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Abstract

A novel procedure to perform fuzzy clustering of multivariate time series generated from different dependence models is pro-
posed. Different amounts of dissimilarity between the generating models or changes on the dynamic behaviours over time are some 
arguments justifying a fuzzy approach, where each series is associated to all the clusters with specific membership levels. Our pro-
cedure considers quantile-based cross-spectral features and consists of three stages: (i) each element is characterized by a vector 
of proper estimates of the quantile cross-spectral densities, (ii) principal component analysis is carried out to capture the main 
differences reducing the effects of the noise, and (iii) the squared Euclidean distance between the first retained principal compo-
nents is used to perform clustering through the standard fuzzy C-means and fuzzy C-medoids algorithms. The performance of the 
proposed approach is evaluated in a broad simulation study where several types of generating processes are considered, including 
linear, nonlinear and dynamic conditional correlation models. Assessment is done in two different ways: by directly measuring 
the quality of the resulting fuzzy partition and by taking into account the ability of the technique to determine the overlapping 
nature of series located equidistant from well-defined clusters. The procedure is compared with the few alternatives suggested in 
the literature, substantially outperforming all of them whatever the underlying process and the evaluation scheme. Two specific 
applications involving air quality and financial databases illustrate the usefulness of our approach.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Time series clustering is a pivotal problem in data mining with applications in a wide variety of fields, including 
machine learning, economics, finance, physics, computer science, medicine, biology, geology, among others. The goal 
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is to split a large set of unlabeled time series realizations into homogeneous groups so that similar series are placed 
together in the same group and dissimilar series are located in different groups. This unsupervised classification 
process is useful to detect different dynamic patterns without the need to analyse and model each single time series, 
which is computationally intensive and often far from being the real target. Many methods to cluster time series have 
been proposed in the literature during the last two decades. Comprehensive overviews including current advances, 
future prospects, significant references and specific application areas are provided by [1–4], and more recently in the 
monograph by [5]. However, most of the proposed approaches concern univariate time series (UTS) while clustering 
of multivariate time series (MTS) has received much less attention. Unlike UTS, MTS involve a number of variables 
which must be jointly considered to characterize the underlying dynamic pattern. From the grouping point of view, 
this is a challenging issue because a dissimilarity measure between MTS should take into account the interdependence 
relationship between variables. For example, the cross-correlation between some specific dimensions might be high 
in some clusters but non-significant in others. Additionally, MTS are two-dimensional objects, which increases the 
computational complexity, making inefficient or even infeasible some of the clustering procedures proposed to deal 
with UTS. In short, high dimensionality and complexity to assess dissimilarity make particularly challenging the MTS 
clustering task.

There exist two important decisions to be made in any clustering problem, namely the notion of dissimilarity be-
tween the elements subject to the grouping problem and the clustering algorithm determining how the assignment of 
objects to the groups is done. A proper dissimilarity measure must be totally dependent on the nature and specific 
purpose of the clustering task, thus providing a meaningful clustering solution according to the grouping target. If 
the goal is to discriminate between geometric profiles of the time series, then a shape-based dissimilarity criterion is 
suitable. In contrast, a structure-based dissimilarity is desirable if the intention is to compare underlying dependence 
models. In the latter case, the clustering performance may be seriously affected by noise, change in the conditional 
variance or heavy-tailed errors, and hence distance measures capable of capturing high level dynamic structures are 
particularly helpful. Many criteria to assess dissimilarity between UTS are available in the literature, including mea-
sures based on raw data, extracted features, generating models, complexity levels, and forecast performances, among 
others. A survey of measures can be seen in [6] and many of them are implemented in the R package TSclust [7].

Regarding how the assignment of the elements to the clusters is made, there are two classical paradigms which 
are usually referred to as “hard” and “soft” clustering. The partition provided by hard clustering procedures locates 
each data object in exactly one cluster, thus being constituted by disjoint subsets. This approach does not allow for 
overlapping clusters and could become too inflexible in some scenarios. For instance, hard clustering is incapable 
of giving insights into which elements are equidistant from two or more clusters and also to account for a closer 
alignment to patterns of other clusters due to changes in the dynamic of the series over time. On the other hand, fuzzy 
clustering strategies [8,9] provide a more versatile approach to address the clustering task. They rely on the notion of 
membership of an element in a given cluster, which indicates the degree of confidence in that particular assignment. 
Therefore, the output of these methods is a soft partition where the objects can belong to several groups with specific 
membership degrees.

Several works have considered fuzzy clustering of time series, specially in the univariate setting. [10] proposed 
a fuzzy clustering approach based on estimates of the autocorrelation function of the time series up to a given lag. 
The corresponding quantities are used as input to the traditional fuzzy C-means algorithm. [11] provided three dif-
ferent methods relying on different characteristics computed from the UTS, namely the periodogram, the normalized 
periodogram and the logarithm of the normalized periodogram. A fuzzy approach to the clustering of UTS based 
on estimated wavelet variances is presented in [12], proving itself capable of identifying time series with switching 
patterns in terms of variability. [13] developed an approach focused on grouping together time series with similar 
seasonal structures using extreme value analysis. The input features in the fuzzy clustering algorithm are parameter 
estimates of time varying location, scale and shape obtained by means of a fitting of the generalised extreme value 
distribution. [14] developed two fuzzy clustering strategies aimed at clustering financial time series. The first ap-
proach employs the autoregressive representation of GARCH models whereas the second one is based on estimates of 
GARCH parameters. A method for grouping heteroskedastic time series was designed by [15]. The approach assumes 
that the series follow a GARCH model. Estimates of the so-called unconditional volatility and time-varying volatility 
are obtained and then used to feed the classical fuzzy C-medoids technique. Robust alternatives of the method are 
also provided. [16] extended their work in [17] by introducing a procedure which employs estimates of the quantile 
autocovariance function in order to perform fuzzy clustering of UTS by means of the fuzzy C-medoids algorithm. 
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The method takes advantage of the nice properties of the quantile autocovariance function as robustness to heavy tails 
or no requirements about the existence of moments. Robust approaches derived from this technique are developed 
in [18]. [19] introduced a copula-based procedure for finding groups in spatial time series. The methodology obtains 
the empirical copula for a given MTS and computes a dissimilarity between this copula end the Frechet copula by 
taking into account also spatial information. Note that all the previous mentioned approaches pertain to the so-called 
feature-based clustering, which exploits specific features extracted from a time series, or to the termed model-based 
clustering, which groups the time series based on estimates of the parameters or of the residuals of a given model.

Approaches based on direct computation of a given distance have also been suggested for fuzzy clustering of UTS. 
[20] designed an approach employing the dynamic time warping distance (DTW) in the standard fuzzy C-means 
algorithm. A specific procedure to obtain the average of a set of UTS according to DTW is utilised. A trimmed fuzzy 
clustering technique for financial time series relying on DTW and the fuzzy C-medoids algorithm is developed in 
[21]. The method is designed so as to attain robustness against outlying elements by trimming away the series which 
are more distant from the bulk of the data.

By contrast, a fewer number of papers have dealt with fuzzy clustering of MTS. [22] analysed different dissimilarity 
measures between multivariate time trajectories, which are classified in three classes according to their characteristics. 
[23] constructed different unsupervised clustering models for multivariate data time arrays which take into account 
geometric and trend patterns of the multivariate time arrays, among others. [24] introduced three fuzzy C-means 
clustering approaches of multivariate time trajectories considering the so-called positional dissimilarity, velocity dis-
similarity and a mixture of both. These models are particularly beneficial when anomalous trajectories are present 
in the dataset. [25] proposed to perform unsupervised classification of MTS by means of a novel objective function 
containing two terms, one taking into account longitudinal features of the MTS and the other considering the Shannon 
entropy measure concerning fuzzy partitions. A procedure based on the maximum overlap discrete wavelet transform 
is provided in [26]. Estimates of wavelet variances and correlations are computed from each MTS and used to feed 
the fuzzy C-means, fuzzy C-medoids and fuzzy relational clustering algorithms. [27] devised an approach where 
each MTS sample is treated as matrix data. First, a dimensionality reduction technique is applied over the original 
MTS dataset, and then a fuzzy clustering algorithm based on spatial weighted distance matrix is performed on the 
reduced dataset. Four different robust clustering models for MTS aimed at neutralizing the negative effects of outliers 
are developed in [28]. All of them take into account the exponential transformation, which assigns “small weights” 
to outliers in the clustering process, hence achieving the desired robustness. [29] designed a sophisticated feature-
weighted clustering method based on two dissimilarity measures, DTW and the named shape-based distance. The 
approach consists of several steps in which the contribution of each independent dimension to the overall cluster-
ing process is considered. Note that, except for [26], all the previously cited works on fuzzy clustering of MTS are 
not suitable for making the grouping in terms of underlying dependence structures, since they are aimed to measure 
dissimilarity in shape. Thus, it is clear that there is a need for developing fuzzy clustering approaches capable of 
addressing the task from the former perspective.

This paper is aimed at evaluating the performance of a distance measure based on the quantile cross-spectral 
density (QCD) in fuzzy clustering of MTS. Our assumption is that the goal consists in grouping the series in terms 
of their generating processes, that is, we consider two MTS to be similar if their underlying dependence patterns are 
alike. Note that this premise is quite realistic if, for instance, one intends to detect the temporal pattern driving a time 
series which is observed in practice under large amounts of noise. Under this criterion, a metric capable of effectively 
discriminating between different generating mechanisms while displaying a large degree of robustness to the type of 
underlying processes is undoubtedly needed in order to attain a meaningful clustering solution. Indeed, QCD always 
exists under the assumption of strictly stationarity and allows to account for complex forms of dependence that other 
time series features as traditional autocovariances are unable to uncover [30]. In addition, QCD takes advantage of 
automatically considering all the lags. These nice properties insinuate that a dissimilarity measure based on QCD 
can achieve great results in grouping MTS according to the stated goal. In our previous work [31], we decided to 
answer this question by analysing the performance of a distance measure termed dQCD in different scenarios of 
MTS clustering through a comprehensive simulation study. The results showed that dQCD is highly competitive when 
grouping linear processes and significantly outperforms alternative dissimilarities suggested in the literature when 
dealing with processes showing a high amount of heteroskedascity or complicated types of dependence. In addition, 
dQCD exhibited a substantial degree of robustness against changes in the distributional form of the error terms. The 
distance was also evaluated in [31] with real datasets contained in the well-known UEA multivariate time series 
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classification archive [32], which consists of 30 MTS databases covering a wide range of cases, dimensions and series 
lengths. The results indicated that dQCD is one of the best performing metrics also in a practical framework.

The main contribution of this work consists of proposing a novel fuzzy procedure for MTS clustering taking advan-
tage of the high capability of the quantile cross-spectral density to characterize any type of serial dependence structure. 
Specifically, we take into consideration a modified version of the distance dQCD given in [31]. While dQCD is directly 
constructed from estimates of QCD, the alternative metric we propose here considers the principal component analysis 
(PCA) transformation over the mentioned estimates. This way, a lot of the noise contained in these (correlated) esti-
mates is removed and the most important information is retained, thus getting improved performance in comparison 
with the original distance while inheriting all its advantageous characteristics. The new distance is utilised in both the 
standard fuzzy C-means and the fuzzy C-medoids algorithms. Assessment of the proposed approaches is carried out 
by means of an extensive simulation study including linear, nonlinear and conditional heteroskedastic processes. The 
dissimilarity proposed in [26], a natural extension of that introduced in [10] and the distance constructed by [33] are 
also analysed for comparison purposes. Two evaluation schemes are considered. The first one is aimed at examining 
the capability of the procedures in assigning high (low) membership values if a given series pertains (not pertains) to a 
specific cluster defined in advance. The second scheme also analyses the ability of the approaches to handle outlying 
series. Lastly, two specific applications to multivariate financial and environmental datasets are presented to highlight 
the usefulness of the proposed clustering technique.

The remainder of this paper is structured as follows. Section 2 presents dQCD , a dissimilarity measure between a 
pair of MTS that takes into consideration proper estimates of QCD. The estimation procedure is detailed and some 
powerful properties of the metric holding under very general conditions are highlighted. In Section 3, the dissimilarity 
is considered to develop two novel fuzzy clustering approaches relying on the traditional fuzzy C-means and fuzzy 
C-medoids algorithms. A direct modification of the distance dQCD based on the PCA transformation is proposed. The 
new measure considers the transformed QCD-based features concerning the principal components space. Advantages 
of this metric in comparison with the original dissimilarity are shown by means of a toy example. The dissimilarity 
based on QCD and PCA is used to perform fuzzy clustering in Section 4. Three scenarios characterised by the kind 
of generating process are considered, namely linear, nonlinear and dynamic conditional correlation. The assessment 
task is performed in a fair and general manner, and the results are compared with those obtained using alternative 
dissimilarity measures. Section 5 contains applications to real datasets and some concluding remarks are summarized 
in Section 6.

2. A distance measure based on the quantile cross-spectral density

Consider a set of n multivariate time series S =
{
X

(1)
t , . . . ,X

(n)
t

}
, where the j -th element X(j)

t =
{
X

(j)
1 , . . . ,X

(j)
Tj

}
is a Tj -length partial realization from any d-variate real-valued strictly stationary stochastic process (Xt )t∈Z. We wish 
to perform clustering on the elements of S in such a way that the series generated from the same stochastic process 
are grouped together. We propose to use a clustering algorithm based on comparing estimated quantile cross-spectral 
densities. In this section, the quantile cross-spectral density notion is presented and then used to define a distance 
between MTS.

2.1. The quantile cross-spectral density

Let {Xt , t ∈ Z} = {(Xt,1, . . . , Xt,d), t ∈ Z} be a d-variate real-valued strictly stationary stochastic process. Denote 
by Fj the marginal distribution function of Xt,j , j = 1, . . . , d , and by qj (τ ) = F−1

j (τ ), τ ∈ [0, 1], the corresponding 

quantile function. Fixed l ∈Z and an arbitrary couple of quantile levels (τ, τ ′) ∈ [0, 1]2, consider the cross-covariance 
of the indicator functions I

{
Xt,j1 ≤ qj1(τ )

}
and I

{
Xt+l,j2 ≤ qj2(τ

′)
}

given by

γj1,j2(l, τ, τ
′) = Cov

(
I
{
Xt,j1 ≤ qj1(τ )

}
, I

{
Xt+l,j2 ≤ qj2(τ

′)
})

, (1)

for 1 ≤ j1, j2 ≤ d . Taking j1 = j2 = j , the function γj,j (l, τ, τ ′), with (τ, τ ′) ∈ [0, 1]2, so-called quantile autoco-
variance function (QAF) of lag l, generalizes the traditional autocovariance function. While autocovariances measure 
linear dependence between different lags evaluating covariability with respect to the average, quantile autocovariances 
examine how a part of the range of variation of Xj helps to predict whether the series will be below quantiles in a 
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future time. This way, QAF entirely describes the joint distribution of (Xt,j , Xt+l,j ), enabling us to capture serial fea-
tures that standard autocovariances cannot detect. Note that γj1,j2(l, τ, τ

′) always exists since no assumptions about 
moments are required. Furthermore, QAF also takes advantage of the local distributional properties inherent to the 
quantile methods, including robustness against heavy tails, dependence in the extremes and changes in the conditional 
shapes (skewness, kurtosis). Motivated by these nice properties, a dissimilarity between UTS based on comparing es-
timated quantile autocovariances over a common range of quantiles was proposed by [17] to perform UTS clustering 
with very satisfactory results.

