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A B S T R A C T   

Residential location choice is a key component of the models for predicting land-use and transport 
demand in urban planning. In general, it requires to consider correlation between spatial alter-
natives. The approach of nested alternatives of the nested logit model has proved highly efficient 
in this context. This approach incorporates into the nested logit model both spatial and non- 
spatial correlations due to unobserved variables. The approach of metric extensions to the 
spatially correlated logit model specifies models for capturing spatial correlations between al-
ternatives without having to design a nested structure. A model combining both approaches is 
proposed in this research. The spatially correlated nested logit model proposed herein models the 
correlation between alternatives of the nests of a nested logit model using a metric of spatial 
correlation between pairs of alternatives. The proposed model improves the properties of the 
nested logit model without the need of increasing the number of unknown parameters. Our model 
also improves the properties of a spatially correlated model with the same spatial metric. When 
needing to incorporate preference heterogeneity into the model, the proposed model is 
compatible with a mixed specification with random coefficients. The spatially correlated nested 
logit model was empirically applied to the real case of residential location choice in the city of 
Santander in Spain. In this empirical context, this model improved the explanatory and predictive 
power of the models that it combines.   

1. Introduction 

People are frequently faced with decisions requiring choosing between a discrete set of alternatives, such as decisions about 
purchasing, mode of transport and travel destinations, among others. As highlighted by Takahashi (2019), huge studies have been 
conducted to capture discrete purchasing behavior through discrete choice models. Spatial location choices, in which choice alter-
natives refer to geographical locations, are a key feature of advanced disaggregate models of travel and activity demand. Within these 
models, the most important aspects refer to residential location choice and to a lesser extent employment location choice. Spatial 
location choices can also appear in other types of models, such as travel destination or public transport boarding or alighting stop 
choice models. 

In the models for predicting land-use and transportation demand in urban planning, currently, the most widely used approach 
consists of mathematical simulation models of the interaction between land-uses and transportation (LUTI, see Torrens, 2000). LUTI 
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models use zoning of the spatial area under study and require a prediction model of the individual choice of the area of residence. The 
choice of area of residence is a crucial decision for many families for two key reasons. First, the area of residence will tremendously 
impact housing prices, whether for buying or renting. Second, the area of residence influences travel times to daily activities and the 
type of social life the family will have according to accessibility of services offered and their characteristics. 

At a disaggregate level, Weiss et al. (2019) state that spatial location choice is typically modeled using the econometric approach 
based on random utility maximizing (RUM) hypothesis (Thurstone, 1927; McFadden, 1974). RUM discrete choice modeling is the most 
commonly used mathematical framework in prediction models of residential location choice in the LUTI context (Pagliara and Wilson, 
2010). Various RUM models have been developed, but they are not all applicable with spatial alternatives. In these cases, some al-
ternatives will be spatially correlated. Bahamonde-Birke (2021) presents a discussion of the different kinds of spatial correlation that 
affects multinomial discrete choice models and how they have been addressed in the discrete modeling literature. The modeling 
approaches considered in this paper deal with the spatial correlation among alternatives, that is common in transport and land-use 
models. This correlation refers to substitution preferences on the part of the decision maker and are due to unobserved spatial ele-
ments of the utility. As a result, the models that overlook correlation between alternatives, like multinomial logit, are not suitable in 
this context. In turn, spatial location choices usually entail a high number of alternatives, thereby preventing or hindering the use of 
some approaches to capture this correlation. Specifying a mixed logit model using an error component structure allows flexible 
patterns of correlation between alternatives (see Train, 2009). This approach is usually unfeasible for correlation between spatial 
alternatives because such correlations require specifying as many error components as pairs of correlated alternatives, which are 
usually too many for the estimation process. The same limitation occurs in the probit model (Daganzo, 1979). If constraints are not 
included in the correlation structure of the perturbations of this model, the number of parameters to estimate in the covariance matrix 
of the perturbations may be so high that the estimation process of this model becomes unfeasible (see applications of the probit model 
for spatial correlation in Bolduc, 1992; Garrido and Mahmassani, 2000). 

The main goal of this research is to propose a new model for predicting land-use and transport demand in urban planning, based on 
RUM and focused in spatial location choice of residence. In this context, the choice alternatives are geographic areas. The new model 
must consider the spatial characteristics of these alternatives to improve the ability to explain and predict the behavior of decision- 
makers in comparison with other current RUM models. The new generalized extreme value (GEV) model proposed combines the 
two current GEV approaches compatible with spatial correlation between alternatives, by incorporating the spatially correlated logit 
approach into the nested logit model. This spatially correlated nested logit model considers correlation through pre-specified nests and 
uses spatial information on the alternatives, without the need of increasing the number of estimated parameters in relation to a nested 
logit approach. Thanks to this combination, the proposed model improves the explanatory and predictive power of the previous GEV 
models. This model is compatible with a mixed GEV specification, which makes it possible to incorporate variations in decision- 
makers’ preferences. In the next section, we review the state of the art in GEV models compatible with spatial location choice 
modeling. In Section 3, we present the proposed GEV model. In Section 4, the new model is applied to an urban residential location 
choice empirical context and compared with the GEV models compatible with spatial location choice modeling analyzed in Section 2. 
Finally, Section 5 presents our conclusions. 

