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A B S T R A C T

Based on a solid mathematical background, this paper proposes a method for Symbolic Regression that enables
the extraction of mathematical expressions from a dataset. Contrary to other approaches, such as Genetic
Programming, the proposed method is deterministic and, consequently, does not require the creation of a
population of initial solutions. Instead, a simple expression is grown until it fits the data. This method has
been compared with four well-known Symbolic Regression techniques with a large number of datasets. As
a result, on average, the proposed method returns better performance than the other techniques, with the
advantage of returning mathematical expressions that can be easily used by different systems. Additionally,
this method makes it possible to establish a threshold at the complexity of the expressions generated, i.e.,
the system can return mathematical expressions that are easily analyzed by the user, as opposed to other
techniques that return very large expressions.
1. Introduction

In Machine Learning, supervised learning makes it possible to dis-
cover models that represent the relationship between a series of inputs
and outputs. Nowadays, there are many different techniques for de-
veloping these models, such as Artificial Neural Networks (Haykin,
2009). However, most of these methods do not give hints about the true
relationship between inputs and outputs, even though they show good
results in the modeling. In many environments, a black-box model is
not enough, since the objective is to find out an equation that the expert
can analyze and thus increase the knowledge about the system being
modeled. In this sense, the search for transparent ML models, showing
a clear relationship between inputs and outputs is a current hot topic
in research, and nowadays there are conferences, such as FAccT (ACM
Conference on Fairness, Accountability and Transparency), dedicated
to this particular topic.

When that relationship is a mathematical expression, it is called
Symbolic Regression (SR). This term framed the few techniques which,
given a dataset of observations, explore the search space to find an
expression that fits that dataset (Orzechowski et al., 2018). Among
those techniques, the most commonly used are based on Genetic Pro-
gramming (GP) (Koza, 1992) (Poli et al., 2008) which is a general-
purpose evolutionary technique. Although, other representations have
arisen, such as Linear GP (Brameier & Banzhaf, 2010), Stack-based
Genetic Programming (Perkis, 1994), Cartesian Genetic Programming
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(CGP) (Miller & Turner, 2015), or Positional Cartesian Genetic Pro-
gramming (PCGP) (Wilson et al., 2018), the classical tree-shape rep-
resentation is still the most used codification for mathematical expres-
sions in Symbolic Regression.

GP starts from an initial population of tree-shaped individuals,
which undergo an evolutionary process with the execution of the
genetic operators (selection, crossover, mutation, and replacement).
These operators are based on randomness making the whole process
a highly time-consuming task. For instance, the original crossover op-
erator proposes the random combination of mathematical expressions,
although there are different approaches that try to combine useful
parts (Kronberger et al., 2009)(Krawiec, 2012). The mutation operator
also makes random changes in a mathematical expression. Therefore,
even though the whole evolutionary process is a search driven by the
fitness function, the computation of many mathematical expressions
that are not going to be part of the final expression is clearly necessary.
Attending to the convergence behavior of those solutions, it should be
highlighted that, although the algorithms behind GP are well-known,
there is no underlying theory for its convergence behavior, and the re-
sults obtained lack a mathematical basis. However, as a system capable
of performing symbolic regression, it has been successfully applied to
real-world problems, such as integrated circuit design (McConaghy &
Gielen, 2009) or civil engineering (Pérez et al., 2008).

In recent years, a new type of GP called Geometric Semantic Genetic
Programming (GSGP) has arisen (Moraglio et al., 2012). This approach
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works in the so-called geometric space, which is made up of the outputs
of the GSGP programs (semantics). In this space, the targets are another
point in the semantic space. Its performance, measured in results
and time, is much better than GP. However, a big drawback of this
technique is the excessive number of nodes in the resulting tree, usually
higher than 1015 (Pawlak, 2016). Although there are studies that try to
reduce this number (Martins et al., 2018), the result is still too complex,
and is often the sum of different mathematical expressions. On the
other hand, it has been demonstrated that the resulting expression is a
sum of the first generation expressions (Pawlak, 2016). This fact, which
results in oversized and very complex expressions, is a major drawback
of this technique, since those expressions are not understandable by
a human being. However, it has been successfully applied in many
real-world environments, such as financial (McDermott et al., 2014) or
biomedical (Zhu et al., 2013).

Another interesting GP-based Symbolic Regression technique is
called Prioritized Grammar Enumeration (PGE). Starting from an initial
set of simple functions, this technique expands the best ones resulting
in more complex expressions. Genetic operators are replaced with
grammar production rules becoming a deterministic algorithm in which
no random number generation is used by this algorithm (Worm & Chiu,
2013). However, to date it has not been possible to reproduce the
results reported.

Symbolic Regression is a research field that has hardly been ex-
plored outside of GP literature, with very few papers reporting non-
evolutionary approaches (McConaghy, 2011)(Pawlak, 2016). Those ap-
proaches, despite having a very short computation time and producing
good training results, are based on a combination of several functions.
The resulting expression is the weighted sum of a series of expressions,
similar to what happens in GSGP (Pawlak, 2016). Although, FFX uses
sparsity inducing 𝐿1 penalty or a mixture of 𝐿1 and 𝐿2 penalty to
limit the complexity, this method returns expressions that are not
understandable by any human.

This FFX approach has been improved in combination with GP,
resulting in the FFX/GP algorithm. This technique is based on creating
combinations of the input variables and their combination through lin-
ear regression by using ElasticNet (Zou & Hastie, 2005). This technique
is applied several times, and as a result new data are obtained, which
are used as input to GP (Icke & Bongard, 2013).

In a different approach called SymTree, a tree structure is developed
in which the root node contains a linear regression of its children.
These nodes are iteratively expanded by creating new children with
simple functions. To generate the child nodes, a greedy heuristic is
used (Olivetti de França, 2018). As in previously described approaches,
this technique is based on linear combinations of different expressions.

There are also some interesting Deep Learning-based algorithms
that leverage artificial neural networks for symbolic regression. In a
system called Deep Symbolic Regression (DSR), a neural network is
used to search symbolic expressions (Petersen, 2019). Using risk-aware
reinforcement learning, a recurrent neural network is trained to output
a distribution over mathematical expressions. From this distribution,
some expressions are taken and evaluated, resulting in a fitness value
that is used as the reward signal to train the neural network.

In a different study, the method called AI Feynman (Udrescu &
Tegmark, 2020), symbolic regression is performed in two big steps:
simplification of the problem, and finding a solution. The first step
includes tasks to identify simplifying properties, such as dimensional
analysis, translational symmetry or multiplicative separability. The
objective of this part is to transform the problem so that it can be
solved more easily in the next step. Then, a polynomial fit is performed,
and brute force is used to find more complex expressions. A six-layer
feed-forward neural network is used to perform tests for translational
symmetry, generalizations, and separability.

In another paper, GrammarVAE, a Variant Autoencoder is used as
a generative model to develop expressions according to a pre-defined
2

grammar (Kusner et al., 2017). In this study, this is used for symbolic
regression. Neural networks are also used to develop expressions by
using symbolic operators as activation functions, which allows the
development of complex expressions. This scheme was used in a system
called Equation Learner (EQL) (Sahoo et al., 2018).

One of the most recent advances in Symbolic Regression is described
in (Kammerer et al., 2020). In this paper, a search space of semantically
unique expressions is defined by context-free grammar. From this point,
an exhaustive search is performed through all of the expressions and,
the best-fitting one is selected. This search space is explored through
a grammar and a hashing scheme and the result is a deterministic
algorithm for symbolic regression.