In the case of the multivariate process {Xt , t ∈ Z}, we can consider the d × d matrix

�(l, τ, τ ′) = (
γj1,j2(l, τ, τ

′)
)

1≤j1,j2≤d
, (2)

which jointly provides information about both the cross-dependence (when j1 �= j2) and the serial dependence (be-
cause the lag l is considered). To obtain a much richer picture of the underlying dependence structure, �(l, τ, τ ′) can 
be computed over a range of prefixed values of L lags, L = {l1, . . . , lL}, and r quantile levels, T = {τ1, . . . , τr}, thus 
having available the set of matrices

�Xt (L,T ) = {
�(l, τ, τ ′), l ∈ L, τ, τ ′ ∈ T

}
. (3)

In the same way as the spectral density is the representation in the frequency domain of the autocovariance func-
tion, the spectral counterpart for the cross-covariances γj1,j2(l, τ, τ

′) can be introduced. Under suitable summability 
conditions (mixing conditions), the Fourier transform of the cross-covariances is well-defined and the quantile cross-
spectral density (QCD) is given by

fj1,j2(ω, τ, τ ′) = (1/2π)

∞∑
l=−∞

γj1,j2(l, τ, τ
′)e−ilω, (4)

for 1 ≤ j1, j2 ≤ d , ω ∈ R and τ, τ ′ ∈ [0, 1]. Note that fj1,j2(ω, τ, τ ′) is complex-valued so that it can be represented in 
terms of its real and imaginary parts, which will be denoted by �(fj1,j2(ω, τ, τ ′)) and 	(fj1,j2(ω, τ, τ ′)), respectively. 
The quantity �(fj1,j2(ω, τ, τ ′)) is known as quantile cospectrum of (Xt,j1)t∈Z and (Xt,j2)t∈Z, whereas the quantity 
-	(fj1,j2(ω, τ, τ ′)) is called quantile quadrature spectrum of (Xt,j1)t∈Z and (Xt,j2)t∈Z.

For fixed quantile levels (τ, τ ′), the quantile cross-spectral density is the cross-spectral density of the bivariate 
process

(I {Xt,j1 ≤ qj1(τ )}, I {Xt,j2 ≤ qj2(τ
′)}). (5)

Therefore the quantile cross-spectral density measures dependence between two components of the multivariate 
process in different ranges of their joint distribution and across frequencies. Proceeding as in (3), the quantile cross-
spectral density can be evaluated on a range of frequencies � and of quantile levels T for every couple of components 
in order to obtain a complete representation of the process, i.e., consider the set of matrices

fXt
(�,T ) = {

f(ω, τ, τ ′), ω ∈ �, τ, τ ′ ∈ T
}
, (6)

where f(ω, τ, τ ′) denotes the d × d matrix in C

f(ω, τ, τ ′) = (
fj1,j2(ω, τ, τ ′)

)
1≤j1,j2≤d

. (7)

Representing Xt through fXt
, a complete information on the general dependence structure of the process is avail-

able. Comprehensive discussions about the nice properties of the quantile cross-spectral density are given in [34], [35]
and [30], including invariance to monotone transformations, robustness and capability to detect nonlinear dependence. 
It is also worth enhancing that the quantile cross-spectral density provides a full description of all copulas of pairs of 
components in Xt , since the difference between the copula of an arbitrary couple (Xt,j1, Xt+l,j2) evaluated in (τ, τ ′)
and the independence copula at (τ, τ ′) can be written as

P
(
Xt,j1 ≤ qj1(τ ),Xt+l,j2 ≤ qj2(τ

′)
)− ττ ′ =

π∫
fj1,j2(ω, τ, τ ′)eilω dω. (8)
−π

119



Á. López-Oriona, J.A. Vilar and P. D’Urso Fuzzy Sets and Systems 443 (2022) 115–154
According with the prior arguments, a dissimilarity measure between realizations of two multivariate processes, 
Xt and Y t , could be established by comparing their representations in terms of the quantile cross-spectral density 
matrices, fXt

and fY t
, respectively. For it, estimates of the quantile cross-spectral densities must be obtained.

Let {X1, . . . ,XT } be a realization from the process (Xt )t∈Z so that Xt = (Xt,1, . . . , Xt,d), t = 1, . . . , T . For 
arbitrary j1, j2 ∈ {1, . . . , d} and (τ, τ ′) ∈ [0, 1]2, [30] propose to estimate fj1,j2(ω, τ, τ ′) considering a smoother of the 
cross-periodograms based on the indicator functions I {F̂T ,j (Xt,j )}, where F̂T ,j (x) = T −1 ∑T

t=1 I {Xt,j ≤ x} denotes 
the empirical distribution function of Xt,j . This approach extends to the multivariate case the estimator proposed by 
[36] in the univariate setting. More specifically, the called rank-based copula cross periodogram (CCR-periodogram) 
is defined by

I
j1,j2
T ,R (ω, τ, τ ′) = 1

2πT
d

j1
T ,R(ω, τ)d

j2
T ,R(−ω,τ ′), (9)

where dj
T ,R(ω, τ) =∑T

t=1 I {F̂T ,j (Xt,j ) ≤ τ }e−iωt .
The asymptotic properties of the CCR-periodogram are established in Proposition S4.1 of [30]. Likewise the 

standard cross-periodogram, the CCR-periodogram is not a consistent estimator of fj1,j2(ω, τ, τ ′) [30]. To achieve 
consistency, the CCR-periodogram ordinates (evaluated on the Fourier frequencies) are convolved with weighting 
functions WT (·). The smoothed CCR-periodogram takes the form

Ĝ
j1,j2
T ,R (ω, τ, τ ′) = 2π

T

T −1∑
s=1

WT

(
ω − 2πs

T

)
I

j1,j2
T ,R

(
2πs

T
, τ, τ ′

)
, (10)

where WT (u) =∑∞
v=−∞ 1

hT
W

(
u+2πv

hT

)
, with hT > 0 a sequence of bandwidths such that hT → 0 and T hT → ∞ as 

T → ∞, and W is a real-valued, even weight function with support [−π, π]. Consistency and asymptotic performance 
of the smoothed CCR-periodogram Ĝj1,j2

T ,R (ω, τ, τ ′) are established in Theorem S4.1 of [30].
The set of complex-valued matrices fXt

(�,T ) in (6) characterizing the underlying process can be estimated by

f̂Xt
(�,T ) =

{
f̂(ω, τ, τ ′), ω ∈ �, τ, τ ′ ∈ T

}
,

where f̂(ω, τ, τ ′) is the matrix

f̂(ω, τ, τ ′) =
(
Ĝ

j1,j2
T ,R (ω, τ, τ ′)

)
1≤j1,j2≤d

.

Throughout this article, the smoothed CCR-periodograms were obtained by using the R-package quantspec [37].

2.2. A spectral dissimilarity measure between MTS

A simple dissimilarity criterion between a pair of d-variate time series X(1)
t and X(2)

t can be obtained by compar-
ing their estimated sets of complex-valued matrices f̂

X
(1)
t

(�,T ) and f̂
X

(2)
t

(�,T ) evaluated on a common range of 

frequencies and quantile levels. Specifically, each time series X(u)
t , u = 1, 2, is characterized by means of a set of d2

vectors {�
(u)
j1,j2

, 1 ≤ j1, j2 ≤ d} constructed as follows. For a given set of K different frequencies � = {ω1, . . . , ωK}, 
and r quantile levels T = {τ1, . . . , τr}, each vector �(u)

j1,j2
is given by

�
(u)
j1,j2

= (�
(u)
1,j1,j2

, . . . ,�
(u)
K,j1,j2

), (11)

where each �(u)
k,j1,j2

, k = 1, . . . , K , consists of a vector of length r2 formed by rearranging by rows the elements of 
the matrix(

Ĝ
j1,j2
T ,R (ωk, τi, τi′)

)
1≤i,i′≤r

. (12)

Once the set of d2 vectors �(u)
j1,j2

is obtained, they are all concatenated in a vector �(u) in the same way as vectors 

�
(u)
k,j1,j2

constitute �(u)
j1,j2

in (11). In this manner, the dissimilarity between X(1)
t and X(2)

t is obtained by means of the 

Euclidean distance between the complex vectors �(1) and �(2)
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dQCD(X
(1)
t ,X

(2)
t ) =

[
||�v(�

(1)) − �v(�
(2))||2 + ||	v(�

(1)) − 	v(�
(2))||2

]1/2 =[
d∑

j1=1

d∑
j2=1

r∑
i=1

r∑
i′=1

K∑
k=1

(
�(Ĝ

j1,j2
T ,R (ωk, τi, τi′)

(1)) − �(Ĝ
j1,j2
T ,R (ωk, τi, τi′)

(2))
)2+

d∑
j1=1

d∑
j2=1

r∑
i=1

r∑
i′=1

K∑
k=1

(
	(Ĝ

j1,j2
T ,R (ωk, τi, τi′)

(1)) − 	(Ĝ
j1,j2
T ,R (ωk, τi, τi′)

(2))
)2
]1/2

,

(13)

where �v and 	v denote the element-wise real and imaginary part operations, respectively, and Ĝj1,j2
T ,R (ωk, τi, τi′)(u)

is the corresponding smoothed CCR-periodogram for the series for the series X(u)
t , u = 1, 2.

Computation of vectors �(1), . . . , �(n) for every MTS in the set S could be used to perform fuzzy clustering in S
by means of an algorithm as fuzzy C-means or fuzzy C-medoids considering the distance dQCD. This distance has 
been successfully applied to perform clustering on MTS in a crisp framework [31], and the corresponding QCD-based 
features, to develop classification [38] and outlier detection [39] procedures.

2.3. Properties of dQCD

Now we present some important properties of the distance dQCD which make it a very powerful dissimilarity to 
perform clustering of MTS.

In the following, we assume that Xi
t is a d-variate, real-valued, strictly stationary process and X(i)

t is a realization of 
length T from the process Xi

t . The j -th component of Xi
t , j = 1, . . . , d , is denoted by Xi

t,j . The notation F i
j stands for 

the marginal cumulative distribution function of Xi
t,j . Given a lag l ∈Z and a couple of components j1, j2 = 1, . . . , d , 

the joint cumulative distribution function of the pair (Xi
t,j1

, Xi
t+l,j2

) is denoted by F i
j1,j2,l

. We suppose that all the 
mentioned cumulative distribution functions are continuous functions. Now we state the following properties.

Property 1. If X1
t = X2

t . Then dQCD(X
(1)
t , X(2)

t ) −→
p

0 as T −→ ∞, where the notation −→
p

stands for convergence in 

probability.

Property 2. Assume that there exists some l ∈ Z and a couple of dimensions j1, j2 = 1, . . . , d such that F 1
j1,j2,l

�=
F 2

j1,j2,l
and that F 1

j = F 2
j , j = 1, . . . , d . Then there exist an infinite number of probability levels and an infinite number 

of frequencies such that dQCD(X
(1)
t , X(2)

t ) −→
p

a, a �= 0 as T −→ ∞.

The proofs of the previous properties are deferred to the Appendix A so as not to impair the flow of the paper. 
Some remarks about the results are given below.

Remark 1. Property 1 is a desirable characteristic of any dissimilarity measure aimed at performing clustering of 
MTS based on underlying dependence patterns. Indeed, it tells us that the distance between two MTS generated from 
the same process is expected to be negligible for a sufficiently large value of the series length. The majority of the 
dissimilarity measures suggested in the literature for UTS or MTS clustering according to the stated goal have this 
property.

Remark 2. Property 2 assumes that the marginal distribution function of the j -th component of X1
t is equal to the 

marginal distribution function of the j -th component of X2
t . This can be supposed without loss of generality. Indeed, 

if F 1
j ′ �= F 2

j ′ for some j ′ ∈ {1, . . . , d}, then the quantile cross-covariance in (1) regarding l = 0 and j1 = j2 = j ′ is 

going to be different between both processes for some pair of probability levels (τ, τ ′) ∈ [0, 1]2. It is not difficult to 
derive (see (4)) that this discrepancy is transmitted to the corresponding smoothed CCR-periodograms, resulting in the 
convergence in probability of the respective distance between two realizations of the processes to a quantity distinct 
from zero.
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Remark 3. Property 2 can be directly extended to more than two processes. In fact, given a collection of N processes 
Xb

t and the corresponding realizations X(b)
t , b = 1, . . . , N , if we assume that (i) for every pair (i, i′), i, i′ ∈ {1, . . . , N}, 

there exist ji , ji′ and li,i′ ∈ Z such that F i
ji ,ji′ ,li,i′ �= F i′

ji ,ji′ ,li,i′ , (ii) every couple of functions of the form Fk
jk,jk′ ,lk,k′ , 

k, k′ ∈ {1, . . . , N} are different from one another, and (iii) F 1
j = F 2

j = . . . = FN
j , j = 1, . . . , d , then there exist an 

infinite number of probability levels, an infinite number of frequencies, and a set of different real numbers {aq,q ′ }, 
q, q ′ = 1, . . . , N , q �= q ′ such that dQCD(X

(q)
t , X(q ′)

t ) −→
p

aq,q ′ �= 0 as T −→ ∞. Note that this is often the case in prac-

tice when we apply cluster analysis through dQCD to a set of MTS coming from more than two different generating 
processes.

Remark 4. Property 2 is perhaps the most important characteristic of the distance dQCD. Broadly speaking, it tells 
us that, under appropriate conditions, the metric is able to capture even the slightest change in the dependence struc-
ture between two generating processes. This trait is not shared, to the best of our knowledge, by any of the metrics 
proposed in the literature for clustering of UTS or MTS based on dependence patterns. Generally, it is easy to find a 
counterexample where two MTS are produced from distinct generating processes but the corresponding dissimilarities 
fail to detect any difference between the corresponding realizations even for very large values of the series lengths. 
In fact, our previous work [31] provides an insightful example of this happening. There we simulated bivariate MTS 
from three types of the so-called QVAR processes. This kind of processes are capable of generating rich forms of 
quantile dependence while keeping uncorrelatedness within and between components. The results shown in that work 
determined that most of the alternative metrics were totally unable to unmask the underlying patterns (see the bottom 
panel in Figure 3 of [31]), whereas the distance dQCD perfectly discriminated between processes. This property is 
due to the relationship between QCD, the copula and the marginal distributions of a given pair (Xi

t,j1
, Xi

t+l,j2
), which 

gives dQCD the ability to capture any kind of deviation in the dependence structure of the stochastic processes.

3. Fuzzy clustering methods based on the quantile cross-spectral density and PCA

In this section we introduce two fuzzy clustering procedures based on the distance dQCD , namely the QCD-based 
fuzzy C-means clustering model and the QCD-based fuzzy C-medoids clustering model, and show how the effec-
tiveness of these models can be significantly improved by applying the PCA transformation over the corresponding 
QCD-based features and performing clustering in the transformed space.