2. GEV models with spatial correlation between alternatives 

The most widespread and simple RUM-consistent discrete choice model is multinomial logit (MNL) (McFadden, 1974; Domencich 
and McFadden, 1975). The MNL model assumes that the stochastic components (εi) of the utility of alternative i (Ui) have a marginal 
type I extreme value distribution (Gumbel; Johnson and Kotz, 1970) independent and equally distributed. The MNL model assumes 
uncorrelation between alternatives and between observations, overlooking unobserved variations in preferences or tastes. The 
parameter of the perturbation scale is usually normalized to one; a similar approach has been used in all models considered in this 
article, without loss of generality (Abbe et al., 2007). 

2.1. Nested logit 

The hierarchical or nested logit model (NL; Williams, 1977; Daly and Zachary, 1978; McFadden, 1978) extends the MNL model to 
allow for specific structures of correlation between alternatives. The stochastic components of the NL model maintain homoscedas-
ticity and have a joint extreme value distribution. This model clusters alternatives to assess the correlation between them. The clusters 
of alternatives, termed nests, must be designed by the analyst. To design the nests, the analyst must use variables not incorporated in 
the utility function. For example, in an urban residential location choice context, these variables may represent how attractive the area 
is to the decision maker for its prestige, prevailing architecture, views or accessibility of services, such as transport, schools, leisure or 
employment. In the NL model, each alternative belongs to a nest. The structure of the resulting variance-covariance matrix is a di-
agonal matrix by blocks, one per nest, unlike the scalar structure of the MNL model. The parameters 0 < μk ≤ 1, termed dissimilarity 
parameters of each nest Nk, modulate the value of the correlation between pairs of alternatives. The correlation between the per-
turbations of two alternatives, iandj, is calculated using Eq. (1) if both alternatives belong to the same nest, Nk, and is null if they belong 
to different nests. 

Corr
(
εi, εj

)
=
(
1 − μ2

k

)
, ∀i, j ∈ Nk, k ∈ {1, …, M} (1) 

The NL model is compatible with spatial location choice modeling if the analyst designs a structure with a viable number of nests. 
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The increase in the number of nests increases not only the flexibility of the NL model in measuring the correlation between alternatives 
but also the number of dissimilarity parameters that the model will have to estimate. The handicap of the NL model lies in the need for 
the analyst to design the nest structure. Furthermore, the effectiveness of the NL model in collecting the correlation between alter-
natives will depend on the analyst’s ability to design the nests. Eq. (2) shows the probability of each alternative i, where Pi|k (3) is the 
conditional probability of the alternative i if nest Nk is selected and Pk (4) is the probability of choosing nest Nk. Eqs. (3) and (4) are 
modifications of that of Papola (2004) to facilitate the comparison between NL and the model proposed in this paper. 

Pi = Pi|k ⋅ Pk (2)  

Pi|k =
(eVi )

1/μk

∑
j∈Nk

(eVj )
1/μk

(3)  

Pk =

(∑
j∈Nk

(eVj )
1/μk
)μk

∑M
l=1

(∑
r∈Nl

(eVr )
1/μl
)μl

(4)  

2.2. Spatially correlated logit 

McFadden (1978) generalized the nest approach of the NL model in the class of generalized extreme value (GEV) models. The 
perturbations of the GEV models are homoscedastic, with a joint extreme value distribution. GEV models incorporate constraints in the 
covariance matrix from the nest structure, which, if relatively simple, maintain a closed structure. Probability is calculated based on a 
termed generating function G(eV1 , …, eVA ), using Eq. (5). The generating function of a GEV model should meet a set of criteria 
established by McFadden (1978) and revised by Ben-Akiva and Francois (1983). Nest can assess both unobserved spatial correlation 
among alternatives and correlation due to unobserved non-spatial variables. As pointed out by Bahamonde-Birke (2021), GEV models 
cannot be used to capture spatial correlation among observations. GEV models can act as kernels of mixed logit specifications with 
random coefficients, termed mixed GEV (Bhat and Guo, 2004; Hess et al., 2005). 

Pi =
eVi ⋅ ∂G(eV1 , …,eVA )

∂eVi

G(eV1 , …, eVA )
, ∀i ∈ {1, …, A} (5) 

Both MNL and NL are GEV models. The generating function of MNL model is shown in Eq. (6) and that of the NL model in Eq. (7), 
where μk is the dissimilarity parameter of the nest Nk. GEV extensions of the NL model are based on cross-nested logit (CNL; Small, 
1987; Vovsha, 1997; Ben-Akiva and Bierlaire, 1999; Papola, 2004), which Wen and Koppleman (2001) formulated as generalized NL 
(GNL). The generating function of GNL model is shown in Eq. (8), where αik≥0 is the allocation parameter of alternative i to nest Nk for 
all M nests and A alternatives, with zero value when the alternative does not belong to the nest. In CNL or GNL models, the alternatives 
can belong to more than one nest. For this reason, they incorporate the allocation parameters, which are interpreted as the level of 
membership of each alternative to each nest (Abbe et al., 2007). These models are nested with the two-level NL model that uses the 
same dissimilarity parameters if each alternative belongs to a single nest with an allocation parameter value of one. 

G
(
eV1 , …, eVA

)
=
∑A

i=1
eVi (6)  

G
(
eV1 , …, eVA

)
=
∑M

k=1

(
∑

i∈Nestk

(
eVi
)1/μk

)μk

(7)  

G
(
eV1 , ⋯, eVA

)
=
∑M

k=1

(
∑

i∈Nestk

(
αikeVi

)1/μk

)μk

(8) 

The GNL models include the constraint that the allocation parameters of each alternative add up to one, as expressed in Eq. (9) (see 
Abbe et al., 2007 to analyze normalization proposals in other CNL formulations). This normalization allows the allocation parameters 
of each alternative to represent the proportion of belonging to each nest. 

