significance tests for the cure probability proposed in López-Cheda
et al. (2020).
On some occasions, the chance of observing the primary event of interest can be altered
or precluded by the occurrence of other events. Caution is needed in estimating the
probability of the event of interest (or cure) in the presence of these so-called competing
risks. Extending the proposed methodology to accommodate competing events is im-
portant because treating them as censored observations could bias the final estimates.
Considering the breast cancer example, deaths unrelated to cancer become competing
risks events and worth modeling. Multi-state models generalize competing risks model
by also describing transitions to intermediate events. Only few authors (Wang, 2003;
Conlon et al., 2014; Beesley and Taylor, 2019; Nicolaie et al., 2019) have considered
analysis of competing risks or multi-state events with a cure fraction.
The R package npcure by López-Cheda et al. (2021) provides the nonparametric estima-
tion and testing procedures in MCM proposed by López-Cheda et al. (2017a,b, 2020),
including the Beran estimator. The situation when the cure status is partially known
is not currently supported by the package but will be considered in future versions.
Further, the estimator of the conditional survival function introduced in this paper and
subsequent estimators of the cure rate and latency functions will be incorporated in
the upgraded package.
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Appendix A

Proofs of the results in Chapter 2

Motivation of the proposed estimator Ŝc
n (t).

In an unconditional setting, Ŝc
n (t) is

Ŝc
n (t) =

n∏
i=1

1 −
δ[i]1

(
T(i) ≤ t

)
n − i + 1 +∑i−1

j=1 1
(
ξ[j]ν[j] = 1

)
 .

Proof. In an unconditional setting the weights are 1/n for i = 1, . . . , n. Thus, Ŝc
n (t)

becomes

Ŝc
n (t) =

n∏
i=1

1 −
δ[i]

1
n1
(
T(i) ≤ t

)
1
n(n − i + 1) + 1

n

∑i−1
j=1 1

(
ξ[j]ν[j] = 1

)
 .

Proof of Proposition 2.1

Proposition 2.1 The estimator Ŝc
h(t | x) has the following properties.

1. If there is no known cure status, Ŝc
h(t | x) reduces to Ŝh(t | x).

Proof. It is straightforward since ξiνi = 0, i = 1, . . . , n.

2. The proposed estimator Ŝc
h(t | x) reduces to Ŝh(t | x) when computed with the

usual observed times.
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Proof. Let {Ti, i = 1, . . . , n} be the actual observed times, and define the usual
observed times by means of the usual definition in survival analysis, that is, as
T̃i = min(Yi, Ci). Note that T̃i = Ti if ξiνi = 0, and T̃i = ∞ if the individual
is known to be cured (ξiνi = 1). It is straightforward to see that the n =
n1 + n2 observations can be ordered so the first n1 observations correspond to
individuals with finite usual observed times T̃i < ∞ (ξiνi = 0) and the remaining
n2 observations to individuals with usual observed time T̃i = ∞ (ξiνi = 1).
Therefore,

Ŝc
h (t | x) =

n∏
i=1

1 −
δ[i]Bh[i] (x) 1

(
T(i) ≤ t

)
∑n1

j=i Bh[j] (x) +∑n
j=n1+1 Bh[j] (x)


=

n∏
i=1

1 −
δ[i]Bh[i] (x) 1

(
T(i) ≤ t

)
∑n

j=i Bh[j] (x)

 = Ŝh(t | x).

This completes the proof.

3. In the specific case when some individuals are observed as cured when their
observed time exceeds a known fixed cure threshold, Ŝc

h(t | x) reduces to Ŝh(t | x).

Proof. Assume there exists a common specific known cure threshold di = d for
i = 1, . . . , n. This implies that in the ordered sample,{(

X[i], T(i), δ[i], ξ[i]ν[i]
)

, i = 1, . . . , n
}

, the n1 first observations correspond to in-
dividuals with T(i) < d either not cured or with unknown cure status (ξ[i]ν[i] = 0),
and the remaining n2 observations are cured individuals with T(i) ≥ d and
ξ[i]ν[i] = 1. Therefore,

Ŝc
h (t | x) =

n∏
i=1

1 −
δ[i]Bh[i] (x) 1

(
T(i) ≤ t

)
∑n1

j=i Bh[j] (x) +∑n
j=n1+1 Bh[j] (x)


=

n∏
i=1

1 −
δ[i]Bh[i] (x) 1

(
T(i) ≤ t

)
∑n

j=i Bh[j] (x)

 = Ŝh(t | x).

This completes the proof.

4. When there is no censoring, the estimator Ŝc
h(t|x) reduces to the kernel type

estimator of the conditional survival function.

Proof. Without censoring, Ti = Yi, δi = 1 and the cure status is always observed
ξi = 1. In this situation, the n = n1 + m observations can be ordered and
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split into the n1 uncured individuals with finite lifetimes Yi, and the m cured
individuals with lifetime Yi = ∞. Thus,

Ŝc
h(t | x) =

n∏
i=1

1 −
Bh[i] (x) 1

(
Y(i) ≤ t

)
∑n

j=i Bh[j] (x) +∑i−1
j=1 Bh[j] (x) 1

(
ν[j] = 1

)


=
n∏

i=1

1 −
Bh[i] (x) 1

(
Y(i) ≤ t

)
∑n1

j=i Bh[j] (x) +∑n
j=n1+1 Bh[j] (x)


=

∏
i:Y(i)≤t

(∑n
j=i+1 Bh[j] (x)∑n

j=i Bh[j] (x)

)
.

Note that the kernel estimator of the survival function

S̃h(t | x) =
n∑

i=1
Bh[i] (x) 1(Y(i) > t)

is a step function with jumps Bhi (x) at the observations, Yi. By defining k =
max{i : Y(i) ≤ t} i.e., Y(k) ≤ t and Y(k+1) > t, one can write

∏
i:Y(i)≤t

(∑n
j=i+1 Bh[j] (x)∑n

j=i Bh[j] (x)

)
=

∏
i:Y(i)≤t

(
S̃h(Y(i) | x)

S̃h(Y(i−1) | x)

)

=
S̃h(Y(1) | x)

1
S̃h(Y(2)|x)
S̃h(Y(1) | x)

. . .
S̃h(Y(k) | x)

S̃h(Y(k−1) | x)

= S̃h(Y(k) | x) =
n∑

i=1
Bh[i] (x) 1(Y(i) > t).

This completes the proof.

5. In an unconditional setting and in the particular case where an individual is
known to be cured only if the observed time is greater than a known fixed time,
say d, Ŝc

n (t) in (2.18) reduces to the generalized maximum likelihood estimator
in Laska and Meisner (1992).

Proof. In the particular case where an individual is known to be cured only if
the observed time is greater than a known fixed time, say d, with n = n1 + m

observations, when m are identified as cured, the ordered observed lifetimes are
T(1) ≤ . . . ≤ T(n1) strictly lower than d, and the m cured individuals with T(i) ≥ d.
Thus, Ŝc

n(t) reduces to the generalized maximum likelihood estimator in Laska
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and Meisner (1992):

Ŝc
n(t) =

n∏
i=1

1 −
δ[i]

1
n1
(
T(i) ≤ t

)
1
n(n1 − i + 1) + 1

nm

 =
n∏

i=1

(
1 −

δ[i]1(T(i) ≤ t)
n − i + 1

)
.

This completes the proof.

Proof of Proposition 2.2
Proposition 2.2 The estimators 1 − F̂ c

h (t | x) and 1 − Ĝc
h (t | x) in (2.16) and (2.17)

verify that
1 − Ĥ0

h (t | x) =
(
1 − F̂ c

h (t | x)
) (

1 − Ĝc
h (t | x)

)
where

1 − Ĥ0
h (t | x) =

n∑
i=1

Bhi (x) 1 (Ti > t, ξiνi = 0) .

Proof. Consider the expression of the estimators 1−F̂ c
h (t | x) and 1−Ĝc

h (t | x) in (2.19)
and (2.20) respectively, that is, computed with the usual times T̃i = Ti if ξiνi = 0 and
T̃i = ∞ if ξiνi = 1. Then, the product can be worked out as follows:

(
1 − F̂ c

h (t | x)
) (

1 − Ĝc
h (t | x)

)

=
n∏

i=1

1 −
Bh[i] (x) 1

(
T̃(i) ≤ t

)
∑n

j=i Bh[j] (x)

δ[i] 1 −
Bh[i] (x) 1

(
T̃(i) ≤ t

)
∑n

j=i Bh[j] (x)

(1−δ[i])

=
n∏

i=1

1 −
Bh[i] (x) 1

(
T̃(i) ≤ t

)
∑n

j=i Bh[j] (x)


=

n∏
i=1,

T̃(i)≤t

(
1 −

Bh[i] (x)∑n
j=i Bh[j] (x)

)
=

n∏
i=1,

T̃(i)≤t

∑n
j=i+1 Bh[j] (x)∑n

j=i Bh[j] (x) .

Let k = max{i : T̃(i) ≤ t}, then
(
1 − F̂ c

h (t | x)
) (

1 − Ĝc
h (t | x)

)
=

k∏
i=1

∑n
j=i+1 Bh[j] (x)∑n

j=i Bh[j] (x)

=
∑n

j=2 Bh[j] (x)∑n
j=1 Bh[j] (x)

∑n
j=3 Bh[j] (x)∑n
j=2 Bh[j] (x) . . .

∑n
j=k Bh[j] (x)∑n

j=k−1 Bh[j] (x)

∑n
j=k+1 Bh[j] (x)∑n

j=k Bh[j] (x)



123

=
∑n

j=k+1 Bh[j] (x)∑n
j=1 Bh[j] (x) =

n∑
j=k+1

Bh[j] (x) =
n∑

i=1
Bhi (x) 1

(
T̃i ≤ t

)

=
n∑

i=1
Bhi (x) 1 (Ti ≤ t, ξiνi = 0) = 1 − Ĥ0

h (t | x) .

This completes the proof.

Proof of Propositions 2.3
Proposition 2.3 The 1 − F̂ c

h (t | x) estimator in (2.16) is the nonparametric local
maximum likelihood estimator of 1 − F (t | x).

Proof. The proof follows the argument in Theorem 2 in López-Cheda et al. (2017a)
and Theorem 1 in Laska and Meisner (1992). To derive the expression of the local
likelihood of the MCM, we consider the three potential cases for the ith observation:

Case 1: (δi = 1). The event is observed and the individual is not cured. We observe
Yi = ti, νi = 0, with probability:

P (Yi = ti, Ci > ti, νi = 0 | X = x)

= P (Ci > ti | Yi = ti, νi = 0, X = x)

× P (Yi = ti | νi = 0, X = x) P (νi = 0 | X = x)

= SC|Y,X,ν=0 (ti | x)
(
S0(t−

i | x) − S0(ti | x)
)

p (x) ,

where SC|Y,X,ν=0(t | x) is the conditional survival function of the censoring vari-
able C for the uncured individuals.

Case 2: (δi = 0, ξiνi = 0). The individual is censored and the cure status is unknown.
We observe Ci = ti, and νi is unknown, with probability:

P (Yi > ti, Ci = ti | X = x)

= P (Yi > ti, Ci = ti | νi = 1, X = x) P (νi = 1 | X = x)

+ P (Ci = ti | Yi > ti, νi = 0, X = x)

× P (Yi > ti | νi = 0, X = x) P (νi = 0 | X = x)

= fC|X,ν=1 (ti | x) (1 − p (x)) + fC|Y,X,ν=0 (ti | x) S0 (ti | x) p (x) ,

where fC|X,ν=1(t | x) and fC|Y,X,ν=0(t | x) are the conditional density functions
for the random variable C of the cured and uncured individuals, respectively.
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Case 3: (δi = 0, ξiνi = 1). The individual is censored and known to be cured. We
observe Ci = ti, νi = 1, with probability

P (Yi > ti, Ci = ti, νi = 1 | X = x)

= P (Ci = ti | νi = 1, X = x) P (νi = 1 | X = x)

= fC|X,ν=1 (ti | x) (1 − p (x)) .

In the absence of specification of the distribution of X, the terms in the likelihood are
weighted with the kernel weights Bh[i](x). Then, the local likelihood of the data is

L (X, T, δ, ξ, ν)

=
n∏

i=1

[
SC|Y,X,ν=0

(
T(i) | x

) (
S0(T −

(i) | x) − S0(T(i) | x)
)

p (x)
]Bh[i](x)1(δ[i]=1)

×
[
fC|X,ν=1

(
T(i) | x

)
(1 − p (x))

+ fC|Y,X,ν=0
(
T(i) | x

)
S0
(
T(i) | x

)
p (x)

]Bh[i](x)1(δ[i]=0,ξ[i]ν[i]=0)

×
[
fC|X,ν=1

(
T(i) | x

)
(1 − p (x))

]Bh[i](x)1(δ[i]=0,ξ[i]ν[i]=1)
.

If the distribution of the random variable C is conditionally independent of Y and the
cure status ν given the covariate X = x, then

L (X, T, δ, ξ, ν) =
n∏

i=1
[qi(x)p (x)]Bh[i](x)1(δ[i]=1)

×
(
1 − p (x) + S0

(
T(i) | x

)
p (x)

)Bh[i](x)1(δ[i]=0,ξ[i]ν[i]=0)

× (1 − p (x))Bh[i](x)1(δ[i]=0,ξ[i]ν[i]=1)

×

1 −
i−1∑
j=1

gj (x)

Bh[i](x)1(δ[i]=1)
gi (x)Bh[i](x)1(δ[i]=0) , (A.1)

where, for i = 1, . . . , n, qi (x) = S0(T −
(i) | x)−S0(T(i) | x) are the increments of S0 (t | x),

and gi (x) = G(T(i) | x)−G(T −
(i) | x) the increments of G (t | x). Let Pi (x) = p (x) qi (x)

be the increments of S (t | x), then ∑n
i=1 Pi (x) = p (x). Maximizing (A.1) is equivalent

to maximizing the likelihood

L (X, T, δ, ξ, ν) =
n∏

i=1
Pi (x)Bh[i](x)1(δ[i]=1)

1 −
i−1∑
j=1

Pj (x)

Bh[i](x)1(δ[i]=0,ξ[i]ν[i]=0)



125

×

1 −
n∑

j=1
Pj (x)

Bh[i](x)1(δ[i]=0,ξ[i]ν[i]=1)
. (A.2)

Further, consider the functions λi (x) = Pi (x) /
(
1 −

∑i−1
j=1 Pj (x)

)
satisfying

1 −
k∑

j=1
Pj (x) =

k∏
j=1

(1 − λj (x)). (A.3)

Then, the increments Pi (x) can be written in terms of λi (x):

Pi (x) = λi (x)

1 −
i−1∑
j=1

Pj (x)

 = λi (x)
i−1∏
j=1

(1 − λj (x)) . (A.4)

By substituting (A.3) and (A.4) in (A.2), the likelihood (A.2) is

L (X, T, δ, ξ, ν; p, S0) =
n∏

i=1
λi (x)Bh[i](x)1(δ[i]=1)

n∏
i=1

i−1∏
j=1

(1 − λj (x))

Bh[i](x)1(δ[i]=1)

×
n∏

i=1

i−1∏
j=1

(1 − λj (x))

Bh[i](x)1(δ[i]=0,ξ[i]ν[i]=0)

×
n∏

i=1

 n∏
j=1

(1 − λj (x))

Bh[i](x)1(δ[i]=0,ξ[i]ν[i]=1)
.

Taking into account that ∏n
i=1

[∏i−1
j=1 aj

]bi = ∏n
i=1 a

∑n

j=i+1 bj

i , where ai and bi, i =
1, . . . , n, are arbitrary sequences of nonnegative numbers, the likelihood becomes

L (X, T, δ, ξ, ν; p, S0)

=
n∏

i=1
λi (x)Bh[i](x)1(δ[i]=1)

×
n∏

i=1
(1 − λi (x))

∑n

j=i+1 Bh[j](x)1(ξ[j]ν[j]=0)+
∑n

j=1 Bh[j](x)1(δ[j]=0,ξ[j]ν[j]=1) .

Maximizing the likelihood L (X, T, δ, ξ, ν; p, S0) is equivalent to maximizing the local
log-likelihood:

Ψ(λ1 (x) , . . . , λn (x)) =
n∑

i=1

[
Bh[i] (x) 1

(
δ[i] = 1

)
log λi (x)

+
( n∑

j=i+1
Bh[j] (x) 1

(
ξ[j]ν[j] = 0

)
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+
n∑

j=1
Bh[j] (x) 1

(
δ[j] = 0, ξ[j]ν[j] = 1

))
log (1 − λi)

]

subject to

n∏
i=1

(1 − λi (x)) = 1 − p (x) . (A.5)

The maximizer λi (x) of the log-likelihood is

λ̂i (x) =
Bh[i] (x) 1

(
δ[i] = 1

)
∑n

j=i Bh[j] (x) +∑i−1
j=1 Bh[j] (x) 1

(
ξ[j]ν[j] = 1

) .

In virtue of (A.4), the estimator Ŝc
h(t | x), computed by forming the product of λ̂i’s such

that T(i) ≤ t, is the nonparametric maximum likelihood estimator of S(t | x). On the
hand, the estimator 1− p̂c

h(x), obtained by replacing λ̂i’s in (A.5), is the nonparametric
maximum likelihood estimator of 1 − p(x).

Proof of Theorem 2.1

Theorem 2.1 Suppose that Assumptions 1 – 9 are satisfied. Then, for x ∈ I, t ∈ [a, b]
one has

Λ̂c
h (t | x) − Λ (t | x) =

n∑
i=1

B̃hi (x) ζ (Ti, δi, ξi, νi, t, x) + Rn1 (t, x) ,

with

ζ (Ti, δi, ξi, νi, t, x) = 1 (Ti ≤ t, δi = 1)
J(T −

i | x)

−
∫ t

0
(1 (Ti ≥ v) + 1 (Ti < v, ξiνi = 1)) dH1 (v | x)

J2 (v− | x) ,

B̃hi (x) = 1
m (x)

1
nh

K

(
x − Xi

h

)
,

where Rn1 (t, x) satisfies

sup
a≤t≤b,x∈I

| Rn1 (t, x) |= O
(
(nh)−3/4 (log n)3/4

)
a.s.
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Proof. The difference Λ̂c
h (t | x) − Λ (t | x) can be decomposed as follows:

∫ t

0

dĤ1
h (v | x)

Ĵh (v− | x)
−
∫ t

0

dH1 (v | x)
J (v− | x)

=
∫ t

0

dĤ1
h (v | x)

J (v− | x) −
∫ t

0

Ĵh (v− | x)
J2 (v− | x)dH1 (v | x)

+
∫ t

0

(
J (v− | x) − Ĵh (v− | x)

)2

Ĵh (v− | x) J2 (v− | x)
dH1 (v | x)

+
∫ t

0

(
1

Ĵh (v− | x)
− 1

J (v− | x)

)(
dĤ1

h (v | x) − dH1 (v | x)
)

. (A.6)

The first term in (A.6) is

∫ t

0

dĤ1
h (v | x)

J (v− | x) =
n∑

i=1
Bhi(x)1 (Ti ≤ t, δi = 1)

J(T −
i | x)

. (A.7)

The second term in (A.6) can be written as

∫ t

0

Ĵh (v− | x)
J2 (v− | x)dH1 (v | x)

=
n∑

i=1
Bhi(x)

∫ t

0
(1 (Ti ≥ v) + 1 (Ti < v, ξiνi = 1)) dH1 (v | x)

J2 (v− | x) . (A.8)

The order of the third and fourth terms in (A.6) are studied, denoting them by R1(t, x)
and R2(t, x), respectively. Theorem 1 in Iglesias-Pérez and González-Manteiga (1999)
is applied, under Assumptions 1 – 3, and 8 – 9, which also holds for J(t | x) such that
supa≤t≤b,x∈I | Ĵh (t | x) − J(t | x) |= O((nh)−1/2(log n)1/2). Note that Assumption 1.
(ii) ensures the existence of a constant θ > 0 such that J(t | x) ≥ θ > 0 for (t, x) in
[a, b] × Iε. As n becomes sufficiently large, the remainder term R1(t, x) is bounded by

sup
a≤t≤b,x∈I

| R1(t, x) | ≤ sup
a≤t≤b,x∈I

∫ t

0

∣∣∣∣∣
(
J (v | x) − Ĵh (v | x)

)2

Ĵh (v | x) J2 (v | x)
dH1 (v | x)

∣∣∣∣∣
≤
(

sup
a≤t≤b,x∈I

| J (t | x) − Ĵh (t | x) |
)2

sup
a≤t≤b,x∈I

∫ t

0

1
θ3 dH1 (v | x)

≤ 1
θ3

(
sup

a≤t≤b,x∈I
| J (t | x) − Ĵh (t | x) |

)2

.

Following Lemma 5 in Iglesias-Pérez and González-Manteiga (1999), under Assump-
tions 1 – 3 and 8 – 9, which not only holds for the conditional survival functions like
1 − H(t | x) but also for the conditional subdistribution functions H1(t | x) and
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H11(t | x) (see Remark 2 in Iglesias-Pérez and González-Manteiga (1999) and the proof
of Theorem 2.1 in Dabrowska (1989)), it is shown that

sup
a≤t≤b,x∈I

| R1(t, x) |= O((nh)−1 log n) a.s. (A.9)

Now let us study the remainder term R2(t, x), which is bounded by

sup
a≤t≤b,x∈I

| R2(t, x) |

≤ sup
a≤t≤b,x∈I

∣∣∣∣∣
∫ t

0

(
1

Ĵh (v | x)
− 1

J (v | x)

)
dĤ1

h (v | x)
∣∣∣∣∣

+ sup
a≤t≤b,x∈I

∣∣∣∣∣
∫ t

0

(
1

Ĵh (v | x)
− 1

J (v | x)

)
dH1 (v | x)

∣∣∣∣∣
≤ sup

a≤t≤b,x∈I

∫ t

0

∣∣∣∣∣
(

1
Ĵh (v | x)

− 1
J (v | x)

)(
dĤ1

h (v | x) − dH1 (v | x)
)∣∣∣∣∣

+ 2 sup
a≤t≤b,x∈I

∫ t

0

∣∣∣∣∣
(

1
Ĵh (v | x)

− 1
J (v | x)

)∣∣∣∣∣dH1 (v | x)

≤kn

θ2 sup
a≤t≤b,x∈I

(
Ĵh (t | x) − J (t | x)

)
max

1 ≤i≤kn

∣∣∣∣∣
(

Ĥ1
h (ti+1 | x) − H1 (ti+1 | x)

)

−
(
Ĥ1

h (ti | x) − H1 (ti | x)
)∣∣∣∣∣

+ 2kn max
1≤i≤kn

sup
ti≤t≤ti+1

∣∣∣∣∣
(

1
Ĵh (t | x)

− 1
J (t | x)

)
−
(

1
Ĵh (ti | x)

− 1
J (ti | x)

)∣∣∣∣∣,
where ([ti, ti+1])kn

i=1 denotes a partition of the interval [a, b] in kn intervals with a =
t1 < . . . < tkn+1 = b and kn = O

(
(nh)−1 log n

)−1/2. In order to show that R2(t, x)
is negligible, the arguments similar to part (c) in Theorem 2 of Iglesias-Pérez and
González-Manteiga (1999) are considered under Assumptions 1 – 9. Thus, it can be
proved that

sup
a≤t≤b,x∈I

|R2(t, x)| = O
(
(nh)−3/4 (log n)3/4

)
a.s. (A.10)

Finally, collecting (A.7), (A.8), (A.9) and (A.10), then (A.6) can be written as follows:

Λ̂c
h (t | x) − Λ (t | x) =

n∑
i=1

Bhi (x) ζ (Ti, δi, ξi, νi, t, x) + R̃n1 (t, x) , (A.11)
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where ζ (Ti, δi, ξi, νi, t, x) was defined in (2.21) and R̃n1(t, x) = R1(t, x)+R2(t, x) verifies

sup
a≤t≤b,x∈I

| R̃n1 (t, x) |= O
(
(nh)−3/4 (log n)3/4

)
a.s.