3.1. QCD-based fuzzy C-means clustering model (QCD-FCMn)

As in previous sections, consider a set S of n realizations of multivariate time series {X(1)
t , . . . , X(n)

t } and denote by 
� = {�(1), . . . , �(n)} the corresponding vectors of estimated quantile cross-spectral densities obtained as indicated in 
Section 2.2. Assume that all vectors �(i) have the same length, 2d2r2(�T/2� + 1), being d the number of dimensions, 
r the number of probability levels, T the series length and �·� the floor function. In this framework, we propose to 
perform partitional fuzzy clustering on S by using the QCD-based fuzzy C-means clustering model (QCD-FCMn), 

whose aim is to find a set of centroids � = {�(1)
, . . . , �

(C)}, and the n × C matrix of fuzzy coefficients, U = (uic), 
i = 1, . . . , n, c = 1, . . . , C, which define the solution of the minimization problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
�,U

n∑
i=1

C∑
c=1

um
ic

∥∥∥�(i) − �
(c)
∥∥∥2

with respect to the constraints:
C∑

c=1

uic = 1, uic ≥ 0 (constraints on the membership degree),

�L ≤ �
(c)

k ≤ �U (possible constraints on �
(c)

k ),

(14)

where uic ∈ [0, 1] represents the membership degree of the i-th series in the c-th cluster, �
(c)

is the vector of estimated 
quantile cross-spectral densities with regards to the centroid series for the cluster c, m > 1 is a parameter controlling 
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Algorithm 1 The QCD-based fuzzy C-means clustering algorithm (QCD-FCMn).
1: Fix C, m, max.iter, tol, a matrix norm ‖·‖M

2: Set iter = 0
3: Initialize the membership matrix U = U (0)

4: repeat
5: Set UOLD = U � Store the current membership matrix

6: Compute the centroids �(c)
, c = 1, . . . , C, by means of (16)

7: Compute uic , i = 1, . . . , n, c = 1, . . . , C, using (15) � Update the membership matrix
8: iter ← iter + 1
9: until ‖U − UOLD‖M < tol or iter = max.iter

the fuzziness of the partition, usually referred to as fuzziness parameter, and �
(c)

k is the k-th component of centroid 

�
(c)

. Constraints on uic are standard requirements in fuzzy clustering. Specifically, that the sum of the membership 
degrees for each series equals one implies that all of them contribute with the same weight to the clustering process. 
The fuzziness parameter controls the level of fuzziness considered in the grouping procedure. In the naive case, when 

m = 1, we have uic = 1 if c = arg min
c′∈{1,...,C}

d2
QCD(�(i), �

(c′)
) and 0 otherwise so that the crisp version of the procedure 

is obtained. As the value of m increases, the boundaries between clusters become softer and therefore the grouping is 
fuzzier. Note that the centroid of a cluster is the mean of all points (in this case, the quantile cross-spectral features 
describing the MTS), weighted by the degree of belonging to the cluster. Hence, we can think of the centroids as the 
prototypes of each cluster, i.e., a time series or a feature vector artificially representing the characteristics of the time 
series belonging to the corresponding cluster with a high membership degree. In (14), �L an �U stand for the possible 

lower and upper bound of �
(c)

k , respectively.
The goal of QCD-FCMn is to find a fuzzy partition into C clusters such that the squared QCD-distance between 

the clusters and their prototypes is minimized.
The quality of the clustering solution strongly depends on the capability of the distance dQCD to identify different 

dependence structures. Note that, unlike in a crisp clustering procedure, here the non-stochastic uncertainty inherent 
to the assignment of series to clusters is incorporated to the procedure by means of the membership degrees.

By taking into consideration only the membership degree constraints, the constrained optimization problem in (14)
can be solved by means of the Lagrangian multipliers method, given rise to a two-step iterative process. The first step 
consists of the minimization of the objective function with respect to uic, being � fixed.

uic =
[

C∑
c′=1

( ∥∥∥�(i) − �
(c)
∥∥∥2

∥∥∥�(i) − �
(c′)∥∥∥2

) 1
m−1

]−1

, for i = 1, . . . , n and c = 1, . . . ,C. (15)

The second step is based on the minimization of the objective function regarding �, being uic fixed

�
(c)

k =
∑n

i=1 um
ic�

(i)
k∑n

i=1 um
ic

, fork = 1, . . . , d2r2(�T/2� + 1) and c = 1, . . . ,C. (16)

Note that, in the previous iterative solutions, �
(c)

k already verifies that �L ≤ �
(c)

k ≤ �U , since it inherits the possi-
ble constraints of the estimated quantile cross-spectral density features from the observed series, �(i) (i = 1, . . . , n), 
i.e., �L ≤ �

(i)
k ≤ �U . Indeed, from the previous inequality we have 

∑n
i=1 um

ic�L ≤ ∑n
i=1 um

ic�
(i)
k ≤ ∑n

i=1 um
ic�U , 

which, by dividing by 
∑n

i=1 um
ic , yields �L ≤ �

(c)

k ≤ �U . An outline of the QCD-FCMn clustering algorithm is 
shown in Algorithm 1.

3.2. QCD-based fuzzy C-medoids clustering model (QCD-FCMd)

One natural alternative to QCD-FCMn is the QCD-based fuzzy C-medoids clustering model (QCD-FCMd). Fol-
lowing the context of Section 3.1, the goal is now to find the subset of � of size C, �̃ = {�̃(1), . . . , ̃�(C)}, and the 
n × C matrix of fuzzy coefficients, U , solving the minimization problem
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Algorithm 2 The QCD-based fuzzy C-medoids clustering algorithm (QCD-FCMd).
1: Fix C, m and max.iter
2: Set iter = 0
3: Pick the initial medoids ̃� = {�̃(1), . . . , ̃�(C)}
4: repeat
5: Set ̃�OLD = �̃ � Store the current medoids
6: Compute uic , i = 1, . . . , n, c = 1, . . . , C, using (18)
7: For each c ∈ {1, . . . , C}, determine the index jc ∈ {1, . . . , n} satisfying:

jc = arg min
1≤j≤n

n∑
i=1

um
ic

∥∥∥�(i) − �(j)
∥∥∥2

8: return �̃(c) = �(jc), for c = 1, . . . , C � Update the medoids
9: iter ← iter + 1

10: until �̃OLD = �̃ or iter = max.iter

min
�̃,U

n∑
i=1

C∑
c=1

um
ic

∥∥∥�(i) − �̃(c)
∥∥∥2

with respect to
C∑

c=1

uic = 1 anduic ≥ 0, (17)

where �̃(c) is the vector of estimated quantile cross-spectral density with regards to the medoid series for the cluster 
c and the remaining elements are the same as in (14).

By solving the constrained optimization problem in (17) with the Lagrangian multipliers method, we can obtain an 
iterative algorithm that alternately optimizes the membership degrees and the medoids. The iterative solution for the 
membership degrees takes the form ([40])

uic =
[

C∑
c′=1

( ∥∥�(i) − �̃(c)
∥∥2∥∥�(i) − �̃(c′)
∥∥2

) 1
m−1

]−1

, for i = 1, . . . , n and c = 1, . . . ,C. (18)

Once the membership degrees are obtained through (18), the C series minimizing (17) are selected as new medoids. 
This two-step procedure is iterated until there is no change in the medoids or a maximum number of iterations is 
achieved. An outline of the QCD-FCMd clustering algorithm is given in Algorithm 2.

3.3. Effectiveness of combining the quantile cross-spectral density and PCA

This section illustrates the advantages of applying the PCA transformation over the features obtained through QCD 
in order to perform fuzzy cluster analysis.

Consider two bivariate VAR processes with matrices of coefficients given by 
(

0.2 0.2
0.2 0.2

)
and 

(−0.2 −0.2
−0.2 −0.2

)
, 

which we will refer to as VAR 1 and VAR 2, respectively, and a bivariate white noise process. In the three cases, we 
assume that the error vector is formed by independent observations following a standard bivariate normal distribution. 
We simulated 5 MTS of length T = 500 from each one the processes, giving rise to a set of 15 MTS. The QCD-based 
features, that is, the vectors in (11), were extracted from each series in order to perform fuzzy clustering. The set 
of probability levels T = {0.1, 0.5, 0.9} was considered. This set if often enough for the quantile-based features to 
give a meaningful description of the underlying process [16–18,31,38,39]. Additionally, the PCA transformation was 
applied over the matrix containing the QCD-based feature vectors as rows. The so-called matrix of scores (giving the 
position of each observation in the new coordinate system) was obtained and the first �0.12p� principal components 
were retained, being p the total number of principal components, 15 in this example. The rate 0.12 was chosen due 
to the fact that it proved very effective in retaining enough information about the original dataset while removing 
most of the noise for classification tasks (see [38]). In fact, we have also tried other values for this parameter, getting 
worse results in terms of clustering accuracy. The QCD-FCMn algorithm (Algorithm 1) was applied over the original 
features and over the matrix of scores by setting C = 3. Four values for the fuzziness parameter m were considered, 
namely m = 1.5, 1.8, 2, 2.2. This mechanism was repeated 100 times.

The assessment of both approaches was carried out by means of the fuzzy extension of the Adjusted Rand Index 
(see Section 4.2.1), denoted by FARI. This performance metric is specifically designed to evaluate a fuzzy clustering 
partition, is bounded between −1 and 1, and the closer to one its value, the better the clustering partition. The partition 
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Table 1
Average values of FARI for the fuzzy C-means procedures 
QCD and QCD-PCA according to the fuzziness parameter. For 
each value of m, the best result is shown in bold.

Fuzziness parameter QCD QCD-PCA

m = 1.5 0.747 0.960
m = 1.8 0.511 0.900
m = 2.0 0.402 0.848
m = 2.2 0.322 0.792

Table 2
Average maximum membership degrees for fuzzy C-means 
procedures QCD and QCD-PCA according to the fuzziness pa-
rameter. For each value of m, the best result is shown in bold.

QCD QCD-PCA

m = 1.5 Cluster 1 0.915 1
Cluster 2 0.916 1
Cluster 3 0.916 1

m = 1.8 Cluster 1 0.770 0.996
Cluster 2 0.779 0.995
Cluster 3 0.771 0.996

m = 2.0 Cluster 1 0.693 0.987
Cluster 2 0.687 0.987
Cluster 3 0.692 0.991

m = 2.2 Cluster 1 0.620 0.975
Cluster 2 0.624 0.978
Cluster 3 0.630 0.978

defined by the generating processes was assumed to be the true partition. Table 1 contains the average FARI for each 
of the values of m with both approaches, which are referred to as QCD and QCD-PCA. The results achieved by 
QCD-PCA were better than the ones attained by using the raw features, specially as the value of m got larger.

To gain a deeper insight into the behaviour of both approaches, we examined the resulting membership degrees. 
First, we obtained the average value of the maximum membership degree concerning each of the three clusters (see 
Table 2). The membership degrees generated by QCD-PCA are far larger than those from QCD, thus concluding that 
QCD-PCA best resolves the level of uncertainty by providing a fuzzy partition with membership values close to one 
or zero.

Then, we recorded the proportion of times that the fuzzy partition produced by both approaches resulted in the 
true crisp partition. To this end, we decided to assign the i-th MTS to the c-th cluster according to two criteria: 
uic > 0.8 and uic > 0.6, thus evaluating both approaches under different degrees of requirement in the assignment 
rule. The corresponding rates of correct identification are shown in Table 3. We can see that, in both cases, QCD-PCA 
outperformed QCD by a large extent. The latter was unable to get the true partition when the value of m was 2 or 
2.2. These results suggest that the solutions attained by QCD-PCA are far closer to the true partition. Note that it is 
reasonable that both procedures decreased their performance when increasing the value of m, since higher values of 
m imply softer partitions.

Thus, one can conclude that, generally, when PCA transformation is not considered, the resulting partitions show 
a high degree of overlap between clusters, thus giving little informative solutions in the case of underlying crisp 
partitions. On the other hand, by applying PCA, large membership degrees are usually attained, which provides more 
reliable solutions. This holds true for the most common values of m used in practice.

It is worth highlighting that the results achieved by QCD-PCA in this toy example are likely to be attributable to the 
noise reduction and higher stability resulting from the PCA transformation. PCA is often used as a preprocessing step 
to unsupervised classification [41], usually providing a robustification to the clustering technique [42]. Indeed, several 
works show its usefulness in different application domains [43–46]. Note that, due to the definition of the smoothed 
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Table 3
Rates of correctly identified crisp partitions for fuzzy C-means 
procedures QCD and QCD-PCA according to the fuzziness pa-
rameter and two different cutoff values. For each value of m
and the cutoff, the best result is shown in bold.

m uic > 0.8 uic > 0.6

QCD QCD-PCA QCD QCD-PCA

m = 1.5 0.17 0.92 0.87 0.92
m = 1.8 0 0.54 0.47 0.85
m = 2.0 0 0.30 0.04 0.82
m = 2.2 0 0.14 0 0.73

Fig. 1. PCA score plot of the first two PCs for one simulation trial considering the QCD-PCA procedure. The points were coloured according to 
the generating process. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

CCR-periodogram in (10), the QCD-based features are highly correlated. Therefore, by considering the raw features, 
some variables could get a higher weight than others in the distance computation, thus creating a bias in the clustering 
algorithm. The PCA transformation avoids this problem by removing the underlying correlation between features, 
thus making the grouping process easier.

We also took advantage from this toy example to illustrate the high discriminatory power of QCD-PCA. Specif-
ically, we selected a random a trial from the set of simulations and recorded the matrix of scores over the first two 
principal components, PC 1 and PC 2. The scatter plot based on these scores is displayed in Fig. 1, where the points 
were coloured according to their generating structures. It is clearly observed that, by projecting on the PC 1–PC 2 
plane, one can properly discriminate between the three underlying processes, thus showing the effectiveness of QCD-
PCA to discriminate between the generating processes of a given collection of MTS.

The better performance of QCD-PCA over QCD holds generally true whatever the generating processes. Specifi-
cally, in the simulated scenarios considered in Section 4, QCD-PCA achieved substantially better results than QCD. 
For this reason, from now on, the distance dQCD and the clustering procedures QCD-FCMn and QCD-FCMd are go-
ing to refer to the PCA-transformed features rather than to the original features, although we maintain the notation for 
the sake of simplicity and readability. More precisely, given a set of n MTS, {X(1)

t , . . . , X(n)
t }, the original QCD-based 

features are extracted from each series, thus providing the set � = {�(1), . . . , �(n)}. These vectors are transformed by 
means of PCA, obtaining the set of score vectors �PCA = {�(1)

PCA, . . . , �(n)
PCA}. This is the set subject to clustering 

by means of Algorithms 1 and 2, and the corresponding distance is dQCDPCA
(X

(1)
t , X(2)

t ) =
∥∥∥�(1)

PCA − �
(2)
PCA

∥∥∥2
. The 

subscript PCA is removed from now on.
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4. Simulation study

In this section, we carry out a set of simulations with the aim of evaluating the performance of dQCD in differ-
ent scenarios of fuzzy clustering of MTS. Firstly we describe some alternative metrics that we have considered for 
comparison purposes. Then we explain the two ways in which the assessment task was performed, along with the 
corresponding simulation mechanism and results.

4.1. Alternative metrics

To shed light on the performance of dQCD in a fuzzy clustering context, it was compared with some other clustering 
models based on alternative dissimilarities. Note that, according to the fuzzy approach based on features extracted 
from a MTS, a fuzzy C-medoids model and a fuzzy C-means model can be formalized as the minimization problems 
in (17) and (14), respectively, only by replacing �̃, �̃(c), �(i), �, �

(c)
, �L, �U by ϕ̃, ϕ̃(c), ϕ(i), ϕ, ϕ(c), ϕL, ϕU , 

where ϕ(i) represents the vector of estimated features for the i-th series, i = 1 . . . , n, and the remaining terms are 
defined analogously. In the same way, the iterative solutions are obtained through (18), (15) and (16) by considering 
the corresponding features.