∑M

k=1
αik = 1, ∀i = 1, …, A (9) 

The unobserved correlation between pairs of alternatives of the CNL and GNL models is modulated by all structural parameters, 
that is, allocation and dissimilarity parameters. This correlation is calculated from the joint cumulative distribution function, by 
numerical integration. When the number of alternatives is high, the number of structural parameters of the GNL models increases 
considerably in relation to the NL model to the point that estimating all parameters is unfeasible. Under these conditions, it may be 
useful to calculate some parameters beforehand or incorporate constraints to reduce their number and then estimate the model only 
with the other parameters (Abbe et al., 2007). 
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The paired combinatorial logit (Chu, 1981; Chu, 1989; Koppelman and Wen, 2000) model proposes a GEV model with a nest 
structure not designed by the analyst but instead formed by each pair of alternatives. Therefore, this model has as many dissimilarity 
parameters as pairs of alternatives. Wen and Koppelman (2001) extended the paired combinatorial logit model with a GNL formulation 
termed paired generalized nested logit, which adds two allocation parameters for each pair of nests with respect to the paired 
combinatorial logit model. 

The paired combinatorial logit and paired generalized nested logit models are not viable in the spatial location choice modeling 
context, except when previously calculating a significant number of structural parameters or incorporating constraints to reduce their 
number. As clearly shown, the number of structural parameters in the paired generalized nested logit model is much higher than in any 
other GNL specification based on a nest structure designed by the analyst. Using both possibilities, Bhat and Guo (2004) proposed, for 
the context of spatial location choice, a reduced specification of the paired generalized nested logit model, the spatially correlated logit 
(SCL) model, with a GEV generating function (10). On the one hand, the SCL model adds to paired generalized nested logit model the 
constraint that all pairs of contiguous alternatives have the same dissimilarity parameter 0 < μ ≤ 1. On the other hand, the SCL model 
proposes that the paired generalized nested logit model allocation parameters be calculated before estimating the model, using data on 
the contiguity of the alternatives. These parameters are calculated using Eq. (11), where the value of the dichotomous spatial variable 
ωij is 1 when the alternatives i, j partly share the border, and 0 otherwise. Therefore, regardless of the number of alternatives, the SCL 
model requires estimating only one more parameter than the MNL model (with which the model is nested), the dissimilarity parameter. 

G
(
eV1 , …, eVA

)
=
∑A− 1

i=1

∑A

j=i+1

((
αi,ijeVi

)1/μ
+
(
αj,ijeVj

)1/μ
)μ

(10)  

αi,ij =
ωij

∑A
l=1ωil

, ∀i, j ∈ {1, ⋯, A} (11) 

The spatial approach of the SCL model was extended with new, spatially correlated GNL models. These SCL-based models use 
metrics of the spatial similarity of the alternatives to calculate allocation parameters between pairs of alternatives according to Eq. 
(12), where f(i, j) is the value of a spatial metric f in each pair of alternatives i, j, whose values are non-negative, and which meets f(i, i) 
= 0, ∀i (see Pérez-López et al., 2020). 

αi,ij =
f (i, j)

∑A
l=1f (i, l)

, ∀i, j ∈ {1, ⋯, A} (12) 

The distance-based SCL model (Sener et al., 2011) is an SCL-based model that uses a distance-based spatial metric. Both the 
contiguity of the alternatives and the distance-based metrics are efficient in a context of alternatives with a regular shape, such as some 
type of grid. However, residential location models commonly use zoning based on administrative areas, which tends to have irregular 
shapes, especially in cities with historic areas. Pérez-López et al. (2020) propose in this context an SCL-based model which uses the 
common border length between pairs of contiguous alternatives as a spatial metric to calculate allocation parameters (BSCL). Eq. (13) 
shows the probability of choosing each alternative i in BSCL model, where Pi|ij (14) is the conditional probability of alternative i if the 
pair i, j is selected and Pij (15) is the probability for the pairi, j. 

Pi =
∑A

j=1

j∕=i

Pi|ij ⋅ Pij, ∀i ∈ {1, …, A} (13)  

Pi|ij =

(
αi,ijeVi

)1/μ

(
αi,ijeVi

)1/μ
+
(
αj,ijeVj

)1/μ (14)  

Pij =

((
αi,ijeVi

)1/μ
+
(
αj,ijeVj

)1/μ
)μ

∑A− 1
r=1
∑A

l=r+1

((
αr,rleVr

)1/μ
+
(
αl,rleVl

)1/μ
)μ (15)  

3. Spatially correlated nested logit 

In residential location choice context, alternatives are usually high in number and spatially correlated. The models with correlation 
between alternatives which we have considered viable or more appropriate for this context are GEV models with two different ap-
proaches. One approach is the NL model, with nested structures designed by the analyst for the application environment. The other 
approach corresponds to models based on spatially correlated logit model that use spatial correlation metrics between alternatives, 
which must be appropriate to the empirical context, such as the BSCL model, when the alternatives are built from irregularly shaped 
administrative geographic areas. This research postulates that both approaches are compatible and that their combination can improve 
the fit and predictive capability of the models specified with those approaches. The resulting GEV model has been termed spatially 
correlated nested logit (SCNL). 