Finally, one of the most important and recent approaches is called
CFR (Continued Fraction Regression) (Moscato et al., 2021). This ap-
proach uses a memetic algorithm that uses continued fractions as a
representation. The search does not occur in the whole search space
of expressions. In other words, this method has a fixed representation
as a CFR and the search occurs in the coefficient space of the CFR.
Therefore, this method only uses algebraic operators, and is very similar
to the method proposed in this paper and is therefore of particular
interest for a comparison of both methods.

As shown in this literature review, GP and its variants have been
very successful in SR. However, GP and, in general, population-based
algorithms have practical limitations when used for SR. The most im-
portant issue is the dependency on their stochastic nature, which could
return very different expressions in different executions on the same
datasets, since randomness is inherent in the algorithm itself. In SR, the
search space is usually very large and this complexity is enhanced by
the fact that there are multiple expressions that are equivalent to each
other. Even if population-based algorithms usually perform a search in
many parts at the same time, there is no guarantee that the whole
search space is explored. According to the No-Free-Lunch theorems,
it is impossible for any algorithm to perform a universal optimiza-
tion (Wolpert & Macready, 1997). This means that the performance
of all optimization algorithms is equal when it is averaged across all
possible problems. Therefore, there is no best optimization algorithm
that can be used for any SR. For this reason, other algorithms will
outperform GP and the rest of population-based and non-population-
based algorithms in many problems. Thus, new algorithms are needed,
even though they will also be surpassed by the existing ones in some
problems. This last point can be seen in several studies comparing
various ML regression techniques, including GP-based regression meth-
ods (La Cava et al., 2021; Moscato et al., 2021; Orzechowski et al.,
2018).

The main aim of this paper is to propose a novel approach for
Symbolic Regression. This method called DoME (Development of Math-
ematical Expressions), allows the extraction of the relationship between
the inputs and outputs of a dataset in the form of a mathematical
expression. The key elements of this novel approach are, firstly, the
method is based on the iterative expansion of mathematical expres-
sions with no randomness in this process. Consequently, this method
is deterministic and has a solid mathematical background. Secondly,
the method makes it possible to control complexity of the expression,
which helps in the interpretation of the results. The representation and
search bias used by DoME may work especially well for many real-
world problems, particularly those with low dimensionality and smooth
functions.

2. Model

2.1. Overview

Similarly to GP, the proposed approach develops the equation in
a tree-shape where two types of nodes are distinguished: terminal, or
leaves of the tree, and non-terminal, or functions. As terminal nodes, we
use only the variables of the problem and constants. As non-terminal

nodes, the four basic arithmetic operators are used: +,-,*,/. Note that
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Fig. 1. Example of a tree.

we do not use ‘‘%’’ as protected division. In GP, it was needed to protect
that operation because, as a result of many different combinations,
there are chances to generate a divisions by zero. In this approach, the
tree being developed will always be correct without illegal operations.

Fig. 1 shows an example of a tree. This tree has 11 nodes, 4 of which
are non-terminal (labeled in squared tags as 1, 3, 4, and 8), and 5 are
terminal (labeled in squared tags as 2, 4, 5, 7, 9, and 11). This tree
represents the following function:

𝑓 (𝑥1, 𝑥2, 𝑥3,…) = 2
3

1− 2
𝑥3

+ 1
(1)

Since the four basic arithmetic operators are used to construct
the trees, all DoME expressions can be transformed algebraically into
a rational polynomial. This is a restriction of this algorithm, which
is not present in other SR systems such as GP-based methods. This
restriction can lead to good results on many real-world problems, but
poor performance on other problems where other behavior (such as
periodic) is required. Therefore, a large benchmark set is needed to
analyze its overall performance compared with other systems.

The proposed method starts from a minimum tree that, in successive
iterations, is made to grow or shrink by replacing its nodes (either
terminal or non-terminal) with other expressions. For example, a node
can be replaced by a terminal node containing a constant (constant
search), if this reduces the error of the tree. To do this, the best constant
to replace that node is calculated. Another possibility is to replace
that node with a terminal node containing a variable (variable search).
Another possibility is to perform a mixture of these two searches,
replacing the node with an expression, such as 𝑘+𝑥2 (constant-variable
search).

A key element in this approach is the necessity to be able to
calculate the error directly from the output of a node. This allows,
firstly, to calculate the best constant for which that node could be
substituted, and secondly, to calculate the error as a consequence of
that substitution. The mathematical formulation of this method evolves
around calculating the error from the output of a node and calculating
the best constant for that node.

The algorithm can be summarized in the following steps:

1. Construct an initial tree consisting of a constant.
2. For each node, calculate the coefficients that allow to evaluate

the error from the outputs of that node.
3. Examine the nodes of the current tree following a strategy.

According to this strategy, for each selected node 𝑝, perform one
or more of these operations:
3

• Compute the best constant with which to replace that node
𝑝, temporarily replace that node 𝑝 with the constant, and
compute the error of this new tree.

• For each variable 𝑥𝑖, temporarily replace that node 𝑝 with
that variable and calculate the error of this new tree.

• For each variable 𝑥𝑖 and each of the four arithmetic opera-
tions, calculate the best constants with which to construct
the operations 𝑘 + 𝑥𝑖, 𝑘 − 𝑥𝑖, 𝑘 ∗ 𝑥𝑖 and 𝑘∕𝑥𝑖, temporarily
replace node 𝑝 with each of the expressions and calculate
the error in the new tree.

• For the + and * operations, calculate the best constants
with which to construct the expressions 𝑘 + 𝑝 and 𝑘 ∗ 𝑝,
substitute the node 𝑝 temporarily for each of these two
expressions, and calculate the error in the new tree.

4. If any of the previous temporal substitutions leads to a reduction
in error greater than a fixed threshold, perform it as definitive.

5. If no stopping criterion is met, return to step 2.

As seen above, this algorithm is made up of different parts, such
as the strategy of going through the nodes, the calculation of the
coefficients for each node, or the substitution operations for each node.
The rest of the subsections are intended to explain each of these parts
separately.

2.2. Representation

Usually, when working in Machine Learning, the user has a dataset
arranged as a matrix with dimensions 𝑁 × 𝑃 or 𝑃 × 𝑁 , with 𝑃
representing the number of variables or features, and 𝑁 the number
of data samples. In supervised learning, a target matrix is also needed
with the dimension of 𝑁 × 𝑇 or 𝑇 ×𝑁 being 𝑇 the number of outputs.
In the case of SR, since a single equation is desired, 𝑇 = 1, and the
values of this matrix are real numbers. Mathematically, these matrices
represent a set of pairs {(𝐱𝐢, 𝑡𝑖), 𝑖 = 1,… , 𝑁}, where 𝐱𝐢 ∈ R𝐿 represents
a data sample with 𝑃 features and 𝑡𝑖 ∈ R represents the target value for
this data sample. Thus, an N-dimensional vector 𝐭 represents the target
values for each data sample. The objective of symbolic regression is
to find a function 𝑓 ∶ R𝐿 → R that minimizes a metric ‖𝐨, 𝐭‖, where
the vector with 𝐨 represents the output of the function for each data
sample, i.e., 𝑜𝑖 = 𝑓 (𝐱𝐢), 𝑖 = 1,… , 𝑁 .