The alternative approaches are described below:

• Wavelet-based features. [26] introduced a squared Euclidean distance between wavelet features of two MTS, 
specifically between estimates of wavelet variances and wavelet correlations. The estimates are obtained through 
the maximum overlap discrete wavelet transform, which requires choosing a wavelet filter of a given length 
and a number of scales. Thus, in this case the vector ϕ(i) contains estimates of wavelet variances and wavelet 
correlations of a given MTS. The corresponding methods are referred to as Wavelet-based fuzzy C-medoids 
clustering model (W-FCMd) and Wavelet-based fuzzy C-means clustering model (W-FCMn). After performing 
some brief preliminary analyses, we reached the conclusion that the wavelet filter of length 4 of the Daubechies 
family, DB4, along with the maximum allowable number of scales, were the choices that led to the best average 
results in the considered simulation scenarios (see Sections 4.2.1 and 4.2.2). Hence, they were the hyperparameters 
chosen for the simulation study.

• Correlation-based features. In the univariate framework, [10] proposed a fuzzy procedure in which the extracted 
features are the estimated autocorrelations of a UTS for lags between 1 and fixed l. Here we propose to generalize 
this approach to a multivariate context. This generalization is straightforward. Given a MTS, we fix a lag l and 
compute estimates of the autocorrelations up to lag l for each component (UTS) and of the cross-correlations 
up to lag l between each pair of different components. This set of features defines the vector ϕ(i) describing 
the i-th MTS and is used to perform clustering. We call the corresponding approaches Correlation-based fuzzy 
C-medoids clustering model (C-FCMd) and Correlation-based fuzzy C-means clustering model (C-FCMn). The 
hyperparameter l was set to l = 1 throughout the simulation study, as the majority of the considered generating 
processes contain only one significant lag (see Sections 4.2.1 and 4.2.2).

• A versatile approach based on features of different nature. [33] provided a two-step procedure for MTS clustering. 
First, a set of features of different nature (skewness, kurtosis, nonlinear structure...) are extracted from each UTS 
within the MTS and stored in a vector. Second, these vectors are concatenated with each other in order to construct 
a unique vector describing the i-th MTS, ϕ(i). We refer to the corresponding approaches as Features-based fuzzy 
C-medoids clustering model (F-FCMd) and Features-based fuzzy C-means clustering model (F-FCMn).

• VPCA metric. It was proposed by [27]. The procedure is based on PCA and a spatial weighted distance matrix. The 
grouping is carried out over a set of matrices which are constructed applying dimensionality reduction techniques 
to the original set of MTS. Using a distance between matrices called SWMD, a fuzzy C-means approach is 
proposed (see Section III-B in [27]). Its extension to the case of a fuzzy-C medoids is straightforward. Note that 
this method does not pertain to the fuzzy framework based on extracted features, so here there is no vector ϕ(i). 
The approaches are called the VPCA-based fuzzy C-medoids clustering model (VPCA-FCMd) and the VPCA-
based fuzzy C-means clustering model (VPCA-FCMn).

It is worth remarking that we did not consider the well-known DTW distance as an alternative procedure. This was 
due to the fact that, in our previous work [31], this distance proved totally useless for grouping MTS according to the 
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generating processes in a crisp clustering framework. Indeed, we have made some proofs with this metric in a fuzzy 
context and it attained very poor results.

4.2. Experimental design and results

A broad simulation study was carried out to evaluate the performance of the proposed methods, QCD-FCMn and 
QCD-FCMd. We intended to construct the evaluation process in a way that general conclusions about the performance 
of both approaches can be reached. To this end, we designed two different assessment schemes. The first one contains 
scenarios with three different groups of MTS, and is aimed at evaluating the capability of the procedures in assigning 
high (low) membership if a given MTS pertains (not pertains) to a given cluster. The second one consists of scenarios 
with two different groups of MTS and a MTS which does not belong to any of the groups. It assesses again the 
membership degrees of the series in the two groups but also that the switching series is not assigned to any of the 
clusters with high membership. The latter scheme utilises a cutoff value determining whether or not a membership 
degree in a given group is enough to assign the corresponding MTS to that cluster.

4.2.1. First assessment scheme
In this section, the performance of QCD-FCMn and QCD-FCMd is analysed by means of three different simu-

lated scenarios. We attempted to recreate scenarios with a wide variety of generating processes (linear, nonlinear and 
conditional heteroskedastic), number of dimensions, and series lengths. Each scenario consisted of three clusters (i.e., 
generating models) with five MTS each, defining the true clustering partition. The generating models concerning each 
class of processes are given below.

Scenario 1. Fuzzy clustering of VARMA processes.

(a) VAR(1)⎛⎝Xt,1
Xt,2
Xt,3

⎞⎠=
⎛⎝0.4 −0.3 0.9

0.4 0.3 −0.1
0.5 0.3 −0.2

⎞⎠⎛⎝Xt−1,1
Xt−1,2
Xt−1,3

⎞⎠+
⎛⎝εt,1

εt,2
εt,3

⎞⎠ ,

(b) VMA(1)⎛⎝Xt,1
Xt,2
Xt,3

⎞⎠=
⎛⎝0.3 −0.7 −0.9

0.2 0.3 0.1
0.2 0.1 −0.3

⎞⎠⎛⎝εt−1,1
εt−1,2
εt−1,3

⎞⎠+
⎛⎝εt,1

εt,2
εt,3

⎞⎠ ,

(c) VARMA(1, 1)⎛⎝Xt,1
Xt,2
Xt,3

⎞⎠=
⎛⎝ 0.6 0.5 0

−0.4 0.5 0.3
0 −0.5 0.7

⎞⎠⎛⎝Xt−1,1
Xt−1,2
Xt−1,3

⎞⎠+
⎛⎝ 0.6 0.5 0

−0.4 0.5 0.3
0 −0.5 0.7

⎞⎠⎛⎝εt−1,1
εt−1,2
εt−1,3

⎞⎠+
⎛⎝εt,1

εt,2
εt,3

⎞⎠ .

Scenario 2. Fuzzy clustering of nonlinear processes.

(a) NAR (nonlinear autoregressive process)(
Xt,1
Xt,2

)
=
(

0.7|Xt−1,1|/(|Xt−1,2| + 1)

0.7|Xt−1,2|/(|Xt−1,1| + 1)

)
+
(

εt,1
εt,2

)
,

(b) TAR (threshold autoregressive process)(
Xt,1
X

)
=
(

0.9Xt−1,2I{|Xt−1,1|≤1} − 0.3Xt−1,1I{|Xt−1,1|>1}
0.9X I − 0.3X I

)
+
(

εt,1
ε

)
,

t,2 t−1,1 {|Xt−1,2|≤1} t−1,2 {|Xt−1,2|>1} t,2
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(c) BL (bilinear process)(
Xt,1
Xt,2

)
=
(

0.7Xt−1,1εt−2,2
0.7Xt−1,2εt−2,1

)
+
(

εt,1
εt,2

)
.

Scenario 3. Fuzzy clustering of dynamic conditional correlation processes. Consider (Xt,1, Xt,2)
ᵀ = (at,1, at,2)

ᵀ =
(σt,1εt,1, σt,2εt,2)

ᵀ, denoting ᵀ the transpose vector. The data generating process consists of two GARCH models. 
Specifically,

σ 2
t,1 = 0.01 + 0.05a2

t−1,1 + 0.94σ 2
t−1,1,

σ 2
t,2 = 0.5 + 0.2a2

t−1,2 + 0.5σ 2
t−1,2,(

εt,1
εt,2

)
∼ N

[(
0
0

)
,

(
1 ρt

ρt 1

)]
.

The correlation between the standardized shocks, ρt , is given by the following expressions:

(a) Piecewise constant correlation

ρt = 0.9I{t≤(T /2)} − 0.7I{t>(T /2)}
(b) Constant correlation

ρt = 0.5,

(c) Piecewise constant correlation

ρt = 0.9I{t≤(T /2)} − 0.2I{t>(T /2)}.

The error vector in Scenarios 1 and 2 is formed by independent observations following a multivariate standard 
Gaussian distribution.

VARMA models are broadly used in many fields but the determination of the models order is quite complex since 
fixing orders too small leads to inconsistent estimators whereas too large orders produce less accurate predictions. 
Note that our approach does not require prior modelling. Scenario 2 consists of multivariate extensions of univariate 
NAR, TAR, and BL processes proposed in [47]. Nonlinear UTS arise in several application fields [48–50]. Although 
nonlinear MTS have received much less attention than linear ones, there exist some fields as neurophysiology [51]
and economy [52] in which nonlinear analysis of MTS has proven to be critical. Thus, a good fuzzy clustering method 
should be able to specify proper membership degrees between different nonlinear generating processes. Scenario 3
is based on Scenario 2 in [31], which is in turn motivated by a simulation study in the landmark work [53], where 
dynamic conditional correlation models are introduced. Multivariate GARCH models have been comprehensively 
investigated over the last decades (an extensive survey is offered in [54]). Specifically, estimation of dynamic condi-
tional correlation models has been widely applied to financial series of different nature [55–57]. Furthermore, we have 
decided to include in Scenario 3 both positive and negative correlations, since it has been shown that some financial 
quantities are either positive or negative correlated depending on the period [58]. Some of the generating processes in 
Scenarios 1, 2 and 3 have already been used either for clustering [31] or classification [38] purposes.

We considered different values for the series length, namely T ∈ {100, 150, 200} in Scenario 1, T ∈ {300, 400, 500}
in Scenario 2 and T ∈ {1000, 1500, 2000} in Scenario 3 in order to study its effect in the proposed approaches. 
Note that, as the three scenarios contain very distinct types of processes, it is logical that very different values of 
T are needed in order to make an appropriate evaluation. Particularly, we considered specially large values of T
in Scenario 3. However, this is not necessarily a drawback, as these sample sizes are offered encountered in real 
MTS fitted by means of dynamic conditional correlation models [55,57]. Indeed multivariate series of stock returns 
and other related financial quantities, which consist of measures of daily or even intra-daily data, are one common 
example of series fitted through this class of models.

The fuzziness parameter m plays a crucial role in the obtained clustering solution. When m = 1, the crisp version 
of either fuzzy C-means or fuzzy C-medoids is obtained. On the other hand, excessively large values of m result in a 
partition with all memberships close to 1/C, thus having a large degree of overlap between clusters. As a consequence, 
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choosing these values for m is not recommended [59]. There is a broad range of literature on determining proper values 
for the fuzziness parameter appropriately. For instance, [8] showed that values of m between 1.5 and 2.5 are typically 
a good choice for the fuzzy-C means clustering algorithm. This is also confirmed by [60,61]. However, there seems 
to be no consensus about the optimal value for m (see discussion in Section 3.1.6 of [11]). In the context of time 
series clustering, the majority of works consider values of m between 1.3 and 2.6 when performing simulation studies 
[16,26,10,11,18]. Based on the previous considerations, we have decided to take into consideration the values m = 1.5, 
1.8, 2 and 2.2.

Given a scenario, a value for m and a value for T , 200 simulations were performed. In each trial, we applied the 
QCD-FCMn method, as well as the fuzzy C-means versions of the competitors in Section 4.1. The same procedure 
was repeated regarding the QCD-FCMd technique and the corresponding fuzzy-C-medoids variants. The set of prob-
ability levels T = {0.1, 0.5, 0.9} and the first �0.12p� principal components, being p the total number of principal 
components, were used to compute the QCD-based features. The number of clusters was set to C = 3. The effective-
ness of each clustering procedure was measured by means of the fuzzy extension of the Adjusted Rand Index (FARI) 
devised by [62]. This index compares the true partition with the membership matrix resulting from a clustering al-
gorithm. It is based on the original definition of the Adjusted Rand Index and some notions of the fuzzy set theory. 
The resulting index is also bounded between −1 and 1, as the original Adjusted Rand Index, indicating values close 
to 1 a more accurate clustering solution. One of the biggest advantages of the FARI is that it allows to elude the loss 
of information which is unavoidable when using the original formulation of the index to assess the quality of a fuzzy 
partition; e.g., by transforming the membership matrix into a crisp partition. This way, two membership matrices 
giving rise to the same crisp partition can be compared with one another, thus making the comparison process fairer. 
Computation of FARI requires the selection of a triangular norm (see Section 3.2 in [62]) and the corresponding tri-
angular conorm (the dual norm of the former). As the triangular norm, we have considered the minimum norm, which 
is a common choice in fuzzy logic [8]. The respective triangular conorm is the maximum norm.

Results
Table 4 shows the average values of the FARI for the fuzzy C-means procedures. We can see that all the methods 

decreased their performance as the value of the parameter m increased. This is reasonable and expected since we 
are considering scenarios with three well-defined clusters. As it was already mentioned, small values of m lead to 
near-crisp partitions. On the contrary, larger values of m imply smoothing the boundary between clusters and make 
the classification fuzzier, thus decreasing the value of the FARI.

The algorithm QCD-FCMn achieved the best scores in all the considered setups except for Scenario 1 with T = 100
and m = 1.5, where it was slightly outperformed by the correlation-based approach C-FCMn. In Scenario 1, these two 
methods obtained very similar scores for all values of T and m = 1.5, 1.8. However, for m = 2, 2.2, the difference in 
favour of QCD-FCMn got significant. The wavelet-based technique also obtained acceptable scores in this scenario, 
particularly for the largest value of T and the smallest values of m.

As for Scenario 2, the wavelet and the correlation-based approaches attained similar results, the former outperform-
ing the latter to a small extent as the series length increased. Both techniques were clearly defeated by QCD-FCMn, 
which attained, in all the setups, an average FARI at least 0.08 points better than either. With regards to Scenario 3, 
the proposed method also beat W-FCMn and C-FCMn by a considerable degree. The difference with respect to 
the correlation-based procedure, the second best-performing method, was smaller for T = 1000, but substantial for 
T = 1500 and 2000.

The remaining methods F-FCMn and VPCA-FCMn attained in general poor results. The former achieved an av-
erage FARI above 0.30 in almost all the settings of Scenarios 1 and 2, thus indicating that it was able to distinguish 
between generating processes to some extent. However, it did not show a significant improvement when larger series 
were considered. This is probably due to the fact that some of the features taken into consideration by this technique 
are useless to differentiate between underlying dependence structures, thus making the clustering process noisy. In-
deed, in Scenario 3, F-FCMn did not perform better than choosing a membership matrix at random. The procedure 
based on the spatial weighted distance matrix VPCA-FCMn, got by far the worst results among the five considered 
algorithms. It was unable to reach meaningful conclusions in all the situations, always obtaining an average FARI near 
to zero. It is clear from the results that this approach is not appropriate to perform fuzzy clustering based on generating 
processes. For this reason, we decided to not take this method into account for further analysis.
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Table 4
Average FARI obtained by the fuzzy C-means clustering procedures.