The SCNL model makes the NL model more flexible in the spatial location choice modeling context, without adding parameters to 
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the estimation process. The new model makes it possible to model the spatial correlation between alternatives of the same NL nest. The 
alternatives still belong to a single nest and are not correlated with alternatives from different nests. However, the pairs of alternatives 
in the same nest do not have the same correlation. The spatial correlation between pairs of alternatives of the same nest is modeled 
from a metric of the spatial correlation between alternatives, following the approach based on spatially correlated logit model. 

The SCNL model proposed in this research has been formulated from a paired generalized nested logit specification, starting from a 
NL-type nest structure (each alternative belongs to a single nest) in a spatial location choice modeling context, and incorporating 
spatial correlation between the alternatives of the same nest. The GEV generating function of the SCNL model is Eq. (16). The allo-
cation parameters of each pair of alternatives are calculated from a spatial metric between alternatives f, as shown in Eq. (12). The 
dissimilarity parameters of the pairs of alternatives are assessed using Eq. (17), where δk(i,j) is a Boolean function, which is 1 if both 
alternatives belong to the same nest, and null otherwise. Thus, the dissimilarity parameters of the pairs of alternatives of the same nest 
are equal, and their μk values are estimated with sample data, reaching the value 1 in pairs of different nest alternatives. As a GNL 
model, the condition that μ1,…, μM ∈ (0, 1] ensures that the SCNL model is consistent with RUM (Wen and Koppelman, 2001). 

G
(
eV1 , …, eVA

)
=
∑A− 1

i=1

∑A

j=i+1

[(
αi,ijeVi

)1/μij +
(
αj,ijeVj

)1/μij
]μij

(16)  

μij :=
∑M

k=1
μkδk(i, j) +

∏M

k=1
[1 − δk(i, j)], ∀i, j ∈ {1, …, A} (17) 

This SCNL model collapses on the SCL-based model specified with the same spatial metric when there is only one nest to which all 
alternatives belong. The allocation parameters of the SCNL model are independent of the unit of measure used in the spatial metric, as 
shown below. 

Demonstration: 
Let f the spatial metric of the model and αi,ij the dissimilarity parameter of each alternative i with each other alternative j, i, j ∈ {1, 

…, A}. If we now have the same spatial metric but measured with other metric unit, f′, then there is a non-zero number a ∈ R, such that 
f′(i, j) = a • f(i, j), for all i, j∈{1, …, A}. The dissimilarity parameter calculated now with the new metric unit is: 

α’
i,ij :=

f ’(i, j)
∑A

l=1f ’(i, l)
=

a ⋅ f (i, j)
∑A

l=1a ⋅ f (i, l)
=

a
a

⋅
f (i, j)

∑A
l=1f (i, l)

= αi,ij 

The spatial location choice models have a high number of alternatives and, for this reason, typically do not include a full set of 
alternative specific constants; therefore, the expectations of perturbations between alternatives would not be constant and therefore 
the model would be artificially biased. In the SCNL model, as in CNL models, normalizing the allocation parameters to one suffices to 
avoid this (Abbe et al., 2007). This normalization is demonstrated in Eq. (18). 

∑A

j=1
αi,ij =

∑A

j=1

f (i, j)
∑A

l=1f (i, l)
=

∑A
j=1f (i, j)

∑A
l=1f (i, l)

= 1, ∀i ∈ {1, …, A} (18) 

The probability function of the SCNL model (Eqs. (19), (20), and (21)) is the same as for paired generalized nested logit model 
(Wen and Koppelman, 2001), albeit with a different definition of the parameters μij, and makes it possible to calculate the probability 
of each individual choosing the alternative i without integrations. The parameters of the model are estimated using maximum like-
lihood. The cumulative extreme-value distribution of the vector of perturbations of the utility equations of an SCNL model (ε1,…, εA) is 
expressed in Eq. (22). The marginal cumulative distribution function of each perturbation εi is a univariant extreme value. As 
confirmed in Eq. (23), the function is the Gumbel standard if the allocation parameters of each alternative are normalized to one, a 
requirement met in the SCNL model. 

Pi :=
∑A

j=1

j∕=i

Pi|ijPij, ∀i ∈ {1, …, A} (19)  

Pi|ij =

(
αi,ijeVi

)1/μij

(
αi,ijeVi

)1/μij +
(
αj,ijeVj

)1/μij
(20)  

Pij =

((
αi,ijeVi

)1/μij +
(
αj,ijeVj

)1/μij
)μij

∑A− 1
r=1
∑A

l=r+1

((
αr,rleVr

)1/μrl +
(
αl,rleVl

)1/μrl
)μrl

(21)  

F(ε1, …, εA) = exp

{

−
∑A− 1

i=1

∑A

j=i+1

[(
αi,ije− εi

)1/μij +
(
αj,ije− εj

)1/μij
]μij

}

(22)  
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F(εi) = exp

⎛

⎜
⎜
⎜
⎜
⎝

−
∑A

j=1

j∕=i

αi,ije− εi

⎞

⎟
⎟
⎟
⎟
⎠

= exp(− e− εi ), ∀i ∈ {1, …, A} (23) 

The correlation between each pair of alternatives (i, j) is calculated by numerical integration from the marginal bivariant cumu-
lative distribution function of the perturbations of the alternatives Abbe et al., 2007), which is expressed in Eq. (24). Eqs. (22) to ((24) 
have been deduced from the SCL equations (Bhat and Guo, 2004) by incorporating different μij parameters in each nest of the NL 
structure. 