The sum in (A.11) can be decomposed into three terms:

Λ̂c
h (t | x) − Λ (t | x) =

n∑
i=1

B̃hi (x) ζ (Ti, δi, ξi, νi, t, x) + R̃n1(t, x) + R3(t, x),

where

R3(t, x) =
n∑

i=1

m(x) − m̂h(x)
m(x)m̂h(x)

1
nh

K

(
x − Xi

h

)
ζ (Ti, δi, ξi, νi, t, x) ,

with m̂h(x) the kernel estimator of the density function of X, m(x), and B̃hi (x) =
K((x−Xi)/h)/(m(x)nh). The next result can be proved by following similar arguments
as that used in the proof of Lemma 5 in Iglesias-Pérez and González-Manteiga (1999),
under Assumptions 1 – 3 and 8 – 9, one obtain

sup
x∈I

| m(x) − m̂h(x) |= O
(
h2 + (nh)−1/2 (log log n)1/2

)
a.s. (A.12)

Moreover, after applying similar arguments as in Theorem 2.1 of Dabrowska (1989)
under the assumptions of this theorem, it can be shown that

sup
a≤t≤b,x∈I

∣∣∣∣∣ 1
m̂h(x)

n∑
i=1

1
nh

K

(
x − Xi

h

)
ζ (Ti, δi, ξi, νi, t, x)

∣∣∣∣∣
= O

(
h2 + (nh)−1/2 (log log n)1/2

)
a.s. (A.13)

Thus, from (A.12) and (A.13), under Assumption 1 and using the condition nh → ∞,
it is concluded that

sup
a≤t≤b,x∈I

| R3(t, x) | = O
(
h4 + (nh)−1 log log n

)
a.s.
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Proof of Theorem 2.2

Theorem 2.2 Suppose that Assumptions 1 – 9 hold. Then, for x ∈ I and t ∈ [a, b],

F̂ c
h (t | x) − F (t | x) = (1 − F (t | x))

n∑
i=1

B̃hi (x) ζ (Ti, δi, ξi, νi, t, x) + Rn2 (t, x)

where ζ (Ti, δi, ξi, νi, t, x) is defined in (2.21), B̃hi(x) in (2.22) and Rn2 (t, x) satisfies

sup
a≤t≤b,x∈I

| Rn2 (t, x) |= O
(
(nh)−3/4 (log n)3/4

)
a.s.

Proof. Start by writing

F̂ c
h (t | x) − F (t | x) = R̃1 (t, x) +

[
1 − exp

(
−Λ̂c

h (t | x)
)]

− F (t | x) ,

where R̃1 (t, x) = F̂ c
h (t | x) −

[
1 − exp

(
−Λ̂c

h(t | x)
)]

. By a Taylor’s expansion of the
exponential function around −Λ(t | x), we have

F̂ c
h (t | x) − F (t | x) = (1 − F (t | x))

(
Λ̂c

h (t | x) − Λ (t | x)
)

+ R̃1 (t, x) + R̃2 (t, x) ,

where

R̃2 (t, x) = −1
2 exp(−Λ∗(t | x))

(
Λ̂c

h (t | x) − Λ (t | x)
)2

.

Note that Λ∗(t | x) is on the line segment between Λ̂c
h (t | x) and Λ (t | x). Under

Assumptions 1 – 9, and arguing similarly as in Theorem 2 (c) of Iglesias-Pérez and
González-Manteiga (1999), it suffices to show

sup
a≤t≤b,x∈I

| R̃1 (t, x) |= O
(
(nh)−1

)
a.s.

Making use now of the strong consistency results for Λ̂c
h (t | x) in Corollary 2.1, then

sup
a≤t≤b,x∈I

| R̃2 (t, x) |= O
(
(nh)−1 log n

)
a.s.

The proof of Theorem 2.2 is concluded after applying Theorem 2.1.
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Proof of Corollary 2.1

Corollary 2.1 Suppose that Assumptions 1 – 9 hold. Then, for x ∈ I and t ∈ [a, b],

sup
a≤t≤b,x∈I

| Λ̂c
h (t | x) − Λ (t | x) | = O

(
(nh)−1/2 (log n)1/2

)
a.s.,

and

sup
a≤t≤b,x∈I

| F̂ c
h (t | x) − F (t | x) | = O

(
(nh)−1/2 (log n)1/2

)
a.s.

Proof. The dominant part of Λ̂c
h(t | x) − Λ(t | x) in Theorem 2.1 verifies

n∑
i=1

Bhi(x)ζ (Ti, δi, ξi, νi, t, x)

=
∫ t

0

dĤ1
h (v | x)

J (v− | x) −
∫ t

0

Ĵh (v− | x)
J2 (v− | x)dH1 (v | x)

=
∫ t

0

dĤ1
h (v | x) − dH1(v | x)

J (v− | x) −
∫ t

0

Ĵh (v− | x) − J(v− | x)
J2 (v− | x) dH1 (v | x)

=
[

Ĥ1
h (v | x) − H1 (v | x)

J (v− | x)

]t

0
+
∫ t

0

Ĥ1
h (v | x) − H1 (v | x)

J2 (v− | x) dJ(v | x)

−
∫ t

0

Ĵh (v− | x) − J(v− | x)
J2 (v− | x) dH1 (v | x)

≤1
θ

sup
a≤t≤b,x∈I

| Ĥ1
h (t | x) − H1 (t | x) | +1

θ
sup

a≤t≤b,x∈I
| Ĥ1

h (t | x) − H1 (t | x) |

− 1
θ2 sup

a≤t≤b,x∈I
| Ĵh (t | x) − J (t | x) | .

The last three terms in the inequality are bounded by applying Lemma 5 in Iglesias-
Pérez and González-Manteiga (1999) under Assumptions 1 – 3 and 8 – 9, which holds
not only for conditional survival functions like 1 − H(t | x), but also for conditional
subdistribution functions as H1(t | x) and H11(t | x) (see Remark 2 in Iglesias-Pérez
and González-Manteiga (1999) and the proof of Theorem 2.1 in Dabrowska (1989)).
As a consequence, the dominant term of Λ̂c

h(t | x) − Λ(t | x) is bounded by

sup
a≤t≤b,x∈I

|
n∑

i=1
Bhi(x)ζ (Ti, δi, ξi, νi, t, x) |= O

(
(nh)−1/2 (log n)1/2

)
.

Using the results of Theorem 2.2 it is straightforward to prove the second part of this
corollary.
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Proof of Proposition 2.4

Proposition 2.4 Suppose that Assumptions 1 – 9 hold. Then, the asymptotic bias and
variance of the dominant term of 1 − F̂ c

h (t | x) are, respectively,

µh,c(t, x) = h2Bc(t, x) + O
(
h4
)

,

σ2
h,c(t, x) = (nh)−1s2

c(t, x) + O(n−1h),

with

Bc(t, x) = (1 − F (t | x))(2Φ′
c (x, t, x) m′ (x) + Φ′′

c (x, t, x) m (x))dK

2m (x) ,

s2
c(t, x) = (1 − F (t | x))2Φc

1 (x, t, x) cK

m (x) ,

where dK =
∫

v2K(v)dv, cK =
∫

K2(v)dv,

Φc (y, t, x) = E (ζ (T, δ, ξ, ν, t, x) | X = y) ,

Φc
1 (y, t, x) = E

(
ζ2 (T, δ, ξ, ν, t, x) | X = y

)
,

with ζ (T, δ, ξ, ν, t, x) given in (2.21). Besides, Φ′
c (y, t, x) and Φ′′

c (y, t, x) are the first
and second derivatives of Φc (y, t, x) with respect to y.

Proof. From Theorem 2.2, the bias of the dominant term in the iid expression of 1 −
F̂ c

h (t | x) is asymptotically equal to the expected value of

(nh)−1 (1 − F (t | x))
m (x)

n∑
i=1

K

(
x − Xi

h

)
ζ (Ti, δi, ξi, νi, t, x) = I + II (A.14)

where

I = (nh)−1 (1 − F (t | x))
m (x)

[
n∑

i=1
K

(
x − Xi

h

)
ζ (Ti, δi, ξi, νi, t, x)

− E
(

n∑
i=1

K

(
x − Xi

h

)
ζ (Ti, δi, ξi, νi, t, x)

)]
, (A.15)

II = (nh)−1(1 − F (t | x))
m (x) E

(
n∑

i=1
K

(
x − Xi

h

)
ζ (Ti, δi, ξi, νi, t, x)

)
. (A.16)
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Since E(I) = 0, the asymptotic bias is II. Using Lemmas D.1 and D.2,

II = h2 (1 − F (t | x)) (Φ′′
c (x, t, x) m (x) + 2Φ′

c (x, t, x) m′ (x))dK

2m (x) + O
(
h4
)

,

with Φ′
c(y, t, x) and Φ′′

c (y, t, x) the first and second derivatives of Φc (y, t, x) with re-
spect to y. Recalling (A.14), the asymptotic variance of the dominant term in the iid
expression of 1 − F̂ c

h(t | x) is

Var (I) = (1 − F (t | x))2

m2(x) (V1 − V2), (A.17)

where

V1 = 1
nh2 E

(
K2

(
x − X

h

)
ζ2 (T, δ, ξ, ν, t, x)

)
,

V2 = 1
nh2

[
E
(

K

(
x − X

h

)
ζ (T, δ, ξ, ν, t, x)

)]2
.

From Lemmas D.1 and D.2, V2 reduces to

V2 = 1
4

h2

n
d2

K

(Φ′′
c (x, t, x) m (x) + 2Φ′

c (x, t, x) m′ (x)
m (x)

)2
+ O

(
h4

n

)
. (A.18)

As for V1, let us define Φc
1 (y, t, x) = E

(
ζ2 (T, δ, ξ, ν, t, x) | X = y

)
. Then, after a change

of variable and a Taylor’s expansion (as in the proof of Lemma D.1) we obtain

V1 = 1
nh

Φc
1 (x, t, x) m (x) cK + 1

2
h

n
eK

d2

dy2 (Φc
1 (y, t, x) m (y)) |y=x + O

(
n−1h3

)
(A.19)

where eK =
∫

v2K2(v)dv. The proof concludes by substituting (A.18) and (A.19) into
(A.17).

Proof of Theorem 2.3.

Theorem 2.3 Suppose that Assumptions 1 – 9 are satisfied. For x ∈ I and t ∈ [a, b], it
follows that:

(i) If nh5 → 0 and (log n)3/nh → 0, then

(nh)1/2
(
F̂ c

h(t | x) − F (t | x)
)

d→ N(0, s2
c(t, x)).
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(ii) If nh5 → C5 > 0, then

(nh)1/2
(
F̂ c

h(t | x) − F (t | x)
)

d→ N(C5/2Bc(t, x), s2
c(t, x)),

with Bc(t, x) given in (2.25), s2
c(t, x) in (2.26) and C is a constant.

Proof. From Theorem 2.2, we consider

(nh)1/2
(
F̂ c

h (t | x) − F (t | x)
)

= (nh)1/2 (1 − F (t | x))
n∑

i=1
B̃hi (x) ζ (Ti, δi, ξi, νi, t, x) + (nh)1/2Rn2 (t, x)

with ζ(T, δ, ξ, ν, t, x) and Rn2(t, x) given in (2.21) and (2.23), respectively. The con-
dition (log n)3/nh → 0 implies that (nh)1/2(log n/nh)3/4 → 0, so the remainder term
(nh)1/2Rn2(t, x) is negligible. Consequently, the asymptotic distribution of
(nh)1/2

(
F̂ c

h (t | x) − F (t | x)
)

is that of

(nh)1/2 1 − F (t | x)
m (x)

n∑
i=1

1
nh

K

(
x − Xi

h

)
ζ (Ti, δi, ξi, νi, t, x) = (nh)1/2(I + II), (A.20)

where I and II are given in (D.9) and (A.16). Under the assumption nh5 → 0, we have
(nh)1/2II = o(1). Therefore, the asymptotic distribution of (A.20) is that of (nh)1/2I.
Let us define (nh)1/2I = ∑n

i=1 ηi,h(t, x), where

ηi,h(t, x) = (nh)−1/2 (1 − F (t | x))
m (x)

[
K

(
x − Xi

h

)
ζ (Ti, δi, ξi, νi, t, x)

− E
(

K

(
x − Xi

h

)
ζ (Ti, δi, ξi, νi, t, x)

)]
,

is a sequence of n independent random variables with mean 0. Note that

Var(ηi,h(t, x)) = hVar(I) = 1
n

(1 − F (t | x))2

m(x) Φc
1(x, t, x)cK + O

(
h2

n

)

= 1
n

s2
c(t, x) + O

(
h2

n

)

with Var(I) in (A.17) and s2
c(t, x) in (2.30). Since Var(ηi,h(t, x)) < ∞ for i = 1, . . . , n

and Var(ηh(t, x)) = ∑n
i=1 Var(ηi,h(t, x)) is positive, then we can apply Lindeberg’s
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theorem (Billingsley, 1968) to obtain∑n
i=i ηi,h (t, x)
s2

c(t, x) → N (0, 1) in distribution.

Therefore, (nh)1/2
(
F̂ c

h(t|x) − F (t | x)
)

→ N(0, s2
c(t, x)) in distribution. This proves (i).

In parallel to the proof (i) we can prove (ii) as follows, note that if nh5 → C5 then the
bias term is (nh)1/2II = (nh)1/2(h2Bc(t, x) + O(h4)) = (nh5)1/2Bc(t, x) + O((nh9)1/2)
with Bc(t, x) in (2.25). Thus,
(nh)1/2

(
F̂ c

h(t | x) − F (t | x)
)

→ N(C5/2Bc(t, x), s2
c(t, x)) in distribution.

Proof of Proposition 2.5
Proposition 2.5 Assume there are no ties in the observed times {T1, . . . , Tn}. Then,
the simple weighted bootstrap and the obvious bootstrap are equivalent.

Proof. To prove the equivalence of the two resampling methods, we will follow that of
Efron (1981), for right censored data without cured observations and without covariate.
Specifically, we will prove that the conditional distribution of (T ∗

i , δ∗
i , ξ∗

i ν∗
i ) defined by

(2.35) – (2.37) given X∗
i is F̂ c

g (. | X∗
i ) in (2.33).

Let us consider that there are m < n observations known to be cured. For the
ease of convenience, the sample {(Ti, δi, ξiνi) , i = 1, . . . , n} is ordered so the obser-
vations with unknown cure status come first, and it is separated into two subsamples:
{(Ti, δi, ξiνi = 0) , i = 1, . . . , n − m} and {(Ti, δi = 0, ξiνi = 1),
i = n − m + 1, . . . , n}
Let T ∗

i be defined by (2.35), where Y ∗
i ∼ F̂ c

g (t | X∗
i ), C∗

i ∼ Ĝc
g (t | X∗

i ) and C∗
0i ∼

Ĝ0g (t | X∗
i ). Then, T ∗

i = min (Y ∗
i , C∗

i ) < ∞ if Y ∗
i < ∞ or C∗

i < ∞, that is with
probability 1 −

(
1 − p̂c

g (X∗
i )
)

π̂c
g (X∗

i ), and T ∗
i = C∗

0i if Y ∗
i = C∗

i = ∞, which happens
with probability

(
1 − p̂c

g (X∗
i )
)

π̂c
g (X∗

i ). The probability of T ∗
i equals Tj , j = 1, ..., n is

as follows, depending on T ∗
i corresponding to an individual known to be cured or not.

First, let us consider the case of a generated individual unknown to be cured, that
is, when Y ∗

i < ∞ or C∗
i < ∞, then T ∗

i = min (Y ∗
i , C∗

i ), δ∗
i = 1 (Y ∗

i < C∗
i ) and

ξ∗
i ν∗

i = 1 (Y ∗
i = ∞, C∗

i = ∞) = 0. In this case, T ∗
i = min (Y ∗

i , C∗
i ) is generated from

the rescaled distribution function

1 −
(
1 − F̂ c

g (t | X∗
i )
) (

1 − Ĝc
g (t | X∗

i )
)

1 −
(
1 − p̂c

g (X∗
i )
)

π̂c
g (X∗

i )
.

Note that the sum of the weights given by 1−
(
1 − F̂ c

g (t | X∗
i )
) (

1 − Ĝc
g (t | X∗

i )
)

is not
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1 but 1 −
(
1 − p̂c

g (X∗
i )
)

π̂c
g (X∗

i ).

From Proposition 2.2, the above distribution function of T ∗
i reduces to

Ĥ0
g (t | X∗

i )
1 −

(
1 − p̂c

g (X∗
i )
)

π̂c
g (X∗

i )
,

that puts mass only at the observed times Tj that are not classified as cured (ξjνj = 0).
Then, T ∗

i = Tj with conditional probability

P (T ∗
i = Tj | X∗

i )

= P (T ∗
i = Tj | Y ∗

i < ∞ or C∗
i = ∞, X∗

i ) (1 − P (Y ∗
i = ∞, C∗

i = ∞ | X∗
i ))

= Bgj (X∗
i )

1 −
(
1 − p̂c

g (X∗
i )
)

π̂c
g (X∗

i )

[
1 −

(
1 − p̂c

g (X∗
i )
)

π̂c
g (X∗

i )
]

= Bgj (X∗
i ) .

Now, we will prove that if T ∗
i = Tj then δ∗

i = δj and ξ∗
i ν∗

i = ξjνj . Since
ξ∗

i ν∗
i = 1 (Y ∗

i = ∞, C∗
i = ∞) = 0 and ξjνj = 0 then ξ∗

i ν∗
i = ξjνj . Regarding the boot-

strap censoring indicator, recall that 1 − F̂ c
g (t | X∗

i ) puts mass only at those Tj with
δj = 1 while 1 − Ĝc

g (t | X∗
i ) puts mass only at those Tj with δj = 0. Let Y ∗

i = Tk and
C∗

i = Tl be the bootstrapped lifetime and censoring time such that T ∗
i = min(Y ∗

i , C∗
i ).

Note that δk = 1 and δl = 0. Since we have assumed no ties between censored and
uncensored times, if min (Y ∗

i , C∗
i ) = Y ∗

i then T ∗
i = Tk, δ∗

i = 1 and therefore δ∗
i = δk.

While if min (Y ∗
i , C∗

i ) = C∗
i then T ∗

i = Tl, δ∗
i = 0 and consequently δ∗

i = δl. In
summary, let (Tj , δj , ξjνj = 0) be an individual in the subgroup with unknown cure
status {(Ti, δi, ξiνi = 0) , i = 1, . . . , n − m}, then (T ∗

i , δ∗
i , ξ∗

i ν∗
i ) equals (Tj , δj , ξjνj = 0)

with probability Bgj (X∗
i ).

Let us consider now that the generated individual is known to be cured, that is Y ∗
i =

C∗
i = ∞. In this second case, T ∗

i is a value generated from Ĝ0g (t | X∗
i ) with:

Ĝ0g (t | x) =
∑n

i=1 Bgi (x) 1 (Ti ≤ t, ξiνi = 1)
1 −

∑n
i=1 Bgi (x) 1 (ξiνi = 0) =

∑n
i=1 Bgi (x) 1 (Ti ≤ t, ξiνi = 1)

1 − Ĥ0
g

(
T(n) | x

) .

From Proposition 2.2,

1 − Ĥ0
g

(
T(n) | x

)
=
(
1 − F̂ c

g

(
T(n) | x

)) (
1 − Ĝc

g

(
T(n) | x

))
=
(
1 − p̂c

g (x)
)

π̂c
g (x) ,
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and, therefore,

Ĝ0g (t | X∗
i ) =

∑n
i=1 Bgi (X∗

i ) 1 (Ti ≤ t, ξiνi = 1)(
1 − p̂c

g (X∗
i )
)

π̂c
g (X∗

i )
.

Note that Ĝ0g (t | X∗
i ) puts mass only at those values Tj of a subject classified as cured

(δj = 0 and ξjνj = 1). Let (Tj , δj , ξjνj) be an individual in the subgroup of individuals
known to be cured {(Ti, δi = 0, ξiνi = 1) , i = n − m + 1, . . . , n}, then T ∗

i = Tj with
probability

P (T ∗
i = Tj | X∗

i ) = P (T ∗
i = Tj | Y ∗

i = ∞, C∗
i = ∞, X∗

i ) P (Y ∗
i = ∞, C∗

i = ∞ | X∗
i )

= Bgj (X∗
i )(

1 − p̂c
g (X∗

i )
)

π̂c
g (X∗

i )

(
1 − p̂c

g (X∗
i )
)

π̂c
g (X∗

i ) = Bgj (X∗
i ) .

Again, we will show that if T ∗
i = Tj when Tj corresponds to an individual known to be

cured (δj = 0, ξjνj = 1) then δ∗
i = δj and ξ∗

i ν∗
i = ξjνj .

In this second case, Y ∗
i = C∗

i = ∞, which yields δ∗
i = 1 (Y ∗

i < C∗
i ) = 0 and

ξ∗
i ν∗

i = 1 (Y ∗
i = ∞, C∗

i = ∞) = 1. In summary, when (Tj , δj , ξjνj) is an individual
known to be cured, then (T ∗

i , δ∗
i , ξ∗

i ν∗
i ) equals (Tj , δj , ξjνj) with probability Bgj (X∗

i ).
This completes the proof.





Appendix B

Proofs of the results in Chapter 3

Proof of Proposition 3.1
Proposition 3.1 The estimator 1 − p̂c

h(x) has the following properties.

1. When there are no censored observations known to be cured, i.e., ξiνi = 0 for
i = 1, . . . , n, 1 − p̂c

h (x) reduces to the XP estimator in (1.5).

Proof. It is straightforward since ξiνi = 0, i = 1, . . . , n.

2. In the specific case that some individuals are classified as cured when their sur-
vival time exceeds a known fixed cure threshold, 1 − p̂c

h (x) also reduces to the
XP estimator.

Proof. Assume there exists a common specific known cure threshold di = d for
i = 1, . . . , n. This implies that in the ordered sample,

{(
X[i], T(i), δ[i], ξ[i]ν[i]

)
,

i = 1, . . . , n}, the n1 first observations correspond to individuals with T(i) < d

either not cured or with unknown cure status (ξ[i]ν[i] = 0), and the remaining m

observations are from cured individuals with T(i) ≥ d and ξ[i]ν[i] = 1. Therefore,

1 − p̂c
h (x) =

n∏
i=1

(
1 −

δ[i]Bh[i] (x)∑n1
j=i Bh[j] (x) +∑n

j=n1+1 Bh[j] (x)

)

=
n∏

i=1

(
1 −

δ[i]Bh[i] (x)∑n
j=i Bh[j] (x)

)
= 1 − p̂h(x).

3. When there is no censoring, all the cure status indicators νi are observed (ξi =
1, i = 1, . . . , n). In this case, 1 − p̂c

h (x) reduces to the NW estimator of the cure
probability

139



140 Appendix B. Proofs of the results in Chapter 3

Proof. Without censoring, Ti = Yi, δi = 1 and the cure status is always observed
ξi = 1. In this situation, the n = n1 + m observations can be ordered and
split into the n1 uncured individuals with finite lifetimes Yi, and the m cured
individuals with lifetime Yi = ∞. Thus,

1 − p̂c
h(x) =

n∏
i=1

1 −
Bh[i] (x)∑n

j=i Bh[j] (x) +∑i−1
j=1 Bh[j] (x) 1

(
ν[j] = 1

)


=
n∏

i=1

∑n
j=i+1 Bh[j] (x) +∑i

j=1 Bh[j] (x) 1
(
ν[j] = 1

)
∑n

j=i Bh[j] (x) +∑i−1
j=1 Bh[j] (x) 1

(
ν[j] = 1

)


=
∑n

j=2 Bh[j] (x) + Bh[j] (x) 1
(
ν[j] = 1

)
∑n

j=1 Bh[j] (x)

×
∑n

j=3 Bh[j] (x) +∑2
j=1 Bh[j] (x) 1

(
ν[j] = 1

)
∑n

j=2 Bh[j] (x) + Bh[j] (x) 1
(
ν[j] = 1

)
× . . . ×

∑n
j=1 Bh[j] (x) 1

(
ν[j] = 1

)
Bh[n] (x) +∑n−1

j=1 Bh[j] (x) 1
(
ν[j] = 1

)
=
∑n

j=1 Bh[j] (x) 1
(
ν[j] = 1

)
∑n

j=1 Bh[j] (x) =
n∑

j=1
Bh[j] (x) 1

(
ν[j] = 1

)
.

4. In an unconditional setting, the proposed estimator is

1 − p̂c
n =

n∏
i=1

1 −
δ[i]

n − i + 1 +∑i−1
j=1 1

(
ξ[j]ν[j] = 1

)
 .

Proof. In an unconditional setting the weights are 1/n for i = 1, . . . , n. Thus,
the 1 − p̂c

h(x) becomes

1 − p̂c
n =

n∏
i=1

1 −
δ[i]n

−1

n−1(n − i + 1) + n−1∑i−1
j=1 1

(
ξ[j]ν[j] = 1

)
 .

In the particular case where an individual is known to be cured only if the
observed time is greater than a known fixed time, say d, with n = n1 + m

observations, where m are identified as cured, the ordered observed lifetimes
T(1) ≤ . . . ≤ T(n1) are strictly lower than d, and the m cured individuals have
T(i) ≥ d. Besides, the weights are 1/n for i = 1, . . . , n. Then the proposed
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estimator reduces to the one in Laska and Meisner (1992)

1 − p̂c
n =

n∏
i=1

(
1 −

δ[i]
n1 − i + 1 + m

)
.

Proof of Proposition 3.2
Proposition 3.2 The estimator 1− p̂c

h (x) in (3.1) is the nonparametric local maximum
likelihood estimator of 1 − p(x).