QCD-FCMn W-FCMn C-FCMn F-FCMn VPCA-FCMn

Scenario 1
T = 100 m = 1.5 0.952 0.536 0.975 0.309 0.027

m = 1.8 0.910 0.426 0.886 0.296 0.002
m = 2.0 0.867 0.364 0.810 0.286 0
m = 2.2 0.818 0.312 0.734 0.274 0

T = 150 m = 1.5 0.991 0.865 0.990 0.369 0.026
m = 1.8 0.961 0.728 0.932 0.354 0.001
m = 2.0 0.927 0.641 0.872 0.342 0
m = 2.2 0.886 0.564 0.806 0.327 0

T = 200 m = 1.5 0.995 0.931 0.994 0.376 0.026
m = 1.8 0.973 0.813 0.950 0.365 0.001
m = 2.0 0.946 0.729 0.898 0.355 0
m = 2.2 0.910 0.652 0.839 0.342 0

Scenario 2
T = 300 m = 1.5 0.852 0.703 0.694 0.398 0.043

m = 1.8 0.811 0.626 0.638 0.380 0.002
m = 2.0 0.772 0.573 0.594 0.364 0
m = 2.2 0.733 0.521 0.549 0.348 0

T = 400 m = 1.5 0.931 0.839 0.764 0.405 0.046
m = 1.8 0.892 0.744 0.700 0.388 0.002
m = 2.0 0.855 0.681 0.654 0.374 0
m = 2.2 0.812 0.622 0.607 0.359 0

T = 500 m = 1.5 0.962 0.876 0.790 0.407 0.058
m = 1.8 0.929 0.784 0.726 0.393 0.002
m = 2.0 0.896 0.723 0.681 0.380 0
m = 2.2 0.856 0.664 0.635 0.365 0

Scenario 3
T = 1000 m = 1.5 0.631 0.402 0.568 0.003 0.002

m = 1.8 0.569 0.340 0.499 0.002 0
m = 2.0 0.522 0.298 0.451 0.002 0
m = 2.2 0.475 0.261 0.405 0.001 0

T = 1500 m = 1.5 0.783 0.482 0.622 -0.010 0.002
m = 1.8 0.701 0.414 0.556 -0.009 0
m = 2.0 0.643 0.369 0.509 -0.008 0
m = 2.2 0.590 0.326 0.463 -0.007 0

T = 2000 m = 1.5 0.863 0.575 0.718 0.009 0
m = 1.8 0.782 0.493 0.643 0.006 0
m = 2.0 0.721 0.438 0.589 0.005 0
m = 2.2 0.660 0.391 0.535 0.005 0

It is worth remarking that, according to the results in Table 4, QCD-FCMn was the less affected approach by 
increasing the value of m among the best-performing ones. Note that, whereas some methods as the wavelet-based 
procedure usually decreased the average FARI by far more than 0.10 when a given value of m is replaced by the 
next, the maximum variation of QCD-FCMn was 0.082 in Scenario 3 with T = 1500, when moving from m = 1.5
to m = 1.8 (in the remaining settings, the variation was far less than that). The stability exhibited by QCD-FCMn 
against the modification of the values of m is a very beneficial property of the proposed approach. As already stated, 
the fuzziness parameter plays a pivotal role in the quality of the clustering solution, and has to be set in advance 
in practical applications, usually without guarantees about the rightness of the choice. The devised algorithm QCD-
FCMn gets around this limitation, ensuring a high probability of meaningful results whatever the value of m. Thus, it 
could be seen as a sure bet to be used in real clustering problems.

In order to gain illustrative insights into the previous results, Fig. 2 displays the boxplots based on the FARI 
according to the 200 simulation trials for intermediate values of T (150, 400 and 1500 for Scenarios 1, 2 and 3, 
131



Á. López-Oriona, J.A. Vilar and P. D’Urso Fuzzy Sets and Systems 443 (2022) 115–154
Fig. 2. Boxplots of FARI index according to the 200 trials of the simulation procedure. The considered length was T = 150 for Scenario 1, T = 400
for Scenario 2 and T = 1500 for Scenario 3. The fuzziness parameter was set to m = 2.

respectively) and m = 2. We depicted the results only for the three best performing approaches according to Table 4, 
QCD-FCMn, W-FCMn and C-FCMn. The superiority of QCD-FCMn over the remaining strategies is obvious from 
Fig. 2. Additionally, the plots give us an idea about the variability of the results associated with each procedure. 
In Scenario 1, the results of QCD-FCMn and C-FCMn showed very little dispersion in comparison with those of 
W-FCMn. On the contrary, in Scenarios 2 and 3, the approaches exhibiting less variability were QCD-FCMn and 
W-FCMn, whereas the correlation-based technique C-FCMn displayed the most. A similar situation arises when 
considering the rest of the values for T and m. Hence, the proposed algorithm also has the desirable property of 
giving less variable results than the considered competitors.

The results involving the fuzzy C-medoids versions of the approaches are given in Table 5. Generally, the fuzzy 
C-medoids algorithms showed worse effectiveness than the fuzzy C-means algorithms. Aside from this fact, some 
interesting conclusions can be reached from Table 5. On the one hand, all the approaches substantially decreased their 
performance in Scenario 3 as compared with their fuzzy C-means counterparts. A different story went for Scenario 1
and 2. In these scenarios, whereas W-FCMn and C-FCMn significantly worsened their scores in comparison with 
those of Table 4, QCD-FCMn barely suffered. Indeed, whereas the former approaches decreased in some setups their 
average FARI by more than 0.15 when changing the algorithm, the greatest decrease for QCD-FCMn, occurring in 
Scenario 2 when T = 500 and m = 2.2, was 0.043. Consequently, the proposed procedure is the one showing the most 
robustness against a change in the considered clustering algorithm.

We have redone the simulations by considering heavy tails in the error distribution. Note that this property often 
arises in real time series, specially within the field of finance [63–66]. Specifically, we have simulated the (indepen-
dent) innovations in Scenarios 1, 2 and 3 from a multivariate t distribution with 3 degrees of freedom. For the sake of 
simplicity, we give the results only for the fuzzy C-means-based approaches. They are depicted in Table 6.

By comparing Table 4 with Table 6, one can state that QCD-FCMn did not suffer when some amount of fat 
tailedness was introduced in the error distribution. It inherits the robustness of quantile methods, which gives this 
technique a desirable stability against the distributional form of the error. On the contrary, W-FCMn and C-FCMn 
significantly decreased their efficacy, specially in Scenarios 2 and 3. These procedures rely mainly on measures of 
traditional correlation and cross-correlation, and these quantities get less accurate under tail behaviour.

It is worth noting that some other indexes aside from the FARI have been computed for the simulations carried out 
throughout this section. Particularly, the fuzzy versions of the Rand Index, the Jaccard Index and the Fowlkes-Mallows 
Index. All of them lead to similar conclusions as the ones stated above. Thus, the results concerning the mentioned 
alternative indexes are not presented in this work, although they are available upon request.
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Table 5
Average FARI obtained by the fuzzy C-medoids clustering procedures.

QCD-FCMd W-FCMd C-FCMd F-FCMd

Scenario 1
T = 100 m = 1.5 0.957 0.453 0.861 0.327

m = 1.8 0.900 0.342 0.706 0.301
m = 2.0 0.852 0.289 0.645 0.279
m = 2.2 0.801 0.251 0.585 0.262

T = 150 m = 1.5 0.988 0.774 0.910 0.386
m = 1.8 0.952 0.609 0.761 0.356
m = 2.0 0.912 0.522 0.723 0.335
m = 2.2 0.872 0.446 0.684 0.317

T = 200 m = 1.5 0.991 0.862 0.890 0.394
m = 1.8 0.951 0.717 0.779 0.373
m = 2.0 0.927 0.628 0.726 0.350
m = 2.2 0.894 0.543 0.706 0.330

Scenario 2
T = 300 m = 1.5 0.837 0.624 0.560 0.437

m = 1.8 0.799 0.524 0.518 0.386
m = 2.0 0.747 0.461 0.507 0.356
m = 2.2 0.705 0.409 0.466 0.330

T = 400 m = 1.5 0.913 0.692 0.593 0.491
m = 1.8 0.863 0.574 0.559 0.409
m = 2.0 0.818 0.528 0.540 0.378
m = 2.2 0.781 0.458 0.496 0.351

T = 500 m = 1.5 0.936 0.671 0.625 0.558
m = 1.8 0.917 0.594 0.601 0.473
m = 2.0 0.868 0.504 0.571 0.421
m = 2.2 0.813 0.477 0.517 0.380

Scenario 3
T = 1000 m = 1.5 0.537 0.341 0.520 -0.002

m = 1.8 0.448 0.246 0.411 0.002
m = 2.0 0.382 0.204 0.328 0.003
m = 2.2 0.353 0.170 0.271 0.003

T = 1500 m = 1.5 0.656 0.408 0.591 -0.010
m = 1.8 0.512 0.306 0.469 -0.005
m = 2.0 0.451 0.241 0.379 -0.002
m = 2.2 0.414 0.204 0.331 -0.004

T = 2000 m = 1.5 0.648 0.487 0.687 0.011
m = 1.8 0.527 0.357 0.548 0.010
m = 2.0 0.477 0.282 0.445 0.008
m = 2.2 0.453 0.251 0.378 0.007

4.2.2. Second assessment scheme
In this section the proposed approaches and their competitors are evaluated in a different manner than that of 

Section 4.2.1. Here, we considered scenarios with two well-separated clusters consisting of five time series each and 
a single switching series arising from a different generating process. The corresponding scenarios and generating 
processes are described below.

Scenario 4. Fuzzy clustering of VARMA processes with switching series.

Cluster 1: VAR(1)(
Xt,1
X

)
=
(

0 0.2
0.2 0.2

)(
Xt−1,1
X

)
+
(

εt,1
ε

)
,

t,2 t−1,2 t,2
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Table 6
Average FARI obtained by the fuzzy C-means clustering procedures. Innovations were drawn from 
a multivariate t distribution with 3 degrees of freedom.

QCD-FCMn W-FCMn C-FCMn F-FCMn

Scenario 1
T = 100 m = 1.5 0.969 0.381 0.922 0.315

m = 1.8 0.927 0.321 0.796 0.299
m = 2.0 0.886 0.282 0.709 0.286
m = 2.2 0.839 0.243 0.629 0.270

T = 150 m = 1.5 0.990 0.458 0.954 0.356
m = 1.8 0.962 0.407 0.852 0.339
m = 2.0 0.929 0.367 0.773 0.325
m = 2.2 0.889 0.330 0.697 0.310

T = 200 m = 1.5 0.994 0.544 0.965 0.373
m = 1.8 0.971 0.488 0.876 0.357
m = 2.0 0.943 0.443 0.802 0.344
m = 2.2 0.907 0.402 0.729 0.329

Scenario 2
T = 300 m = 1.5 0.899 0.163 0.471 0.336

m = 1.8 0.851 0.160 0.413 0.310
m = 2.0 0.807 0.156 0.369 0.292
m = 2.2 0.759 0.156 0.328 0.267

T = 400 m = 1.5 0.957 0.151 0.484 0.347
m = 1.8 0.918 0.150 0.433 0.337
m = 2.0 0.879 0.149 0.393 0.316
m = 2.2 0.833 0.149 0.350 0.294

T = 500 m = 1.5 0.986 0.152 0.505 0.397
m = 1.8 0.956 0.151 0.455 0.383
m = 2.0 0.922 0.149 0.415 0.360
m = 2.2 0.881 0.150 0.377 0.334

Scenario 3
T = 1000 m = 1.5 0.723 0.002 0.233 -0.001

m = 1.8 0.644 0.001 0.189 0
m = 2.0 0.590 0.001 0.165 -0.001
m = 2.2 0.540 0.001 0.143 -0.001

T = 1500 m = 1.5 0.828 0.001 0.163 0.009
m = 1.8 0.735 0.001 0.138 0.007
m = 2.0 0.668 0.001 0.120 0.006
m = 2.2 0.610 0.001 0.104 0.005

T = 2000 m = 1.5 0.881 0.002 0.111 0
m = 1.8 0.783 0.002 0.090 0
m = 2.0 0.716 0.002 0.085 0
m = 2.2 0.653 0.002 0.074 0.001

Cluster 2: VMA(1)(
Xt,1
Xt,2

)
=
(−0.4 −0.4

−0.4 −0.2

)(
εt−1,1
εt−1,2

)
+
(

εt,1
εt,2

)
,

Switching series: VARMA(1, 1)(
Xt,1
Xt,2

)
=
(

0 0.2
0.2 0.2

)(
Xt−1,1
Xt−1,2

)
+
(−0.4 −0.4

−0.4 −0.2

)(
εt−1,1
εt−1,2

)
+
(

εt,1
εt,2

)
.

Scenario 5. Fuzzy clustering of nonlinear processes with switching series.
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Cluster 1: NLVMA (nonlinear VMA process)(
Xt,1
Xt,2

)
=
(

0.1εt−1,1 + 0.6ε2
t−1,2 + εt,1

0.1εt−1,2 + 0.6ε2
t−1,1 + εt,2

)
+
(

εt,1
εt,2

)
,

Cluster 2: NLVMA(
Xt,1
Xt,2

)
=
(−0.1εt−1,1 − 0.6ε2

t−1,2 + εt,1

−0.1εt−1,2 − 0.6ε2
t−1,1 + εt,2

)
+
(

εt,1
εt,2

)
,

Switching series: a bivariate white noise process.

Scenario 6. Fuzzy clustering of dynamic conditional correlation processes with switching series. Consider the 
GARCH models and the correlation between the standardized shocks, ρt , in Scenario 3.

Cluster 1: ρt = 0.9I{t≤(T /2)} − 0.3I{t>(T /2)},
Cluster 2: ρt = −0.9I{t≤(T /2)} + 0.3I{t>(T /2)},
Switching series: ρt = 0.

The error vector in Scenarios 4 and 5 is formed by independent observations following a bivariate standard Gaus-
sian distribution.

Nonlinear ARMA processes have attracted a great deal of attention in the univariate framework [67–71], proving 
themselves useful in several application fields. Particularly, nonlinear MA models have given rise to specific works 
due to the difficulty in their estimation [72,73]. In a multivariate context, some works have also dealt with the topic of 
nonlinear VARMA models [74,75].

Note that Scenarios 4, 5 and 6 have been designed in a way that the switching series is expected to lay “in the 
middle” of both clusters. In other words, a distance measure aimed to discriminate among generating processes should 
be able to produce very similar distance values from the switching series to a series from Cluster 1 and Cluster 2 
indistinctly. In order to see if the proposed metric dQCD verifies this fact, we performed a metric two-dimensional 
scaling (2DS) based on the pairwise QCD-based dissimilarity matrix. The 2DS performs in the following way. Given a 
distance matrix D = (Dij ), i, j = 1, . . . , n, it finds the set of points {(ai, bi), i = 1, . . . , n} such that the stress function√√√√∑n

i �=j=1(
∥∥(ai, bi) − (aj , bj )

∥∥− Dij )2∑n
i �=j=1 D2

ij

(19)

is minimized. Thus, the goal is to represent the distances Dij in terms of Euclidean distances into a 2-dimensional 
space so that the smaller the value of the stress function, the better the 2DS configuration. The corresponding 2-D plot 
gives usually a good visual representation of how the elements are located with respect to each other according to the 
considered distance.

In order to visualize the corresponding 2-D graphs for each scenario, we simulated 50 MTS of length T = 500
and T = 2000 from the series defining the clusters and the switching series. The 2DS was carried out for each set of 
150 MTS and value of the series length. The corresponding points in the new coordinate space are depicted in Fig. 3, 
where each set of points has been coloured according to the underlying generating process. The top panels show the 
2DS for T = 500 and the bottom panels, for T = 2000.