H
(
εi, εj

)
= exp

{
−
[(

1 − αi,ij
)
e− εi +

(
1 − αj,ij

)
e− εj
]
−
[(

αi,ije− εi
)1/μij +

(
αj,ije− εj

)1/μij
]μij
}
∀i, j ∈ {1, …, A}, j ∕= i (24) 

From the approach proposed by Papola (2004), the unobserved correlation between alternatives can be approximated by Eq. (25). 
It is null when the alternatives are not in the same nest (like NL), and it is α1/2

i,ij α1/2
j,ij (1 − μ2

k) when both alternatives are in a Nk nest. In 
comparison with NL, the correlation between alternatives of the same nest is not constant and depends on the allocation parameters 
and, therefore, on the spatial metric used. With respect to SCL-based models, the correlation between alternatives depends on the nest 
to which both of them belong. 

Ĉorr
(
εi, εj

)
= α1/2

i,ij α1/2
j,ij

(
1 − μ2

ij

)
, ∀i, j ∈ {1, …, A} (25) 

Considering a linear observed utility in the parameters, with coefficients βm, the direct elasticity of the m-th regressor of alternative 
i, Xim, measures the expected percentage change in Pi for an increase of one percentage point of Xim. The cross-elasticity of Xim in Pj 
measures the expected percentage variation in Pj for an increase of one percentage point in Xim. Tables 1 and 2 show a comparison of 
direct and cross-elasticity of SCNL model with other GEV models. 

Direct and cross-elasticity of the SCNL have the same formulation as MNL and NL models in the alternatives of the root nest. In 
comparison with SCL-based models, in the SCNL both formulations depend on the dissimilarity parameters of the nest for alternatives 
in the same nest. SCNL elasticities are equivalent to that of SCL-based models in the case that all alternatives are in the same nest. If 
spatial metric is based on contiguity, the cross-elasticity of non-contiguous alternatives for SCNL and SCL-based specification is equal 

Table 1 
Direct elasticities of each alternative iϵ{1,…,A}.  

Model Direct elasticity 

SCNL • If i is in root nest  
(1 − Pi)βmXim  

• If i is in Nk nest, kϵ{1, …, M}

SCL-based ∑A
j = 1
j ∕= i

Pi|ijPij[(1 − Pi) + (μ− 1 − 1)(1 − Pi|ij)]

Pi
βmXim 

NL • If i is in root nest  
(1 − Pi)βmXim  

• If i is in Nk nest, kϵ{1, …, M}

[(1 − Pi) + (μ− 1
k − 1)(1 − Pi|k)]βmXim, ∀iϵ{1, …, A}

MNL (1 − Pi)βmXim  

Table 2 
Cross-elasticities of each pair of alternatives i,jϵ{1,…,A},j∕=i.  

Model Cross-elasticity 
SCNL 

−
[
Pi + (μ− 1

ij − 1)
Pi|ijPijPj|ij

Pj

]

βmXim 

• If i, j are not in the same nest 
-PiβmXim 

• If i, j are in Nk nest, k ∈ {1, …, M} 

−
[
Pi + (μ− 1

k − 1)
Pi|ijPijPj|ij

Pj

]

βmXim 

SCL-based 
−
[
Pi + (μ− 1 − 1)

Pi|ijPijPj|ij

Pj

]

βmXim 

NL • If i, jare not in the same nest 
-PiβmXim 

• If i, j are in Nk nest, k ∈ {1, …, M}* 
− [Pi + (μ− 1

k − 1)Pi|k]βmXim 

(*) Modified from Papola (2004) for easier comparison 
MNL -PiβmXim  
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to that of MNL. SCNL and NL have the same cross-elasticity in alternatives from different nests (and equal to that of the MNL model). In 
alternatives belonging to the same nest, the second formulation in Table 2 of the cross-elasticity of the SCNL model looks quite similar 
to that of the NL model. However, this similarity is misleading. Unlike the NL model, the conditional probability of the SCNL model 
depends on the implicit effect of the assignment parameters. 

The SCNL model requires a more complex design and estimation process than the NL and SCL-based models. Regarding the design, 
in comparison with NL, the SCNL model requires selecting a spatial metric appropriate to the zoning of the geographic area, and 
calculating the values of the metric in the zoning normally using a GIS; with respect to SCL-based models, SCNL requires designing a 
nested structure appropriate to the empirical context of application. Regarding estimation, although the SCNL model has the same 
unknown parameters as the NL model, its estimation process is more complex because the SCNL model is a reduced specification of the 
paired combinatorial nested logit model; in comparison with SCL-based models, the nested design increases the number of unknown 
parameters by a number equal to the number of nests minus one. When a SCNL model uses spatial metrics like the original SCL 
contiguity or the BSCL metric, the number of parameters of the SCNL is the same as that of the NL. The SCNL model is compatible with 
SCL-based specifications that require estimating additional parameters, as in the case of generalized spatially correlated logit (Sener 
et al., 2011). 

SCNL model is compatible with a mixed GEV specification (MSCNL), which makes it possible to incorporate variations in decision- 
makers’ preferences through an overlapping structure of random coefficients. 