The most common way of working with this is creating a P-
dimensional space, in which each dimension corresponds to each input
variable. Thus, each data sample is a point in that P-dimensional space.
However, in this paper, we work with an N-dimensional space, with one
dimension for each data sample. Therefore, each variable corresponds
to a single point in this space (𝐱𝐢 = (𝑥𝑖1,… , 𝑥𝑖𝑁 )), and the targets are
also a point in this space (𝐭 = (𝑡1,… , 𝑡𝑁 )). Moreover, the output of a
model (not limited to being an equation) gives one value for each data
sample, thus making a vector in this space (𝐨 = (𝑜1,… , 𝑜𝑁 )). Therefore,
each model is represented also as a point in this space. This vector 𝐨 is
called the semantics of this model, and 𝐭 are the target semantics. Since
both semantic vectors are points in the semantic space, the Euclidean
distance between both points can be calculated corresponding to the
square root of the 𝑆𝑆𝐸 (Sum Squared Error) of the model:

√

𝑆𝑆𝐸 =

√

√

√

√

𝑁
∑

𝑖=1
(𝑜𝑖 − 𝑡𝑖)2 (2)

Thus, finding a better model is equivalent to finding a model closer
to the target point. Therefore, an N-dimensional sphere is being created,
and any model inside this sphere will be a better model (i.e., with a
lower 𝑆𝑆𝐸). The radius of this sphere is the square root of the 𝑆𝑆𝐸
(Root Sum Squared Error, 𝑅𝑆𝑆𝐸). A different model with semantics
𝐨′ = (𝑜′1,… , 𝑜′𝑁 ) will be a better model if it is inside this sphere, i.e., if
it complies with the following equation:
𝑁
∑

(𝑜′𝑖 − 𝑡𝑖)2 < 𝑆𝑆𝐸 (3)

𝑖=1
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Table 1
Description of the tree of the example.

Node Semantic Equation S

1 (−1, 0.286, 0.8) 1
3
((𝑜𝑖 − 5)2 + (𝑜𝑖 − 4)2 + (𝑜𝑖 − 1)2) ∅

2 (2, 2, 2) 1
3
(( 𝑜𝑖+10

2
)2 + ( 𝑜𝑖−28

−7
)2 + ( 𝑜𝑖−2.5

−2.5
)2) ∅

3 (−2, 7, 2.5) 1
3
(( −5⋅𝑜𝑖+2

𝑜𝑖
)2 + ( −4⋅𝑜𝑖+2

𝑜𝑖
)2 + ( −𝑜𝑖+2

𝑜𝑖
)2) {(0, 0, 0)}

4 (−3, 6, 1.5) 1
3
(( −5⋅𝑜𝑖−3

𝑜𝑖+1
)2 + ( −4⋅𝑜𝑖−2

𝑜𝑖+1
)2 + ( −𝑜𝑖+1

𝑜𝑖+1
)2) {(−1,−1,−1)}

5 (3, 3, 3) 1
3
(( −5⋅𝑜𝑖+3

𝑜𝑖−1
)2 + ( −4⋅𝑜𝑖−1

𝑜𝑖+0.5
)2 + ( −𝑜𝑖+2

𝑜𝑖+2
)2) {(1,−0.5,−2)}

6 (−1, 0.5, 2) 1
3
(( −3⋅𝑜𝑖−15

𝑜𝑖+3
)2 + ( −2⋅𝑜𝑖−12

𝑜𝑖+3
)2 + ( 𝑜𝑖−3

𝑜𝑖+3
)2) {(0, 0, 0), (−3,−3,−3)}

7 (1,1,1) 1
3
(( −3⋅𝑜𝑖−9

𝑜𝑖+1
)2 + ( −2⋅𝑜𝑖−11

𝑜𝑖+2.5
)2 + ( 𝑜𝑖−2

𝑜𝑖+4
)2) {(2, 0.5,−1), (−1,−2.5,−4)}

8 (2, 0.5, −1) 1
3
(( 3⋅𝑜𝑖−18

−𝑜𝑖+4
)2 + ( 2⋅𝑜𝑖−14

−𝑜𝑖+4
)2 + ( −𝑜𝑖−2

−𝑜𝑖+4
)2) {(1, 1, 1), (4, 4, 4)}

9 (2, 2, 2) 1
3
(( 3⋅𝑜𝑖−18

−𝑜𝑖+4
)2 + ( 2⋅𝑜𝑖−56

−𝑜𝑖+16
)2 + ( −𝑜𝑖+4

−𝑜𝑖−8
)2) {(1, 4,−2), (4, 16,−8)}

10 (1, 4, −2) 1
3
(( −18⋅𝑜𝑖+6

4⋅𝑜𝑖−2
)2 + ( −14⋅𝑜𝑖+4

4⋅𝑜𝑖−2
)2 + ( −2⋅𝑜𝑖−2

4⋅𝑜𝑖−2
)2) {(0, 0, 0), (2, 2, 2), (0.5, 0.5, 0.5)}

11 (1, 1, 1) 1
3
(( −5⋅𝑜𝑖+17

𝑜𝑖−3
)2 + ( −4⋅𝑜𝑖−22

𝑜𝑖+6
)2 + ( −𝑜𝑖+0.5

𝑜𝑖+1.5
)2) {(3,−6,−1.5)}
w
f
w
e
f
T
c

t
n
i
o
a
n
e

Moreover, in order to reduce the impact of either having a large or
ow number of data samples, this number 𝑁 is usually inserted into
q. (3) resulting in the Mean Square Error. This is the metric used in
his work to optimize Symbolic Regression, shown in Eq. (4):

𝑆𝐸 = 1
𝑁

𝑁
∑

𝑖=1
(𝑜𝑖 − 𝑡𝑖)2 (4)

Again, a new model with outputs 𝐨′ = (𝑜′1,… , 𝑜′𝑁 ) that complies with
Eq. (3) is a model with a lower 𝑀𝑆𝐸, and closer to the target. If the
model being processed can undergo different improvements, the best
improvement will be the one that brings the model closer to the target
point. This is the improvement that makes the new outputs maximize
the reduction in 𝑀𝑆𝐸, given by Eq. (5)

𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 𝑀𝑆𝐸 − 1
𝑁

𝑁
∑

𝑖=1
(𝑜′𝑖 − 𝑡𝑖)2 (5)

This turns the problem of improving the model into an optimization
problem: the more positive the result of Eq. (5) is, the better the
performance of the new model will be. If different improvements are
possible, then the one that maximizes Eq. (5) will be selected. If none of
these possible improvements leads to having positive values in Eq. (5),
then the improvement process has finished.

The tree has its semantics determined by the outputs to each data
sample. As mentioned above, the root of this tree can be either a
terminal or a non-terminal node. In the latter case, non-terminals, the
root of the tree will be any of the four arithmetic operators, and each of
its children form another tree, with their corresponding semantics and
their corresponding points in the semantic space. Therefore, a tree with
𝑛 nodes is represented in the semantic space as the semantic point of the
root of the tree, but also as 𝑛− 1 different points. If any of these nodes
are modified, then the semantic points will be moved. Consequently,
the overall evaluation values of the root of the tree are changed and
the semantic point of the root of the tree will also be moved. Note
that constants and variables (terminal nodes of the tree) also have a
semantic value, representing one point in the semantic space.

Table 1 shows, in the second column, the semantics of each node
of the tree shown in Fig. 1. All the nodes, including constants and
variables, have their semantics, i.e., they are points in the search space.
The variable 𝑥3 takes the values of 1 for the first data sample, 4 for the
second and −2 for the third. Therefore, its semantics are the vector
(1,4,-2). Note that each terminal node representing a constant 𝑘 has
4

n

as semantics the vector (𝑘, 𝑘,… , 𝑘), since it evaluates to 𝑘 for each
data point. The semantics for each non-terminal node are calculated
by using the operation of this node and the semantics of each child.
The semantics for each node on the tree is calculated from the terminal
nodes to the root of the tree (bottom to top). This table contains two
columns (Equation and S) whose contents are necessary to understand
the formulation of this system, and will be described later in the paper.