With the aim of assessing the quality of the embedding, we computed the R2 value to determine what proportion 
of variance of the scaled data can be accounted for the 2DS procedure. We obtained the values 0.667 (Scenario 4), 
0.507 (Scenario 5) and 0.604 (Scenario 6) for the small sample sizes and 0.866 (Scenario 4), 0.788 (Scenario 5) and 
0.852 (Scenario 6) for the large sample sizes. It is worth remarking that values above 0.6 are considered to provide 
an acceptable scaling procedure, whereas values above 0.8 mean a very good fit [76]. Although the values for the 
nonlinear case are lower than those for the remaining scenarios, they are quite close to the mentioned thresholds. Thus, 
generally, the plots in Fig. 3 provide an accurate picture about the distance dQCD between the different underlying 
processes.

The reduced bivariate spaces in Fig. 3 show three compact, well-separated groups defined by the series of Cluster 1, 
Cluster 2, and the set of switching series. In all cases, the group of switching series (blue colour) is prone to position 
135



Á. López-Oriona, J.A. Vilar and P. D’Urso Fuzzy Sets and Systems 443 (2022) 115–154
Fig. 3. Two-dimensional scaling planes based on QCD distances between simulated series in Scenarios 4, 5 and 6. The series length is T = 500 in 
the top panels and T = 2000 in the bottom panels.

at an intermediate place between both clusters. This is a great trait exhibited by the distance dQCD, since, as remarked 
previously, Scenarios 4, 5 and 6 were chosen so that the switching series is in the middle of Clusters 1 and 2 in 
terms of dependence structures. Note that, for a given value of the series length, the most challenging scenario for the 
proposed clustering algorithms seems to be Scenario 6, since the 2DS plot produces near overlapping clusters when 
T = 500. As expected, when increasing the series length, the QCD-based features are more accurately estimated and 
the groups become more distant from one another. In summary, Fig. 3 shows that the QCD-based distance should be 
capable of discriminating between the original clusters and the switching series in Scenarios 4, 5 and 6, thus being a 
good candidate for the second assessment design.

We considered again different values for the series length, namely, T ∈ {200, 400, 600} in Scenario 4, T ∈
{300, 600, 900} in Scenario 5 and T ∈ {500, 1000, 1500} in Scenario 6. The values taken into account for the fuzziness 
parameter m were the same as in Section 4.2.1. Again, 200 simulations were performed, and the fuzzy C-means and 
fuzzy C-medoids versions of the procedures were applied. The same hyperparameters as in Section 4.2.1 were taken 
into consideration to obtain the QCD-based features and those concerning the alternative procedures. This time, the 
number of clusters was set to C = 2. In this second evaluation scheme, we assessed the clustering methods by means 
of the frequency with which the five series from Cluster 1 grouped together in one group, the five series from Cluster 2 
clustered together in another group, and the switching series had a relatively high membership degree with regards to 
both groups. To that end, we had to define a cutoff point in order to decide when a given realization was assigned to 
a specific cluster. We decided to use the cutoff value of 0.7, so that the i-th MTS was placed into the c-th cluster if 
uic > 0.7. This cutoff value has already been considered in some works [26,10,11]. A discussion about the reasoning 
for choosing this membership degree constraint can be seen in [11]. In this way, the switching series was considered 
to concurrently pertain to both clusters if its membership degrees were both below 0.7.
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Results
The average success rates attained by the C-means techniques according to the previous criteria are presented in 

Table 7. The best approach was QCD-FCMn, achieving the best average scores in all the considered configurations 
excluding Scenario 4 with m = 1.5 and T = 600, where it was outplayed by F-FCMn. As expected, its results im-
proved when increasing T . It also got better for larger values of m in the three scenarios. This is owing to the fact that, 
for the smaller values of m, QCD-FCMn returns a quite crisp partition so that the switching series is located a lot of 
times in one cluster with high membership. Indeed this is the cause that QCD-FCMn attained poor classification rates 
for m = 1.5 whatever the value of the series length in Scenario 4. However, when m becomes larger, the boundaries 
between clusters become blurrier and the switching series is simultaneously located in both clusters. Nevertheless, this 
gives rise to a different type of classification error, since, for larger values of m, frequently some of the non switching 
series display similar membership values in both clusters (e.g., 0.55 and 0.45). This trade-off situation concerning 
Scenario 4 for QCD-FCMn gets fixed as the value of T increases.

The approaches W-FCMn and C-FCMn only reached satisfactory success rates in Scenario 6, whereas they com-
pletely failed in Scenarios 4 and 5. This seems surprising, since at least C-FCMn was expected to perform well when 
dealing with Scenario 4, as the corresponding metric should be able to distinguish between linear processes. We ran 
this procedure for values of m greater than 2.2 in Scenario 4 and found out that the corresponding distance was able 
to get higher success rates for some of those values (but less than those associated with QCD-FCMn). The reason was 
that, for C-FCMn, the value m = 2.2 still means a very crisp partition so its failures are attributable to the switching 
series. This fact highlights the paramount importance of the fuzziness parameter m when evaluating the strategies 
through a cutoff point.

Table 8 contains the average frequencies of correct classification for the fuzzy C-medoids variants of the methods. 
Generally speaking, QCD-FCMd showed approximately the same performance as QCD-FCMn in the three scenarios. 
W-FCMd and C-FCMd somewhat improved their scores in Scenario 4 but worsened it in Scenarios 5 and 6. F-FCMd 
achieved better scores than F-FCMn in Scenario 4. As in Table 7, the results appear to be highly influenced by the 
values of the fuzziness coefficient m.

In order to complement the evaluation results of Tables 7 and 8, we considered the largest values of the series 
length (600, 900 and 1500) and a grid of values for m equispaced between 1 and a value large enough so that all the 
methods achieve near-zero rates of correct classification. Simulations were performed in the same way as before. The 
corresponding curves of frequencies of correct classification as a function of m for the four fuzzy C-means methods 
are shown in Fig. 4. These curves give a much more complete picture about the discriminatory capability of the 
approaches over the whole range of values for the fuzziness parameter. As stated before, although values of m above 
2.5 or 3 are not commonly used in practice, they can be taken into consideration in the assessment mechanism in 
order to get a fair comparison between the considered approaches. Given the graphs in Fig. 4, a reasonable measure 
of performance is the area under the fuzziness curve (AUFC). The corresponding quantities are given in the first part 
of Table 9. QCD-FCMn was the approach associated with the greatest value of AUFC in the three scenarios. It clearly 
outmatched the remaining strategies in Scenarios 1 and 2, and got a slightly better value than C-FCMn in Scenario 3. 
This latter approach was by far the second best-performing one.

Fig. 5 shows the fuzziness curves for the fuzzy C-medoids strategies. The situation is rather similar to that of 
Fig. 4. On the whole, there is a moderate decline in the performance of all techniques concerning most values of m. 
The respective values of the AUFC are presented in the second part of Table 9. Indeed, there is a decrease in AUFC 
for all the methods in comparison with the fuzzy C-means setting except for F-FCMn in Scenario 1, which slightly 
improved its score. Again, QCD-FCMd reached the best overall results among the four analysed algorithms.

As in Section 4.2.1, the simulations concerning Scenarios 4, 5 and 6 were repeated by taking into account a 
multivariate t distribution with 3 degrees of freedom for the innovations. The respective fuzziness curves for the fuzzy 
C-means methods are displayed in Fig. 6, whereas the corresponding values for the AUFC are shown in the last part 
of Table 9. Clearly, QCD-FCMn is the only approach capable of performing an effective classification under these 
circumstances, exhibiting again a substantial robustness against the departure from normality in the error distribution. 
The remaining procedures got a poor rate of correct classification in Scenario 1 and zero in Scenarios 2 and 3.

It is worth highlighting that, in all the previous analyses, the fuzzy C-means and the fuzzy C-medoids algorithms 
were executed over many random assignments in order to avoid the issues of local optima.
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Table 7
Average success rates obtained by the fuzzy C-means clustering procedures.

QCD-FCMn W-FCMn C-FCMn F-FCMn

Scenario 4
T = 200 m = 1.5 0.070 0.005 0 0.015

m = 1.8 0.130 0.010 0.005 0.015
m = 2.0 0.115 0.015 0.025 0.015
m = 2.2 0.065 0.015 0.030 0.010

T = 400 m = 1.5 0.070 0 0 0.065
m = 1.8 0.315 0 0 0.110
m = 2.0 0.495 0.025 0.010 0.125
m = 2.2 0.455 0.075 0.070 0.085

T = 600 m = 1.5 0.055 0 0 0.245
m = 1.8 0.440 0 0 0.390
m = 2.0 0.610 0.005 0.015 0.395
m = 2.2 0.725 0.045 0.115 0.410

Scenario 5
T = 300 m = 1.5 0.435 0 0.025 0

m = 1.8 0.610 0 0.005 0
m = 2.0 0.700 0 0.005 0
m = 2.2 0.650 0 0.005 0

T = 600 m = 1.5 0.520 0 0.090 0
m = 1.8 0.810 0 0.085 0
m = 2.0 0.895 0 0.065 0
m = 2.2 0.945 0 0.040 0

T = 900 m = 1.5 0.690 0 0.150 0
m = 1.8 0.920 0.010 0.220 0
m = 2.0 0.980 0.005 0.170 0
m = 2.2 0.990 0.005 0.105 0

Scenario 6
T = 500 m = 1.5 0.370 0.280 0.330 0

m = 1.8 0.645 0.450 0.560 0
m = 2.0 0.735 0.515 0.670 0
m = 2.2 0.820 0.500 0.695 0

T = 1000 m = 1.5 0.500 0.335 0.395 0
m = 1.8 0.790 0.595 0.595 0
m = 2.0 0.890 0.675 0.725 0
m = 2.2 0.955 0.735 0.840 0

T = 1500 m = 1.5 0.550 0.415 0.425 0
m = 1.8 0.860 0.680 0.730 0
m = 2.0 0.940 0.785 0.850 0
m = 2.2 0.980 0.840 0.920 0

5. Applications

This section is devoted to show two applications of the proposed clustering procedures.

5.1. Fuzzy clustering of the top 20 companies in the S&P 500 index

Time series clustering has proven very useful when dealing with financial time series. More often than not, the aim 
is to group different assets or companies according to how they behave over a certain period of time. This way, the 
clustering solution can represent groups sharing similar risk profiles, management behaviour, or even future expected 
returns. There are a broad variety of works coping with clustering of financial time series [77–81,14]. Here we present 
how one of the proposed fuzzy clustering approaches can be applied to group the most important companies in the 
US. We want to remark that the following analyses are not aimed at giving financial advice nor deriving economical 
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Table 8
Average success rates obtained by the fuzzy C-medoids clustering procedures.

QCD-FCMd W-FCMd C-FCMd F-FCMd

Scenario 4
T = 200 m = 1.5 0.080 0.010 0.010 0.020

m = 1.8 0.085 0.025 0.020 0.015
m = 2.0 0.075 0.030 0.075 0.020
m = 2.2 0.045 0.020 0.060 0.005

T = 400 m = 1.5 0.135 0 0.005 0.180
m = 1.8 0.365 0.025 0.035 0.180
m = 2.0 0.395 0.065 0.085 0.130
m = 2.2 0.360 0.140 0.240 0.110

T = 600 m = 1.5 0.130 0 0 0.415
m = 1.8 0.415 0.005 0.020 0.450
m = 2.0 0.570 0.070 0.120 0.440
m = 2.2 0.655 0.215 0.285 0.355

Scenario 5
T = 300 m = 1.5 0.425 0 0.005 0

m = 1.8 0.540 0 0 0
m = 2.0 0.620 0 0 0
m = 2.2 0.540 0 0 0

T = 600 m = 1.5 0.600 0 0.040 0
m = 1.8 0.820 0 0.025 0
m = 2.0 0.895 0 0.015 0
m = 2.2 0.930 0 0.005 0

T = 900 m = 1.5 0.700 0 0.145 0
m = 1.8 0.910 0.005 0.095 0
m = 2.0 0.960 0 0.035 0
m = 2.2 0.975 0 0.015 0

Scenario 6
T = 500 m = 1.5 0.400 0.315 0.360 0

m = 1.8 0.650 0.440 0.535 0
m = 2.0 0.735 0.455 0.580 0
m = 2.2 0.800 0.455 0.635 0

T = 1000 m = 1.5 0.545 0.375 0.405 0
m = 1.8 0.795 0.510 0.605 0
m = 2.0 0.880 0.585 0.685 0
m = 2.2 0.950 0.655 0.760 0

T = 1500 m = 1.5 0.610 0.425 0.430 0
m = 1.8 0.840 0.660 0.685 0
m = 2.0 0.925 0.775 0.800 0
m = 2.2 0.980 0.820 0.860 0

implications, but at illustrating the suitability of the designed technique to recognize homogeneous groups with similar 
stochastic dependence patterns and to what extent each company pertains to each one of the identified groups.

The data we are going to use were taken from the finance section of the Yahoo website1. It contains daily stock 
returns and trading volume of the current top 20 companies of the S&P 500 index according to market capitalization. 
The sample period spans from 6th July 2015 to 7th February 2018, thus resulting serial realizations of length T = 655. 
The S&P 500 is a stock market index that tracks the stocks of 500 large-cap US companies. The top 20 contains some 
of the most important companies in the world, as Apple, Google, Facebook or Berkshire Hathaway.

It is important to highlight that the relationship between price and volume has been extensively analyzed in the 
literature [82–84] and constitutes itself a topic of great financial interest. Prices and trading volume are known to 

1 https://es .finance .yahoo .com.
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Fig. 4. Average rates of correct classification for the fuzzy C-means procedures as a function of m.

Fig. 5. Average rates of correct classification for the fuzzy C-medoids procedures as a function of m.

Table 9
Area under the curves of Figs. 4, 5 and 6.

QCD W C F

Fuzzy C-means Scenario 1 0.9205 0.0050 0.6943 0.5845
Scenario 2 2.0855 0 0.1925 0
Scenario 3 2.7825 1.2710 2.6483 0

Fuzzy C-medoids Scenario 1 0.7620 0.0002 0.5740 0.6290
Scenario 2 1.9908 0 0.0975 0
Scenario 3 2.5923 0.9825 2.2283 0

Fuzzy C-means 
(heavy tails)

Scenario 1 1.1568 0.0215 0.0495 0.1635
Scenario 2 3.7380 0 0 0
Scenario 3 2.2058 0 0 0

exhibit some empirical linkages over the fluctuations of stock markets. Thus, it is reasonable to describe each of the 
considered companies by means of these two quantities. Our goal is to analyze the joint behaviour of prices and volume 
in order to perform fuzzy clustering. Thus, we assume that two companies behave similarly if the corresponding 
bivariate time series exhibit similar dependence structures.