Proof. Mimicking the proof of Proposition 2.3 in Appendix A, it is not difficult to show
that the estimator 1 − p̂c

h (x) is the local maximum likelihood estimator of 1 − p(x).

Proof of Theorem 3.1
Theorem 3.1 Suppose that Assumptions 1 – 9 and condition (3.5) hold, then for x ∈ I

one obtains

(1 − p̂c
h(x)) − (1 − p(x)) = (1 − p(x))

n∑
i=1

B̃hi (x) ζ (Ti, δi, ξi, νi, τ0, x) + Rn (x) ,

where ζ (Ti, δi, ξi, νi, t, x) is given in (2.21), B̃hi (x) is defined in (2.22), and Rn (x)
satisfies

sup
x∈I

| Rn (x) |= O
(
(log n)3/4 (nh)−3/4

)
a.s.

Proof. Consider the following decomposition

(1 − p̂c
h(x)) − (1 − p(x)) =

(
1 − F̂ c

h

(
T 1

(n) | x
))

− (1 − F (τ0 | x))

± exp
(
−Λ̂c

h

(
T 1

(n) | x
))

= exp
(
−Λ̂c

h

(
T 1

(n) | x
))

− (1 − F (τ0 | x)) + R1(x) (B.1)

where R1 (x) =
(
1 − F̂ c

h

(
T 1

(n) | x
))

− exp
(
−Λ̂c

h

(
T 1

(n) | x
))

, and Λ̂c
h (t | x) is given in

(2.15).
Note that by a Taylor’s expansion of the exponential function around −Λ(τ0 | x), (B.1)
becomes

(1 − p̂c
h(x)) − (1 − p(x)) = − (1 − p (x))

(
Λ̂c

h

(
T 1

(n) | x
)

− Λ (τ0 | x)
)

+ R1 (x)
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+ R2 (x) , (B.2)

where R2 (x) = −1
2 exp (−Λ (t∗ | x))

(
Λ̂c

h

(
T 1

(n) | x
)

− Λ (τ0 | x)
)2

and Λ(t∗ | x) is a value
between Λ̂c

h

(
T 1

(n) | x
)

and Λ (τ0 | x). Further, (B.2) can be decomposed as

(1 − p̂c
h(x)) − (1 − p(x))

= −
(
Λ̂c

h

(
T 1

(n) | x
)

− Λ (τ0 | x) ± Λ̂c
h (τ0 | x)

)
(1 − p (x)) + R1 (x) + R2 (x)

= −
(
Λ̂c

h (τ0 | x) − Λ (τ0 | x)
)

(1 − p (x)) + R1 (x) + R2 (x) + R3 (x)

where

R3 (x) = − (1 − p (x))
(
Λ̂c

h

(
T 1

(n) | x
)

− Λ̂c
h (τ0 | x)

)
.

Arguing similarly as in the proof of Theorem 2 in Iglesias-Pérez and González-Manteiga
(1999), given t = T 1

(n) under Assumptions 1,– 9, then

sup
x∈I

| R1 (x) |= O
(
n−1h−1

)
a.s.

For the term R2 (x), Lemma 5 in López-Cheda et al. (2017a) under Assumption 7 is
used:

nα
(
τ0 − T 1

(n)

)
→ 0 a.s. for any α ∈ (0, 1) , (B.3)

and the strong consistency results for the estimator Λ̂c
h (t | x) in Corollary 2.1 for t = τ0.

Then
sup
x∈I

| R2 (x) |= O
(
n−1h−1 log n

)
a.s.

The third term is bounded as follows,

sup
x∈I

| R3 (x) |≤| T 1
(n) − τ0 | Λ̂c

h (t∗ | x) (1 − p (x)) ,

where Λ̂c
h(t∗ | x) is a value between Λ̂c

h

(
T 1

(n) | x
)

and Λ̂c
h (τ0 | x). From (B.3) for a

sequence of bandwidths satisfying h → 0, one obtains

τ0 − T 1
(n) = O

(
(log n)3/4 (nh)−3/4

)
a.s.

and as a consequence

sup
x∈I

| R3 (x) |= O
(
(log n)3/4 (nh)−3/4

)
a.s.
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The proof concludes by applying the results in Theorem 2.1.

Proof of Proposition 3.3
Proposition 3.3 Suppose that Assumptions 1 – 9 and condition (3.5) hold, then, the
asymptotic bias and variance of the dominant term of 1 − p̂c

h (x) are, respectively,

µh,c(x) = h2Bc(x) + O
(
h4
)

and σ2
h,c(x) = 1

nh
s2

c(x) + O

(
h

n

)
,

where Bc(x) in the dominant term of the bias is

Bc(x) = (c1,c(x) + c2,c(x)) dK

with dK =
∫

v2K(v)dv,

c1,c(x) = 2(1 − p(x))′m′(x) + (1 − p(x))′′m(x)
2m(x) ,

c2,c(x) = (1 − p(x))
∫ τ0

0

G′(v− | x)
1 − G(v− | x)

d

ds

(
S′ (s | x)
S (s | x)

)∣∣
s=v−dv.

Here p′(x), p′′(x), S′(t | x) and G′(t | x) refer to the derivatives with respect to x. The
function s2

c(x) in the dominant term of the variance is

s2
c(x) = (1 − p (x))2

m (x)

∫ τ0

0

dH1 (v− | x)
(1 − H (v− | x) + H11(v− | x))2 cK ,

with cK =
∫

K2(v)dv.

Proof. From Theorem 3.1, the asymptotic bias of 1 − p̂c
h (x) equals to expected value

of

(nh)−1(1 − p (x))
m (x)

n∑
i=1

K

(
x − Xi

h

)
ζ (Ti, δi, ξi, νi, τ0, x) = I + II, (B.4)

where

I = (nh)−1(1 − p (x))
m (x)

[
n∑

i=1
K

(
x − Xi

h

)
ζ (Ti, δi, ξi, νi, τ0, x)

− E

(
n∑

i=1
K

(
x − Xi

h

)
ζ (Ti, δi, ξi, νi, τ0, x)

)]
, (B.5)

II = (nh)−1(1 − p (x))
m (x) E

(
n∑

i=1
K

(
x − Xi

h

)
ζ (Ti, δi, ξi, νi, τ0, x)

)
, (B.6)
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with ζ(T, δ, ξ, ν, t, x) in (2.21).

Since E(I) = 0, the asymptotic bias of the estimator 1−p̂c
h (x) is II. Using Lemmas D.1

and D.2 when t = τ0, then one obtains

II = h2(1 − p (x))(Φ′′
c (x, τ0, x) m (x) + 2Φ′

c (x, τ0, x) m′ (x))dK

2m (x) + O
(
h4
)

, (B.7)

with Φc (y, t, x) = E (ζ (T, δ, ξ, ν, t, x) | X = y), and Φ′
c(y, t, x) and Φ′′

c (y, t, x) are the
first and the second derivatives of Φc (y, t, x) with respect to y.

By applying Lemma D.3 for t = τ0, it suffices to show that

Φ′
c (x, τ0, x) = −(1 − p (x))′

1 − p (x) . (B.8)

Besides, because of Lemma D.4 one can show that

Φ′′
c (x, τ0, x) = 2

∫ τ0

0

G′ (v− | x)
1 − G (v− | x)

d

ds

(
S′ (s | x)
S (s | x)

)∣∣
s=v−dv − (1 − p (x))′′

1 − p (x) , (B.9)

where G(t | x) = (1−π(x))G0(t | x). The expression of the asymptotic bias of 1− p̂c
h(x)

derives from plugging (B.8) and (B.9) in (B.7).

Recalling (B.4), the asymptotic variance of 1 − p̂c
h(x) is

Var (I) = (1 − p (x))2

m2(x) (V1 − V2), (B.10)

where

V1 = 1
nh2 E

(
K2

(
x − X

h

)
ζ2 (T, δ, ξ, ν, τ0, x)

)
,

V2 = 1
nh2

[
E

(
K

(
x − X

h

)
ζ (T, δ, ξ, ν, τ0, x)

)]2
.

From Lemmas D.1 and D.1 for t = τ0, V2 reduces to

V2 = 1
4

h2

n
d2

K

(Φ′′
c (x, τ0, x) m (x) + 2Φ′

c (x, τ0, x) m′ (x)
m (x)

)2
+ O

(
n−1h4

)
= O

(
n−1h2

)
. (B.11)

As for V1, recall Φc
1 (y, τ0, x) = E

(
ζ2 (T, δ, ξ, ν, τ0, x) | X = y

)
. Then, after a change of

variable and a Taylor’s expansion one obtains

V1 = 1
nh

Φc
1 (x, τ0, x) m (x) cK + O

(
n−1h

)
. (B.12)
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From Lemma D.5, the function Φc
1(x, t, x) can be written as:

Φc
1 (x, t, x) =

∫ t

0

dH1 (v− | x)
(1 − H (v− | x) + H11(v− | x))2 . (B.13)

The proof concludes by substituting (B.11) and (B.12) into (B.10) and using (B.13).

Proof of Theorem 3.2

Theorem 3.2 Suppose that Assumptions 1 – 9 and condition (3.5) are satisfied, then
for x ∈ I it follows that:

(i) If nh5 → 0 and (log n)3/(nh) → 0, then

(nh)1/2 (p̂c
h(x) − p(x)) d→ N(0, s2

c(x)).

(ii) If nh5 → C, where C > 0 is a constant then

(nh)1/2 (p̂c
h(x) − p(x)) d→ N(C5/2Bc(x), s2

c(x)),

where Bc(x) is defined in (3.7) and s2
c(x) in (3.10).

Proof. From Theorem 3.1, let us consider

(nh)1/2[(1 − p̂c
h (x)) − (1 − p (x))]

= (nh)1/2
[
(1 − p (x))

n∑
i=1

B̃hi (x) ζ (Ti, δi, ξi, νi, τ0, x) + Rn (x)
]

,

with ζ(T, δ, ξ, ν, t, x) and Rn(x) given in (2.21) and (3.6), respectively. The condition
(log n)3/(nh) → 0 implies that (nh)1/2(log n/(nh))3/4 → 0, so the remainder term
(nh)1/2Rn(x) is negligible. Consequently, the asymptotic distribution of (nh)1/2[(1 −
p̂c

h (x)) − (1 − p (x))] is that of

(nh)1/2 1 − p (x)
m (x)

n∑
i=1

1
nh

K

(
x − Xi

h

)
ζ (Ti, δi, ξi, νi, τ0, x)

= (nh)1/2(I + II), (B.14)

where I and II are given in (B.5) and (B.6). Under the assumption nh5 → 0, one has
(nh)1/2II = o(1). Therefore, the asymptotic distribution of (B.14) is that of (nh)1/2I.
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Let (nh)1/2I = ∑n
i=1 ηi,h(x), where

ηi,h(x) = (nh)−1/2(1 − p (x))
m (x)

[
K

(
x − Xi

h

)
ζ (Ti, δi, ξi, νi, τ0, x)

− E

(
K

(
x − Xi

h

)
ζ (Ti, δi, ξi, νi, τ0, x)

)]
,

Lindeberg’s theorem for triangular arrays (Billingsley, 1968) can be applied to obtain

n∑
i=i

ηi,h (x)

s2
c(x) → N (0, 1) in distribution,

with s2
c(x) in (3.10). Therefore, (nh)1/2[(1 − p̂c

h (x)) − (1 − p (x))] → N(0, s2
c(x)) in

distribution. This proves (i). The proof of (ii) is similar, noting that if nh5 = C5, then
the bias term is non-negligible.

Proof of Proposition 3.5

Proposition 3.5 Suppose that the siMAR condition and Assumptions 1 (i), 2 (i), 3
(i), 8, 10 hold. Also, the bandwidths h, g1, g2 satisfy h → 0, g1 → 0, g2 → 0, nh → ∞,
ng1 → ∞ and ng2 → ∞ as n → ∞. The asymptotic bias of 1 − p̂MI-NW

h (x) is

µMI-NW
g1,g2,h (x) = h2c1,c(x) +

(
g2

1 + g2
2

)
c2,MI-NW(x) + o

(
(h2 + g2

1 + g2
2)2
)

,

where c1,c(x) is defined in (3.8), and

c2,MI-NW(x) = (1 − π (x)) [π (x) (1 − p (x)) m (x)]′′

2m (x) π (x) dK .

If the bandwidths are g1/h → C1 and g2/h → C2, then the asymptotic variance is

σ2
h,MI-NW (x) = 1

nh

1 − p(x)
m(x)

(
cK(1 − π (x))p (x)

Mπ (x)

+
{

π(x)cK + (1 − π(x))
[
cK,C1,C2 + 1 − π(x)

π(x) dK,C1,C2

+ (1 − p(x))
(

cK + 2cK,C2 + 1 − π(x)
π(x) (cK,C1,C2 + 2dK,C1,C2)

)]})
+ 2

ng1
(1 − p (x))2 1 − π (x)

π (x) K (0) + o
(
(Mnh)−1

)
+ o

(
(nh)−1

)
+ o

(
(ng1)−1

)
,
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where cK,C =
∫∫

K(u)K(v)K(u + Cv)dudv,

cK,C1,C2 =
∫∫∫

K(u)K(v)K(w)K(u + C1v + C2w)dudvdw

and
dK,C1,C2 =

∫∫∫
K(u)K(v)K(w)K(u + C1v + C2(u + w))dudvdw.

Proof. Observe that the expectation of 1 − p̂MI-NW
h (x) is

E
(
1 − p̂MI-NW

h (x)
)

= 1
m

M∑
m=1

n∑
i=1

E (Bhi (x) ν̃m
i )

=
n∑

i=1
E (Bhi (x) ξiνi) + 1

m

M∑
m=1

n∑
i=1

E
(
Bhi (x) (1 − ξi) ν+,m

i

)
= E1 (x) + E2 (x) . (B.15)

The NW weights verify

Bhi (x) = Kh (x − Xi)∑n
j=1 Kh (x − Xj) = Kh (x − Xi)

nm̂h (x)

= Kh (x − Xi)
nm̂h (x)

[
m̂h (x)
m (x) + m (x) − m̂h (x)

m (x)

(
m̂h (x)
m (x) + m (x) − m̂h (x)

m (x)

)]
= Kh (x − Xi)

nm (x) + Kh (x − Xi)
nm2 (x) (m (x) − m̂h (x))

+ Kh (x − Xi)
nm (x)

(m (x) − m̂h (x))2

m̂h (x)

= Kh (x − Xi)
nm (x)

(
2 − 1

nm (x)

n∑
j=1

Kh (x − Xj)
)

+ O

(
n−1

(
h2 + (nh)−1/2(log n)1/2

)2
)

a.s.

as n → ∞ under Assumption 1(i), where m̂h(x) is the kernel estimator (Rosenblatt,
1956; Parzen, 1962) of the density function m(x). Then, for the summands in E1(x)
one has

E (Bhi (x) ξiνi)

= 1
nm (x)

[
2E (Kh (x − Xi) ξiνi) − 1

nm (x)E

Kh (x − Xi)
n∑

j=1
Kh (x − Xj) ξiνi

]

+ O

(
n−1

(
h2 + (nh)−1/2(log n)1/2

)2
)
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= 1
nm (x)

[
2E (Kh (x − Xi) ξiνi) − 1

nm (x)E
(
K2

h (x − Xi) ξiνi

)

+ E

Kh (x − Xi)
n∑

j=1
j ̸=i

Kh (x − Xj) ξiνi


]

+ O

(
n−1

(
h2 + (nh)−1/2(log n)1/2

)2
)

= 1
nm (x)

{
2E [Kh (x − Xi) E (ξiνi | Xi)] − 1

nm (x)E
[
K2

h (x − Xi) E (ξiνi | Xi)
]

− E

Kh (x − Xi)
n∑

j=1
j ̸=i

Kh (x − Xj) E (ξiνi | Xi)


}

+ O

(
n−1

(
h2 + (nh)−1/2(log n)1/2

)2
)

Under the siMAR assumption,

E (ξiνi | Xi) = π (Xi) (1 − p (Xi)) . (B.16)

Thus, using (B.16), applying Lemmas D.6 – D.8 the first expectation in (B.15) can be
derived as

E1 (x) = 1
m (x)

{
2E [Kh (x − X1) π(X1) (1 − p(X1))]

− 1
nm (x)E

[
K2

h (x − X1) π(X1) (1 − p(X1))
]

− E [Kh (x − X1) Kh (x − X2) π(X1) (1 − p(X1))]
}

+ O
(
n−1

(
h4 + n−1h−1

))

= π (x) (1 − p (x))
(

2 − n − 1
n

)
+ h2 (π(x) (1 − p(x)) m(x))′′ (x)

m (x) dK

− h2

2
n − 1

n

[
π (x) (1 − p (x)) m′′ (x) + (π(x) (1 − p(x)) m(x))′′ (x)

]
m (x) dK

− 1
nh

π (x) (1 − p (x))
m (x) cK + O

(
n−1

(
h2 + (nh)−1/2(log n)1/2

)2
)

= n + 1
n

π (x) (1 − p (x)) + 1
2h2 1

m (x)

{
n + 1

n
[π(x) (1 − p(x)) m(x)]′′

− n − 1
n

π (x) (1 − p (x)) m′′ (x)
}

dK + O

((
h2 + (nh)−1/2(log n)1/2

)2
)

.

(B.17)
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The terms of E2(x) are

E
(
Bhi (x) (1 − ξi) ν+,m

i

)
= E

(
Bhi (x) (1 − ξi) E

(
ν+,m

i |observed data
))

= E

Bhi (x) (1 − ξi)
n∑

k=1
Bξ

g1k(Xi)
n∑

j=1
Bξ

g2j(Xk)νj

 ,

where

Bξ
gj (x) = ξjKg (x − Xj)∑n

k=1 ξkKg (x − Xk) (B.18)

are the kernel weights used in Steps 1 and 2 of Section 3.3.2.

By applying Lemma D.6, the denominator in (B.18) can be expanded as

E

(
1
n

n∑
k=1

ξkKg (x − Xk)
)

= n − 1
n

(
π (x) m (x) + g2

2 π (x) m′′ (x) dK + O
(
g4
))

+ O

( 1
ng

)
.

It can be verified that

Bξ
gj (x) = ξjKg (x − Xj)∑n

k=1 ξkKg (x − Xk)

=
ξjK

(
x−Xj

g

)
ngπ (x) m (x)

1 +
ngπ (x) m (x) −

∑n
k=1 ξkK

(
x−Xk

g

)
∑n

k=1 ξkK
(

x−Xk
g

)
 ,

≃ 1
ng

ξjK
(

x−Xj

g

)
π (x) m (x) (1 + o (1)) .

Therefore, the following expressions can be obtained after straightforward calculations

E
(
Bhi (x) (1 − ξi) ν+,m

i

)
≃ 1

n2g1g2

n∑
k=1

n∑
j=1

E

[(π (Xi) π (Xk))−1

m (Xi) m (Xk) K

(
Xi − Xk

g1

)

×K

(
Xj − Xk

g2

)
Bhi (x) (1 − ξi) ξjξkνj

]
.

Note that (1 − ξi) ξkξj = 0 if i = j or i = k. So, there are two cases to be considered:
(a) i ̸= j, i ̸= k, k = j, and (b) i ̸= j, i ̸= k, k ̸= j. For case (a) it can be shown

E
(
Bhi (x) (1 − ξi) ν+,m

i

)
= 1

n2g1g2

n∑
j=1

j ̸=i,k=j

E

((π (Xi) π (Xk))−1

m (Xi) m (Xk) K

(
Xi − Xk

g1

)
K

(
Xj − Xk

g2

)
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× Bhi (x) (1 − ξi) ξkξjνj

)
= 1

n2g1g2
K (0)

n∑
j=1
j ̸=i

E

(
(π (Xi) π (Xj))−1

m (Xi) m (Xj) K

(
Xi − Xj

g1

)
Bhi (x) (1 − ξi) ξjνj

)

≃ 1
n2g1g2

1
nh

1
m (x)K (0)

n∑
j=1
j ̸=i

E

((π (Xi) π (Xj))−1

m (Xi) m (Xj) K

(
Xi − Xj

g1

)

× K

(
x − Xi

h

)
(1 − ξi) ξjνj

)
= 1

n2g1g2

1
nh

1
m (x)K (0)

n∑
j=1
j ̸=i

E

[(π (Xi) π (Xj))−1

m (Xi) m (Xj) K

(
Xi − Xj

g1

)
K

(
x − Xi

h

)

× E ((1 − ξi) ξjνj | Xi, Xj , Xk)
]

= 1
n2g1g2

1
nh

1
m (x)K (0)

n∑
j=1
j ̸=i

E

(
K

(
Xi − Xj

g1

)
K

(
x − Xi

h

) 1 − π (Xi)
π (Xi) m (Xi)

× 1 − p (Xj)
m (Xj)

)
= 1

n2g1g2

n − 1
nh

1
m (x)K (0) E

(
K

(
X1 − X2

g1

)
K

(
x − X1

h

) 1 − π (X1)
π (X1) m (X1)

× 1 − p (X2)
m (X2)

)
.

The Taylor expansions and change of variable yields

E
(
Bhi (x) (1 − ξi) ν+,m

i

)
= 1

n2g2
K (0) 1 − π (x)

π (x)
1 − p (x)

m (x) + 1
2

h2

n2g2
K (0) 1

m (x)

[1 − π (x)
π (x) (1 − p (x))

]′′
dK

− 1
2

g2
1

n2g2
K (0) 1 − π (x)

π (x)
p′′ (x)
m (x) dK + O

( 1
n2g2

(
h4 + g2

1h2 + g4
1h−1

))
. (B.19)

Likewise, for case (b) the following arguments are considered

E
(
Bhi (x) (1 − ξi) ν+,m

i

)
= 1

n2g1g2

n∑
j=1
j ̸=i

n∑
k=1
k ̸=i
k ̸=j

E

((π (Xi) π (Xk))−1

m (Xi) m (Xk) K

(
Xi − Xk

g1

)
K

(
Xj − Xk

g2

)

× Bhi (x) (1 − ξi) ξjξkνj

)



151

= 2 1
n3g1g2h

1
m (x)

n∑
j=1
j ̸=i

n∑
k=1
k ̸=i
k ̸=j

E

((π (Xi) π (Xk))−1

m (Xi) m (Xk) K

(
Xi − Xk

g1

)
K

(
Xj − Xk

g2

)

× K

(
x − Xi

h

)
(1 − ξi) ξjξkνj

)
− 1

n4g1g2h2
1

m2 (x)

n∑
j=1
j ̸=i

n∑
k=1
k ̸=i
k ̸=j

n∑
l=1

E

(
(π (Xi) π (Xk))−1

m (Xi) m (Xk)

× K

(
Xi − Xk

g1

)
K

(
Xj − Xk

g2

)
K

(
x − Xi

h

)
K

(
x − Xl

h

)
(1 − ξi) ξjξkνj

)
+ O

( 1
n

(
h4 + 1

nh

))
= Eb,1 (x) − Eb,2 (x) . (B.20)

The term Eb,1 (x) in (B.20) can be verified as

Eb,1 (x)

= 1
n2g1g2

2
nh

1
m (x)

n∑
j=1
j ̸=i

n∑
k=1
k ̸=i
k ̸=j

E

[(π (Xi) π (Xk))−1

m (Xi) m (Xk) K

(
Xi − Xk

g1

)
K

(
Xj − Xk

g2

)

× K

(
x − Xi

h

)
E ((1 − ξi) ξjξkνj | Xi, Xj , Xk)

]
= (n − 1) (n − 2)

n2g1g2

2
nh

1
m (x)E

(
K

(
X1 − X3

g1

)
K

(
X2 − X3

g2

)
K

(
x − X1

h

)
× (π (X1) π (X3))−1

m (X1) m (X3) (1 − π (X1)) π (X2) π (X3) (1 − p (X2))
)

= (n − 1) (n − 2)
n2g1g2

2
nh

1
m (x)

∫∫∫
K

(
u1 − u3

g1

)
K

(
u2 − u3

g2

)
K

(
x − u1

h

)
× π (u1)−1

m (u1) m (u3) (1 − π (u1)) π (u2) (1 − p (u2)) m (u1) m (u2) m (u3) du1du2du3

= (n − 1) (n − 2)
n2g1g2

2
nh

1
m (x)

∫∫∫
K

(
u1 − u3

g1

)
K

(
u2 − u3

g2

)
K

(
x − u1

h

)
× 1 − π (u1)

π (u1) π (u2) (1 − p (u2)) m (u2) du1du2du3.