4. Empirical application of SCNL 

This application of the SCNL model in the city of Santander (Spain) focuses on comparing the capacity to collect the spatial cor-
relation between alternatives of this model, against the previous GEV models that are described in Section 2. To compare the 
explanatory power of the estimated models, we will use the statistical techniques of goodness-of-fit (GoF) (Hilbe, 2009). To compare 
how well the estimated models keep their predictive accuracy in a different sample, we will use statistical validation techniques as 
recommended by Parady et al. (2021). This application also shows the results of a proof of concept of MSCNL. 

To avoid design bias, we use data and spatial elements designed to be applied with the models that are described in Section 2 (with 
the previous GEV approach) from research projects INTERLAND (see Ibeas et al., 2013) and TRANSPACE (Dell’Olio et al., 2016). The 
sample, the zoning and the nests structure are the same of Ibeas et al. (2013). Also, the spatial metric of the correlation between 
alternatives and the utility function, both the kernel GEV and its mixed specification are from Pérez-López et al. (2020). 

Endogeneity has been established as a relevant issue in residential location choice models (Guevara and Ben-Akiva, 2006) and in 
other discrete choice models (Guevara and Ben-Akiva, 2012; Guerrero et al., 2021a; Guerrero et al., 2021b). When the alternatives are 
the specific dwelling to live, it is usually due to the omission of attributes of the dwelling that are correlated with the price and in-
fluence the choice. This misspecification will suppose that the impact of price in the choice process will not be correctly established and 
the estimators of the model parameters may be biased and inconsistent. It would be a serious problem for policy analysis. An indicator 
of the problem may be that the dwelling-unit price coefficient is non-significant, small or even positive. This problem can be addressed 
with the control function method (see Guevara and Ben-Akiva, 2012 for forecasting issues with that method and Guevara, 2015, for a 
critical assessment of several methods). This method requires to select adequate instrumental variables that are correlated with the 
price but are uncorrelated with the error term. For the kind of choice presented, those variables can be constructed as an average of the 
prices of other dwellings with similar observed attributes (other than price) and locating within certain vicinity (Guevara, 2010; 
Guevara and Ben-Akiva, 2012). In the application presented herein, the alternatives are not specific dwellings but areas, and the 
variable of the utility function is the mean price of dwellings in the area. In that situation, endogeneity due to omitted attributes of a 
specific dwelling that are correlated with price is not expected, although other sources of endogeneity cannot be discarded at all. As can 
be seen later, the results do not show indications of endogeneity, but it is advisable to carefully analyze this issue in models estimated 
for policy analysis (see Guerrero et al., 2021a; Guerrero et al., 2021b). 

Table 3 
Explanatory variables of the sample.  

Name Description Type Mean/ 
Distribution 

Standard 
deviation 

JT Journey time in minutes between residential zone and employment zone. Alternative –Specific of 
individual 

7.57 3.93 

FO Number of non-EU foreigners in the residential zone (in thousands of people). Alternative 0.461 0.224 
HO Natural log of the number of housing in the residential zone. Alternative 7.858 0.228 
PS Dichotomous factor indicating that the residential zone has special prestige 

(subjective). 
Alternative NO: 95.51% 

YES: 4.49% 
PR Average price of housing in the residential zone (in millions of €). Alternative 0.28761 0.12670 
SC Number of primary and secondary education centers at a maximum distance of one 

km from residential zone centroid. 
Alternative 2.22 1.70 

WT Average waiting time in minutes at public transport stops in the residential zone. Alternative 10.51 0.78 
H Dichotomous factor indicating decider’s high monthly net family incomes (more 

than 2500 €). 
Individual NO: 76.97% 

YES: 23.03%  
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4.1. Data and spatial elements 

The sample contains 534 individual choices of deciders who live and work in the city of Santander. Table 3 includes descriptive 
statistics of the explanatory variables in the sample. The observed component of the utility function is a linear form which does not 
include alternative-specific constants. The regressors are the journey time (JT), the number of non-EU residents in the area (FO), the 
number of homes available in the area (HO) and the average house price in the area (PR), as well as the interactions between the high- 

Fig. 1. Map of the scheme of the alternative residential zones in Santander.  

Fig. 2. Nest structure of alternatives.  
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income level (H) with the prestige of the area (PS) and with the number of primary and secondary education centers near the centroid 
of the area (SC). The theoretically expected sign of estimated coefficients is negative in the case of JT, FO and PR, and positive in the 
case of HO and the interactions PS • H and SC • H. The mixed GEV specifies the coefficient of the regressor SC • H like a random 
variable with a normal distribution. 

The zoning used in this section is based on the map of administrative areas of the city and resulted in 26 alternatives with very 
irregular shapes, as shown in Fig. 1. The spatial metric based on the length of the common border between pairs of alternatives is more 
efficient than the previous metrics in the context of alternatives with irregular shapes (Pérez-López et al., 2020). We are using this 
spatial metric in this application on a specification of a SCL-based model (BSCL) and on a specification of the SCNL model proposed in 
this paper (BSCNL). 

The nests structure shown in Fig. 2 consists of three nests (A, B and C), leaving two alternatives in the root nest, that is, uncorrelated 
with each other or with other alternatives. Nest A consist of two different areas. This nested structure has a strong spatial component in 
order to capture the spatial correlation patterns between alternatives and those resulting from non-spatial characteristics, for the NL 
model. Thus, this design will test the ability of the SCNL model to capture spatial correlations between alternatives that have not 
already been identified by the nested structure, thereby verifying the ability of the SCNL model to complement the NL model. 