2.3. Calculation of the equations for each node

The key idea of this study is that we could not have a tree that
makes a positive reduction in Eq. (5) moving its semantics to get closer
to the target point. However, it might be easier to modify one node in
any branch to move the root towards the target. This modification is
done by changing the chosen subtree into another. The question here
is how to find the replacement subtree. To find it, it is necessary to
calculate the 𝑀𝑆𝐸 from the outputs of this node. In this sense, each
node of the tree has an associated equation for calculating the 𝑀𝑆𝐸
from its outputs. As happens with the root, this equation can measure
the improvement of the overall result if any of the outputs 𝑜𝑖 for this
node are modified. This equation represents a particular region in the
semantic space, and, for any node of the tree, is as follows:

𝑀𝑆𝐸 = 1
𝑁

𝑁
∑

𝑖=1

(

𝑎𝑖 ⋅ 𝑜𝑖 − 𝑏𝑖
𝑐𝑖 ⋅ 𝑜𝑖 − 𝑑𝑖

)2
(6)

here 𝑜𝑖 are the outputs of that particular node, and 𝑎, 𝑏, 𝑐 and 𝑑 are
our vectors characterizing the equation for this node. These vectors
ill be different for each node of the tree, thus having a different
quation on each node. However, given a tree, the result of the equation
or each node with its own outputs 𝑜𝑖 will be the same 𝑀𝑆𝐸 value.
his equation will be the basis for the calculation of the values of the
onstants that will appear in the tree.

As these four vectors (a,b,c,d) are different for each node of the tree,
he first step of this algorithm is to calculate these vectors for each
ode. This process is recursively done from each non-terminal node to
ts child nodes, beginning with the root of the tree and going to each
f its terminal nodes. For the root of the tree, 𝑎𝑖 = 1, 𝑏𝑖 = 𝑡𝑖, 𝑐𝑖 = 0
nd 𝑑𝑖 = −1, leading to Eq. (4). From this node, for each non-terminal
ode, the four vectors of each of its two children are calculated. For
ach child, this calculation is done with the four vectors (a,b,c,d) of this
on-terminal node and from the outputs 𝑜 of the other child (whether
𝑖
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Table 2
Calculation of the a, b, c and d vectors for each node.
Operation Left Child Right Child

𝑎′𝑖 𝑏′𝑖 𝑐′𝑖 𝑑′
𝑖 𝑎′𝑖 𝑏′𝑖 𝑐′𝑖 𝑑′

𝑖

+ 𝑎𝑖 𝑏𝑖 − 𝑎𝑖 ⋅ 𝑦𝑖 𝑐𝑖 𝑑𝑖 − 𝑐𝑖 ⋅ 𝑦𝑖 𝑎𝑖 𝑏𝑖 − 𝑎𝑖 ⋅ 𝑥𝑖 𝑐𝑖 𝑑𝑖 − 𝑐𝑖 ⋅ 𝑥𝑖
– 𝑎𝑖 𝑏𝑖 + 𝑎𝑖 ⋅ 𝑦𝑖 𝑐𝑖 𝑑𝑖 + 𝑐𝑖 ⋅ 𝑦𝑖 𝑎𝑖 𝑎𝑖 ⋅ 𝑥𝑖 − 𝑏𝑖 𝑐𝑖 𝑐𝑖 ⋅ 𝑥𝑖 − 𝑑𝑖
* 𝑎𝑖 ⋅ 𝑦𝑖 𝑏𝑖 𝑐𝑖 ⋅ 𝑦𝑖 𝑑𝑖 𝑎𝑖 ⋅ 𝑥𝑖 𝑏𝑖 𝑐𝑖 ⋅ 𝑥𝑖 𝑑𝑖
/ 𝑎𝑖 𝑏𝑖 ⋅ 𝑦𝑖 𝑐𝑖 𝑑𝑖 ⋅ 𝑦𝑖 𝑏𝑖 𝑎𝑖 ⋅ 𝑥𝑖 𝑑𝑖 𝑐𝑖 ⋅ 𝑥𝑖
Fig. 2. Examples of calculating new shapes for the addition operation (a), and multiplication operation (b).
t is terminal or non-terminal). Table 2 shows the calculations to be
erformed to generate the vectors for each child of each non-terminal
ode containing an operation. In this table, 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 and 𝑑𝑖 represent the

coefficients of the non-terminal node, while 𝑎′𝑖 , 𝑏
′
𝑖 , 𝑐

′
𝑖 and 𝑑′𝑖 represent

the coefficients of the child node being calculated. 𝑥𝑖 and 𝑦𝑖 are the
outputs of the first and second child, respectively.

The rest of this subsection contains the mathematical basis used to
generate the expressions shown in Table 2, as well as the geometric
interpretation. Readers who are more interested in understanding the
algorithm may skip this part and go directly to Section 2.4.

For each non-terminal node, the vectors for each child are calculated
as follows:

• Addition operation. In this case, the output of the node is written
as 𝑜𝑖 = 𝑥𝑖+𝑦𝑖, with 𝑥𝑖 and 𝑦𝑖 representing the outputs (semantics)
of its two children. The equation for the first child becomes the
following:

1
𝑁

𝑁
∑

𝑖=1

(

𝑎𝑖 ⋅ (𝑥𝑖 + 𝑦𝑖) − 𝑏𝑖
𝑐𝑖 ⋅ (𝑥𝑖 + 𝑦𝑖) − 𝑑𝑖

)2
= 1

𝑁

𝑁
∑

𝑖=1

(

𝑎𝑖 ⋅ 𝑥𝑖 − (𝑏𝑖 − 𝑎𝑖 ⋅ 𝑦𝑖)
𝑐𝑖 ⋅ 𝑥𝑖 − (𝑑𝑖 − 𝑐𝑖 ⋅ 𝑦𝑖)

)2
(7)

which is like Eq. (6) with 𝑎′𝑖 = 𝑎𝑖, 𝑏′𝑖 = 𝑏𝑖 − 𝑎𝑖 ⋅ 𝑦𝑖, 𝑐′𝑖 = 𝑐𝑖 and
𝑑′𝑖 = 𝑑𝑖 − 𝑐𝑖 ⋅ 𝑦𝑖. For the second child, the equation is very similar:

1
𝑁

𝑁
∑

𝑖=1

(

𝑎𝑖 ⋅ (𝑥𝑖 + 𝑦𝑖) − 𝑏𝑖
𝑐𝑖 ⋅ (𝑥𝑖 + 𝑦𝑖) − 𝑑𝑖

)2
= 1

𝑁

𝑁
∑

𝑖=1

(

𝑎𝑖 ⋅ 𝑦𝑖 − (𝑏𝑖 − 𝑎𝑖 ⋅ 𝑥𝑖)
𝑐𝑖 ⋅ 𝑦𝑖 − (𝑑𝑖 − 𝑐𝑖 ⋅ 𝑥𝑖)

)2
(8)

which is like Eq. (6) with 𝑎′𝑖 = 𝑎𝑖, 𝑏′𝑖 = 𝑏𝑖 − 𝑎𝑖 ⋅ 𝑥𝑖, 𝑐′𝑖 = 𝑐𝑖 and
𝑑′𝑖 = 𝑑𝑖 − 𝑐𝑖 ⋅ 𝑥𝑖.
If the operator sum is the root of the tree, then 𝑎𝑖 = 1, 𝑐𝑖 = 0,
𝑑𝑖 = −1, and 𝑏𝑖 = 𝑡𝑖. In this case, the resulting equations for the
two children are the following

1
𝑁

𝑁
∑

𝑖=1
(𝑥𝑖 − (𝑡𝑖 − 𝑦𝑖))2 (9)