Applying a Taylor expansion and the change of variable v2 = u2−u3
g2

, v3 = u1−u3
g1

,
v1 = x−u1

h , respectively, it can be shown that

Eb,2 (x)

= (n − 1) (n − 2)
n3g1

2
h

1
m (x)

∫∫
K

(
u1 − u3

g1

)
K

(
x − u1

h

) 1 − π (u1)
π (u1) π (u3)
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× (1 − p (u3)) m (u3) du1du3 + g2
2

(n − 1) (n − 2)
n2g1

1
nh

1
m (x)dK

×
∫∫

K

(
u1 − u3

g1

)
K

(
x − u1

h

) 1 − π (u1)
π (u1) (π (u3) (1 − p (u3)) m (u3))′′ du1du3

+ O
(
(n − 1) (n − 2) g4

2(g1h)−1n−3
)

= (n − 1) (n − 2)
n3hm (x)

{
2
∫∫

K (v3) K

(
x − u1

h

) 1 − π (u1)
π (u1) π (u1 − g1v3)

× (1 − p (u1 − g1v3)) m (u1 − g1v3) du1dv3 + g2
2dK

×
∫∫

K (v3) K

(
x − u1

h

) 1 − π (u1)
π (u1)

[
π (u1 − g1v3) (1 − p (u1 − g1v3))

× m (u1 − g1v3)
]′′

du1dv3

}
+ O

(
(n − 1) (n − 2) g4

2n−3(g1h)−1
)

= (n − 1) (n − 2)
n3hm (x)

{
2
∫

K

(
x − u1

h

) 1 − π (u1)
π (u1)

×
∫

K (v3) π (u1 − g1v3) (1 − p (u1 − g1v3)) m (u1 − g1v3) dv3du1

+ g2
2dK

∫
K

(
x − u1

h

) 1 − π (u1)
π (u1)

∫
K (v3)

[
π (u1 − g1v3) (1 − p (u1 − g1v3))

× m (u1 − g1v3)
]′′

dv3du1

}
+ O

(
(n − 1) (n − 2) g4

2(g1h)−1n−3
)

= (n − 1) (n − 2)
n3hm (x)

{
2
∫

K

(
x − u1

h

)
(1 − π (u1)) (1 − p (u1)) m (u1) du1

+
(
g2

1 + g2
2

)
dK

∫
K

(
x − u1

h

) 1 − π (u1)
π (u1) [π (u1) (1 − p (u1)) m (u1)]′′ du1

}
+ O

(
(n − 1) (n − 2) g4

1h−1n−3
)

+ O
(
(n − 1) (n − 2) g2

1g2
2h−1n−3

)
+ O

(
(n − 1) (n − 2) g4

2g−1
1 h−1n−3

)
= (n − 1) (n − 2)

n3

{
2 (1 − π (x)) (1 − p (x))

+ h2 1
m (x) [(1 − π (x)) (1 − p (x)) m (x)]′′ dK

+
(
g2

1 + g2
2

) 1
m (x)

1 − π (x)
π (x) [π (x) (1 − p (x)) m (x)]′′ dK

}
+ O

(
(n − 1) (n − 2) h4n−3

)
+ O

(
(n − 1) (n − 2)

(
g2

1 + g2
2

)
h2n−3

)
+ O

(
(n − 1) (n − 2) g4

1h−1n−3
)

+ O
(
(n − 1) (n − 2) g2

1g2
2h−1n−3

)
+ O

(
(n − 1) (n − 2) g4

2g−1
1 h−1n−3

)
.
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Turning to Eb,2 (x) in (B.20), it can be shown that

E2
b,2 (x) = 1

n4g1g2h2
1

m2 (x)

n∑
j=1
j ̸=i

n∑
k=1
k ̸=i
k ̸=j

n∑
l=1

E

[(π (Xi) π (Xk))−1

m (Xi) m (Xk) K

(
Xi − Xk

g1

)

× K

(
Xj − Xk

g2

)
K

(
x − Xi

h

)
K

(
x − Xl

h

)
× (1 − π (Xi)) π (Xj) π (Xk) (1 − p (Xj))

]
= n (n − 1) (n − 2)

n3g1g2h2
1

m2 (x)

× E

(
K

(
X1 − X3

g1

)
K

(
X2 − X3

g2

)
K

(
x − X1

h

)
K

(
x − X4

h

)
× 1 − π (X1)

m (X1) π (X1)π (X2) (1 − p (X2)) 1
m (X3)

)
= (n − 1) (n − 2)

n3g1g2h2m2 (x)

∫∫∫∫
K

(
u1 − u3

g1

)
K

(
u2 − u3

g2

)
K

(
x − u1

h

)
K

(
x − u4

h

)
× 1 − π (u1)

π (u1) π (u2) (1 − p (u2)) m (u2) m (u4) du1du2du3du4

)

By following similar arguments as in the proof of Eb,1 (x), it suffices to show

Eb,2 (x)

= (n − 1) (n − 2)
n3

{
(1 − π (x)) (1 − p (x))

+ h2

2

[
((1 − π) (1 − p) m)′′ (x)

m (x) + m′′ (x)
m (x) (1 − π (x)) (1 − p (x))

]
dK

+
(
g2

1 + g2
2
)

2
1 − π (x)

π (x)
(π (1 − p) m)′′ (x)

m (x) dK

}
+ O

(
(n − 1) (n − 2) n−3

(
g4

2 + h4 + h2g2
2 + h2g2

2 + g2
1g2

2

))
.

Combining Eb,1 (x) and Eb,2 (x), one obtain

E
(
Bhi (x) (1 − ξi) ν+,m

i

)
= (n − 1) (n − 2)

n3

{
(1 − π (x)) (1 − p (x)) + h2

2m (x)dK [(1 − π(x)) (1 − p(x)) m(x)]′′

− m′′ (x) (1 − π (x)) (1 − p (x)) +
(
g2

1 + g2
2
)

2m (x)
1 − π (x)

π (x) dK [π (x) (1 − p (x)) m (x)]′′
}

+ O
(
(n − 1) (n − 2) n−3

(
g4

2 + h4 + g2
1h2 + g2

2h2 + g2
1g2

2

))
. (B.21)
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Taking into account (B.19) and (B.21), then the second expectation in (B.15) is

E2(x)

= (n − 1) (n − 2)
n2

(
(1 − π (x)) (1 − p (x)) + h2

2m (x)dK

{
[(1 − π(x)) (1 − p(x)) m(x)]′′

− m′′ (x) (1 − π (x)) (1 − p (x))
}

+
(
g2

1 + g2
2
)

2m (x) dK
1 − π (x)

π (x) [π (x) (1 − p (x)) m (x)]′′
)

+ 1
ng2

K (0) 1 − π (x)
π (x)

1 − p (x)
m (x)

+ O

(
n−2 (n − 1) (n − 2)

(
h2 + g2

1 + g2
2

)2
)

+ O
(
n−1g−1

2

(
h2 + g2

1

))
. (B.22)

The derivation of the dominant terms of the bias of 1 − p̂MI-NW
h (x) is complete after

joining together (B.17) and (B.22) and the fact that h → 0, g1 → 0, g2 → 0, nh →
∞, ng1 → ∞ and ng2 → ∞ as n → ∞.

Conditioning on the observed data (O) and the resampling data in Step 1. (R) of
Section 3.3.2, the variance of 1 − p̂MI-NW

h (x) is

σ2
h,MI-NW (x) = E

(
Var

(
1 − p̂MI-NW

h (x) | O, R
))

+ Var
(
E
(
1 − p̂MI-NW

h (x) | O, R
))

= V1 + V2. (B.23)

To prove (B.23), the auxiliary results in Lemmas D.9 – D.11 are needed.

The first term in (B.23) is

V1 = 1
M

E

[
Var

(
n∑

i=1

1
nh

1
m (x)K

(
x − Xi

h

)(
ξiνi + (1 − ξi) ν+,1

i

)
| O, R

)]

= 1
M

E

[ 1
nh2

1
m2 (x)K2

(
x − X1

h

)
(1 − ξ1) E

(
ν+,1

1 | O, R
)]

− 1
M

E

[ 1
nh2

1
m2 (x)K2

(
x − X1

h

)
(1 − ξ1) E

(
ν+,1

1 | O, R
)2
]

= V11 − V12.

After Lemmas D.9 and D.11, respectively, we obtain

V11 = cK

Mnh

(1 − π (x)) (1 − p (x))
m (x)

(
1 + O

(
g2

1 + g2
2 + h2

))
V12 = cK

Mnh

(1 − π (x)) (1 − p (x))2

m (x)
(
1 + O

(
g2

1 + g2
2 + h2

))
.
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Thus,

V1 = cK

Mnh

(1 − π (x)) p (x) (1 − p (x))
m (x)

(
1 + O

(
g2

1 + g2
2 + h2

))
. (B.24)

Next, turning to the second term of (B.23):

V2 = Var
(
E
[
E
(
1 − p̂MI-NW

h (x)|O, R
)

| O
])

(B.25)

+ E
[
Var

(
E
(
1 − p̂MI-NW

h (x) | O, R
)

| O
)]

= V21 + V22. (B.26)

The first term in (B.26) is

V21 = 1
n2h2

1
m2 (x)Var

(
n∑

i=1
K

(
x − Xi

h

)(
ξiνi + (1 − ξi) E

(
ν+,1

1 | O, R
)))

= 1
nh2

1
m2 (x)Var

(
K

(
x − X1

h

)
ξ1ν1

)
+ 1

nh2
1

m2 (x)Var
(

K

(
x − X1

h

)
(1 − ξ1) E

(
ν+,1

1 | O, R
))

+ 2 1
nh2

1
m2 (x)Cov

(
K

(
x − X1

h

)
ξ1ν1, K

(
x − X1

h

)
(1 − ξ1) E

(
ν+,1

1 | O, R
))

+ 1
n2h2

1
m2 (x)

n∑
i=1

n∑
j=1
j ̸=i

Cov
[
K

(
x − Xi

h

)(
ξiνi + (1 − ξi) E

(
ν+,1

i | O, R
))

× K

(
x − Xj

h

)(
ξjνj + (1 − ξj) E

(
ν+,1

j | O, R
))]

= I1 + I2 + I3 + I4.

It can be shown that

I1 = cK

nh

π (x) (1 − p (x))
m (x) + O

(
n−1

)
, (B.27)

I2 = cK

nh

(1 − π (x)) (1 − p (x))2

m (x) + O
(
n−1

)
, (B.28)

I3 = −2 1
n

π(x)(1 − π(x))(1 − p(x))2

m(x) + O
(
n−1h2

)
= O

(
n−1

)
. (B.29)

The term I4 is simplified to

I4 = (1 − p(x))2(π2(x) − 1) + 2n − 1
nh2

1
m2(x)I41 + n − 1

nh2
1

m2(x)I42 + O(h2), (B.30)
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where

I41 = E

[
K

(
x − X1

h

)
K

(
x − X2

h

)
ξ1ν1 (1 − ξ2) E

(
ν+,1

2 |O, R
)]

,

I42 = E

[
K

(
x − X1

h

)
K

(
x − X2

h

)
(1 − ξ1) (1 − ξ2) E

(
ν+,1

1 |O, R
)

× E
(
ν+,1

2 |O, R
) ]

.

The first term I41 can be written as

I41 = E

[
K

(
x − X1

h

)
K

(
x − X2

h

)
ξ1ν1 (1 − ξ2) E

(
ν+,1

2 |O, R
)]

≃ 1
n2g1g2

n∑
i=1

n∑
j=1

E

[
ξ1 (1 − ξ2) ξiξj

π−1 (Xi) m−1 (Xi)
π (X1) m (X1)

× K

(
x − X1

h

)
K

(
x − X2

h

)
K

(
X2 − Xi

g2

)
K

(
Xi − Xj

g1

)
ν1νj

]
.

There are different cases to be considered. Note that the cases i = 2 and j = 2 give
I41 = 0.

Case (a1): i = j = 1

I41 ≃ 1
n2g1g2

E

[
ξ1 (1 − ξ2) π−1 (X1) m−1 (X1)

π (X1) m (X1)

×K

(
x − X1

h

)
K

(
x − X2

h

)
K

(
X2 − X1

g2

)
K (0) ν1

]
= O

( 1
n2g1g2

hg2

)
= O

(
h

n

1
ng1

)
= o

(
n−1h

)
.

Case (a2): i = 1, j ̸= 1, 2

I41 ≃ n − 2
n2g1g2

E

[
ξ1 (1 − ξ2) ξ3

π−1 (X1) m−1 (X1)
π (X1) m (X1)

×K

(
x − X1

h

)
K

(
x − X2

h

)
K

(
X2 − X1

g2

)
K

(
X1 − X3

g1

)
ν1ν3

]
= n − 2

n2g1g2

∫∫∫
π (x1) (1 − π (x2)) π (x3) π−1 (x1) m−1 (x1)

π (x1) m (x1) K

(
x − x1

h

)
K

(
x − x2

h

)
×K

(
x2 − x1

g2

)
K

(
x1 − x3

g1

)
(1 − p (x1)) (1 − p (x3)) m (x1) m (x2) m (x3) dx1dx2dx3

]
= n − 2

n2g1g2

∫∫∫
(1 − π (x2)) π (x3) m−1 (x1)

π (x1) K

(
x − x1

h

)
K

(
x − x2

h

)
×K

(
x2 − x1

g2

)
K

(
x1 − x3

g1

)
(1 − p (x1)) (1 − p (x3)) m (x2) m (x3) dx1dx2dx3

]
.
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Applying 3 changes of variables and Taylor expansion, we obtain

I41 ≃ n − 2
n2g1g2

g1g2h

∫∫∫
(1 − π (x − hu1 + g2u2)) π (x − hu1 − g1u3) m−1 (x − hu1)

π (x − hu1)
× (1 − p (x − hu1)) (1 − p (x − hu1 − g1u3)) m (x − hu1 + g2u2) m (x − hu1 − g1u3)

× K (u1) K

(
u1 − g2

h
u2

)
K (u2) K (u3) du1du2du3.

According to Lemma D.12, the term I41 follows:

• If g2
h → 0,

I41 ≃ n − 2
n2 h

(
(1 − π (x)) (1 − p (x))2 m (x) + O (h + g1 + g2)

)
×
(

cK + O

(
g2

2
h2

))
= n−1h (1 − π (x)) (1 − p (x))2 m (x) cK + O

(
n−1h−1g2

2

)
+ O

(
n−1h (h + g1 + g2)

)
+ O

( 1
n2 h

)
= n−1h (1 − π (x)) (1 − p (x))2 m (x) cK + O

(
n−1h

)
.

• If g2
h → C,

I41 ≃ n−1h (1 − π (x)) (1 − p (x))2 m (x) cK,C + O
(
nh−1

)
.

• If g2
h → ∞,

I41 ≃ n − 2
n2 h

(
(1 − π (x)) (1 − p (x))2 m (x) + O (h + g1 + g2)

)
O

(
h

g2

)
= O

(
h

n

h

g2

)
= o

(
h

n

)
.

Case (a3) i ̸= 1, 2, j = 1

I41 ≃ n − 2
n2g1g2

E

[
ξ1 (1 − ξ2) ξ3

π−1 (X3) m−1 (X3)
π (X1) m (X1)

K

(
x − X1

h

)
K

(
x − X2

h

)
K

(
X2 − X3

g2

)
K

(
X3 − X1

g1

)
ν1

]
= n − 2

n2g1g2

∫∫∫
π (x1) (1 − π (x2)) π (x3) π−1 (x3) m−1 (x3)

π (x1) m (x1) K

(
x − x1

h

)
K

(
x − x2

h

)
K

(
x2 − x3

g2

)
K

(
x3 − x1

g1

)
(1 − p (x1)) m (x1) m (x2) m (x3) dx1dx2dx3
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= n − 2
n2g1g2

∫∫∫
(1 − π (x2)) (1 − p (x1)) m (x2)

K

(
x − x1

h

)
K

(
x − x2

h

)
K

(
x2 − x3

g2

)
K

(
x3 − x1

g1

)
dx1dx2dx3.

Applying changes of variables and Taylor expansion, it is evidently

I41 ≃ n − 2
n2g1g2

g1g2h

∫∫∫
(1 − π (x − hu1 + g1u3 + g2u2)) (1 − p (x − hu1))

× m (x − hu1 + g1u3 + g2u2) K (u1) K

(
u1 − g1

h
u3 − g2

h
u2

)
× K (u2) K (u3) du1du2du3.

Following Lemma D.13

• If g1
h → 0 and g2

h → 0 then

I41 ≃ n − 2
n2 h

∫∫∫
(1 − π (x − hu1 + g1u3 + g2u2)) (1 − p (x − hu1))

× m (x − hu1 + g1u3 + g2u2)

K (u1) K

(
u1 − g1

h
u3 − g2

h
u2

)
K (u2) K (u3) du1du2du3

= n−1h (1 − π (x)) (1 − p (x)) m (x) cK + o
(
n−1h

)
.

• If one pilot bandwidth verifies gi
h → 0 and the other one gj

h → C then

I41 = n−1h (1 − π (x)) (1 − p (x)) m (x) cK,C + o
(
n−1h

)
.

where cK,C =
∫∫

K (u1) K (u2) K (u1 − Cu2) du1du2.

• If g1
h → C1 and g2

h → C2 then

I41 = n−1h (1 − π (x)) (1 − p (x)) m (x) cK,C1,C2 + o
(
n−1h

)
.

where cK,C1,C2 =
∫∫

K (u1) K (u2) K (u1 − C1u3 − C2u2) du1du2

• If g1
h → ∞ or g2

h → ∞ then
I41 = o

(
n−1h

)
.

Case (a4): i, j ̸= 1, 2, i = j

I41 ≃ n − 2
n2g1g2

E

[
ξ1 (1 − ξ2) ξ3j

π−1 (X3) m−1 (X3)
π (X1) m (X1)
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K

(
x − X1

h

)
K

(
x − X2

h

)
K

(
X2 − X3

g2

)
K (0) ν1ν3

]
= n − 2

n2g1g2
K (0)

∫∫∫
π (x1) (1 − π (x2)) π (x3) π−1 (x3) m−1 (x3)

π (x1) m (x1) K

(
x − x1

h

)
K

(
x − x2

h

)
K

(
x2 − x3

g2

)
(1 − p (x1)) (1 − p (x3)) m (x1) m (x2) m (x3) dx1dx2dx3

= n − 2
n2g1g2

K (0)
∫∫∫

(1 − p (x1)) (1 − π (x2)) m (x2) (1 − p (x3))

K

(
x − x1

h

)
K

(
x − x2

h

)
K

(
x2 − x3

g2

)
dx1dx2dx3.

Again, after 3 changes of variable and applying Taylor expansions,

I41 = n − 2
n2g1g2

h2g2K (0)
∫∫∫

(1 − p (x − hu1)) (1 − π (x − hu2)) m (x − hu2)

(1 − p (x − hu2 − g2u3)) K (u1) K (u1) K (u3) du1du2dx3

= 1
ng1

h2K (0) (1 − p (x))2 (1 − π (x)) m (x) + O

(
h2

n2g1

)

= 1
ng1

h2K (0) (1 − p (x))2 (1 − π (x)) m (x) + O

(
h2

ng1

)
.

Case (a5): i, j ̸= 1, 2, i ̸= j

I41 ≃ (n − 2) (n − 3)
n2g1g2

E

[
ξ1 (1 − ξ2) ξ3ξ4

π−1 (X3) m−1 (X3)
π (X1) m (X1)

K

(
x − X1

h

)
K

(
x − X2

h

)
K

(
X2 − X3

g2

)
K

(
X3 − X4

g1

)
ν1ν4

]
= (n − 2) (n − 3)

n2g1g2

∫∫∫∫
π (x1) (1 − π (x2)) π (x3) π (x4) π−1 (x3) m−1 (x3)

π (x1) m (x1)

× K

(
x − x1

h

)
K

(
x − x2

h

)
K

(
x2 − x3

g2

)
K

(
x3 − x4

g1

)
(1 − p (x1))

× (1 − p (x4)) m (x1) m (x2) m (x3) m (x4) dx1dx2dx3dx4

= (n − 2) (n − 3)
n2g1g2

∫∫∫∫
(1 − π (x2)) π (x4) K

(
x − x1

h

)
K

(
x − x2

h

)
× K

(
x2 − x3

g2

)
K

(
x3 − x4

g1

)
(1 − p (x1)) (1 − p (x4))

× m (x2) m (x4) dx1dx2dx3dx4

= (n − 2) (n − 3)
n2g1g2

∫
(1 − p (x1)) K

(
x − x1

h

)
dx1

×
∫∫∫∫

(1 − π (x2)) π (x4) K

(
x − x2

h

)
K

(
x2 − x3

g2

)
K

(
x3 − x4

g1

)
× (1 − p (x4)) m (x2) m (x4) dx2dx3dx4.
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We can perform 3 changes of variables

I41 = (n − 2) (n − 3)
n2g1g2

h
[
(1 − p (x)) + O

(
h2
)]

hg1g2

∫∫∫∫
(1 − π (x − hu2))

× π (x − hu2 − g2u3 − g1u4) (1 − p (x − hu2 − g2u3 − g1u4))

× m (x − hu2) m (x − hu2 − g2u3 − g1u4) K (u2) K (u3) K (u4) du2dx3dx4

= (n − 2) (n − 3)
n2 h2

[
(1 − p (x)) + O

(
h2
)] [

(1 − π (x)) π (x) (1 − p (x)) m2 (x)

+O
(
h2 + g2

1 + g2
2

)]
= h2 (1 − p (x))2 (1 − π (x)) π (x) m2 (x) − 5

n
h2 (1 − p (x))2 (1 − π (x))

× π (x) m2 (x) + O

(
h2

n2

)
+ O

(
h2
(
h2 + g2

1 + g2
2

))
.

Collecting Cases (a1) – (a5), the first term in I4 has got different expressions depending
on the bandwidths h, g1 and g2

• If g1
h → 0 and g2

h → 0 then

I41 = h2 (1 − p (x))2 (1 − π (x)) π (x) m2 (x) − 5
n

h2 (1 − p (x))2 (1 − π (x))

× π (x) m2 (x) + 1
n

h (1 − π (x)) (1 − p (x))2 m (x) cK

+ 1
n

h (1 − π (x)) (1 − p (x)) m (x) cK

+ 1
ng1

h2K (0) (1 − p (x))2 (1 − π (x)) m (x)

+ o

(
h2

ng1

)
+ O

(
h2

n2

)
+ O

(
h2
(
h2 + g2

1 + g2
2

))
+ o

(
h

n

)
.

• If g1
h → 0 and g2

h → C then

I41 = h2 (1 − p (x))2 (1 − π (x)) π (x) m2 (x) − 5
n

h2 (1 − p (x))2 (1 − π (x))

× π (x) m2 (x) + 1
n

h (1 − π (x)) (1 − p (x))2 m (x) cK,C

+ 1
n

h (1 − π (x)) (1 − p (x)) m (x) cK,C

+ 1
ng1

h2K (0) (1 − p (x))2 (1 − π (x)) m (x)

+ o

(
h2 1

ng1

)
+ O

(
h2

n2

)
+ O

(
h2
(
h2 + g2

1 + g2
2

))
+ o

(
h

n

)
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where cK,C =
∫∫

K (u1) K (u2) K (u1 − Cu2) du1du2.

• If g1
h → C and g2

h → 0 then

I41 = h2 (1 − p (x))2 (1 − π (x)) π (x) m2 (x) − 5
n

h2 (1 − p (x))2 (1 − π (x))

(x) m2 (x) + 1
n

h (1 − π (x)) (1 − p (x))2 m (x) cK

+ 1
n

h (1 − π (x)) (1 − p (x)) m (x) cK,C

+ 1
ng1

h2K (0) (1 − p (x))2 (1 − π (x)) m (x)

+ o

(
h2 1

ng1

)
+ O

(
h2

n2

)
+ O

(
h2
(
h2 + g2

1 + g2
2

))
+ o

(
h

n

)

where cK,C =
∫∫

K (u1) K (u2) K (u1 − Cu2) du1du2.

• If g1
h → C1 and g2

h → C2 then

I41 = h2 (1 − p (x))2 (1 − π (x)) π (x) m2 (x) − 5
n

h2 (1 − p (x))2 (1 − π (x))

(x) m2 (x) + 1
n

h (1 − π (x)) (1 − p (x))2 m (x) cK,C2

+ 1
n

h (1 − π (x)) (1 − p (x)) m (x) cK,C1,C2

+ 1
ng1

h2K (0) (1 − p (x))2 (1 − π (x)) m (x) + o

(
h2 1

ng1

)
+ O

(
h2

n2

)
+ O

(
h2
(
h2 + g2

1 + g2
2

))
+ o

(
h

n

)

where cK,C1,C2 =
∫∫

K (u1) K (u2) K (u1 − C1u3 − C2u2) du1du2 and
cK,C =

∫∫
K (u1) K (u2) K (u1 − Cu2) du1du2.