It can be observed that both the UTS of prices and trading volume are non-stationary in mean. Thus, all UTS 
are transformed by taking the first differences of the natural logarithm of the original values. This way, prices give 
rise to stock returns, and volume to what we call change in volume. Finally, all UTS are normalized to have zero 
mean and unit variance. The resulting MTS are shown in Fig. 7, where the returns and the change in volume are 
displayed through the red and blue colour, respectively. Overall, plots in Fig. 7 exhibit common traits of financial 
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Fig. 6. Average rates of correct classification for the fuzzy C-means procedures as a function of m. Innovations were drawn from a multivariate t
distribution with 3 degrees of freedom.

time series. There is a substantial degree of heteroskedasticity in both prices and change in volume. In addition, both 
quantities exhibit the so-called phenomenon of volatility clustering: large values (positive or negative) tend to group 
together, resulting in a marked persistence. These special properties of financial time series, usually referred to as 
stylized facts, are generally accounted for by modelling the series by way of multivariate GARCH-type models, for 
instance the dynamic conditional correlation models of Scenarios 3 and 6. It is worth remembering that the devised 
fuzzy clustering algorithms demonstrated their efficacy when coping with this type of models, specially when the 
error distribution possesses some amount of fat-tailedness. This property also relates to the stylized facts [63,85,86]. 
Thus, given the high capability of QCD-FCMn and QCD-FCMd to discriminate between conditional heteroskedastic 
models, it is expected that both methods can provide a meaningful fuzzy partition determining groups of companies 
following a similar behavioural pattern.

As a preliminary exploratory step, we performed a 2DS based on the pairwise QCD-dissimilarity matrix. That 
way, a projection of the companies on a two-dimensional plane preserving the original distances as well as possible is 
available. The location of the top 20 companies in the transformed space is displayed in Fig. 8. The R2 value is 0.7251. 
Thus, the scatter plot in Fig. 8 can be considered an acceptable representation of the underlying distance configuration 
[76].

Overall, Fig. 8 suggests that the grouping of the top 20 companies calls for a fuzzy partition, since the points in 
the new coordinate space do not appear to be split in clear, well-separated, nonoverlapping groups. Hence, a fuzzy 
clustering algorithm is expected to give more meaningful insights into the distribution of the corporations than a 
hard clustering one, where each company would be allowed to pertain to only one cluster. By observing Fig. 8, 
one could conclude the existence of 5 or 6 overlapping clusters. There is a cluster including the three technological 
giants Google Alphabet Class A (GOOGL), Google Alphabet Class C (GOOG) and Amazon (AMZN), along with the 
company PayPal (PYPL). The remaining tech giants Apple (AAPL), Facebook (FB) and Microsoft (MSFT) appear 
to form another group with some other businesses as Tesla (TSLA) and Walt Disney (DIS). The rest of the firms are 
more spread out. Berkshire Hathaway (BRK.B) seems to be isolated, well-separated from the remaining companies, 
and it could be thought of as an atypical corporation. Johnson & Johnson (JNJ) and Visa (V) are placed close to each 
other, so they could constitute another cluster. The five remaining organizations Procter & Gamble (PG), JPMorgan 
Chase (JPM), Bank of America (BAC), Walmart (WMT) and Home Depot (HD) could comprise one or two different 
groups (PG-JPM-BAC and WMT-HD).

As the QCD-FCMn procedure achieved overall slightly better results than the QCD-FCMd algorithm in the simu-
lation study carried out in Section 4, the former was the method chosen for the application. Just as in the simulations, 
the metric dQCD was constructed by using the probability levels 0.1, 0.5 and 0.9. As it was already pointed out, and as 
we saw in Section 4, the fuzziness parameter m highly influences the quality of the obtained clustering partition. Thus, 
we decided to choose this parameter as well as the number of clusters, C, by way of a data driven approach. In order 
to do so, we took into consideration four different cluster validity indexes, the Xie-Beni Index (XBI) [87], the Kwon 
Index (KI) [88] and the indexes proposed in [89] (TI) and in [90] (BI). Now we define those indexes according to the 
fuzzy approach based on features extracted from an MTS. Let dic be the Euclidean distance between the element ϕ(i)

and the centroid of the c-th cluster, ϕ(c). The XBI is defined as
Á. López-Oriona, J.A. Vilar and P. D’Urso Fuzzy Sets and Systems 443 (2022) 115–154
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Fig. 7. Daily returns (red colour) and change in volume (blue colour) of the top 20 companies in the S&P 500 index.
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Fig. 8. Two-dimensional scaling plane based on the QCD distances for the daily returns and change in volume of the top 20 companies in the S&P 
500 index.

XBI(C,m) =
∑n

i=1
∑C

c=1 u2
icd

2
ic

nminc �=c′
∥∥∥ϕ(c) − ϕ(c′)

∥∥∥2 . (20)

Note that minimizing the numerator of (20), which measures the compactness of the fuzzy partition, is precisely 
the goal of QCD-FCMn when m = 2. The denominator in (20) measures the degree of separation between clusters. 
Thus, the index decreases with separation between clusters. Note that XBI is a function of both the number of clusters 
C and the fuzziness coefficient m, since both parameters must be used as input to a fuzzy C-means-type clustering 
algorithm to produce the membership matrix U and the set of centroids that are required to compute the index.

The KI is an extension of the XBI which is aimed at penalizing the monotonically decreasing trend exhibited by 
the latter when C becomes large. The KI is given by

KI(C,m) =
∑n

i=1
∑C

c=1 u2
icd

2
ic + (1/C)

∑C
c=1

∥∥∥ϕ(c) − ϕ
∥∥∥2

minc �=c′
∥∥∥ϕ(c) − ϕ(c′)

∥∥∥2 , (21)

where ϕ = 1
n

∑n
i=1 ϕ(i). Note that the punishing term (1/C) 

∑C
c=1

∥∥∥ϕ(c) − ϕ
∥∥∥2

increases substantially as the number 
of clusters is close to n.

Although KI allows to evaluate the quality of a fuzzy C-means procedure when C → n, it becomes unstable or 
unpredictable as m → ∞. The TI tries to solve this problem by adding a penalty function both in the numerator and 
the denominator. This index is defined as

TI(C,m) =
∑n

i=1
∑C

c=1 u2
icd

2
ic + 1

C(C−1)

∑C
c=1

∑C
c′=1;c′ �=c

∥∥∥ϕ(c) − ϕ(c′)
∥∥∥2

minc �=c′
∥∥∥ϕ(c) − ϕ(c′)

∥∥∥2 + 1/C

. (22)

The BI is given by

BI(C,m) =
C∑

c=1

∑n
i=1 u2

icd
2
ic∑n

i=1 uic

∑C
c′=1

∥∥∥ϕ(c) − ϕ(c′)
∥∥∥2 . (23)

The numerator in (23) measures the compactness and the denominator accounts for the separation between clusters.
Note that, concerning all the previous defined indexes, smaller values mean better fuzzy partitions. Indeed, the 

minimum value of some of those indexes is frequently utilised to choose the optimal number of clusters [18,10] and 
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Table 10
Membership degrees for top 20 companies in the S&P 500 index by considering the QCD-FCMn 
model and a 6-cluster partition.

Company C1 C2 C3 C4 C5 C6

AAPL 0.115 0.213 0.016 0.516 0.090 0.050
MSFT 0.147 0.068 0.060 0.494 0.137 0.095
AMZN 0.891 0.022 0.006 0.041 0.012 0.028
GOOGL 0.757 0.039 0.013 0.127 0.028 0.036
GOOG 0.923 0.012 0.005 0.032 0.009 0.019
FB 0.003 0.983 0.001 0.005 0.005 0.004
TSLA 0.068 0.040 0.009 0.824 0.038 0.021
BRK.B 0.000 0.000 1 0.000 0.000 0.000
V 0.006 0.019 0.006 0.025 0.933 0.010
JNJ 0.004 0.013 0.004 0.013 0.959 0.008
WMT 0.032 0.045 0.022 0.032 0.035 0.834
JPM 0.096 0.067 0.055 0.122 0.089 0.572
MA 0.129 0.160 0.017 0.499 0.087 0.109
PG 0.087 0.071 0.120 0.117 0.118 0.486
UNH 0.010 0.905 0.004 0.026 0.037 0.018
DIS 0.057 0.120 0.014 0.619 0.128 0.061
NVDA 0.044 0.038 0.013 0.802 0.077 0.025
HD 0.035 0.052 0.015 0.032 0.030 0.836
PYPL 0.189 0.420 0.019 0.172 0.071 0.129
BAC 0.035 0.042 0.011 0.041 0.029 0.841

the optimal value for the fuzziness parameter [91]. Here, our concern is to determine the combination of these two 
values which must be considered to optimize the clustering process. The goal is simple: starting from a grid of input 
parameters (several values for C and m), we solve the minimization problem in (14) and select the values of C and m
that lead to the minimum average value of the indexes XBI, KI, TI and BI. The process is carried out as follows.

Step 1. Select the initial grid of values for the number of clusters, C, and the fuzziness parameter, m; and the number 
of random initializations for the fuzzy C-means clustering procedure, R.

Step 2. Solve the minimization problem in (14) for each pair (C, m) in the grid by considering R random initializa-
tions for the membership matrix. Store the resulting membership matrices and centroids.

Step 3. For each pair (C, m) in the grid, obtain the R values of (20), (21), (22) and (23) and select the corresponding 
minimum values. The results of this step are 4 vectors of length Cm storing the corresponding optimal values 
of the indexes, vXBI, vKI, vTI and vBI.

Step 4. Scale the vectors resulting from Step 3 so that they have zero mean and unit variance to get vs
XBI, v

s
KI, v

s
TI and 

vs
BI.

Step 5. Average the vectors computed in Step 4, obtaining the vector

vavg = vs
XBI + vs

KI + vs
TI + vs

BI

4
.

Step 6. Return the pair (C, m) associated with the minimum value in the vector vavg.

Note that standardization in Step 4 is necessary to bring the four indexes to the same scale.
We selected a grid between 1 and 10 (step size of 1) for the number of clusters C and a grid between 1.1 and 3 

(step size of 0.1) for the fuzziness parameter m and applied the previous selection procedure by taking into account 
the QCD-FCMn algorithm. The optimal (C, m) pair was (6, 1.9). The value C = 6 seems consistent with the plot in 
Fig. 8.

Table 10 shows the membership degrees obtained by taken into consideration the previous values of C and m. For 
each single corporation, the entries in bold enhance the highest membership degree, i.e., the cluster assignment from 
a crisp perspective.

On balance, the clustering partition obtained with the QCD-FCMn model is quite consistent with the distances 
between the points in Fig. 8. Cluster C4 contains the companies AAPL, MSFT, TSLA, MasterCard (MA), DIS and 
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NVIDIA (NVDA) with high membership. Cluster C1 consists of AMZN and the two branches of Google (GOOGL, 
GOOG). It is worth noting that AAPL and MSFT also possess a non negligible membership degree in this cluster. 
The remaining one of the biggest five companies, FB, presents a large membership degree in cluster C2 (0.983). It is 
noticeable that FB is barely present in clusters C1 and C4. This fact suggests that its business model greatly differs 
from that of its tech giants counterparts. Cluster C2 is also constituted by the health insurance company UnitedHelath 
(UNH) with high membership and by the online payments company PYPL. Interestingly enough, this latter company 
is substantially spread out among the six clusters. Indeed, most of the companies in Table 10 offer PYPL as a form of 
online payment in their corresponding websites. Thus, it is expected that the financial behaviour of PYPL is somehow 
related to that of the remaining corporations. The multinational conglomerate holding company BRK.B forms itself 
an isolated cluster (C3), which is congruent with Fig. 8 where BRK.B is represented as the most outlying point. An 
economical explanation of this fact can be easily obtained: BRK.B is not the typical corporation. This business model 
consists of investing in and holding dozens of major public and private companies. Thus, it is not surprising that 
it shares no similarity with the rest of the firms. Cluster C5 is formed by V and JNJ presenting large membership 
degrees. Finally, cluster C6 includes the three consumer-based corporations WMT, PG and HD, and the two banking 
companies JPM and BAC.

Note that a great deal of information can be extracted from the resulting partition by virtue of the fuzzy nature of 
the clustering solution. For instance, by looking at Table 10, one investor could determine that, whereas the financial 
behaviour of BRK.B is not shared by any of the remaining firms, there are another companies as PYPL and PG which 
show a changing behaviour. This type of insights could be invaluable in order to make informed investing decisions.

5.2. Fuzzy clustering of air pollution data

Now we develop a study case related to the non-supervised classification of geographical zones in terms of their 
temporal records of air pollutants. In the Spanish autonomous community of Galicia the air quality is analysed by a 
monitoring network consisting of 14 public and 33 private stations situated at different locations. These 47 stations 
provide hourly data on air pollutant concentration. The following pollutant concentrations: SO2, NO, NO2, NOX, CO, 
O3, PM10 (particulate matter 10 micrometers or less in diameter) and PM2,5 (particulate matter 2.5 micrometers or 
less in diameter) are recorded in at least one station of the network.

We considered trivariate time series of hourly concentrations of nitrogen dioxide (NO2), ozone (O3) and nitrogen 
monoxide (NO) during the whole year 2018 in 20 different stations. The choice of this subset of pollutants was based 
on (i) several studies have uncovered serious health effects associated with the continuous exposure to high levels of 
NO2, O3 and NO, [92–94] and (ii) they were the most monitored gases throughout the network. It is important to 
highlight that our intention is only to show the usefulness of the proposed clustering algorithms without seeking to 
give any type of environmental implications, although this study together with other analyses could lead to the taking 
of some steps in order to reduce pollution. The 20 corresponding stations are Ferrol-Parque RS (FE), Coruña-Torre 
de Hércules (CO-T), Coruña-Riazor (CO-R), Lugo-Fingoy (LU), Santiago-Campus (SDC-C), Santiago-San Caetano 
(SDC-SC), Sur (SU), Pontevedra-Campolongo (PO-CL), Vigo-Coia (VGO-CO), Vigo-Lope de Vega (VGO-L), Pon-
teareas (PT), Ourense-Gómez Franqueira (OR), Pontevedra-Campelo (PO-CP), Fraga Redonda (FR), Xove (XO), 
Vigo-Citroën (VGO-CT), Paiosaco-Laracha (PA), Magdalena (MA), Louseiras (LO) and Mourence (MO). All data 
were sourced from the website of Ministry for the Ecological Transition and the Demographic challenge2. Table 11
contains some general information about the location of the stations. The categorization of the location of each station 
as “urban”, “suburban”, “rural” and “near power plant” was made based on information provided in the above website. 
Thus, from an environmental point of view, it is reasonable to think that the joint behaviour of the concentration of 
the three considered gases is different depending on where the station is situated.

The 20 MTS available are formed by T = 8760 hourly records and are non-stationary in mean. For this reason, 
the former series were transformed by taking the first differences of the natural logarithm of the original values. The 
new series are depicted in Fig. 9. It can be observed that the behaviour of the trivariate series is substantially different 
among the considered stations. In addition, it is reasonable to think that a fuzzy behaviour might be present, with MTS 
sharing features of distinct and well-defined patterns of hourly changes of concentrations of NO2, O3 and NO.

2 https://www.miteco .gob.es /es /calidad -y -evaluacion -ambiental /temas /atmosfera -y -calidad -del -aire /calidad -del -aire /evaluacion -datos /datos /
Datos _oficiales _2018 .aspx.
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Fig. 9. Transformed levels of NO2 (red colour) O3 (green colour) and NO (blue colour) in the 20 monitoring stations of Galicia.
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Table 11
Location information of the 20 stations monitoring the air qual-
ity in the community of Galicia.