1
𝑁

𝑁
∑

𝑖=1
(𝑦𝑖 − (𝑡𝑖 − 𝑥𝑖))2 (10)

and can be interpreted for each child as ‘‘move the target value
subtracting from it the value of the output of the other child’’ and
apply the original equation. Thus, as was done in the root node,
two spheres in the space are created, with centers in 𝑡−𝑦 (for the
first child) and 𝑡 − 𝑥 (for the second child), i.e., the target values
5

for the root of the tree have been moved to a different position
for each of the children. If a new subtree is found which, applying
the Eqs. (9) or (10) with its own outputs, return a lower value,
then the 𝑀𝑆𝐸 of the tree will be reduced. From another point of
view, if a new subtree is found inside one of these spheres, the
corresponding first or second child of the root can be replaced
by this new subtree. Therefore, the semantics of the tree will
move towards the target, having an improvement in the overall
result. In general, from a shape given by Eq. (6) the sum operation
creates two new identical shapes located in other points.
Fig. 2 (a) shows an example of a tree situated in 𝑝. This tree is
(𝑝1 + 𝑝2). The calculation of the equations for each child leads to
having a similar shape but moved according to the values of 𝑝1
and 𝑝2. The resulting shapes (in this case, spheres) still have the
semantics in the border.

• Subtraction operation. This case is very similar to the previous
one: the output of the node is written as 𝑜𝑖 = 𝑥𝑖 − 𝑦𝑖, with 𝑥𝑖 and
𝑦𝑖 as the outputs (semantics) of its two children. The equation for
the first child becomes the following:

1
𝑁

𝑁
∑

𝑖=1

(

𝑎𝑖 ⋅ (𝑥𝑖 − 𝑦𝑖) − 𝑏𝑖
𝑐𝑖 ⋅ (𝑥𝑖 − 𝑦𝑖) − 𝑑𝑖

)2
= 1

𝑁

𝑁
∑

𝑖=1

(

𝑎𝑖 ⋅ 𝑥𝑖 − (𝑏𝑖 + 𝑎𝑖 ⋅ 𝑦𝑖)
𝑐𝑖 ⋅ 𝑥𝑖 − (𝑑𝑖 + 𝑐𝑖 ⋅ 𝑦𝑖)

)2

(11)

which has the shape of Eq. (6) with 𝑎′𝑖 = 𝑎𝑖, 𝑏′𝑖 = 𝑏𝑖 + 𝑎𝑖 ⋅ 𝑦𝑖, 𝑐′𝑖 = 𝑐𝑖
and 𝑑′𝑖 = 𝑑𝑖 + 𝑐𝑖 ⋅ 𝑦𝑖. For the second child, the equation is:

1
𝑁

𝑁
∑

𝑖=1

(

𝑎𝑖 ⋅ (𝑥𝑖 − 𝑦𝑖) − 𝑏𝑖
𝑐𝑖 ⋅ (𝑥𝑖 − 𝑦𝑖) − 𝑑𝑖

)2

= 1
𝑁

𝑁
∑

𝑖=1

(

−𝑎𝑖 ⋅ 𝑦𝑖 − (𝑏𝑖 − 𝑎𝑖 ⋅ 𝑥𝑖)
−𝑐𝑖 ⋅ 𝑦𝑖 − (𝑑𝑖 − 𝑐𝑖 ⋅ 𝑥𝑖)

)2

=

= 1
𝑁

𝑁
∑

𝑖=1

(

𝑎𝑖 ⋅ 𝑦𝑖 − (𝑎𝑖 ⋅ 𝑥𝑖 − 𝑏𝑖)
𝑐𝑖 ⋅ 𝑦𝑖 − (𝑐𝑖 ⋅ 𝑥𝑖 − 𝑑𝑖)

)2

(12)

which has the shape of Eq. (6) with 𝑎′𝑖 = 𝑎𝑖, 𝑏′𝑖 = 𝑎𝑖 ⋅𝑥𝑖 − 𝑏𝑖, 𝑐′𝑖 = 𝑐𝑖
and 𝑑′𝑖 = 𝑐𝑖 ⋅ 𝑥𝑖 − 𝑑𝑖.
Again, if this operator is used as root of the tree, the sphere of
the root will be moved to 𝑡+ 𝑦 for the first child and 𝑥− 𝑡 for the
second child, but the idea is the same: if a subtree is found inside
any of these spheres, the corresponding child can be replaced with
this subtree and the overall result will be improved. In general,
the addition and subtraction operations creates two new identical
shapes in other points.
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• Multiplication operation. In this case, the output of the node is
written as 𝑜𝑖 = 𝑥𝑖 ⋅ 𝑦𝑖, with 𝑥𝑖 and 𝑦𝑖 as the outputs (semantics)
of its two children. The equation for the first child becomes the
following:

1
𝑁

𝑁
∑

𝑖=1

(

𝑎𝑖 ⋅ (𝑥𝑖 ⋅ 𝑦𝑖) − 𝑏𝑖
𝑐𝑖 ⋅ (𝑥𝑖 ⋅ 𝑦𝑖) − 𝑑𝑖

)2
= 1

𝑁

𝑁
∑

𝑖=1

(

(𝑎𝑖 ⋅ 𝑦𝑖) ⋅ 𝑥𝑖 − 𝑏𝑖
(𝑐𝑖 ⋅ 𝑦𝑖) ⋅ 𝑥𝑖 − 𝑑𝑖

)2
(13)

which has the shape of Eq. (6) with 𝑎′𝑖 = 𝑎𝑖 ⋅ 𝑦𝑖, 𝑏′𝑖 = 𝑏𝑖, 𝑐′𝑖 = 𝑐𝑖 ⋅ 𝑦𝑖
and 𝑑′𝑖 = 𝑑𝑖. For the second child, the equation is very similar:

1
𝑁

𝑁
∑

𝑖=1

(

𝑎𝑖 ⋅ (𝑥𝑖 ⋅ 𝑦𝑖) − 𝑏𝑖
𝑐𝑖 ⋅ (𝑥𝑖 ⋅ 𝑦𝑖) − 𝑑𝑖

)2
= 1

𝑁

𝑁
∑

𝑖=1

(

(𝑎𝑖 ⋅ 𝑥𝑖) ⋅ 𝑦𝑖 − 𝑏𝑖
(𝑐𝑖 ⋅ 𝑥𝑖) ⋅ 𝑦𝑖 − 𝑑𝑖

)2
(14)

If the multiplication operator is the root of the tree, then 𝑎𝑖 = 1,
𝑐𝑖 = 0, 𝑑𝑖 = −1, and 𝑏𝑖 = 𝑡𝑖. In this case, considering that
these equations allow the calculation of the 𝑀𝑆𝐸, the resulting
equations for the two children will consequently be the following:

1
𝑁

𝑁
∑

𝑖=1
(𝑦𝑖 ⋅ 𝑥𝑖 − 𝑡𝑖)2 = 𝑀𝑆𝐸 (15)

1
𝑁

𝑁
∑

𝑖=1
(𝑥𝑖 ⋅ 𝑦𝑖 − 𝑡𝑖)2 = 𝑀𝑆𝐸 (16)

These equations can be rewritten as

𝑁
∑

𝑖=1

(

𝑥𝑖 −
𝑡𝑖
𝑦𝑖

)2

(

𝑆𝑆𝐸
𝑦𝑖

)2
= 1 (17)