• If any pilot bandwidth verifies gi
h → ∞ then

I41 = h2 (1 − p (x))2 (1 − π (x)) π (x) m2 (x) − 5
n

h2 (1 − p (x))2 (1 − π (x))

× π (x) m2 (x) + 1
ng1

h2K (0) (1 − p (x))2 (1 − π (x)) m (x) + o

(
h2 1

ng1

)
+ O

(
h2

n2

)
+ O

(
h2
(
h2 + g2

1 + g2
2

))
+ o

(
h

n

)
.
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To summarize, if g1/h → C1 ≥ 0 and g2/h → C2 ≥ 0, then

2n − 1
nh2

1
m2(x)I41

= 2π(x)(1 − π(x))(1 − p(x))2

+ 2
nh

[
(1 − π(x))(1 − p(x))2

m(x) cK,C2 + (1 − π(x))(1 − p(x))
m(x) cK,C1,C2

]

+ 2
ng1

(1 − π(x))(1 − p(x))2

m(x) K(0) + O
(
n−1h−1

)
+ O

(
n−1g−1

1

)
, (B.31)

where cK,C1,C2 =
∫∫∫

K(u)K(v)K(w)K(u+C1v+C2w)dudvdw and cK,C2 =
∫∫

K(u)K(v)K(u+
C2v)dudv. Note that if C1 = C2 = 0 then cK,C1,C2 = cK,C2 = cK =

∫
K2(v)dv. On the

other hand, if C1 = ∞ then cK,C1,C2 = 0, and C1 = ∞ implies cK,C1,C2 = cK,C2 = 0.
The result for I42 can be proved in similar manner as above:

n − 1
nh2

1
m2(x)I42

= (1 − π(x))2(1 − p(x))2

+ 1
nh

[(1 − π(x))2(1 − p(x))2

π(x)m(x) (cK,C1,C2 + 2dK,C1,C2)

+ (1 − π(x))2(1 − p(x))
π(x)m(x) dK,C1,C2

]
+ 2

ng1

(1 − π(x))2(1 − p(x))2

π(x)m(x) K(0) + O
(
n−1h−1

)
+ O

(
n−1g−1

1

)
, (B.32)

where dK,C1,C2 =
∫∫∫

K(u)K(v)K(w)K(u + C1v + C2(u + w))dudvdw. Again, if C1 =
C2 = 0 then dK,C1,C2 = cK , whereas if C1 = ∞ or C2 = ∞ then dK,C1,C2 = 0.
Finally, rejoining (B.27) – (B.32), we arrive to the following expression for V21:

V21 = 1
nh

1 − p(x)
m(x)

{
π(x)cK + (1 − π(x))

[
cK,C1,C2 + 1 − π(x)

π(x) dK,C1,C2

+ (1 − p(x))
(

cK + 2cK,C2 + 1 − π(x)
π(x) (cK,C1,C2 + 2dK,C1,C2)

)]}
+ 2

ng1

(1 − π(x))(1 − p(x))2

π(x)m(x) K(0) + O
(
n−1h−1

)
+ O

(
n−1g−1

1

)
. (B.33)

The term V22 may also be checked in a similar manner as V21:

V22 = 1
Mnh

cK

m2 (x)
(1 − π (x))2

π (x) p (x) (1 − p (x)) + O
(
M−1n−1h−1

)
. (B.34)



163

Note that adding V1 in (B.24), V21 in (B.33) and V22 in (B.34) gives (3.21).





Appendix C

Proofs of the results in Chapter 4

Proof of Theorem 4.1
Theorem 4.1 (Asymptotic representation). Suppose that Assumptions 1 – 9 hold,
then, for x ∈ I and t ∈ [a, b] such that Ŝc

h2
(t | x) > 1 − p̂c

h1
(x), an iid representation for

Ŝc
0,h1,h2

(t | x) is

Ŝc
0,h1,h2 (t | x) − S0 (t | x) =

n∑
i=1

ηh1,h2 (Ti, δi, ξi, νi, t, x) + Rn (t, x)

where

ηh1,h2 (Ti, δi, ξi, νi, t, x) = − S(t | x)
p(x) B̃h2i(x)ζ (Ti, δi, ξi, νi, t, x)

− (1 − p(x))(1 − S(t | x))
p2(x) B̃h1i(x)ζ (Ti, δi, ξi, νi, τ0, x)

with ζ (Ti, δi, ξi, νi, t, x) in (2.21),

B̃hji (x) = 1
m (x)

1
nhj

K

(
x − Xi

hj

)
, for j = 1, 2,

and Rn (t, x) can be shown to satisfy

sup
a≤t≤b,x∈I

| Rn (t, x) |= O
(
(nh)−3/4 (log n)3/4

)
a.s.

Proof. Departing from (4.2), adding and subtracting suitable terms, the difference
Ŝc

0,h1,h2
(t | x) − S0(t | x) can be written as:

Ŝc
0,h1,h2(t | x) − S0(t | x)

165
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=
Ŝc

h2
(t | x) −

(
1 − p̂c

h1
(x)
)

p̂c
h1

(x) − S(t | x) − (1 − p(x))
p(x) ±

Ŝc
h2

(t | x) −
(
1 − p̂c

h1
(x)
)

p(x)

± S(t | x) − (1 − p(x))
p(x) ± S(t | x) − (1 − p(x))

p̂c
h1

(x)

±
p̂c

h1
(x) − p(x)
p2(x) [S(t | x) − (1 − p(x))]

=I + II + III + R1(t, x) + R2(t, x) + R3(t, x),

where

I =
Ŝc

h2
(t | x) − S(t | x)

p(x) , II =
p̂c

h1
(x) − p(x)

p(x) ,

III = −
[S(t | x) − (1 − p(x))]

(
p̂c

h1
(x) − p(x)

)
p2(x)

Rn1(t, x) =

(
Ŝc

h2
(t | x) − S(t | x)

) (
p(x) − p̂c

h1
(x)
)

p̂c
h1

(x)p(x) ,

Rn2(t, x) = −

(
p̂c

h1
(x) − p(x)

)2

p̂c
h1

(x)p(x) and

Rn3(t, x) =
[S(t | x) − (1 − p(x))]

(
p̂c

h1
(x) − p(x)

)2

p̂c
h1

(x)p2(x) .

Note that the dominant term in (4.5) is derived from I + II + III since the terms
Rn1(t, x) + Rn2(t, x) + Rn3(t, x) are negligible. From Theorem 2.2, the next iid repre-
sentation of I is obtained:

I = −S(t | x)
p(x)

n∑
i=1

B̃h2i (x) ζ (Ti, δi, ξi, νi, t, x) + O
(
(nh2)−3/4 (log n)3/4

)
a.s. (C.1)

In sequel, the sum of the terms II + III is studied,

II + III =1 − S(t | x)
p2(x)

(
p̂c

h1(x) − p(x)
)

.

From Theorem 3.1, the next iid representation is obtained:

II + III = − (1 − S(t | x)) (1 − p(x))
p2(x)

n∑
i=1

B̃h1i (x) ζ (Ti, δi, ξi, νi, τ0, x)

+ O
(
(nh1)−3/4 (log n)3/4

)
a.s. (C.2)

From (C.1) and (C.2) we get the dominant terms of the iid representation in (4.5). In
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order to show that the term Rn1(t, x) is negligible, the results from Corollary 2.1 and
Corollary 3.1 are applied to obtain

sup
a≤t≤b,x∈I

|R1n(t, x)| = O
(
n−1 (h1h2)−1/2 log n

)
a.s.

Similarly, the other remainders terms are studied:

R2n(t, x) + R3n(t, x) =S(t | x) − 1
p2(x)

(
p̂c

h1
(x) − p(x)

)2

p̂c
h1

(x) .

Again, using Corollary 3.1,

sup
a≤t≤b,x∈I

|R2n(t, x) + R3n(t, x)| =O
(
(nh1)−1 log n

)
a.s.

This concludes the proof.

Proof of Proposition 4.1
Proposition 4.1 Suppose that Assumptions 1 – 9 are satisfied, then, the asymptotic
bias and variance of the dominant term in the iid representation of Ŝc

0,h1,h2
(t | x) are,

respectively,

µc
h1,h2(t, x) = h2

1Bc,1(t, x) + h2
2Bc,2(t, x) + O

(
h4

1

)
+ O

(
h4

2

)
,

and

σ2
c,h1,h2(t, x) = 1

nh1
s2

c,1(x) + 1
nh2

(
s2

c,2(t, x) + 2s2
c,3(t, x)

)
+ O(n−1h2) + O((nh2)−1h1).

Notice the dominant terms in the bias are

Bc,1 (t, x) =1 − S (t | x) dK

2p2 (x) m (x)
[
2 (1 − p (x))′ m′ (x) + (1 − p (x))′′m (x)

]
− (1 − p (x)) (1 − S (t | x)) dK

p2 (x)

∫ τ0

0

G′ (v− | x)
1 − G (v− | x)

d

ds

(
S′ (s | x)
S (s | x)

) ∣∣∣∣
s=v−

dv

and

Bc,2(t, x) = dK

2p (x) m (x)
(
2S′ (t− | x

)
m′ (x) + S′′ (t− | x

)
m (x)

)
− S (t | x) dK

p (x)

∫ t

0

G′ (v− | x)
1 − G (v− | x)

d

ds

(
S′ (s | x)
S (s | x)

) ∣∣∣∣
s=v−

dv.
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Here, dK =
∫

v2K(v)dv and S′(t | x), S′′(t | x), (1 − p(x))′, (1 − p(x))′′ refer to the
derivatives with respect to x.

The dominant terms in the variance are

s2
c,1(t, x) =(1 − p(x))2 (1 − S(t | x))2

p4(x)m(x)

∫ τ0

0

dH1(v | x)cK

(1 − H(v | x) + H11(v | x))2 ,

s2
c,2(t, x) = S2(t | x)

p2(x)m(x)

∫ t

0

dH1(v | x)cK

(1 − H(v | x) + H11(v | x))2 ,

s2
c,3(t, x) =(1 − p(x)) (1 − S(t | x)) S(t | x)

p3(x)m(x)

∫ t

0

dH1(v | x)
(1 − H(v | x) + H11(v | x))2

×
∫

K(v)K(v h1
h2

)dv

where cK =
∫

K2(v)dv.

Proof. From Theorem 4.1, the bias of Ŝc
0,h1,h2

(t | x) is asymptotically equal to the
expectation of

n∑
i=1

ηh1,h2 (Ti, δi, ξi, νi, t, x)

= − 1
nh2

S(t | x)
m(x)p(x)

n∑
i=1

K

(
x − Xi

h2

)
ζ (Ti, δi, ξi, νi, t, x)

− 1
nh1

(1 − p(x))(1 − S(t | x))
m(x)p2(x)

n∑
i=1

K

(
x − Xi

h1

)
ζ (Ti, δi, ξi, νi, τ0, x)

=IS + Ip + IIS + IIp, (C.3)

where

IS = − 1
nh2

S(t | x)
m(x)p(x)

[ n∑
i=1

K

(
x − Xi

h2

)
ζ (Ti, δi, ξi, νi, t, x)

− E

(
n∑

i=1
K

(
x − Xi

h2

)
ζ (Ti, δi, ξi, νi, t, x)

)]
, (C.4)

Ip = − 1
nh1

(1 − p(x))(1 − S(t | x))
m(x)p2(x)

[
n∑

i=1
K

(
x − Xi

h1

)
ζ (Ti, δi, ξi, νi, τ0, x)

− E

(
n∑

i=1
K

(
x − Xi

h1

)
ζ (Ti, δi, ξi, νi, τ0, x)

)]
, (C.5)

IIS = − 1
nh2

S(t | x)
m(x)p(x)E

(
n∑

i=1
K

(
x − Xi

h2

)
ζ (Ti, δi, ξi, νi, t, x)

)
, (C.6)
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IIp = − 1
nh1

(1 − p(x))(1 − S(t | x))
m(x)p2(x) E

(
n∑

i=1
K

(
x − Xi

h1

)
ζ (Ti, δi, ξi, νi, τ0, x)

)
.

(C.7)

Note that E(IS) = E(Ip) = 0, thus the asymptotic bias of the estimator Ŝc
0,h1,h2

(t | x)
is IIp + IIS . From (B.6) and (A.16), it can be shown that, respectively,

IIp = − h2
1

2
(1 − p(x))(1 − S(t | x))

m(x)p2(x)
(
2Φ′

c (x, τ0, x) m′ (x) + Φ′′
c (x, τ0, x) m (x)

)
dK

+ O(h4
1),

IIS = − h2
2

2
S(t | x)

m(x)p(x)
(
2Φ′

c (x, t, x) m′ (x) + Φ′′
c (x, t, x) m (x)

)
dK + O(h4

2), (C.8)

where dK =
∫

v2K(v)dv, Φ′
c (y, t, x) and Φ′′

c (y, t, x) are the first and second derivatives
with respect to y of Φc (y, t, x) = E(ζ (T, δ, ξ, ν, t, x) | X = y). The expression of the
bias of Ŝc

0,h1,h2
(t | x) is obtained by plugging-in (D.6), (D.11), (B.8), and (B.9) in (C.8).

Recalling (C.4) – (C.7), the asymptotic variance of Ŝc
0,h1,h2

(t | x) is

Var(IS + Ip + IIS + IIp) = Var(IS) + Var(Ip) + 2Cov(IS , Ip). (C.9)

Note that

Var (IS) = S2(t | x)
p2(x)m2(x)(V1 − V2),

where

V1 = 1
nh2

2
E

(
K2

(
x − X

h2

)
ζ2 (T, δ, ξ, ν, t, x)

)
,

V2 = 1
nh2

2

[
E

(
K

(
x − X

h2

)
ζ (T, δ, ξ, ν, t, x)

)]2
.

From the results for V1 and V2 in (A.19) and (A.18) in Appendix A, one has

Var (IS) = 1
nh2

S2(t | x)
p2(x)m(x)cK

∫ t

0

dH1(v | x)
(1 − H(v | x) + H11(v | x))2 + O(n−1h2), (C.10)

where cK =
∫

K2(v)dv. Following the lines of the proof of Var(IS) (see also the proof
of the asymptotic variance of 1 − p̂c

h1
(t | x) in Appendix B),

Var (Ip) = 1
nh1

(1 − S(t | x))2(1 − p(x))2

p4(x)m(x) cK

∫ τ0

0

dH1(v | x)
(1 − H(v | x) + H11(v | x))2

+ O(n−1h1). (C.11)
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As for the third term in (C.9), one obtains

Cov (IS , Ip) = Cov
(
ĨS , Ĩp

)
,

where

ĨS = − 1
nh2

S(t | x)
m(x)p(x)

n∑
i=1

K

(
x − Xi

h2

)
ζ (Ti, δi, ξi, νi, t, x) ,

Ĩp = − 1
nh1

(1 − p(x)) (1 − S(t | x))
m(x)p2(x)

n∑
i=1

K

(
x − Xi

h1

)
ζ (Ti, δi, ξi, νi, τ0, x) .

The covariance of ĨS and Ĩp is

Cov
(
ĨS , Ĩp

)
= 1

n2h1h2

S(t | x) (1 − p(x)) (1 − S(t | x))
m2(x)p3(x) Cov

( n∑
i=1

K

(
x − Xi

h2

)
ζ (Ti, δi, ξi, νi, t, x) ,

n∑
j=1

K

(
x − Xj

h1

)
ζ (Tj , δj , ξj , νj , τ0, x)

)

= 1
n2h1h2

S(t | x) (1 − p(x)) (1 − S(t | x))
m2(x)p3(x)

×
( n∑

i=1
Cov

(
K

(
x − Xi

h1

)
ζ (Ti, δi, ξi, νi, t, x) , K

(
x − Xi

h2

)
ζ (Ti, δi, ξi, νi, τ0, x)

)

+
n∑

i=1

n∑
j=1,j ̸=i

Cov
(

K

(
x − Xi

h1

)
ζ (Ti, δi, ξi, νi, t, x) , K

(
x − Xj

h2

)
ζ (Tj , δj , ξj , νj , τ0, x)

))

= 1
nh1h2

S(t | x) (1 − p(x)) (1 − S(t | x))
m2(x)p3(x) Cov

(
K

(
x − X1

h1

)
ζ (T1, δ1, ξ1, ν1, t, x) ,

K

(
x − X1

h2

)
ζ (T1, δ1, ξ1, ν1, τ0, x)

)
. (C.12)

The covariance term in (C.12) can be worked out as follows:

Cov
(

K

(
x − X1

h2

)
ζ (T1, δ1, ξ1, ν1, t, x) , K

(
x − X1

h1

)
ζ (T1, δ1, ξ1, ν1, τ0, x)

)
=E

(
K

(
x − X1

h1

)
K

(
x − X1

h2

)
ζ (T1, δ1, ξ1, ν1, t, x) ζ (T1, δ1, ξ1, ν1, τ0, x)

)
− E

(
K

(
x − X1

h1

)
ζ (T1, δ1, ξ1, ν1, t, x)

)
E

(
K

(
x − X1

h2

)
ζ (T1, δ1, ξ1, ν1, τ0, x)

)
=γ − αβ. (C.13)

By applying a change of variable, Taylor expansion and following the lines of Lemma 6
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of López-Cheda et al. (2017b), one attains

γ = h1

∫ t

0

dH1(v | x)
(1 − H(v | x) + H11(v | x))2 m(x)

∫
K(v)K

(
h1
h2

v

)
dv + O(h2

1). (C.14)

From Lemma D.1, the terms α and β are

α = h3
1

2m(x)
(
2Φ′

c (x, τ0, x) m′ (x) + Φ′′
c (x, τ0, x) m (x)

)
dK + O(h5

1),

β = h3
2

2m(x)
(
2Φ′

c (x, t, x) m′ (x) + Φ′′
c (x, t, x) m (x)

)
dK + O(h5

2). (C.15)

Substituting (C.13) – (C.15) in (C.12) yield

Cov(ĨS , Ĩp)

= 1
nh1h2

S(t | x) (1 − p(x)) (1 − S(t | x))
m2(x)p3(x)

[
h1Φc

2(x, t, x)m(x)
∫

K(v)K
(

h1
h2

v

)
dv

− h3
1h3

2
4m2(x)d2

K

(
2Φ′

c (x, t, x) m′ (x) + Φ′′
c (x, t, x) m (x)

)
×
(
2Φ′

c (x, τ0, x) m′ (x) + Φ′′
c (x, τ0, x) m (x)

)
+ O(h5

1h5
2) + O(h2

1)
]

=2 1
nh2

S(t | x) (1 − p(x)) (1 − S(t | x))
m(x)p3(x)

∫ t

0

dH1(v | x)
(1 − H(v | x) + H11(v | x))2

×
∫

K(v)K
(

h1
h2

v

)
dv + O((nh2)−1h1). (C.16)

Substituting (C.10), (C.11) and (C.16) into (C.9) completes the proof of (4.8).

Proof of Theorem 4.2

Theorem 4.2 Suppose that Assumptions 1 – 9 and 11 are satisfied, then, for x ∈ I and
t ∈ [a, b] such that Ŝc

h2
(t | x) > 1 − p̂c

h1
(x), it follows that

(i) If nh5
1 → 0 and nh5

2 → 0, then√
nh1h2

h1 + h2

(
Ŝc

0,h1,h2 (t | x) − S0 (t | x)
)

d−→ N(0, s2
c(t, x)),
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where

s2
c(t, x) =



s2
c,1(t, x) if h1

h2
→ 0

s2
c,2(t, x) if h2

h1
→ 0

C2s2
c,1(t, x)

C1 + C2
+

C1

(
s2

c,2(t, x) + 2s2
c,3(t, x)

)
C1 + C2

if h1
h2

→ C1
C2

with s2
c,1(t, x), s2

c,2(t, x), s2
c,3(t, x) given in (4.11) – (4.13), respectively, and C1 and

C2 are constants.

(ii) If nh5
1 → 0 and nh5

2 → C5
2 > 0, then√

nh1h2
h1 + h2

(
Ŝc

0,h1,h2 (t | x) − S0 (t | x)
)

d−→ N(0, s2
c,1(t, x)).

(iii) If nh5
1 → C5

1 > 0 and nh5
2 → 0, then√

nh1h2
h1 + h2

(
Ŝc

0,h1,h2 (t | x) − S0 (t | x)
)

d−→ N(0, s2
c,2(t, x)).

(iv) If nh5
1 → C5

1 > 0 and nh5
2 → C5

2 > 0, then√
nh1h2

h1 + h2

(
Ŝc

0,h1,h2 (t | x) − S0 (t | x)
)

d−→ N(Bc(t, x), s2
c(t, x))

where

Bc(t, x) =
√

C1C2
C1 + C2

(
C2

1Bc,1(t, x) + C2
2Bc,2(t, x)

)
,

with Bc,1(t, x) and Bc,2(t, x) defined in (4.9) and (4.10), and s2
c(t, x) is given in

(4.14).

Proof. We must characterize the asymptotic distribution of√
nh1h2
h1+h2

(
Ŝc

0,h1,h2
(t | x) − S0 (t | x)

)
. By Theorem 4.1 and following the proof of Propo-

sition 4.1, this is the same asymptotic distribution of√
nh1h2

h1 + h2

n∑
i=1

ηh1,h2 (Ti, δi, ξi, νi, t, x) =
√

nh1h2
h1 + h2

(IS + Ip + IIS + IIp), (C.17)
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with IS , Ip, IIS and IIp are given in (C.4) - (C.8) since, by Assumption 11.,√
nh1h2

h1 + h2
O
(
(nh1)−3/4 (log n)3/4 + (nh2)−3/4 (log n)3/4

)
= o(1).

From (C.8), it is obvious that the expectation of (C.17) is√
nh1h2

h1 + h2
(IIp + IIS) =

√
nh1h2

h1 + h2

(
h2

1Bc,1(t, x) + h2
2Bc,2(t, x) + O

(
h4

1

)
+ O

(
h4

2

))
,

(C.18)

where Bc,1(t, x) and Bc,2(t, x) are given in (4.9) and (4.10), respectively.
Following (C.9) – (C.11) and (C.16), we obtain that the variance of (C.17) is

σ2
c,h1,h2(t, x) = h2

h1 + h2
s2

c,1(t, x) + h1
h1 + h2

(
s2

c,2(t, x) + 2s2
c,3(t, x)

)
+ O

(
h1h2

2
h1 + h2

)
+ O

(
h2

1h2
h1 + h2

)
(C.19)

<s2
c,1(t, x) + s2

c,2(t, x) + 2s2
c,3(t, x) + o(1) < ∞,

whereby hi > 0 and hi/(h1 + h2) < 1, for i = 1, 2. The terms s2
c,1(t, x), s2

c,2(t, x)
and s2

c,3(t, x) given in (4.11) – (4.13) are finite as a consequence σ2
c,h1,h2

(t, x) < ∞. By
applying Lindeberg’s theorem for triangular arrays (Billingsley, 1968), we conclude the
asymptotic normality of Ŝc

0,h1,h2
(t | x).

Next, we provide the expressions of the bias and variance according to the rate at which
the bandwidths h1, h2 tend to zero.

(i) If nh5
i

hj

h1+h2
→ 0, for i, j = 1, 2 i ̸= j, then the bias is negligible, applying (C.18),

√
nh1h2

h1 + h2
(IIp + IIS) = o(1).

As for the expression of the asymptotic variance in (C.19), if h1/h2 → 0 then

σ2
c,h1,h2(t, x) = 1

h1/h2 + 1s2
c,1(t, x) + h1/h2

h1/h2 + 1
(
s2

c,2(t, x) + 2s2
c,3(t, x)

)
→ s2

c,1(t, x),

and if h2/h1 → 0 then σ2
c,h1,h2

(t, x) → s2
c,2(t, x).

Finally, if h1/h2 → C1/C2,

σ2
c,h1,h2(t, x) → C2

C1 + C2
s2

c,1(t, x) + C1
C1 + C2

(
s2

c,2(t, x) + 2s2
c,3(t, x)

)
. (C.20)
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(ii) If nh5
1 → 0 and nh5

2 → C5
2 > 0, then h2/h1 → ∞, thus,√

nh5
1

1
h1/h2 + 1Bc,1(t, x) +

√
C5

2
1

1 + h2/h1
Bc,2(t, x) = o(1).

Under these assumptions, the variance is σ2
c,h1,h2

(t, x) → s2
c,1(t, x).

(iii) If nh5
1 → C5

1 > 0 and nh5
2 → 0, which implies that h2/h1 → 0, then

√
nh1h2
h1+h2

(IIp+
IIS) → o(1) and the variance verifies σ2

c,h1,h2
(t, x) → s2

c,2(t, x).

(iv) If nh5
1 → C5

1 and nh5
2 → C5

2 , this implies h2/h1 → C2/C1, so the bias term is
asymptotically √

C5
1

h2/h1
1 + h2/h1

Bc,1(t, x) +
√

C5
2

h1/h2
1 + h1/h2

Bc,2(t, x)

=
√

C1C2
C1 + C2

(
C2

1Bc,1(x) + C2
2Bc,2(t, x)

)
.