4.2. Results analysis 

All GEV models are estimated in this section by maximum likelihood (maximum simulated likelihood with 1000 iterations in the 
case of mixed specifications) using the Biogeme program (Bierlaire, 2003), applying the same DONLP2 (Spellucci, 1993) optimization 
algorithm in all estimates. In the models, the coherence of the signs of the estimated coefficients with those theoretically expected 
(described in the previous subsection) was verified. The relevance of the regressors was also checked using the asymptotic t-test at 5% 
of significant level of the corresponding estimated coefficients. The relative influence of the regressors was ordered using standardized 
coefficients, even though they are measured on different scales (in fact, in this case there are continuous, qualitative, and even 
dichotomous regressors). Different statistics are used to standardize the estimated coefficients (see Menard, 2004; Menard, 2011). In 
this case, we will use the statistic proposed by Menard (1995) and Agresti (1996) which is obtained by multiplying every estimated 
coefficient and the sample standard deviation of its regressor. The higher the absolute standardized value of the regressors is, the 
stronger their relative influence on the decision will be. 

The GoF statistics calculated in every estimated model are the following likelihood ratio indexes: McFadden (ρ2,1974), Horowitz 
(ρ2

H, 1983), and Akaike Information Criterion (AIC; Ben-Akiva and Swait, 1986). The last two penalize the number of parameters that 
have been estimated; thus, they are useful for comparing models that estimate different numbers of parameters. The AIC penalizes 
more the incorporation of parameters, which favors more parsimonious models. To compare the GoF of two of the estimated models, 
we will use the following procedure. If the two models estimate the same parameters, they will be compared using ρ2. If the two models 
estimate different parameters, different criteria are used, depending on the situation. If the two models being compared are nested 
(where one model can be determined through linear constraints of the parameters of the other model) we use the likelihood ratio test 
(LRT). If the two models being compared are not nested we use the following criteria described in Horowitz (1983). First, the LRT of 
each model is performed with respect to a model with which both are nested (in this case, the null model or the MNL model with the 
same utility function). If one of the LRTs is significant and the other is not, the model with the significant LRT will be chosen. If both are 
significant, GoF statistics will be used to penalize the incorporation of additional parameters. Horowitz proposed ρ2

H, in this research, 
we will also analyze the AIC. If different conclusions are reached with each parameter, we will consider the result inconclusive. 

A cross-validation process with K = 10 groups has been conducted, randomly partitioning the sample. The accuracy of the 

Table 4 
Results of the estimation of the models NL, BSCL and BSCNL. LRT significant code: “**” if the test is significant at 1% significance level.    

BSCL NL BSCNL  
Parameter Value SE StC Value SE StC Value SE StC 

Estimation βJT − 0.18 0.0518 − 0.708 − 0.104 0.0271 − 0.409 − 0.104 0.0271 − 0.409 
βFO − 1.12 0.447 − 0.251 − 1.00 0.300 − 0.224 − 0.892 0.284 − 0.200 
βHO 2.05 0.417 0.467 1.55 0.305 0.353 1.29 0.283 0.294 
βPR − 2.63 0.596 − 0.333 − 2.17 0.426 − 0.275 − 1.99 0.399 − 0.252 
βPS • H 1.58 0.396 0.136 1.22 0.262 0.105 1.02 0.260 0.088 
βSC • H 0.302 0.0752 0.453 0.210 0.0460 0.315 0.173 0.0469 0.259 
μ− 1 1.74 0.0979  1   1   
μA
− 1    1.25 0.147  3.11 1.42  

μB
− 1    1.26 0.128  2.27 0.773  

μC
− 1    1.05 0.089  1.49 0.430  

No. est. par. 7  9  9  
GoF LL − 1663.183  − 1661.270  − 1659.038  

ρ2 0.0441  0.0452  0.0464  
ρ2

H 0.0420  0.0426  0.0438  
AIC 0.04003  0.03998  0.0413  
LRT-MNL 9.570 ** 13.396 ** 17.860 ** 

Val. PG-CV 0.0437  0.0438  0.0440   
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predictions has been measured using PG-CV statistic, which is the geometric mean value of the ten values of the Predicting Geometric 
statistics. The Predicting Geometric values are obtained in each iteration of the cross-validation process with the geometric mean value 
of the correct probabilities (probability according to the model of the alternative chosen by the respondent) in the test sample, albeit 
using the model estimated with the training sample (Başar and Bhat, 2004; de Luca and Cantarella, 2009; Martínez-Pardo et al., 2020). 
In this research, we use the geometric mean, instead of the arithmetic mean that is commonly used. The geometric mean has better 
properties when using probability data. 

Table 4 shows the estimation, GoF and validation results to compare NL, BSCL and BSCNL models. The estimation results of each 
model include, for each estimated parameter, the estimated value (Value), its standard error (SE) and its standardized coefficient (StC). 
The results table of each estimated model will also show the number of estimated parameters (No. est. par.) and the GoF and Validation 
results. In the three models, all the estimated parameters are significant, with signs coherent with the theoretically expected and with 
the same order from standardized coefficients. The most influential explanatory variable in the decision is JT, followed by HO, SC • H, 
PR, FO and finally PS • H. These results are similar to those obtained with the MNL and SCL models (Pérez-López et al., 2020). 