𝑁
∑

𝑖=1

(

𝑦𝑖 −
𝑡𝑖
𝑥𝑖

)2

(

𝑆𝑆𝐸
𝑥𝑖

)2
= 1 (18)

resulting in the equations of ellipsis. These equations can be
interpreted for each child as ‘‘move the target value, and shrink or
extend the radius of the sphere in each dimension, according to
the other child outputs’’ and apply the original equation. Thus,
the sphere of the root of the tree becomes ellipses in each of
the two children. However, the reasoning is the same: if a new
subtree is found inside these new shapes (ellipsis), then the result
of the application of Eq. (15) or (16) will be equal to a lower
MSE, and its semantics will move towards the target. In general,
the multiplication operation creates new shapes in other points,
which are distortions of this one.
Fig. 2 (a) shows an example of a tree situated in p. This tree is
(𝑝1 ⋅ 𝑝2), with 𝑝1 = (1, 2) and 𝑝2 = (2, 1). The calculation of the
equations for each child leads to having the sphere translated and
shrunk according to the values of 𝑝1 and 𝑝2. The resulting shapes
are ellipses, and, as in the rest of the cases, have the semantics in
the border.
The use of the operations of addition, subtraction, and multi-
plication makes it possible to build complex trees and having a
semantic space with different N-dimensional ellipsoids. If a model
is found inside one of these ellipsoids, the corresponding node can
be changed with that model. When this is done, the semantics of
the root of the tree gets closer to the target, the 𝑀𝑆𝐸 lowers, the
radius of the sphere of the root of the tree shrinks, and the rest
of the spheres/ellipses also move from their places and shrink.

• Division operator. In this case, the output of the node is written
as 𝑜𝑖 = 𝑥𝑖∕𝑦𝑖, with 𝑥𝑖 and 𝑦𝑖 as the outputs (semantics) of its two
children. The equation for the first child becomes the following:

1
𝑁

𝑁
∑

𝑖=1

(

𝑎𝑖 ⋅ (𝑥𝑖∕𝑦𝑖) − 𝑏𝑖
𝑐𝑖 ⋅ (𝑥𝑖∕𝑦𝑖) − 𝑑𝑖

)2
= 1

𝑁

𝑁
∑

𝑖=1

⎛

⎜

⎜

⎝

𝑎𝑖⋅𝑥𝑖−𝑏𝑖⋅𝑦𝑖
𝑦𝑖

𝑐𝑖⋅𝑥𝑖−𝑑𝑖⋅𝑦𝑖
𝑦𝑖

⎞

⎟

⎟

⎠

2

=

= 1
𝑁
∑

(

𝑎𝑖 ⋅ 𝑥𝑖 − 𝑏𝑖 ⋅ 𝑦𝑖
)2

(19)
6

𝑁 𝑖=1 𝑐𝑖 ⋅ 𝑥𝑖 − 𝑑𝑖 ⋅ 𝑦𝑖
which has the shape of Eq. (6) with 𝑎′𝑖 = 𝑎𝑖, 𝑏′𝑖 = 𝑏𝑖 ⋅ 𝑦𝑖, 𝑐′𝑖 = 𝑐𝑖 and
𝑑′𝑖 = 𝑑𝑖 ⋅ 𝑦𝑖. For the second child, the equation is:

1
𝑁

𝑁
∑

𝑖=1

(

𝑎𝑖 ⋅ (𝑥𝑖∕𝑦𝑖) − 𝑏𝑖
𝑐𝑖 ⋅ (𝑥𝑖∕𝑦𝑖) − 𝑑𝑖

)2
= 1

𝑁

𝑁
∑

𝑖=1

⎛

⎜

⎜

⎝

𝑎𝑖⋅𝑥𝑖−𝑏𝑖⋅𝑦𝑖
𝑦𝑖

𝑐𝑖⋅𝑥𝑖−𝑑𝑖⋅𝑦𝑖
𝑦𝑖

⎞

⎟

⎟

⎠

2

=

= 1
𝑁

𝑁
∑

𝑖=1

(

𝑏𝑖 ⋅ 𝑦𝑖 − (𝑎𝑖 ⋅ 𝑥𝑖)
𝑑𝑖 ⋅ 𝑦𝑖 − (𝑐𝑖 ⋅ 𝑥𝑖)

)2
(20)

which has the shape of Eq. (6) with 𝑎′𝑖 = 𝑏𝑖, 𝑏′𝑖 = 𝑎𝑖 ⋅𝑥𝑖, 𝑐′𝑖 = 𝑑𝑖 and
𝑑′𝑖 = 𝑐𝑖 ⋅ 𝑥𝑖.
If this operator is the root of the tree, then 𝑎𝑖 = 1, 𝑐𝑖 = 0, 𝑑𝑖 = −1,
and 𝑏𝑖 = 𝑡𝑖. In this case, the resulting equations for the two
children are the following:

1
𝑁

𝑁
∑

𝑖=1

(

𝑥𝑖 − 𝑡𝑖 ⋅ 𝑦𝑖
𝑦𝑖

)2
= 1

𝑁

𝑁
∑

𝑖=1

(

1
𝑦𝑖

⋅ 𝑥𝑖 − 𝑡𝑖

)2
(21)

1
𝑁

𝑁
∑

𝑖=1

(

−𝑡𝑖 ⋅ 𝑦𝑖 + 𝑥𝑖
𝑦𝑖

)2
= 1

𝑁

𝑁
∑

𝑖=1

(

𝑥𝑖
𝑦𝑖

− 𝑡𝑖

)2
(22)

In the first case, the effect is similar to the multiplication opera-
tion: the target value for the first child is moved, and the radius is
extended/shrunk according to the values of the second child. In
the second case, the sphere is turned into a completely different
shape. Therefore, the division operation can transform ellipsoids
into different shapes.

The third column of Table 1 shows the equations calculated for each
f the nodes of the tree shown in Fig. 1. The vectors of these equations
re calculated in the opposite direction as the semantics, i.e., from
he root of the tree to the terminal nodes. The target vector used was
5,4,1), which allows the construction of the equation of node 1. Using
he semantics of both children (𝑥 for the first child, node 2, and 𝑦 for
he second child, node 3), the vectors 𝑎, 𝑏, 𝑐, and 𝑑 of nodes 2 and

3 can be calculated with the expressions shown in Table 2. It should
be highlighted that, to calculate the vectors of node 2, the semantics of
node 3 are used, but not its own semantics, and vice versa. Recursively,
this process is repeated for each non-terminal node of the tree. Note
also that the vectors of each node are calculated from its parent node.
For this reason, the terminal nodes do not calculate any coefficients
since they do not have children.

An alternative formulation can be used by this system. Instead
of using Eq. (6) to calculate the 𝑀𝑆𝐸 in each node, the following
equation could be used:

𝑀𝑆𝐸 = 1
𝑁

𝑁
∑

𝑖=1

(

𝑎′𝑖 ⋅ 𝑜𝑖 − 𝑏′𝑖
𝑐′𝑖 ⋅ 𝑜𝑖 − 𝑑′𝑖

− 𝑡𝑖

)2

(23)

Again, 𝑜𝑖 are the outputs of that node with 𝑖 identifying each of
the 𝑁 input patterns, while 𝑎′, 𝑏′, 𝑐′ and 𝑑′ are the four vectors char-
acterizing the equation for each node. In this alternative formulation
in the root of the tree 𝑎′𝑖 = 1, 𝑏′𝑖 = 0, 𝑐′𝑖 = 0 and 𝑑′𝑖 = −1, leading
to Eq. (4). These four vectors and the 𝑆 set can be calculated following
the same steps of the previous formulation. Both ways of performing
the calculations are equivalent, since Eq. (23) can be rewritten as

1
𝑁

𝑁
∑

𝑖=1

(

𝑎′𝑖 ⋅ 𝑜𝑖 − 𝑏′𝑖 − 𝑡𝑖 ⋅ (𝑐′𝑖 ⋅ 𝑜𝑖 − 𝑑′𝑖 )
𝑐′𝑖 ⋅ 𝑜𝑖 − 𝑑′𝑖

)2

= 1
𝑁

𝑁
∑

𝑖=1

(

(𝑎′𝑖 − 𝑐′𝑖 ⋅ 𝑡𝑖) ⋅ 𝑜𝑖 − (𝑏′𝑖 − 𝑑′𝑖 ⋅ 𝑡𝑖)
𝑐′𝑖 ⋅ 𝑜𝑖 − 𝑑′𝑖

)2

(24)

and thus Eq. (23) takes the shape of Eq. (6) with 𝑎𝑖 = 𝑎′𝑖 − 𝑐′𝑖 ⋅ 𝑡𝑖,
𝑏𝑖 = 𝑏′𝑖 − 𝑑′𝑖 ⋅ 𝑡𝑖, 𝑐𝑖 = 𝑐′𝑖 and 𝑑𝑖 = 𝑑′𝑖 .