Analogously, it can be shown under this assumption that the expression σ2
c,h1,h2

(t, x)
is (C.20).
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Auxiliary Lemmas

Lemma D.1 Let us define Φc (y, t, x) = E (ζ (T, δ, ξ, ν, t, x) | X = y) with
ζ (T, δ, ξ, ν, t, x) given in (2.21). Suppose that K(v) is a kernel function fulfilling As-
sumption 8, and X is a random variable with density function m(x) fulfilling Assump-
tion 2(i), then,

E
(

K

(
x − X

h

)
ζ (T, δ, ξ, ν, t, x) | X = x

)
= hΦc (x, t, x) m (x) + 1

2h3dK
d2

dy2 (Φc (y, t, x) m (y))
∣∣∣
y=x

+ O
(
h5
)

,

where dK =
∫

v2K(v)dv.

Proof. By conditioning on X = y, we have

E
[
K

(
x − X

h

)
E (ζ (T, δ, ξ, ν, t, x) | X = y)

]
=
∫

K

(
x − y

h

)
E (ζ (T, δ, ξ, ν, t, x) | X = y) m(y)dy. (D.1)

Let us recall that Φ (y, t, x) = E (ζ (T, δ, ξ, ν, t, x) | X = y) and denote Φ(y, t, x)m(y) ≡
(Φm)(y) for convenience. After applying a change of variable and a Taylor’s expansion
(D.1) becomes∫

K

(
x − y

h

)
(Φm) (y) dy

=
∫

K(z) (Φm) (x − hz)hdz

=
∫

K(z)
(

(Φm)(x) − hz
d

dy
(Φm) (y)


y=x

+
∫ 1

2h2z2 d2

dy2 (Φm) (y)


y=x

)
hdz + O(h5)

= (Φm)(x)h
∫

K(z)dz − h2 d

dy
(Φm) (y)


y=x

∫
zK(z)dz

175
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+ 1
2h3 d2

dy2 (Φm) (y)


y=x

∫
z2K(z)dz + O(h5)

= (Φm) (x) h + 1
2h3 d2

dy2 ((Φm) (y)) |y=x

∫
z2K(z)dz + O

(
h5
)

,

and the proof concludes by taking into account the definitions of Φ(y, t, x), m(y) and
dK .

Lemma D.2 Let us define Φc (y, t, x) = E (ζ (T, δ, ξ, ν, t, x) | X = y),
with ζ (T, δ, ξ, ν, t, x) given in (2.21). Then,

Φc (y, t, x) =
∫ t

0

dH1 (v | y)
J (v− | x) −

∫ t

0

J (v− | y)
J2 (v− | x)dH1 (v | x) . (D.2)

Therefore, Φc (x, t, x) = 0.

Proof. The conditional expectation of ζ (T, δ, ξ, ν, t, x) is

Φc (y, t, x) = E

(1 (T ≤ t, δ = 1)
J(T − | x) | X = y

)
− E

(∫ t

0
(1 (T ≥ v) + 1 (T < v, ξν = 1)) dH1 (v | x)

J2 (v− | x) | X = y

)
= A1 − A2. (D.3)

The first term in (D.3) is

A1 =
∫ t

0

ϕ (v, y) dH (v | y)
J (T − | x) =

∫ t

0

dH1 (v | y)
J (v− | x) , (D.4)

where ϕ (v, y) = E (δ | T = v, X = y). As for the second term in (D.3) we have:

A2 =
∫ t

0

(
E(1 (T ≥ v) | X = y) + E(1 (T < v, ξν = 1) | X = y)

)dH1 (v | x)
J2 (v− | x)

=
∫ t

0
J(v− | y)dH1 (v | x)

J2 (v− | x) . (D.5)

Therefore, substituting (D.4) and (D.5) in (D.3) we obtain (D.2). Then, if we evaluate
Φc (y, t, x) at y = x

Φc (x, t, x) =
∫ t

0

dH1 (v | x)
J (v− | x) −

∫ t

0
J(v− | x)dH1 (v | x)

J2 (v− | x) = 0.

This concludes the proof.

Lemma D.3 Let us define Φc (y, t, x) = E (ζ (T, δ, ξ, ν, t, x) | X = y), with
ζ (T, δ, ξ, ν, t, x) given in (2.21), and consider Φ (y, t, x) in (2.31). The first derivatives
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of Φc (y, t, x) and Φ (y, t, x) with respect to y evaluated at x verify

Φ′
c (x, t, x) = Φ′ (x, t, x) = −S′(t− | x)

S(t− | x) , (D.6)

where S′(t | x) stands for the derivative of S(t | x) with respect to x.

Proof. From (2.12) and (2.13) we have J (t | x) = (1 − G(t | x)) (1 − F (t | x)) and
dH1 (t | x) = (1 − G(t | x)) dF (t | x), respectively. Then, the function Φc(y, t, x) in
(D.2) can be written as:

Φc (y, t, x) =
∫ t

0

dH1 (v | y)
J (v− | x) −

∫ t

0

J (v− | y)
J2 (v− | x)dH1 (v | x)

=
∫ t

0

1 − G (v− | y)
1 − G (v− | x)

[
dF (v | y)

1 − F (v− | x) − 1 − F (v− | y)
(1 − F (v− | x))2 dF (v | x)

]
.

The derivative of Φc (y, t, x) with respect to y evaluated at y = x verifies

Φ′
c (x, t, x) =

∫ t

0

d

dy

[
dF (v | y)

1 − F (v− | x) − 1 − F (v− | y)
(1 − F (v− | x))2 dF (v | x)

]∣∣∣
y=x

. (D.7)

Note that F (t | x) = 1−S(t | x) = p(x) (1 − S0(t | x)) and dF (t | x) = −p(x)dS0(t | x).
Therefore,

Φ′
c (x, t, x) = −

∫ t

0
p′(x)dS0(v | x)

S(v− | x) −
∫ t

0
p(x)dS′

0(v | x)
S(v− | x) −

∫ t

0
p′(x)p(x) dS0(v | x)

S2(v− | x)

+
∫ t

0
p′(x)S0(v− | x)p(x)dS0(v | x)

S2(v− | x) +
∫ t

0
p(x)S′

0(v− | x)p(x)dS0(v | x)
S2(v− | x) ,

where p′(x) and S′
0(t | x) stand for the derivatives of p(x) and S0(t | x) with respect to

x. Adding and subtracting suitably chosen terms, we have

Φ′
c (x, t, x)

= −
∫ t

0
p′(x)dS0(v | x)

S(v− | x) −
∫ t

0
p(x)dS′

0(v | x)
S(v− | x) −

∫ t

0
p′(x)p(x) dS0(v | x)

S2(v− | x)

+
∫ t

0
p′(x)S0(v− | x)p(x)dS0(v | x)

S2(v− | x) +
∫ t

0
p(x)S′

0(v− | x)p(x)dS0(v | x)
S2(v− | x)

±
∫ t

0
p′(x)dS0(v | x)

S(v− | x) ±
∫ t

0
p(x)p′(x)S0(v− | x) dS0(v | x)

S2(v− | x)

= −
∫ t

0
p′(x) dS0(v | x)

S2(v− | x) +
∫ t

0
p′(x)dS0(v | x)

S(v− | x) −
∫ t

0
p′(x)p(x)S0(v− | x) dS0(v | x)

S2(v− | x)

+
∫ t

0

(p(x)S0(v− | x))′
p(x)dS0(v | x)

S2(v− | x) −
∫ t

0

(p(x)dS0(v | x))′

S(v− | x)
= I + II, (D.8)
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where I and II are the sum of the first three and the last two terms of (D.8), respec-
tively.

Since dS(t | x) = p(x)dS0(t | x), then,

I = − p(x)p′(x)
∫ t

0

dS0(v | x)
S2(v− | x)

= − p′(x)
∫ t

0

dS(v | x)
S2(v− | x) = p′(x)

( 1
S(t− | x) − 1

S(0− | x)

)
= p′(x)

S(t− | x) − p′(x).

(D.9)

Similarly for II, we have

II = −
∫ t

0

d

ds

[
(p(x)S0(s | x))′

S(s | x)

]∣∣∣
s=v−

dv

= −
[

(p(x)S0(v− | x))′

S(v− | x)

]t

0
= p′(x) − (p(x)S0(t− | x))′

S(t− | x) .

Taking into account the relationship (p(x)S0(t | x))′ = p′(x) + S′(t− | x), then

II = p′(x) − p′(x) + S′(t− | x)
S(t− | x) . (D.10)

The proof of the result for Φc(x, t, x) concludes by substituting (D.9) and (D.10) in
(D.8). As for Beran’s estimator, Φ(y, t, x) in (2.31) can be written as:

Φ (y, t, x) =
∫ t

0

dH1 (v | y)
1 − H (v− | x) −

∫ t

0

1 − H (v− | y)
(1 − H (v− | x))2 dH1 (v | x)

=
∫ t

0

1 − G0 (v− | y)
1 − G0 (v− | x)

[
dF (v | y)

1 − F (v− | x) − 1 − F (v− | y)
(1 − F (v− | x))2 dF (v | x)

]
.

Thus, using (D.7), the derivative of Φ (y, t, x) with respect to y evaluated at y = x

verifies

Φ′ (x, t, x) =
∫ t

0

d

dy

[
dF (v | y)

1 − F (v− | x) − 1 − F (v− | y)
(1 − F (v− | x))2 dF (v | x)

]∣∣∣
y=x

= Φ′
c (x, t, x) .

This completes the proof.

Lemma D.4 Let us define Φc (y, t, x) = E (ζ (T, δ, ξ, ν, t, x) | X = y), with
ζ (T, δ, ξ, ν, t, x) given in (2.21), and consider Φ (y, t, x) in (2.31). The second derivatives
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of Φc (y, t, x) and Φ (y, t, x) with respect to y evaluated at y = x are

Φ′′
c (x, t, x) = 2

∫ t

0

G′ (v− | x)
1 − G (v− | x)

d

ds

(
S′ (s | x)
S (s | x)

)∣∣∣
s=v−

dv − S′′(t− | x)
S(t− | x) , (D.11)

where G(t | x) = (1 − π(x))G0(t | x), and

Φ′′ (x, t, x) = 2
∫ t

0

G′
0 (v− | x)

1 − G0 (v− | x)
d

ds

(
S′ (s | x)
S (s | x)

)∣∣∣
s=v−

dv − S′′(t− | x)
S(t− | x) .

Proof. The second derivative of Φc (y, t, x) in (D.7) evaluated at y = x is

Φ′′
c (x, t, x) = 2

∫ t

0

d
dy [1 − G (v− | y)] |y=x

1 − G (v− | x)

× d

dy

[
dF (v | y)

1 − F (v− | x) − 1 − F (v− | y)
(1 − F (v− | x))2 dF (v | x)

]∣∣∣
y=x

+
∫ t

0

d2

dy2

[
dF (v | y)

1 − F (v− | x) − 1 − F (v− | y)
(1 − F (v− | x))2 dF (v | x)

]∣∣∣
y=x

= I + II.

We start by dealing with I. First, note that the second term of the product is

d

dy

[
dF (v | y)

1 − F (v− | x) − 1 − F (v− | y)
(1 − F (v− | x))2 dF (v | x)

]∣∣∣
y=x

= − d

ds

(
S′ (s | x)
S (s | x)

)∣∣∣
s=v−

.

(D.12)

The first fraction in I is

d
dy [1 − G(t− | y)]

∣∣∣
y=x

1 − G(t− | x) = S (v− | x)
J (v− | x)

d

dy

(
J (v− | y)
S (v− | y)

)∣∣∣
y=x

= J ′ (v− | x)
J (v− | x) − S′ (v− | x)

S (v− | x) .

(D.13)

From (D.12) and (D.13), we can write I as

I = −2
∫ t

0

(
J ′ (v− | x)
J (v− | x) − S′ (v− | x)

S (v− | x)

)
d

ds

(
S′ (s | x)
S (s | x)

)∣∣∣
s=v−

dv

= −2
∫ t

0

J ′ (v− | x)
J (v− | x)

d

ds

(
S′ (s | x)
S (s | x)

)∣∣∣
s=v−

dv +
(

S′ (t− | x)
S (t− | x)

)2

.

From the definition of J (t | x) = (1 − G (t | x))S (t | x), it can be shown that

J ′ (t | x)
J (t | x) = −G′ (t | x) S (t | x) + (1 − G (t | x))S′ (t | x)

(1 − G (t | x))S (t | x) = −G′ (t | x)
1 − G (t | x) + S′ (t | x)

S (t | x) .
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As a consequence, the term I can also be written as follows:

I = −2
∫ t

0

(
−G′ (v− | x)

1 − G (v− | x) + S′ (v− | x)
S (v− | x)

)
d

ds

(
S′ (s | x)
S (s | x)

)∣∣∣
s=v−

dv +
(

S′ (t− | x)
S (t− | x)

)2

= −2
∫ t

0

−G′ (v− | x)
1 − G (v− | x)

d

ds

(
S′ (s | x)
S (s | x)

)∣∣∣
s=v−

dv. (D.14)

As for II, we have the following result

II =
∫ t

0

dF ′′ (v | x)
S(v− | x) −

∫ t

0
S′′(v− | x) dF (v | x)

S2(v− | x) .

Using F (t | x) = 1 − S(t | x) = p(x) − p(x)S0(t | x), then

II = −
∫ t

0
p′′(x) dS0(v | x)

S2(v− | x) − 2p′(x)dS′
0(v | x)

S(v− | x) − p(x)dS′′
0 (v | x)

S(v− | x)

+
∫ t

0
p(x)

(
2p′(x)S′

0(v− | x) + p(x)S′′
0 (v− | x)

) dS0(v | x)
S2(v− | x) ,

where p′′(x) and S′′
0 (t | x) stand for the second derivatives of p(x) and S0(t | x) with

respect to x. Adding and subtracting suitable terms, II can be written as:

II = −
∫ t

0
p′′(x) dS0(v | x)

S2(v− | x) − 2p′(x)dS′
0(v | x)

S(v− | x) − p(x)dS′′
0 (v | x)

S(v− | x) ± p′′(x)dS0(v | x)
S(v− | x)

+
∫ t

0
p(x)

(
2p′(x)S′

0(v− | x) + p(x)S′′
0 (v− | x) ± p′′(x)S0(v− | x)

) dS0(v | x)
S2(v− | x)

= A + B, (D.15)

where

A = −
∫ t

0
p′′(x) dS0(v | x)

S2(v− | x) +
∫ t

0
p′′(x)dS0(v | x)

S(v− | x)

−
∫ t

0
p(x)p′′(x)S0(v− | x) dS0(v | x)

S2(v− | x) ,

B =
∫ t

0

(
p(x)S0(v− | x)

)′′ p(x)dS0(v | x)
S2(v− | x) −

∫ t

0

1
S(v− | x) (p(x)dS0(v | x))′′ .

Recalling that dS(t | x) = p(x)dS0(t | x), A simplifies to

A =
∫ t

0
p′′(x)

(
−1 + S(v− | x) − p(x)S0(v− | x)

) dS0(v | x)
S2(v− | x)

= p′′(x)
∫ t

0

p(x)dS0(v | x)
S2(v− | x) = p′′(x)

∫ t

0

dS(v | x)
S2(v− | x)

= − p′′(x)
(

− 1
S(t− | x) + 1

)
= p′′(x)

S(t− | x) − p′′(x). (D.16)
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Similarly, we have for B,

B = −
∫ t

0

(p(x)dS0(v | x))′′ S(v− | x) − (p(x)S0(v− | x))′′
dS(v | x)

S2(v− | x)

= −
∫ t

0

d

ds

[
(p(x)S0(s | x))′′

S(s | x)

]∣∣∣
s=v−

dv = −(p(x)S0(t− | x))′′

S(t | x) + p′′(x). (D.17)

Inserting (D.16) and (D.17) in (D.15), we obtain

II = p′′(x)
S(t− | x) − (p(x)S0(t− | x))′′

S(t− | x) = −S′′(t− | x)
S(t− | x) . (D.18)

Combining (D.14) and (D.18), the expression for Φ′′
c (x, t, x) is obtained.

As for the second derivative of Φ (y, t, x) in (2.31) evaluated at y = x, we have that

Φ′′ (x, t, x)

= − 2
∫ t

0

G′ (v− | x)
1 − G (v− | x)

d

dy

(
dF (v | y)

1 − F (v− | x) − 1 − F (v− | y)
(1 − F (v− | x))2 dF (v | x)

)∣∣∣
y=x

+
∫ t

0

d2

dy2

[
dF (v | y)

1 − F (v− | x) − 1 − F (v− | y)
(1 − F (v− | x))2 dF (v | x)

]∣∣∣
y=x

= 2
∫ t

0

G′ (v− | x)
1 − G (v− | x)

d

ds

(
S′ (s | x)
S (s | x)

)∣∣∣
s=v−

+ II.

Using (D.18), the proof for Φ′′ (x, t, x) is concluded.
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Lemma D.5 Let us define Φc
1 (y, t, x) = E

(
ζ2 (T, δ, ξ, ν, t, x) | X = y

)
, with

ζ (T, δ, ξ, ν, t, x) given in (2.21), then

Φc
1 (x, t, x) =

∫ t

0

dH1 (v | x)
J2 (v− | x) .

Proof. By recalling the definition of ζ (T, δ, ξ, ν, t, x) in (2.21), we have

Φc
1 (y, t, x)

= E
(1 (T ≤ t, δ = 1)

J2 (T − | x) | X = y

)
− 2E

(1 (T ≤ t, δ = 1)
J (T − | x)

∫ t

0

1 (T ≥ v) + 1 (T < v, ξν = 1)
J2 (v− | x) dH1 (v | x) | X = y

)
+ E

[ ∫ t

0

∫ t

0
(1 (T ≥ u) + 1 (T < u, ξν = 1)) × (1 (T ≥ v) + 1 (T < v, ξν = 1))

× dH1 (u | x) dH1 (v | x)
J2 (u− | x) J2 (v− | x) | X = y

]
= A − 2B + C. (D.19)

For the first term of (D.19) we have

A = E
[ 1 (T ≤ t)

J2 (T − | x)E (1 (δ = 1) | T, X = y) | X = y

]
= E

( 1 (T ≤ t)
J2 (T − | x)ϕ (T, y) | X = y

)
=
∫ t

0

ϕ (v, y)
J2 (v− | x)dH (v | y) =

∫ t

0

dH1 (v | y)
J2 (v− | x) ,

where ϕ (v, y) = E (δ | T = v, X = y).
For the second term in (D.19),

B = E
[ ∫ t

0

1
J2 (v− | x)

1 (T ≤ t, δ = 1) (1 (T ≥ v) + 1 (T < v, ξν = 1))
J (T − | x)

× dH1 (v | x) | X = y

]
=
∫ t

0

1
J2 (v− | x)E

[1 (T ≤ t, δ = 1) (1 (T ≥ v) + 1 (T < v, ξν = 1))
J (T − | x) | X = y

]
× dH1 (v | x)

=
∫ t

0

1
J2 (v− | x)E

(1 (v ≤ T ≤ t, δ = 1)
J (T − | x) | X = y

)
dH1 (v | x)

=
∫ t

0

1
J2 (v− | x)

(∫ t

v

dH1 (u | y)
J (u− | x)

)
dH1 (v | x) .
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Finally, for the third term in (D.19),

C = E
(∫ t

0

∫ t

0

1 (T ≥ u) 1 (T ≥ v)
J2 (u− | x) J2 (v− | x)dH1 (u | x) dH1 (v | x) | X = y

)
+ E

(∫ t

0

∫ t

0

1 (T ≥ u) 1 (T < v, ξν = 1)
J2 (u− | x) J2 (v− | x) dH1 (u | x) dH1 (v | x) | X = y

)
+ E

(∫ t

0

∫ t

0

1 (T < u, ξν = 1) 1 (T ≥ v)
J2 (u− | x) J2 (v− | x) dH1 (u | x) dH1 (v | x) | X = y

)
+ E

(∫ t

0

∫ t

0

1 (T < u, ξν = 1) 1 (T < v, ξν = 1)
J2 (u− | x) J2 (v− | x) dH1 (u | x) dH1 (v | x) | X = y

)
= C1 + C2 + C3 + C4. (D.20)

The first expectation in (D.20) is

C1 =
∫ t

0

∫ t

0

E (1 (T ≥ max (u, v)) | X = y)
J2 (u− | x) J2 (v− | x) dH1 (u | x) dH1 (v | x)

=
∫ t

0

∫ t

0

1 − H (max (u, v) − | y)
J2 (u− | x) J2 (v− | x) dH1 (u | x) dH1 (v | x) .

Integrating on the supports (u, v) ∈ [0, t]× [0, t] , u ≤ v, and (u, v) ∈ [0, t]× [0, t] , u > v,
we have

C1 = 2
∫ t

0

1
J2 (u− | x)

(∫ t

u

1 − H (v− | y)
J2 (v− | x) dH1 (v | x)

)
dH1 (u | x) . (D.21)

For the second and third terms in (D.20), we get

C2 = C3 =
∫ t

0

1
J2 (u− | x)

∫ t

0

E (1 (u ≤ T < v, ξν = 1) | X = y)
J2 (v− | x) dH1 (v | x) dH1 (u | x)

=
∫ t

0

1
J2 (u− | x)

∫ t

u

H11 (v− | y) − H11 (u− | y)
J2 (v− | x) dH1 (v | x) dH1 (u | x)

=
∫ t

0

1
J2 (u− | x)

(∫ t

u

H11 (v− | y)
J2 (v− | x) dH1 (v | x)

)
dH1 (u | x)

−
∫ t

0

H11 (u− | y)
J2 (u− | x)

(∫ t

u

dH1 (v | x)
J2 (v− | x)

)
dH1 (u | x) . (D.22)

Finally, for the last term in (D.20), we have

C4 =
∫ t

0

∫ t

0

E (1 (T < min (u, v) , ξν = 1) | X = y)
J2 (u− | x) J2 (v− | x) dH1 (u | x) dH1 (v | x)

=
∫ t

0

∫ t

0

H11 (min (u, v) − | y)
J2 (u− | x) J2 (v− | x)dH1 (u | x) dH1 (v | x) .

Integrating on the supports (u, v) ∈ [0, t] × [0, t] , u ≥ v and (u, v) ∈ [0, t] × [0, t] , v > u,
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we have

C4 =
∫ t

0

H11 (v− | y)
J2 (v− | x)

(∫ t

v

dH1 (u | x)
J2 (u− | x)

)
dH1 (v | x)

+
∫ t

0

H11 (u− | y)
J2 (u− | x)

(∫ t

u

dH1 (v | x)
J2 (v− | x)

)
dH1 (u | x)

= 2
∫ t

0

H11 (v− | y)
J2 (v− | x)

(∫ t

v

dH1 (u | x)
J2 (u− | x)

)
dH1 (v | x) . (D.23)

Combining (D.21), (D.22) and (D.23), we obtain

C = 2
∫ t

0

1
J2 (u− | x)

(∫ t

u

1 − H (v− | y) + H11 (v− | y)
J2 (v− | x) dH1 (v | x)

)
dH1 (u | x)

= 2
∫ t

0

1
J2 (u− | x)

(∫ t

u

J (v− | y)
J2 (v− | x)dH1 (v | x)

)
dH1 (u | x) .

Note that for y = x, then C = 2B. Therefore, after doing the sum in (D.19), we get

Φc
1 (x, t, x) =

∫ t

0

dH1 (v | x)
J2 (v− | x) .

This concludes the proof.

Lemma D.6 Let X be a continuous random variable with density function m(x) ful-
filling Assumptions 2(i), and the kernel K fulfills Assumption 8. Then, for g (x) a four
times continuously differentiable function,

E (Kh (x − X) g (X)) = m (x) g (x) + h2

2 (g (x) m (x))′′ dK + O
(
h4
)

where dK =
∫

v2K (v) dv.

Proof. A change of variable and a Taylor expansion with the remainder term in integral
form yield

E (Kh (x − X) g (X))

=
∫ 1

h
K

(
x − u

h

)
g (u) m (u) du =

∫
K (v) g (x − vh) m (x − vh) dv

=
∫

K (v)
[
g (x) m (x) − vh (g (x) m (x))′ + v2h2

2 (g (x) m (x))′′ − v3h3

6 (g (x) m (x))′′′

+ 1
6

∫ x−vh

x
(x − vh − w)3 (g (w) m (w))(4) dw

]
dv

= m (x) g (x) + h2

2 (g (x) m (x))′′ dK
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+ 1
6

∫
K (v)

∫ x−vh

x
(x − vh − w)3 (g (w) m (w))(4) dwdv.

With a new change of variable in the remainder term and a Taylor expansion it can be
seen that

E (Kh (x − X) g (X))

= m (x) g (x) + h2

2 (g (x) m (x))′′ dK

+ 1
6

∫
K (v)

∫ 1

0
(−vh)3 (1 − t)3 (g (x − vht) (−vh) m (x − vht) (−vh))(4) dtdv

= m (x) g (x) + h2

2 (g (x) m (x))′′ dK

− 1
6

∫
v4h4K (v)

∫ 1

0
(1 − t)3 (g (x − vht) m (x − vht))(4) dtdv

= m (x) g (x) + h2

2 (g (x) m (x))′′ dK + O
(
h4
)

.