The three models improve the GoF and the validation results of the MNL and SCL models. The NL model improves the validation 
results of the BSCL model, and some of the GoF results, but is not totally conclusive. They are not nested between them and have a 
different number of estimated parameters, therefore to compare their GoF, we use ρ2

H and AIC. The NL model has a higher ρ2
H value than 

BSCL but a lower AIC value. However, the proposed BSCNL model significantly improves the GoF and the validation results of both of 
them. 

The mixed specification BMSCNL has one more parameter to estimate than its kernel BSCNL. BMSCNL improves the GoF and 
validation statistics results of BSCNL (but the LRT is not significant). The results are inconclusive, and for this reason it is not included 
in the table. Fig. 3 compares the values of GoF and validation measures assessed in the different models estimated, including MNL, SCL 
and BMSCNL that are not shown in table 4. The results of the BSCNL and BMSCNL specifications of the SCNL model improve those of 
the rest of the models in all the concepts considered. 

5. Conclusions 

The spatially correlated nested logit (SCNL) model is proposed in this research for spatial location choice modeling. The SCNL 
model makes it possible to combine the approach of nested alternatives of the nested logit model (NL) with that of extensions based on 
spatially correlated logit (SCL) model using metrics of spatial correlation between alternatives. Thanks to this combination, the SCNL 
model improves the explanatory and predictive power of the models that use the previous approaches. 

The SCNL model can improve the explanatory and predictive power of the NL, even when the nested structure of the NL model has a 
strong spatial component, with the same unknown parameters (if the spatial metric does not require additional parameters, as the one 

Fig. 3. GoF and validation statistics of estimated models.  
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employed in the application). This improvement occurs when the spatial metric selected in the SCNL model is able to capture the 
spatial correlation between alternatives that the nested structure designed by the analyst for the NL model was unable to capture. The 
SCNL model achieves this improvement over the NL model by modeling the correlation between pairs of alternatives belonging to the 
same nest using spatial metrics. 

The SCNL model can also improve the explanatory and predictive power of SCL-based models with the same metric of spatial 
correlation between alternatives. This improvement occurs when non-spatial correlation between alternatives is captured by the 
nested structure or when this nested structure is capable of detecting spatial correlation between alternatives in addition to that 
captured by the spatial metric. The SCNL model achieves this improvement over these models thanks to the flexibility of the 
dissimilarity parameter between nests, which makes it possible to model the correlation between pairs of alternatives with greater 
flexibility than SCL-based models. Furthermore, unlike SCL-based models, SCNL models do so considering not only spatial but also 
other correlation factors. 

In addition, the SCNL model proposed in this research is compatible with mixed specifications of random coefficients to incorporate 
heterogeneity into decision-makers’ preferences. The mixed SCNL model thus built may have better properties than the kernel SCNL in 
the presence of heterogeneous preferences. 

The application of the different models analyzed empirically confirmed that the proposed SCNL model has good properties. The 
BSCNL model (using the common spatial border correlation metric) provided better empirical results than the SCL-based model using 
the same spatial metric and NL models, both in goodness-of-fit and in validation. 
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Başar, G., Bhat, C., 2004. A parameterized consideration set model for airport choice: an application to the San Francisco Bay Area. Transp. Res. Part B 38, 889–904. 
Ben-Akiva, M., Bierlaire, M., 1999. Discrete choice methods and their applications to short-term travel decisions. In Hall R (Eds.). Handbook Transp. Sci. 5–34. 
Ben-Akiva, M., Francois, B., 1983. Mu-homogenous Generalized Extreme Value Model. Working Paper.  
Ben-Akiva, M., Swait, J., 1986. The Akaike likelihood ratio index. Trans. Sci. 20 (2), 133–136. 
Bhat, C.R., Guo, J., 2004. A mixed spatially correlated logit model: formulation and application to residential choice modeling. Transp. Res. B Methodol. 38 (2), 

147–168. 
Bierlaire, M., 2003. BIOGEME: a free package for the estimation of discrete choice models. Ascona, Switzerland. In: 3rd Swiss transportation research conference. 
Bolduc, D., 1992. Generalized autoregressive errors: the multinomial probit model. Transp. Res. B 26, 155–170. 
Chu, C., 1981. Structural Issues and Sources of Bias in Residential Location and Travel Mode Choice Models. Unpublished Ph.D. Dissertation. Department of Civil 

Engineering, Northwestern University, USA. 
Chu, C., 1989. A paired combinatorial logit model for travel demand analysis. In: Proceedings of the Fifth World Conference on Transportation Research. Ventura, CA, 

pp. 295–309 vol. 4.  
Daganzo, C., 1979. Multinomial Probit: The Theory and Its Application to Demand Forecasting. Academic Press, New York.  
Daly, A.J., Zachary, S., 1978. Improved multiple choice models. In: Hensher, DA, Dalvi, MQ (Eds.), Determinants of Travel Choice. Westmead, Saxon House, 

pp. 335–357. 
de Luca, S., Cantarella, G.E., 2009. Validation and comparison of choice models. In: Saleh, W., Sammer, G. (Eds.), Travel Demand Management and Road User Pricing: 

Success, Failure and Feasibility. Ashgate publications, pp. 37–58. 
Dell’Olio, L., Cordera, R., Ibeas, A., (Eds) Alonso, A., Alonso, B., Barreda, R., Comi, A., Coppola, R., González, E., Monzón, A., Moura, J., Nogués, S., Nuzzolo, A., Orro, 
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