The difference between this form of representation and the one
used in this paper is that the equation used here makes it possible
to calculate the MSE from the output of each node, while this new
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formulation allows the calculation of the global output of the tree
from the output of each node, and from there to calculate the MSE.
However, to calculate the derivatives explained below in Section 2.5.1
in a simpler way, the previous formulation is used.

2.4. Avoiding out-of-domain operations

The division operator is different from the rest for a very important
reason: in the other three, the domain is all R. However, in the division
operator, the domain is restricted, and must therefore be used with
care. For example, Fig. 1 shows an example of a tree with the division
operator. The expression representing this tree is shown on Eq. (1), and
it can be simplified to the following expression:
𝑥3 − 2

2 ⋅ 𝑥3 − 1
(25)

However, both expressions are different. This last expression is
defined in any value of 𝑥3 that belongs to R − {0.5}. In Eq. (1) the
values of 𝑥3 that are not in the domain are 0, 2 and 0.5. These values
are forbidden because they would produce a division by 0 somewhere
in the tree.

These ‘‘forbidden’’ values are produced by the way the equation
for the second child of the division operator is constructed, shown
in Eq. (20). In that equation, this step

1
𝑁

𝑁
∑

𝑖=1

⎛

⎜

⎜

⎝

𝑎𝑖⋅𝑥𝑖−𝑏𝑖⋅𝑦𝑖
𝑦𝑖

𝑐𝑖⋅𝑥𝑖−𝑑𝑖⋅𝑦𝑖
𝑦𝑖

⎞

⎟

⎟

⎠

2

= 1
𝑁

𝑁
∑

𝑖=1

(

𝑎𝑖 ⋅ 𝑥𝑖 − 𝑏𝑖 ⋅ 𝑦𝑖
𝑐𝑖 ⋅ 𝑥𝑖 − 𝑑𝑖 ⋅ 𝑦𝑖

)2
(26)

is correct for values of 𝑦𝑖 ≠ 0. Therefore, for that node, any semantics
in the second child with any 𝑦𝑖 = 0 is outside the domain of this node.
For instance, a node with semantics of (1,−2, 0) cannot be used as a
second child. Moreover, as the second child can be a tree, its semantics
depends on its nodes and operations, since the result of these operations
can lead to having semantics with any 𝑦𝑖 = 0. For example, in the tree
shown in Fig. 1, node 4 represents a division and if the variable 𝑥3 takes
the value of 2, then the denominator of this division operator will take
the value of 0.

Therefore, when calculating the equations, it is necessary to take
into account the domains of the operators already explored from the
top of the tree. Since the +, - and * operators are defined in all R, only
the division operator has to be taken into account. The way to do this is
to extend the definition of the equations of each node. Until now, these
operations were defined with four vectors: a, b, c, and d. In addition
to these vectors, it is necessary to add a set 𝑆 with those semantics
that would lead to any out of domain operation, in this case divisions
by zero, in some upper node of the tree. For the root node of the tree,
𝑎𝑖 = 1, 𝑏𝑖 = 𝑡𝑖, 𝑐𝑖 = 0 and 𝑑𝑖 = −1, and also 𝑆 = ∅.

As for the vectors a, b, c and d, the values of the 𝑆 set must be
calculated for each node. The process is similar to the one described:
each non-terminal node makes the calculation of 𝑎𝑖, 𝑏𝑖, 𝑐𝑖, 𝑑𝑖 and 𝑆 for
each child. Therefore, at the same time 𝑎′𝑖 , 𝑏

′
𝑖 , 𝑐

′
𝑖 and 𝑑′𝑖 are calculated

for each child node, a new 𝑆′ set is calculated for this node.
The rest of this subsection contains the mathematical basis used to

calculate the S set for each node of the tree. The reader most interested
in understanding the algorithm may skip this part and go directly
to Section 2.5.

Given a node with an operation and a 𝑆 set, for each child the
calculation method follows these steps:

1. 𝑆′ = ∅
2. For each semantics 𝑠 ∈ 𝑆, calculate 𝑠′ depending on the node

operation. The way to calculate for one child is to perform the
inverse of the node operation with respect to the other child. If
𝑥 and 𝑦 are the two semantics of the first and second children
respectively, the process is, for each operation and each child:

• Addition operation:
7

Fig. 3. Example of a tree with invalid operations.

– First child: 𝑠 = 𝑠′ + 𝑦 ⇒ 𝑠′ = 𝑠 − 𝑦.
– Second child: 𝑠 = 𝑥 + 𝑠′ ⇒ 𝑠′ = 𝑠 − 𝑥.

• Subtraction operation:

– First child: 𝑠 = 𝑠′ − 𝑦 ⇒ 𝑠′ = 𝑠 + 𝑦.
– Second child: 𝑠 = 𝑥 − 𝑠′ ⇒ 𝑠′ = 𝑥 − 𝑠.

• Multiplication operation:

– First child: 𝑠 = 𝑠′ ⋅ 𝑦 ⇒ 𝑠′ = 𝑠∕𝑦.
– Second child: 𝑠 = 𝑥 ⋅ 𝑠′ ⇒ 𝑠′ = 𝑠∕𝑥.

• Division operation:

– First child: 𝑠 = 𝑠′∕𝑦 ⇒ 𝑠′ = 𝑠 ⋅ 𝑦.
– Second child: 𝑠 = 𝑥∕𝑠′ ⇒ 𝑠′ = 𝑥∕𝑠.

Once 𝑠′ is calculated, add it to 𝑆′. Since 𝑠, 𝑠′, 𝑥 and 𝑦 are vectors,
the operations described are element-wise operations.

3. In the case of the second child of the division operation, add the
semantics 𝑠′𝑖 = 0 to 𝑆′, since these semantics is not in the domain
of this operation.

For each node, the set 𝑆 contains the semantics that make any
operation of any previous node with an out of domain value, i.e., each
𝑠 semantics in 𝑆 has ‘‘forbidden’’ values. It is important to highlight
that, if 𝑠 ∈ 𝑆 has semantics of ‘‘forbidden’’ values 𝑠𝑖, invalid semantics
𝑥 will be those semantics in which any value 𝑥𝑖 = 𝑠𝑖, i.e., not all of the
values have to be equal.

The fourth column of Table 1 shows the S sets for each node of the
tree shown in Fig. 1. Nodes 1 and 2, before any division operation was
performed, have 𝑆 = ∅. Nodes 3, 4, 5 and 11, when only one division
has been performed, have one element in 𝑆. Nodes 6, 7, 8 and 9, when 2
divisions have been performed, have 2 elements in 𝑆. Finally, when the
calculation of the equations of node 10 is reached, 3 different divisions
have been done, and therefore the number of elements in 𝑆 is 3. Note
that each node used as the divisor (nodes 3, 6 and 10) has the element
(0,0,0) in 𝑆, meaning that no value of their semantics can be 0.