This completes the proof.

Lemma D.7 Let X be a continuous random variable with density function m(x) ful-
filling Assumptions 2(i), and the kernel K fulfills Assumption 8. Then, for g (x) a four
times continuously differentiable function,

E
(
K2

h (x − X) g (X)
)

= 1
h

m (x) g (x) cK + 1
2 (g (x) m (x))′′ eKh + O

(
h3
)

where cK =
∫

K2 (v) dv and eK =
∫

v2K2 (v) dv.

Proof. A change of variable and a Taylor expansion yield

E
(
K2

h (x − X) g (X)
)

=
∫ 1

h2 K2
(

x − u

h

)
g (u) m (u) du = 1

h

∫
K2 (v) g (x − vh) m (x − vh) dv

= 1
h

∫
K2 (v)

(
g (x) m (x) − vh (g (x) m (x))′ + v2h2

2 (g (x) m (x))′′

−v3h3

6 (g (x) m (x))′′′ − 1
6

1
h

∫
v4h4K2 (v)

×
∫ 1

0
(1 − t)3 (g (x − vht) m (x − vht))(4) dt

)
dv

= 1
h

m (x) g (x) cK + 1
2 (g (x) m (x))′′ eKh + O

(
h3
)

.

This completes the proof.
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Lemma D.8 Let X be a continuous random variable with density function m(x) ful-
filling Assumptions 2(i), and the kernel K fulfils Assumption 8. Let g1 (x) and g2 (x)
be four times continuously differentiable functions, then

E (Kh (x − X1) Kh (x − X2) g1 (X1) g2 (X2))

= g1 (x) g2 (x) m2 (x)

+ 1
2h2m (x)

(
g1 (x) (g2 (x) m (x))′′ + (g1 (x) m (x))′′ g2 (x)

)
dK + O

(
h4
)

where dK =
∫

v2K (v) dv.

Proof. A change of variable and a Taylor expansion yield

E (Kh (x − X1) Kh (x − X2) g1 (X1) g2 (X2))

=
∫∫ 1

h2 K

(
x − u1

h

)
K

(
x − u2

h

)
g1 (u1) g2 (u2) m (u1) m (u2) du1du2

=
∫∫

K (v1) K (v2) g1 (x − v1h) g2 (x − v2h) m (x − v1h) m (x − v2h) dv1dv2

=
∫∫

K (v1) K (v2)
[
g1 (x) m (x) − v1h (g1 (x) m (x))′ + v2

1h2

2 (g1 (x) m (x))′′

−v3
1h3

6 (g1 (x) m (x))′′′ − v4
1h4

6

∫ 1

0
(1 − t1)3 (g1 (x − v1ht1) m (x − v1ht1))(4) dt1

]

×
[
g2 (x) m (x) − v2h (g2 (x) m (x))′ + 1

v2
2h2 (g2 (x) m (x))′′

− 1
v3

2h3 (g2 (x) m (x))′′′ − v4
2h4

6

∫ 1

0
(1 − t2)3 (g2 (x − v2ht2) m (x − v2ht2))(4) dt2

]

= g1 (x) g2 (x) m2 (x) + 1
2h2m (x)

[
g1 (x) (g2 (x) m (x))′′ dK

+ (g1 (x) m (x))′′ g2 (x)
]

dK + O
(
h4
)

.

This completes the proof.

Lemma D.9 Consider the notation in the proof of Proposition 3.5. It can be proved
that the expectation

E
[
(1 − ξ1) E (µ̂∗

1 (X1, g2) | O)2
]

= E
[
(1 − π (X)) µ2 (X)

] (
1 + o

(
g2

1 + g2
2

))
.

Proof. Start by defining the following expectations conditioned on the observed data
and the bootstrap resamples:

E
(
ν+

1 | O, R
)

= µ̂∗
1 (X1, g2) =

n∑
i=1

Bg2i (X1) ν∗
i
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E
(
ν+2

1 | O, R
)

= µ̂∗
2 (X1, g2) =

n∑
i=1

Bg2i (X1) ν∗2
i .

Then,

E (µ̂∗
1 (X1, g2) | O) = E

(
n∑

i=1
Bg2i (X1) ν∗

i | O

)
=

n∑
i=1

Bg2i (X1)
n∑

j=1
Bg1j (Xi) νj

E (µ̂∗
2 (X1, g2) | O) = E

(
n∑

i=1
Bg2i (X1) ν∗2

i | O

)
=

n∑
i=1

Bg2i (x)
n∑

j=1
Bg1j (Xi) ν2

j .

From (B.18), it can be shown that

E (µ̂∗
1 (x, g2) | O)

≃ 1
n2g1g2

n∑
i=1

n∑
j=1

π−1 (Xi) m−1 (Xi)
π (X1) m (X1) ξiξjK

(
X1 − Xi

g2

)
K

(
Xi − Xj

g1

)
νj ,

and similarly

E

(
n∑

i=1
Bi (X1, g2) ν∗2

i | O

)

≃ 1
n2g1g2

n∑
i=1

n∑
j=1

π−1 (Xi) m−1 (Xi)
π (X1) m (X1) ξiξjK

(
X1 − Xi

g2

)
K

(
Xi − Xj

g1

)
ν2

j .

Note that

E
[
(1 − ξ1) E (µ̂∗

1 (X1, g2) | O)2
]

= E

(1 − ξ1) E

(
n∑

i=1
Bg1i (X1) ν∗

i | O

)2


≃ 1
n4g2

1g2
2

E

(1 − ξ1) π−2 (X1)
m2 (X1)

 n∑
i=2

n∑
j=2

π−1 (Xi)
m (Xi)

ξiξjK

(
X1 − Xi

g2

)
K

(
Xj − Xi

g1

)
νj

2


= 1
n4g2

1g2
2

E

(1 − ξ1) π−2 (X1)
m2 (X1)

n∑
i=2

n∑
j=2

n∑
k=2

n∑
l=2

π−1 (Xi)
m (Xi)

π−1 (Xk)
m (Xk) ξiξjξkξl

K

(
X1 − Xi

g2

)
K

(
Xj − Xi

g1

)
K

(
X1 − Xk

g2

)
K

(
Xl − Xk

g1

)
νjνl

]
.

There are 15 cases to be considered:
(a1) i = j = k = l

(a2) i = j = k and l ̸= i

(a3) i = j, k ̸= i and l = i
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(a4) i = j, k ̸= i and l = j

(a5) i = j, k ̸= i and l ̸= i, l ̸= j

(a6) j ̸= i, k = l = i

(a7) j ̸= i, k = i and l = j

(a8) j ̸= i, k = i and l ̸= i and l ̸= j

(a9) j ̸= i, k = j and l = i

(a10) j ̸= i, k = j and l = j

(a11) j ̸= i, k = j and l ̸= i and l ̸= j

(a12) j ̸= i, k ̸= i and k ̸= j, and l = i

(a13) j ̸= i, k ̸= i and k ̸= j, and l = j

(a14) j ̸= i, k ̸= i and k ̸= j, and l = k

(a15) j ̸= i, k ̸= i and k ̸= j, and l ̸= i,l ̸= j and l ̸= k.
Case (a1): i = j = k = l

E

(
(1 − ξ1) π−2 (X1)

m2 (X1)
π−1 (X2)
m (X2)

π−1 (X2)
m (X2) ξ2K2

(
X1 − X2

g2

)
K2 (0) ν2

2

)

= K2 (0)
∫∫

π−2 (x1)
m2 (x1)

π−1 (x2)
m (x2)

π−1 (x2)
m (x2) (1 − π (x1)) π (x2) K2

(
x1 − x2

g2

)
×
(
σ2 (x2) + µ2 (x2)

)
m (x1) m (x2) dx1dx2

= K2 (0)
∫∫

π−2 (x1)
m (x1)

π−1 (x2)
m (x2) (1 − π (x1))

× K2
(

x1 − x2
g2

)(
σ2 (x2) + µ2 (x2)

)
dx1dx2.

Applying a change of variable and a Taylor expansion,

g2K2 (0)
∫∫

π−2 (x2 + g1v1)
m (x2 + g1v1)

π−1 (x2)
m (x2) (1 − π (x2 + g1v1))

× K2 (v1)
(
σ2 (x2) + µ2 (x2)

)
dv1dx2

= g2K2 (0) cK

∫
π−2 (x2)
m (x2)

π−1 (x2)
m (x2) (1 − π (x2))

(
σ2 (x2) + µ2 (x2)

)
dx2

(
1 + g2

2

)
= O (g2) ,

where cK =
∫

K2 (v) dv. Applying similar ideas, the only dominant term is given by
case (a15) as Cases (a1) – (a14) are negligible. For example,
Case (a7): i ̸= j, k = i, l ̸= i, l = j

(n − 1) (n − 2)
∫∫∫

(1 − π (x1)) π−2 (X1)
m (X1)

π−1 (X2)
m (X2)π (x3)
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× K2
(

X1 − X2
g2

)
K2

(
X3 − X2

g1

)
µ2 (x3) m (x3) dx1dx2dx3

= (n − 1) (n − 2) g1g2c2
K

∫
(1 − π (x2)) π−2 (x2)

m
(
x2

2
) µ2 (x2) m (x2) dx2 (1 + o (1))

= n2g1g2c2
KE

(
(1 − π (X)) π−2 (X)

m (X) µ2 (X)
)

(1 + o (1))

= O
(
n2g1g2

)
.

Case (a8): i ̸= j, k = i, l ̸= i, l ̸= j

(n − 1) (n − 2) (n − 3)

×
∫∫∫∫ [

(1 − π (x1)) π−2 (X1)
m (X1)

π−1 (X2)
m (X2)

π−1 (X2)
π (x2) π (x3) π (x4)

×K2
(

X1 − X2
g2

)
K

(
X3 − X2

g1

)
K

(
X4 − X2

g1

)
µ (x3) µ (x4) m (x3) m (x4)

×dx1dx2dx3dx4]

= (n − 1) (n − 2) (n − 3) g2
1g2cK

×
∫

(1 − π (x2)) π−1 (X2) µ2 (x2)
m (X2)m (x2) dx2 (1 + o (1))

= n3g2
1g2cKE

(
(1 − π (X)) π−1 (X) µ2 (X)

m (X)

)
(1 + o (1)) .

Case (a9): i ̸= j, k = j, l = i

(n − 1) (n − 2)
∫∫∫

(1 − π (x1)) π−2 (X1)
m (X1)

× K

(
X1 − X2

g2

)
K2

(
X3 − X2

g1

)
K

(
X1 − X3

g2

)
µ (x3) µ (x2) dx1dx2dx3

= (n − 1) (n − 2) g2
2

∫∫∫
(1 − π (x1)) π−2 (X1)

m (X1)

× K (v1) K2
(

g2
g1

(v3 − v1)
)

K (v3) µ2 (x1) dx1dv2dv3 (1 − o (1))

= O
(
n2g2

2

)
.

Case (a11): i ̸= j, k = j, l ̸= j, l ̸= i

(n − 1) (n − 2) (n − 3)
∫∫∫

(1 − π (x1)) π−2 (X1)
m (X1)

× π (x4) K

(
X1 − X2

g2

)
K

(
X3 − X2

g1

)
K

(
X1 − X3

g2

)
K

(
X4 − X3

g2

)
× µ (x3) µ (x4) m (x4) dx1dx2dx3dx4



190 Appendix D. Auxiliary Lemmas

= (n − 1) (n − 2) (n − 3) g2
2g1

∫∫∫
(1 − π (x1)) π−1 (X1)

m (X1)

× K (v1) K (v3) K

(
v1−

g1
g2

v3

)
K (v4) µ (x3) µ (x4) m (x4) dx1dx2dx3dx4

= O
(
n3g2

2g1
)

.

Case (a15): i ̸= j, k ̸= i, k ̸= j, l ̸= k, l ̸= j, l ̸= i

(n − 1) (n − 2) (n − 3) (n − 4)
∫

· · ·
∫

(1 − π (x1)) π−2 (x1)
m2 (x1)

π−1 (x2)
m (x2)

π−1 (x4)
m (x4) π (x2)

× π (x3) π (x4) π (x5) K

(
X1 − X2

g2

)
K

(
X3 − X2

g1

)
K

(
X1 − X4

g2

)
K

(
X5 − X4

g1

)
× µ (x3) µ (x5) m (x1) m (x2) m (x3) m (x4) m (x5) dx1dx2dx3dx4dx5

= (n − 1) (n − 2) (n − 3) (n − 4)
∫

· · ·
∫

(1 − π (x1)) π−2 (x1)
m (x1) π (x3) π (x5)

× K

(
X1 − X2

g2

)
K

(
X3 − X2

g1

)
K

(
X1 − X4

g2

)
K

(
X5 − X4

g1

)
× µ (x3) µ (x5) m (x3) m (x5) dx1dx2dx3dx4dx5

= (n − 1) (n − 2) (n − 3) (n − 4) g2
1g2

2

∫
· · ·
∫

(1 − π (x1)) π−2 (x1)
m (x1)

× K (v2) K (v3) K (v4) K (v5) π (x1 − g2v2 + g1v3) π (x1 − g2v4 + g1v5)

× µ (x1 − g2v2 + g1v3) µ (x1 − g2v4 + g1v5) m (x1 − g2v2 + g1v3)

× m (x1 − g2v4 + g1v5) dx1dv2dv3dv4dv5

= (n − 1) (n − 2) (n − 3) (n − 4) g2
1g2

2

∫
· · ·
∫

(1 − π (x1)) π−2 (x1)
m (x1)

×
(
π2 (x1) µ2 (x1) m2 (x1) + O

(
g2

1 + g2
2

))
K (v2) K (v3) K (v4)

× K (v5) dx1dv2dv3dv4dv5

= (n − 1) (n − 2) (n − 3) (n − 4) g2
1g2

2

(
E
[
(1 − π (X)) µ2 (X)

]
+ O

(
g2

1 + g2
2

))
= n4g2

1g2
2E
[
(1 − π (X)) µ2 (X)

]
+ O

(
n4g2

1g2
2

(
g2

1 + g2
2

))
.

Rejoining the cases, the proof is completed.

Lemma D.10 Consider the notation in the proof of Proposition 3.5. It can be shown
that the expectation

E
[
(1 − ξ1) E

(
ν+2

1 | O, R
)]

= E [(1 − ξ1) µ̂∗
2 (X1, g2)]

= E
[
(1 − π (X))

(
σ2 (X) + µ2 (X)

)] (
1 + o

(
g2

1 + g2
2

))
.
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Proof. Note that

E
[
(1 − ξ1) E

(
ν+2

1 | O, R
)]

= E [(1 − ξ1) µ̂∗
2 (X1, g2)]

= E

[
(1 − ξ1) E

(
n∑

i=1
Bg2i (X1) ν∗2

i | O

)]
.

The inner expectation is

E

(
n∑

i=1
wg2i (X1) ν∗2

i | O

)

≃ 1
n2g1g2

n∑
i=1

n∑
j=1

π−1 (Xi) m−1 (Xi)
π (X1) m (X1) ξiξjK

(
X1 − Xi

g2

)
K

(
Xi − Xj

g1

)
ν2

j .

Different cases must be considered according to the values of i and j. Note that
(1 − ξ1) ξiξj = 0 if i = 1 or j = i. So only two cases to be considered:

Case (a): i ̸= 1, j ̸= 1 but i = j

E

 n∑
i=1

n∑
j=1

(π (X1) π (Xi))−1

m (X1) m (Xi)
(1 − ξ1) ξiξjK

(
X1 − Xi

g2

)
K

(
Xj − Xi

g1

)
ν2

j


= (n − 1) K (0)

∫∫ (π (X1) π (X2))−1

m (X1) m (X2) (1 − π (x1)) π (x2) K

(
X1 − X2

g2

)
× µ2 (x2) m (x1) m (x2) dx1dx2

= (n − 1) K (0)
∫∫ 1 − π (x1)

π (x1) K

(
X1 − X2

g2

)
µ2 (x2) dx1dx2 = O (ng2) .

Case (b): i ̸= 1, j ̸= 1 but i ̸= j

E

 n∑
i=1

n∑
j=1

(π (X1) π (Xi))−1

m (X1) m (Xi)
(1 − ξ1) ξiξjK

(
X1 − Xi

g2

)
K

(
Xj − Xi

g1

)
ν2

j


= (n − 1) (n − 2)

∫∫ (π (X1) π (X2))−1

m (X1) m (X2) (1 − π (x1)) π (x2) π (x3)

K

(
X1 − X2

g2

)
K

(
X3 − X2
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2
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(
(1 − π (X))
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(
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2
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Rejoining cases (a) and (b), the proof is completed.

Lemma D.11 Consider the notation in the proof of Proposition 3.5. It can be shown
that the expectation

E
[
(1 − ξ1) E

(
µ̂∗

1 (X1, g2)2 | O
)]

= E
[
(1 − π (X)) µ2 (X)

] (
1 + o

(
g2

1 + g2
2

))
.

Proof. The expectation is

E
[
(1 − ξ1) E

(
µ̂∗

1 (X1, g2)2 | O
)]

= E

(1 − ξ1) E

( n∑
i=1

Bg2i (X1) ν∗
i

)2

| O


= E
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n∑
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i ν∗

j | O



= E
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n∑

i=1
j=i

B2
g2i (X1) E

(
ν∗2

i | O
)

+ E

(1 − ξ1)
n∑

i=1
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j=1
j ̸=i

Bg2i (X1) Bg2j (X1) E
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i ν∗
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[
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k

]
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The first expectation is neglibigle,
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n∑
i=1

B2
g2i (X1)

n∑
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+ 1
ng2

cKE

[
π (X) (1 − π (X))

m (X)
(
σ2 (X) + µ2 (X)

)]
= o (1) .

The second expectation is
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There are different cases according to the values of j and k. The dominant term comes
from the case j ̸= 1, 2, 3 and k ̸= 1, 2, 3, j, which gives

E
[
(1 − π (X)) µ2 (X)

] (
1 + o

(
g2

1 + g2
2

))
.

Lemma D.12 The integral
∫∫

K (u1) K
(
u1 − g2

h u2
)

K (u2) du1du2 yields the following
functions depending on the limit of the ratio of the bandwidths.

• If g2
h → 0,

∫∫
K (u1) K

(
u1 − g2

h
u2

)
K (u2) du1du2 = cK + O

(
g2

2
h2

)
,

where cK =
∫

K2 (v) dv.

• If g2
h → C,

∫∫
K (u1) K

(
u1 − g2

h
u2

)
K (u2) du1du2 = cK,C + O

(
g2

2
h2

)
,

where cK,C =
∫∫

K (u1) K (u2) K (u1 − Cu2) du1du2.
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• If g2
h → ∞,

∫∫
K (u1) K

(
u1 − g2

h
u2

)
K (u2) du1du2 = O

(
h

g2

)
= o (1) .

Proof. Starting with the first condition, if g2
h → 0, after applying Taylor expansion we

get

∫∫
K (u1) K (u2) du1du2K
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u1 − g2

h
u2

)
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h
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2
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)

=
∫∫
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2
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)
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)
.

If g2
h → C then
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h
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∫∫
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,

where cK,C =
∫∫

K (u1) K (u2) K (u1 − Cu2) du1du2

If g2
h → ∞ then a change of variable ω2 = g2
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∫∫
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h
u2

)
K (u2) du1du2
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(
h
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.

Lemma D.13 The integral
∫∫∫

K (u1) K
(
u1 − g1

h u3 − g2
h u2

)
K (u2) K (u3) du1du2du3

is:

• If g1
h → 0 and g2

h → 0 then
∫∫∫

K (u1) K

(
u1 − g1

h
u3 − g2

h
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)
K (u2) K (u3) du1du2du3 = cK + o (1) ,
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where cK =
∫

K2 (v) dv.

• If one pilot bandwidth verifies gi
h → 0 and the other one gj

h → C then
∫∫∫

K (u1) K

(
u1 − g1

h
u3 − g2

h
u2

)
K (u2) K (u3) du1du2du3 = cK,C + o (1) ,

where cK,C =
∫∫

K (u1) K (u2) K (u1 − Cu2) du1du2.

• If g1
h → C1 and g2

h → C2 then
∫∫∫
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h
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h
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K (u2) K (u3) du1du2du3 = cK,C1,C2 + o (1) ,
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∫∫

K (u1) K (u2) K (u1 − C1u3 − C2u2) du1du2.

• If g1
h → ∞ or g2
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∫∫∫
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h
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h
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)
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Proof. If g1
h → 0 and g2

h → 0, we apply a Taylor expansion
∫∫∫
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∫∫∫
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where cK,C =

∫∫
K (u1) K (u2) K (u1 − Cu2) du1du2.
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If g1
h → C1 and g2

h → C2 then
∫∫∫
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∫∫
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(
C1 − g1

h

)
+ O

(
C2 − g2

h

)
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where cK,C1,C2 =

∫∫
K (u1) K (u2) K (u1 − C1u3 − C2u2) du1du2.

If g1
h → 0 and g2

h → ∞ then a change of variable ω2 = g2
h u2 and a Taylor expansion

yield

h

g2

∫∫∫
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h
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(
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Using the same steps, if g1
h → ∞ then

∫∫∫
K (u1) K

(
u1 − g1

h
u3 − g2

h
u2

)
K (u2) K (u3) du1du2du3 = o (1) .

Lemma D.14 The integral∫∫∫
K
(
u2 + g2

h (u2 + u4) + g1
h u3

)
K (u2) K (u3) K (u4) du2du3du4 becomes
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h → 0 then
∫∫∫
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h
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h
u3
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where cK =
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K2 (v) dv.

• If g1
h → 0 and g2

h → C2 then
∫∫∫

K
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h
(u2 + u4) + g1

h
u3

)
K (u2) K (u3) K (u4) du2du3du4 = dK,C2+o (1) ,

where dK,C2 =
∫∫∫

K (u2 + C2 (u2 + u4)) K (u2) K (u4) du2du4.

• If g1
h → C1 and g2

h → 0 then
∫∫∫

K
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h
(u2 + u4) + g1

h
u3

)
K (u2) K (u3) K (u4) du2du3du4 = cK,C1+o (1) ,
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where cK,C =
∫∫∫

K (u2 + Cu3) K (u2) K (u3) du2du3 or equivalently cK,C =∫∫
K (u1) K (u2) K (u1 − Cu2) du1du2.

• If g1
h → C1 and g2

h → C2 then
∫∫∫

K

(
u2 + g2

h
(u2 + u4) + g1

h
u3

)
K (u2) K (u3) K (u4) du2du3du4 = dK,C1,C2+o (1) ,

where dK,C1,C2 =
∫∫∫

K (u2 + C2 (u2 + u4) + C1u3) K (u2) K (u3) K (u4) du2du3du4.

• If g1
h → ∞ or g2

h → ∞ then
∫∫∫

K

(
u2 + g2

h
(u2 + u4) + g1

h
u3

)
K (u2) K (u3) K (u4) du2du3du4 = o (1) .





Appendix E

Resumen en español

Los métodos clásicos de análisis de supervivencia asumen que, si el peŕıodo de seguimiento
es suficientemente largo y no hay censura, todos los individuos experimentarán el suceso
de interés. Sin embargo, hay muchos ejemplos en los que hay evidencia de pacientes
que nunca experimentarán el suceso, llamados supervivientes a largo plazo o curados.
En este caso se deberán usar en su lugar los modelos de curación. Bajo censura, estos
modelos asumen que no es posible determinar si un individuo censurado experimentará
en el futuro el evento o no. Solo se puede saber que los sucesos observados corresponden
a pacientes no curados, pero no es posible distinguir ningún individuo curado. En con-
secuencia, el indicador de cura se modeliza como una variable latente. Sin embargo esto
no es necesariamente cierto en muchos casos, en los que algunos individuos censurados
se pueden identificar como curados, basándose por ejemplo en un test diagnósticados o
si el tiempo de vida supera un determinado umbral.