Station Abbreviation Location area

Ferrol-Parque RS FE Suburban
Coruña-Torre de Hércules CO-T Urban
Coruña-Riazor CO-R Urban
Lugo-Fingoy LU Urban
Santiago-Campus SDC-C Suburban
Santiago-San Caetano SDC-SC Urban
Sur SU Rural
Pontevedra-Campolongo PO-CL Urban
Vigo-Coia VGO-CO Urban
Vigo-Lope de Vega VGO-L Urban
Ponteareas PT Suburban
Ourense-Gómez Franqueira OR Urban
Pontevedra-Campelo PO-CP Rural
Fraga Redonda FR Near power plant
Xove XO Rural
Vigo-Citroën VGO-CT Urban
Paiosaco-Laracha PA Near power plant
Magdalena MA Near power plant
Louseiras LO Near power plant
Mourence MO Near power plant

Fig. 10. Two-dimensional scaling plane based on the QCD distances for the hourly levels of NO2, O3 and NO in the 20 monitoring stations of 
Galicia.

First, as in the above case study, we carried out a 2DS based on the QCD-dissimilarity matrix. The resulting 
2DS plane in Fig. 10, whose respective R2 value is 0.8921, gives illustrative insights into the proximity of the time 
series according to the QCD-based distance. The points have been coloured according to the categories introduced in 
Table 11 concerning the location of the stations.

Fig. 10 shows that the QCD-based distance effectively captures the underlying categories of the stations according 
to Table 11. In particular the first coordinate clearly separates the stations with regards to the specific location. Stations 
situated in urban areas are located in the left side, whereas those positioned near a power plant are placed in the right 
side. The remaining categories, which correspond to suburban and rural locations, lie somewhere in the middle. It is 
147



Á. López-Oriona, J.A. Vilar and P. D’Urso Fuzzy Sets and Systems 443 (2022) 115–154
Table 12
Membership degrees for the 20 monitoring stations in Galicia 
by considering the QCD-FCMn model and a 3-cluster parti-
tion.

Station Area C1 C2 C3

FE Suburban 0.113 0.035 0.853
CO-T Urban 0.701 0.041 0.258
CO-R Urban 0.799 0.042 0.159
LU Urban 0.952 0.010 0.039
SDC-C Suburban 0.452 0.044 0.504
SDC-SC Urban 0.928 0.012 0.060
SU Rural 0.089 0.076 0.835
PO-CL Urban 0.963 0.008 0.029
VGO-CO Urban 0.938 0.014 0.048
VGO-L Urban 0.903 0.020 0.076
PT Suburban 0.469 0.069 0.462
OR Urban 0.944 0.014 0.042
PO-CP Rural 0.022 0.012 0.966
FR Near power plant 0.018 0.947 0.036
XO Rural 0.191 0.538 0.271
VGO-CT Urban 0.227 0.043 0.730
PA Near power plant 0.049 0.850 0.101
MA Near power plant 0.088 0.345 0.567
LO Near power plant 0.023 0.933 0.044
MO Near power plant 0.115 0.294 0.590

worth pointing out that the five stations situated near power plants also pertain to rural zones. Note that, whereas the 
distinction between urban stations and those located in rural regions or near a power plant is evident, the classification 
of the suburban locations seems vaguer, implying that the dependence relationship of the three pollutants could exhibit 
traits related to both urban and rural areas. Therefore, a fuzzy clustering approach seems far more suitable to tackle 
the grouping task of the 20 stations than a hard clustering one.

By observing Fig. 10 and ignoring the underlying categories, one could hypothesize the existence of three or four 
underlying clusters. There is a first cluster formed by all the urban stations except for VGO-CT together with PT and 
SDC-C. VGO-CT, FE, PO-CP and SU constitute another cluster, as well as the two stations near a thermal power 
plant, MA and MO. Finally, XO, PA, FR and LO could be considered to compose one or two different clusters.

As in the preceding application, the QCD-FCMn approach was applied to the series in Fig. 9. Selection of the 
optimal values for m and C was effectuated by using the same procedure as in the above analysis. After performing 
the corresponding steps, the existence of three major groups (C = 3) was concluded, which is consistent with the 2DS 
plot in Fig. 10. The optimal value for the fuzziness coefficient was m = 1.9.

The resulting 3-cluster fuzzy partition is displayed in Table 12. For a given element, the highest membership 
degree is shown in bold provided that its value is larger than 0.6. As 3 clusters are being considered, this cutoff seems 
a sensible choice. When the three membership values are below this cutoff, the corresponding quantities are written in 
italic font. Fundamentally, the model QCD-FCMn produces the expected classification by grouping the transformed 
series according to the kind of location where the respective stations are placed. Regarding the urban locations, they 
are grouped together in cluster C1 with a high membership aside from VGO-CT, which mainly pertains to cluster 
C3. This cluster brings together the mentioned VGO-CT, two rural stations (SU and PO-CP) and one suburban (FE) 
station. The misclassification of VGO-CT with respect to the underlying location can be explained because, despite 
being in the same city as VGO-CO and VGO-L, it is located in a car factory, probably exposing himself to special 
types of emissions avoided by VGO-CO and VGO-L. The last cluster, C2, includes three of the stations close to a 
thermal power plant.

The stations concerning the fuzziest allocations were SDC-C, PT, XO, MA and MO. SDC-C and PT correspond 
to suburban areas, and are placed in C1 (urban cluster) with membership values of 0.452 and 0.469, respectively, 
and in C3 (rural cluster) with membership values of 0.504 and 0.462, respectively. XO is the station displaying the 
most spread between clusters, corresponding its largest membership degree to cluster C2. Finally, both MA and MO 
are mainly assigned to clusters C2 and C3, showing a higher membership in the later. Note that all the previous 
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Table 13
FARI obtained by the fuzzy C-means procedures in grouping 
the 20 monitoring stations in Galicia. The ground truth is given 
by the location of the stations.

Method QCD-FCMn W-FCMn C-FCMn F-FCMn

FARI 0.3649 0.2253 0.2083 0.0040

assignments are coherent according to the particularities of each cluster. The stations placed in suburban areas are 
expected to share traits of both urban and rural regions. In the same way, as the five stations located close to a power 
plant belong to rural zones, they are presumed to show features typical of rural locations. These results stress the 
power of a fuzzy allocation when there exist overlapping classes.

For the sake of illustration and comparison purposes, we have obtained the clustering solutions according to the 
approaches W-FCMn, C-FCMn and F-FCMn. The selection of C and m was carried out similarly than in the above 
analyses. The corresponding fuzzy partitions were obtained for the optimal values of m and C. Assuming that the 
true partition is given by the categories standing for the location of each station, the FARI was obtained for the 
three mentioned procedures as well as QCD-FCMn. Note that this quantity is a good indicator of to what extent each 
procedure is capable of deriving the underlying geographical distribution. The results are displayed in Table 13. QCD-
FCMn significantly outperformed the remaining approaches. Whereas W-FCMn and C-FCMn were able to figure out 
some insights into the region of each station, F-FCMn produced a random partition according to this criterion. Lastly, 
it is worth enhancing that all the procedures have determined some series showing a fuzzy nature, which supports the 
helpfulness of the fuzzy approach.

6. Concluding remarks and future work

In this work we have proposed two novel approaches for fuzzy clustering of MTS based on the quantile cross-
spectral density (QCD) and principal component analysis (PCA), the so-called QCD-FCMn and QCD-FCMd. The 
former builds on the traditional fuzzy C-means algorithm while the latter employs the fuzzy C-medoids. The methods 
utilise a slight modification of the distance dQCD in our previous work [31] regarding the projection of the QCD-
based features onto the principal components space. The advantages of performing dimensionality reduction via PCA 
in terms of clustering effectiveness have been shown through a motivating example.

To evaluate the performance of QCD-FCMn and QCD-FCMd, we have carried out numerical experiments includ-
ing scenarios formed by MTS pertaining to well-defined clusters and scenarios involving series equidistant from two 
clusters. Several types of generating processes were considered. The assessment task was executed in two different 
fashions. Concerning scenarios lacking a switching series, a fuzzy extension of the Adjusted Rand Index was consid-
ered. This way, the quality of the resulting fuzzy partition, in the sense of assigning high membership values to the 
correct clusters, was directly evaluated. On the other hand, the capability of the techniques in scenarios incorporating 
an equidistant series was measured also by taking into account their ability to determine the fuzzy nature of this series. 
The methods were compared with other alternative dissimilarities suggested in the literature. Regardless of the con-
sidered models and assessment schemes, QCD-FCMn and QCD-FCMd produced the best results, the former slightly 
outperforming the latter overall. Both methods inherit the powerful characteristics of QCD, as no requirements about 
the existence of moments, robustness to changes in the error distribution, and computational efficiency. They also 
preserve the properties of the former distance dQCD , as being able to uncover any type of disparity in the dependence 
structure of two MTS. Two specific case studies involving environmental and financial databases have illustrated the 
usefulness of the proposed techniques.

It is worth pointing out that this paper represents an original extension of [31] in four different ways. First, this 
manuscript presents explicitly some useful properties of the distance dQCD indicating that this dissimilarity is able 
to detect any type of discrepancy in the dependence structure of two generating processes whatever their complexity. 
Second, this work highlights the power of applying dimensionality reduction techniques to QCD-based features in 
relation to clustering performance. Third, whereas the simulated scenarios in [31] did not include nonlinear processes, 
we have considered them here in order to examine the approaches under a vast assortment of generating patterns. 
Lastly, our study in [31] was limited to crisp clustering procedures. In this article we introduced fuzzy clustering 
strategies, thus combining the versatility of the fuzzy logic by permitting overlapping clusters with the high ability 
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of the QCD-based metric to differentiate between underlying mechanisms. In fact, the superiority showed by the 
proposed dissimilarity over the alternative metrics in a fuzzy context is substantially greater than that in a crisp 
framework. In short, this paper contributes to the few works on fuzzy clustering of MTS based on generating processes.

There are indeed some appealing issues for further research in relation to the use of QCD in soft clustering of MTS. 
Specifically, this work can be extended in two different ways. On the one hand, it would be interesting to obtain robust 
versions of QCD-FCMn and QCD-FCMd capable of properly neutralizing the effect of outlying MTS. For instance, 
we could consider the techniques used in [95] and [18], namely the metric approach (by smoothing the distance), 
the trimmed approach (by trimming away a small proportion of the series) and the noise approach (by considering 
a noise cluster expected to contain the outlying series). On the other hand, note that, by using the smoothed CCR-
periodograms to describe an MTS dataset, each MTS is characterized by a set of curves of the form{

W
(
Ĝ

j1,j2
T ,R (ω, τ, τ ′)

)
,1 ≤ j1, j2 ≤ d, τ, τ ′ ∈ T

}
, (24)

where W(·) is used interchangeably to denote the real part and the imaginary part operator. Our numerical studies have 
revealed that some of these curves contain far more information than others in terms of the generating process of each 
MTS. Thus, it would be reasonable to create a fuzzy clustering algorithm giving more importance to the functions with 
more discriminative power. This could be naturally accomplished by introducing weights in the objective functions 
(14) and (17). Even an approach considering only two weights, for real and imaginary parts, respectively, could be 
devised. The mentioned topics for further research will be properly addressed in the upcoming months.
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Appendix A

We now derive Properties 1 and 2 in Section 2.3. Property 1 follows directly from the definition of QCD, the fact 
that the smoothed CCR-periodogram is a consistent estimator of this quantity and the definition of dQCD.
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To show Property 2, note that the assumption on the continuity of the cumulative probability distribution functions 
implies that there exists a neighbourhood V of R2 in which F 1

j1,j2,l
and F 2

j1,j2,l
differ from one another. Let (c, d) ∈ V , 

and therefore F 1
j1,j2,l

(c, d) �= F 2
j1,j2,l

(c, d). By virtue of Sklar’s theorem, every cumulative distribution function can be 

expressed by means of its marginals and a unique copula. Hence, if C1
j1,j2,l

and C2
j1,j2,l

denote the copulas associated 

with the pairs (X1
t,j1

, X1
t+l,j2

) and (X2
t,j1

, X2
t+l,j2

), respectively, we can write

F 1
j1,j2,l

(x1, x2) = C1
j1,j2,l

(F 1
j1

(x1),F
1
j2

(x2)),

F 2
j1,j2,l

(y1, y2) = C2
j1,j2,l

(F 2
j1

(y1),F
2
j2

(y2)),
(25)

for all x1, x2, y1, y2 ∈ R. Take now x1 = y1 = c, x2 = y2 = d . From the fact that F 1
j1,j2,l

(c, d) �= F 2
j1,j2,l

(c, d) and the 
equality of the marginal distributions, we have

C1
j1,j2,l

(F 1
j1

(c),F 1
j2

(d)) �= C2
j1,j2,l

(F 1
j1

(c),F 1
j2

(d)). (26)

Now, consider the following relationships

π∫
−π

f1j1,j2
(ω, τ1, τ2)e

ilωdω = C1
j1,j2,l

(τ1, τ2) − τ1τ2,

π∫
−π

f2j1,j2
(ω, τ3, τ4)e

ilωdω = C2
j1,j2,l

(τ3, τ4) − τ3τ4,

(27)

where fij1,j2
, is the quantile cross-spectral density for the pair of processes Xi

t,j1
and Xi

t,j2
, i = 1, 2, ω ∈ R is an 

arbitrary frequency, and (τ1, τ2) and (τ3, τ4) are arbitrary couples of probability levels. Then, denoting by τ = F 1
j1

(c)

and τ ′ = F 1
j2

(d), (26) and (27) allow to conclude that

f1j1,j2
(ω′, τ, τ ′) �= f2j1,j2

(ω′, τ, τ ′) (28)

for some ω′ ∈ Vω ⊂ R, with Vω a neighbourhood where the functions differ. From (28) we know that at least one of 
the facts �(f1j1,j2

(ω′, τ, τ ′)) �= �(f2j1,j2
(ω′, τ, τ ′)) or 	(f1j1,j2

(ω′, τ, τ ′)) �= 	(f2j1,j2
(ω′, τ, τ ′)) is true. Assume without 

loss of generality that �(f1j1,j2
(ω′, τ, τ ′)) �= �(f2j1,j2

(ω′, τ, τ ′)). Now, in order to compute the distance dQCD , select T
and � such that τ, τ ′ ∈ T and ω′ ∈ �. Let �(1) and �(2) be the feature vectors computed from the realizations X(1)

t

and X(2)
t , respectively. From the definition of dQCD , it necessarily exists an integer k such that the k-th components 

of vectors �(1) and �(2) are given by �(Ĝ
1,j1,j2
T ,R (ω′, τ, τ ′)) and �(Ĝ

2,j1,j2
T ,R (ω′, τ, τ ′)), respectively, being Ĝ1,j1,j2

T ,R

and Ĝ2,j1,j2
T ,R the smoothed CCR-periodograms computed from the realizations X(1)

t and X(2)
t , respectively. As the 

smoothed CCR-periodogram is a consistent estimate of the quantile cross-spectral density, consistency also holds for 
real and imaginary parts so we have

�(Ĝ
1,j1,j2
T ,R (ω′, τ, τ ′)) −→

p
�(f1j1,j2

(ω′, τ, τ ′)),

�(Ĝ
2,j1,j2
T ,R (ω′, τ, τ ′)) −→

p
�(f2j1,j2

(ω′, τ, τ ′)),
(29)

from which the convergence in probability of the distance dQCD to some a �= 0 is trivially derived. Note that by 
choosing another pair (c′, d ′), with c′ �= c and d ′ �= d in the neighbourhood V , a different pair of probability levels 
such that the result holds could be extracted. The same is true for another ω′′ ∈ Vω This process could be repeated 
infinitely. The proof is completed. �
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