Los modelos de curación de tipo mixtura se han estimado normalmente usando técnicas
paramétricas o semiparamétricas. Recientemente se ha propuesto un enfoque comple-
tamente no paramétrico, cuando se desconoce completamente si un sujeto censurado
está curado o no. Esta tesis propone una extensión a los modelos no paramétricos de
curación de tipo mixtura, en la que se incorporaŕıa la información adicional disponible
sobre el estado de cura. Se proponen estimadores no paramétricos de las principales
funciones, aśı como un sencillo método para comprobar la validez del modelo. Los
métodos se han aplicado a tres bases de datos médicos: una relacionada con pacientes
de sarcoma, otra de pacientes con cáncer de pecho, y una tercera sobre las duraciones
de estancia en planta y UCI de pacientes COVID-19 en Galicia durante la primera ola
de la pandemia en 2020.
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1. Introducción

El primer caṕıtulo de la tesis está dedicado a introducir el contexto en el que se desar-
rolla la tesis: los modelos de curación de tipo mixtura. La Sección 1.1 comienza con
una revisión de los principales estimadores clásicos de la función de supervivencia bajo
censura (Kaplan and Meier, 1958; Beran, 1981).
En la Sección 1.2 se presenta una descripción detallada de los modelos de curación,
comenzando con la notación y el problema de la identificabilidad, que surge princi-
palmente debido a la falta de información en la cola derecha de la distribución por
la censura. Los modelos de curación se pueden clasificar entre los de tipo mixtura y
no mixtura. Esta tesis se centra en los modelos de curación de tipo mixtura (MCM),
que clasifican a los individuos en dos grupos: los que tarde o temprano experimen-
tarán el suceso de interés (susceptibles) y los que no (curados). De esta manera, estos
modelos permiten estimar la probabilidad de experimentar el suceso (incidencia), o
su complementario la probabilidad de no experimentarlo (cura), aśı como la función
de supervivencia de los individuos susceptibles (latencia). Una de las principales ven-
tajas de los modelos de curación de tipo mixtura es que permiten ajustar de manera
independiente el efecto que una covariable tendrá en la incidencia y en la latencia, aśı
como considerar el hecho de que puedan ser distintas covariables las que pueden tener
influencia en los pacientes curados o en los susceptibles.
A continuación, se hace una breve revisión de los métodos clásicos de estimación en los
modelos de curación, principalmente desde un punto de vista no paramétrico (Maller
and Zhou, 1992; Xu and Peng, 2014; López-Cheda et al., 2017a,b). A lo largo de la
tesis, se hará uso del método bootstrap para la selección del parámetro ventanta. En la
Sección 1.3 se revisa los distintos métodos de remuestreo bajo censura en un contexto
incondicional (Efron, 1981), en presencia de covariables continuas (Li and Datta, 2001)
y en presencia de individuos curados (López-Cheda et al., 2017a,b). Por su parte, en la
Sección 1.4 se revisan los principales métodos de selección de la ventana. Finalmente,
en la Sección 1.5 se aborda el contexto particular de la tesis, que es un modelo de
curación tipo mixtura en la que algunos individuos censurados se pueden identificar
como curados, cuyos tiempos observados son aleatorios. En concreto, se introduce la
notación que se va a usar a lo largo de la memoria.
El caṕıtulo termina con la presentación de los ejemplos de datos reales que motivan la
metodoloǵıa presentada en la tesis, y que se van a usar en los siguientes caṕıtulos a modo
ilustrativo. El primer ejemplo hace referencia a pacientes diagnosticados con sarcoma,
donde el evento de interés es la muerte por complicaciones debido al sarcoma. Cuando
el tumor se elimina quirúrgicamente y el paciente permanece libre de la enfermedad
durante al menos 5 años, se puede asumir que el sarcoma ha remitido (Choy, 2014).



201

Los pacientes que cumplan ambos requisitos se pueden asumir, desde un punto de vista
estad́ıstico, como curados de muerte por sarcoma. Este base de datos se ha utilizado
en el caṕıtulo 2 para ilustrar el estimador propuesto para la función de supervivencia.

El segundo ejemplo es una base de datos de pacientes con cáncer de pecho, y el suceso
de interés es, de nuevo, la muerte debido al cáncer. Por lo tanto, el tiempo observado
de una paciente se considera censurado si no se observó el suceso de interés durante
el peŕıodo de seguimiento, es decir, si la paciente estaba viva al finalizar el estudio,
estaba libre de la enfermedad (independientemente de que hubiera fallecido o no), o
hubo una pérdida de seguimiento. Si una paciente está libre de la enfermedad durante
al menos 10 años se pueden considerar como que no va a fallecer por culpa del cáncer
(Barnadas et al., 2018), desde un punto de vista estad́ıstico, está curada de fallecer
debido al cáncer. En esta base de datos, el objetivo será estimar la probabilidad de no
fallecer debido al cáncer, usando la metodoloǵıa del caṕıtulo 3.

La tercera base de datos está relacionada con los pacientes diagnosticados de COVID-19
durante la primera ola de la pandemia en Galicia, entre los meses de marzo y mayo de
2020. El enfoque en esta base de datos no está tan relacionado con un objetivo médico
como los anteriores, sino más bien con la gestión hospitalaria. Durante las primeras
semanas de pandemia, resultó de extrema necesidad planificar y estimar adecuadamente
la ocupación de camas tanto de planta como de UCI, con el fin de evitar sobrecargas
del sistema hospitalario gallego. Para ello, resultaba básico modelizar los tiempos de
estancia de estos enfermos en los centros hospitalarios. En concreto, se deseaba saber
cuál era la probabilidad de que un paciente ingresado en planta requiriese finalmente
ingresar en UCI, y cuánto tardaban estos pacientes en ingresar en UCI. Usando un
lenguaje de análisis de supervivencia, el suceso de interés es la entrada de un paciente
COVID en UCI desde planta. No todos los pacientes que pasaron por planta necesitaron
ingresar en UCI, por lo que era muy razonable ajustar un modelo de curación para
modelizar los tiempos de estancia hasta entrada en UCI. Aquellos pacientes todav́ıa
ingresados en planta al finalizar el estudio eran datos censurados, para los cuales no se
sab́ıa si acabaŕıan necesitando UCI o no. Sin embargo, todos los pacientes fallecidos
en planta y todos aquellos dados de alta antes de entrar en UCI también son datos
censurados, pero a diferencia de los anteriores, de estos pacientes śı se sabe que no
entrarán nunca en UCI (curados del suceso entrada en UCI ). Con esta base de datos se
han usado los métodos del caṕıtulo 4 para estimar la probabilidad de que un paciente
COVID ingresado en planta requiera tratamiento en UCI, aśı como los estimadores del
caṕıtulo 5 para modelizar la distribución de los tiempos de estancia en planta hasta
ingreso en UCI de los pacientes que finalmente śı entraron en UCI.
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2. Estimador ĺımite-producto generalizado de la
función de supervivencia

En este caṕıtulo, después de una breve introducción y de presentar una serie de defini-
ciones y de hipótesis en la Sección 2.2, en la Sección 2.3 de este caṕıtulo se presenta la
primera aportación de esta tesis, un estimador no paramétrico ĺımite-producto general-
izado de la función de supervivencia condicional en el MCM cuando el estado de cura es
parcialmente conocido, es decir, cuando algunos individuos censurados son identificados
como individuos que no experimentarán el suceso de interés. Este estimador es la ex-
tensión del estimador de Beran (1981) al caso de cura parcialmente conocida. De hecho,
el estimador propuesto se puede ver como el estimador de Beran (1981) calculado con
los tiempos de vida observados, donde los tiempos de los individuos identificados como
curados se sustituyen por valores arbitrariamente grandes, incluso infinito. Además, se
da la expresión que este estimador toma de forma incondicional cuando no hay ninguna
covariable, y se propone el correspondiente estimador de la distribución de censura en
este contexto.
La Sección 2.3.1 muestra las principales propiedades asintóticas de dicho estimador,
en concreto, se obtiene una representación casi segura como suma de términos iid, de
la cual se deriva la consistencia fuerte y la normalidad asintótica del estimador. A
partir de las expresiones asintóticas del sesgo y la varianza del estimador propuesto, se
demuestra en la Sección 2.3.2 que la incorporación del estado de cura en la estimación
produce una reducción en el término dominante de la varianza con respecto a estimador
de Beran.
A partir de los estimadores propuestos para la función de supervivencia de los tiempos
de vida, de la variable de censura aśı como de los tiempos observados, en la Sección 2.3.3
se proponen dos métodos de remuestreo bootstrap, llamados simple weighted bootstrap
y obvious bootstrap siguiendo la notación en Li and Datta (2001), y se prueba que
ambos métodos de remuestreo son equivalentes.
En la Sección 2.3.4 se introduce un método de selección del parámetro ventana basado
en el bootstrap. A continuación, en el estudio de simulación de la Sección 2.4 se compara
el estimador propuesto de la función de supervivencia con el estimador que ignora la
cura conocida (Beran, 1981) y el estimador semiparamétrico de Bernhardt (2016), que
asume una función loǵıstica para la probabilidad de cura y ajusta un model AFT para la
latencia. Los resultados muestran que, si el parámetro ventana se elige adecuadamente,
nuestro estimador funciona mejor que los otros estimadores considerados para un amplio
rango de valores de la covariable.
Por último, en la Sección 2.5 el estimador se aplica a un conjunto de datos real que
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estudia la supervivencia de los pacientes con sarcoma. En este ejemplo, no se aprecian
grandes diferencias entre el estimador propuesto y el estimador de Beran, puesto que los
tiempos observados de los pacientes considerados curados de la muerte por sarcoma son
valores muy altos y, por tanto, la mejora en la estimación de la función de supervivencia
que supone tener en cuenta la cura conocida es limitada.
Los resultados incluidos en este caṕıtulo se han publicado en Safari et al. (2021).

3. Estimador kernel de la probabilidad de cura

En este caṕıtulo, en la Sección 3.1 se introduce el estimador propuesto para estimar la
probabilidad de cura, basado en el estimator de la función de supervivencia presentado
en el caṕıtulo anterior. Se trata de la extensión del estimador propuesto por Xu and
Peng (2014) al contexto en el que algunos individuos censurados se pueden identificar
como curados del evento de interés. Se estudian las propiedades asintóticas de este
estimador, tales como la representación iid, la consistencia fuerte y se prueba que su
distribución es asintóticamente normal. Además, se dan las expresiones de los términos
dominantes del sesgo y la varianza, y se muestra cuál es el efecto en dichos términos
de ignorar el hecho de que algunos individuos censurados son en realidad curados.
Finalmente, se propone un método para seleccionar el parámetro ventana usando un
procedimiento bootstrap.
En la Sección 3.3 se presentan dos estimadores para la probabilidad de cura, también
no paramétricos de tipo kernel, que no han sido estudiados previamente en la liter-
atura. El primero de ellos, en la Sección 3.3.1, está basado en el modelo de riesgos
competitivos. Siguiendo la propuesta de Betensky and Schoenfeld (2001) para un con-
texto incondicional, se puede asumir que el modelo de curación tipo mixtura con cura
parcialmente conocida en la que los tiempos de curación son aleatorios es un modelo
de riesgos competitivos en los que hay dos únicos tipos de riesgos, el evento de interés
y la cura. En este caso, la probabilidad de cura no es más que el ĺımite de la función de
incidencia acumulada de la cura, o equivalentemente, uno menos el ĺımite de la función
de incidencia acumulada del evento de interés.
La segunda alternativa propuesta para estimar la probabilidad de cura se presenta
en la Sección 3.3.2. La idea principal detrás de este estimador es que, debido a que
el indicador de cura es una variable binaria, la probabilidad de cura se puede escribir
también como la esperanza condicional del indicador de cura. De esta forma, se pueden
aplicar métodos de regresión no paramétrica para estimar dicha esperanza condicional.
Sin embargo, en presencia de censura, no se conoce el indicador de cura para todos los
individuos, puesto que para muchos individuos censurados se desconoce si finalmente
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experimentarán el suceso de interés o no. La aplicación de métodos de regresión en
este contexto requiere manejar los datos faltantes en la variable respuesta (indicador
de cura). Hay en la literatura distintas propuestas para ajustes de regresión con valores
perdidos en la variable respuesta (Hsu et al., 2016; Verhasselt et al., 2019; Vakulenko-
Lagun et al., 2020). Aerts et al. (2002) propusieron un método de imputación múltiple
para la estimación de la esperanza incondicional. En esta sección se extienden esas
ideas al caso con una covariable continua, en el que la esperanza condicional se estima
esperanzante el estimador de Nadaraya-Watson (NW) aplicado a los datos en los que la
respuesta faltante se ha sustituido previamente por los valores imputados. Este estima-
dor es consistente bajo la hipótesis strongly ignorable missing at random (siMAR), es
decir, la probabilidad de observar el valor del indicador de cura depende de la covariable
X pero no del propio indicador de cura. En el modelo de mixtura con cura parcialmente
conocida, esta hipótesis no es cierta si el tiempo de vida Y y la variable de censura C son
condicionalmente independientes, puesto que la probabilidad de observar el indicador
de cura es mayor en los individuos susceptibles que en los curados, y por tanto, la
probabilidad de observar el valor del indicador de cura depende del propio indicador de
cura. Sin embargo, cuanto mayor sea el porcentaje de sujetos curados que se observan,
más débil es la relación entre la probabilidad de observar el valor del indicador de cura
y el propio indicador de cura, y por tanto, más próxima está la hipótesis siMAR de ser
cierta.
En la Sección 3.4 se lleva a cabo un estudio de simulación para evaluar el compor-
tamiento del estimador de la probabilidad de cura propuesto, basado en el modelo
de mixtura con cura, aśı como el método de selección de la ventana, en comparación
con los estimadores alternativos propuestos, tanto los basados en un modelo de riesgos
competitivos como los que se obtienen con un ajuste de regresión, previa imputación
de los indicadores de cura desconocidos. Además, a efectos de comparación, se con-
sideran también el estimador que ignora la cura conocida (Xu and Peng, 2014) y el
estimador semiparamétrico de Bernhardt (2016), que śı incorpora la información de los
individuos curados, y que estima la probabilidad de cura esperanzante un algoritmo
EM, ajustando una regresión loǵıstica.
La distribución de los tiempos de los individuos susceptibles se simularon usando una
distribución exponencial truncada. Por su parte, la distribución de censura es impropia,
en la que C = ∞ con probabilidad π(x) y en caso contrario C se simuló de una
distribución Weibull. Se simularon 6 escenarios distintos en función de la expresión de
la probabilidad de cura, y suponiendo que el porcentaje de individuos curados que son
observados era π(x) = 0.2 y π(x) = 0.8.
Los primeros resultados muestran el error cuadrático medio (MSE) de los estimadores.
En el caso de los estimadores suavizados, se muestra el MSE con la correspondiente ven-
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tana óptima, seleccionada de una rejilla de 21 ventanas equiespaciadas entre 1.5 y 100.
La principal conclusión es que el estimador propuesto, basado en el modelo de mixtura
con cura, es muy competitivo en todos los escenarios simulados. Este estimador mejora
claramente al estimador que ignora la información de la cura, da resultados similares o
ligeramente mejores al estimador basado en el modelo de riesgos competitivos, también
mejora claramente al basado en modelos de regresión cuando el porcentaje de pérdida
de información es alto (π(x) bajo), y al estimador semiparamétrico cuando la proba-
bilidad de cura no se ajusta al modelo paramétrico loǵıstico. En el escenario 1, en el
que la expresión de la probabilidad de cura es loǵıstica, el estimador semiparamétrico
se comporta muy bien, aunque sus resultados son más pobres en los demás escenarios.
En los resultados relacionados con la eficiencia del selector bootstrap de la ventana,
podemos apreciar que la ventana bootstrap se aproxima correctamente a la ventana
óptima teórica.
A continuación, en la Sección 3.5, todos los estimadores de la probabilidad de cura
estudiados en el presente caṕıtulo se aplican a dos bases de datos reales. La primera
de ellas, relacionada con pacientes con cáncer de pecho, se analiza en la Sección 3.5.1.
El objetivo es estimar la probabilidad de no morir de cáncer de mama dependiendo
del estad́ıo de la enfermedad, el número de ganglios linfáticos positivos, si la paciente
es menopáusica o no, y la edad en el momento del diagnóstico. Aunque el estima-
dor semiparamétrico sugiere que la probabilidad de no morir por cáncer de mama
aumenta con la edad, los demás estimadores que son no paramétricos indican que un
ajuste loǵıstico podŕıa no ser adecuado, indicando que la probabilidad aumenta solo en
mujeres jóvenes y de mediana edad, mientras que la edad no tiene efecto en las mujeres
más mayores. Por último, el estimador MI-NW proporciona estimaciones sensiblemente
menores que los demás estimadores, debido principalmente a que hay pocas mujeres
que se puedan identificar como pacientes curadas de fallecer por la enfermedad, y por
tanto el porcentaje de pérdida en el indicador de cura es muy alto.
El segundo ejemplo con datos reales, en el que se analizan pacientes con COVID-
19, se muestra en la Sección 3.5.2. Un conocimiento preciso de la duración de la
hospitalización y la predicción de la probabilidad de que un paciente hospitalizado
requiera una cama en la UCI, son clave para comprender la demanda hospitalaria de
camas y crucial para la toma de decisiones y una planificación adecuada. En este
análisis, el tiempo de interés es la duración de la estancia en planta de los pacientes
hasta el ingreso en la UCI, y el objetivo es estimar la probabilidad de ingreso en la
UCI en función de la edad y el sexo como covariables de interés. Aunque el estimador
semiparamétrico sugiere un efecto decreciente uniforme de la edad sobre la probabilidad
de ingreso en la UCI, los estimadores no paramétricos indican que el ajuste loǵıstico
no parece razonable ya que las curvas se caracterizan por una probabilidad de ingreso
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en la UCI constante o ligeramente creciente para los pacientes más jóvenes (menores
de 55 años), un fuerte aumento de la probabilidad para pacientes de mediana edad (de
55 a 69 años) y una disminución para pacientes de edad avanzada (70 años o más).
El estimador XP sobreestima la probabilidad de admisión en UCI, debido a que no
tiene en cuenta que muchos pacientes nunca necesitarán UCI, mientras que el estima-
dor MI-NW infraestima dicha probabilidad para los pacientes más jóvenes, puesto que
hay un número muy bajo de pacientes jóvenes cuya entrada en UCI ha sido observada,
por lo que hay un porcentaje muy alto de pérdida en el indicador de cura para dichos
pacientes.
Los resultados incluidos en este caṕıtulo se pueden encontrar en Safari et al. (2022a).

4. Estimador no paramétrico de la latencia

La tercera contribución de la tesis, incluida en este caṕıtulo, aborda el problema de la
estimación de la función de latencia. El estimador de latencia propuesto extiende el
estimador no paramétrico estudiado en López-Cheda et al. (2017b) para el caso en que
el estado de curación se observe para algunos individuos censurados. En la Sección 4.2
se da la expresión del estimador propuesto, tanto en un contexto condicional para
una covariable continua, como para el caso incondicional. A diferencia del estimador
propuesto por López-Cheda et al. (2017b) que depende de una única ventana, el estima-
dor que se presenta en esta tesis depende de dos ventanas distintas, lo que aporta más
flexibilidad a la estimación. Los resultados asintóticos, tales como la representación iid
y la distribución asintóticamente normal, se muestran en la Sección 4.2.1. En la Sección
4.2.3 se proporciona un método de selección de las ventanas basado en el bootstrap.
En la Sección 4.3, un estudio de simulación muestra los resultados del estimador prop-
uesto, en comparación con el estimador que ignora la cura conocida (López-Cheda et al.,
2017b), el estimador semiparamétrico que ajusta un modelo AFT (Bernhardt, 2016), el
efecto de usar dos ventanas en la estimación sobre el estimador con una única ventana,
aśı como el comportamiento en la práctica del selector de la ventana tipo bootstrap.
Tal como se esperaba, el estimador semiparamétrico solo da buenos resultados en los
modelos para los cuales el modelo AFT es adecuado. Claramente, el estimador con
dos ventanas mejora al que se calcula con una única ventana. Finalmente, el estimador
propuesto es más eficiente que el estimador que ignora la cura conocida, especialmente
en los escenarios simulados en los que la cura se observa con una alta probabilidad.
El caṕıtulo termina con una aplicación a la base de datos real de pacientes COVID-
19 en la Sección 4.4, el estimador se aplica para estudiar la duración de la estancia
hospitalaria de los pacientes con COVID-19 que requieren cuidados intensivos. Las
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estimaciones del estimador propuesto y el estimador semiparamétrico son similares, lo
que sugiere que el ajuste AFT podŕıa ser adecuado. Sin embargo, las estimaciones
con el método de López-Cheda et al. (2017b) que no tiene en cuenta la cura conocida
aparentan demasiado optimistas. Para finalizar, se incluye una breve discusion en la
Sección 4.5.
Los resultados que figuran en este caṕıtulo se incluyen en Safari et al. (2022b)

5. Análisis de la independencia entre el tiempo
de vida y la censura
Una caracteŕıstica importante de los estimadores propuestos en esta tesis, al igual que
la mayoŕıa de los procedimientos en análisis de supervivencia, es que son consistentes
solamente bajo el supuesto de independencia condicional del tiempo de vida y la vari-
able de censura. Este supuesto implica que el mecanismo que induce a la censura es
totalmente ajeno al evento de interés. La independencia entre Y y C es bastante natural
y se puede asumir con mucha frecuencia en la mayoŕıa de los casos. Esta independen-
cia entre el tiempo de vida y el tiempo de censura es una hipótesis crucial para hacer
inferencias insesgadas en análisis de supervivencia. A pesar de esto, casi nunca se com-
prueba espećıficamente en la práctica. El problema es que no se puede testar cuando
los datos incluyen solo el tiempo observado, posiblemente censurado, y un indicador
de censura. Al no observar nunca el valor de Y y C de forma simultánea, siempre se
puede obtener con los datos observados una expresión para las distribuciones de Y y
C que cumplen la hipótesis de independencia (Tsiatis, 1975). Aśı que no hay ninguna
prueba estad́ıstica formal para comprobar si el tiempo de censura es independiente del
tiempo de vida sin asumir más hipótesis para la distribución conjunta de Y y C.
En este caṕıtulo se presenta un procedimiento simple no paramétrico para evaluar hasta
qué punto es plausible el supuesto de independencia. Este método se basa en el hecho
de que, bajo la hipótesis de independencia entre Y y C, el estimador propuesto para la
probabilidad de cura es insesgado y consistente, mientras que el estimador MI-NW seŕıa
sesgado e inconsistente puesto que no se verifica la hipótesis siMAR. Como resultado,
cuando el porcentaje de censura es alto, ambos estimadores daŕıan resultados muy
diferentes. Valores altos de la diferencia entre ambos estimadores seŕıan consistentes
con la hipótesis de independencia, mientras que valores similares evidenciaŕıan que la
hipótesis no es verośımil.
En la Sección 5.1 se hace una revisión al problema de falta de independencia entre Y y
C, en la Sección 5.2 se motiva por qué la diferencia entre las estimaciones de la probabili-
dad de cura dadas por el estimador propuesto y el estimador MI-NW se puede usar para
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medir la plausibilidad de la hipótesis de independencia, mientras en la Sección 5.2.1 se
muestran los resultados de un estudio sobre la sensibilidad del procedimiento a distintos
grados de dependencia y distintos niveles de observación de la cura.

Conclusiones y trabajo futuro

En este último caṕıtulo de la memoria de tesis, se hace un resumen de los principales
resultados obtenidos en los caṕıtulos anteriores. A continuación, se expone una serie
de ĺıneas en las que podŕıa avanzar la investigación en el futuro.
La primera ĺınea de trabajo futuro hace referencia al caṕıtulo 5, se llevará a cabo un
estudio de simulación extenso en el que se evaluará el test estad́ıstico de contraste,
se aproximará su distribución bajo la hipótesis nula esperanzante bootstrap, y se pro-
pondrá un selector para el parámetro ventana.
Además, los métodos propuestos están diseñados para el caso más general en el que
los tiempos están sujetos a censura aleatoria por la derecha. No obstante, las obser-
vaciones pueden sufrir otros tipos de censura, o incluso truncamiento. La metodoloǵıa
presentada en esta memoria se adaptarán a este tipo de datos más complejos.
En muchos casos, el interés reside más allá de una sola covariable continua X, cuando
se dispone de múltiples covariables X, un vector de covariables de naturaleza posible-
mente mixta, es decir, con componentes discretas, categóricas y/o variables continuas.
Para evitar el problema de la maldición de la multidimensionalidad, que surge en la
estimación no paramétrica cuando el número de covariables no va acompañado con un
aumento suficiente en el tamaño muestral, nos centraremos en dos enfoques distintos.
El primero se basa en el uso de funciones núcleo multivariantes definidas por el pro-
ducto de las correspondientes funciones núcleo univariantes. El segundo consiste en
utilizar un modelo single index, en el que el efecto de todas las covariables se resuma
en un único ı́ndice unidimensional, dado por una función de una combinación lineal de
las covariables, es decir, g(βT X).
Otra ĺınea de investigación futura será los contrastes de hipótesis asociados a selección
de covariables y a los test de significación, aśı como la introducción de la cura par-
cialmente conocida en los modelos de riesgos competitivos y, más en general, en los
modelos multiestado.
Finalmente, el paquete npcure de R de López-Cheda et al. (2021) permite obtener las
estimaciones no paramétricas de la función de supervivencia, latencia y la probabilidad
de cura propuestos por López-Cheda et al. (2017a,b, 2020) que ignora la cura conocida,
incluido el estimador de Beran. El paquete no incluye la situación en la que el estado
de curado es parcialmente conocido. Los métodos de estimación propuestos en esta
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tesis se incluirán en futuras versiones del paquete.
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