Another example is shown in Fig. 3, which has its semantics and 𝑆
sets described in Table 3. Note that this tree is invalid since divisions
by zero are performed. Thus, this tree will never be generated by this
system. However, it is used here as an example to better explain the
following descriptions.

Special care has to be taken when calculating each semantic value
𝑠′ from 𝑠 for the multiplication and division operators. In this case,
divisions by zero could take place in the following situations:

• In the case of the multiplication operation, for the first child when
any element of 𝑦𝑖 (semantics of the second child) is 0 or, for
the second child, when any element of 𝑥 (semantics of the first
𝑖
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Table 3
Description of the tree of the example with invalid operations.
Node Semantic S

1 (1.33, 𝐼𝑛𝑓 , 𝐼𝑛𝑓 ) ∅
2 (2, 2, 2) ∅
3 (1.5, 0, 0) {(0, 0, 0)}
4 (1.5, 1, 0) {(0, 1, 0)}
5 (3, 2, 0) {(0, 2, 0)}
6 (2, 2, 2) {(0, 0, 0), (𝐼𝑛𝑓 , 2, 𝑁𝑎𝑁)}
7 (0,−1, 0) {(−1.5,−1, 0)}
8 (0, 1, 0) {(−1.5, 1, 0)}
9 (1,−1, 5) {(𝐼𝑛𝑓 ,−1, 𝑁𝑎𝑁)}
10 (2, 0, 6) {(𝐼𝑛𝑓 , 0, 𝑁𝑎𝑁)}
11 (1, 0, 3) {(𝐼𝑛𝑓 , 0, 𝑁𝑎𝑁)}
12 (2, 2, 2) {(𝐼𝑛𝑓 , 𝐼𝑛𝑓 ,𝑁𝑎𝑁)}
13 (1, 1, 1) {(𝐼𝑛𝑓 , 1, 𝑁𝑎𝑁)}

child) is 0, i.e., a multiplication of 0 ⋅ 𝑦𝑖 or 𝑥𝑖 ⋅ 0 is being made.
In both cases, the result of the multiplication is equal to 0, and
the calculations of the new out of domain values are 𝑠′ = 𝑠∕𝑦 (for
the first child) and 𝑠′ = 𝑠∕𝑥 (for the second). Two situations are
possible:

– 𝑠𝑖 ≠ 0: the ‘‘forbidden value’’ is not 0. In this case, 𝑠𝑖∕𝑥𝑖
or 𝑠𝑖∕𝑦𝑖 equals infinite (𝐼𝑛𝑓 ). This means that any value is
valid for 𝑥𝑖 or 𝑦𝑖 because 𝑥𝑖 ⋅ 0 = 0 ≠ 𝑠𝑖 or 0 ⋅ 𝑦𝑖 = 0 ≠ 𝑠𝑖 and
therefore they are never out of the domain. An example of
this can be seen in Fig. 3 and Table 3, in the S set of node
9 (first value of the only element).

– 𝑠𝑖 = 0: the ‘‘forbidden value’’ is 0. In this case, 𝑠𝑖∕𝑥𝑖 or 𝑠𝑖∕𝑦𝑖
equals ‘‘not a number’’ (𝑁𝑎𝑁). This means that there are
not valid values for 𝑥𝑖 and 𝑦𝑖, since for any 𝑥𝑖 or 𝑦𝑖 values,
𝑥𝑖 ⋅0 = 0 = 𝑠𝑖 or 0 ⋅𝑦𝑖 = 0 = 𝑠𝑖, and therefore they are always
out of the domain. An example of this can be seen in Fig. 3
and Table 3, in the S set of node 9 (third value of the only
element).

• In case of the division operation, for the first child, the reasoning
is the same as in the multiplication operation.

• For the second child of the division operation, the operation for
calculating the new ‘‘forbidden’’ semantic values is 𝑠′ = 𝑥∕𝑠.
Division by zero will take place when any 𝑠𝑖 = 0: the ‘‘forbidden
value’’ of the result of the division operation is 0. Two situations
may occur:

– 𝑥𝑖 ≠ 0. In this case, the result of this operation is 𝑠′𝑖 = 𝑥𝑖∕𝑠𝑖 =
𝐼𝑛𝑓 , meaning that any 𝑦𝑖 value is valid, since 𝑥𝑖∕𝑦𝑖 ≠ 𝑠𝑖 = 0
if 𝑥𝑖 ≠ 0.
This can be argued since a value of 𝑦𝑖 = 0 is not valid for this
division. However, the calculation of each 𝑠′ corresponds to
values out of the domain of previous division operators, not
for this one. For the current division operation, as explained
above, the semantics 𝑠′ = 0 is added to 𝑆, and therefore the
value of 𝑦𝑖 = 0 is not valid.
An example of this can be seen in Fig. 3 and Table 3, in the
𝑆 set of node 6 (first value of the second element).

– 𝑥𝑖 = 0. In this case, the result of the division operation
is 𝑥𝑖∕𝑦𝑖 = 0 = 𝑠𝑖. The calculation of 𝑠′𝑖 is the following:
𝑠′𝑖 = 𝑥𝑖∕𝑠𝑖 = 0∕0 = 𝑁𝑎𝑁 , meaning that there no valid values
for 𝑦𝑖, i.e., for any value 𝑦𝑖, 𝑥𝑖∕𝑦𝑖 = 0 = 𝑠𝑖.
Again, these calculations are valid for 𝑦𝑖 ≠ 0. The case 𝑦𝑖 = 0
is excluded with the addition of the semantics 𝑠′𝑖 = 0 to 𝑆;
An example of this can be seen in Fig. 3 and Table 3, in the
S set of node 6 (third value of the second element).

Therefore, for each 𝑠 ∈ 𝑆, a value labeled as 𝐼𝑛𝑓 means that any
value is valid, while a value labeled as 𝑁𝑎𝑁 means that any value is
invalid. The operations between these values are done as usual when
𝑥 ∈ R:
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• Any operation between 𝑥 and 𝑁𝑎𝑁 has 𝑁𝑎𝑁 as a result. This
means that, if any value is out of domain in a specific node, then
any value will also be out of domain in each child, no matter what
operation is done in this node. An example of this can be seen in
Fig. 3 and Table 3, in the 𝑆 sets of nodes 10 and 13 (third value
of the only element). Also, node 12 shows another example (third
value of the only element).

• Addition and subtraction operations between 𝑥 and 𝐼𝑛𝑓 return
𝐼𝑛𝑓 . This means that, if any value is valid (the domain is R) for
the result of the operation, then any value is also valid for each
child. An example of this can be seen in Fig. 3 and Table 3, in the
S sets of nodes 10 and 13 (first value of the only element).

• 𝑠′𝑖 = 𝐼𝑛𝑓∕𝑥𝑖 = 𝐼𝑛𝑓 (𝑥𝑖 = 0 or 𝑥𝑖 ≠ 0). This can happen when
𝑠′ is being calculated as one of the children in a multiplication
operation. This means that, if any value is valid as result of a
multiplication operation (𝐼𝑛𝑓 ), then each child can have any
value. An example of this can be seen in Fig. 3 and Table 3, in
the S set of node 12 (first and second values of the only element).

• 𝑠′𝑖 = 𝑥𝑖∕𝐼𝑛𝑓 = 0 (𝑥𝑖 = 0 or 𝑥𝑖 ≠ 0). This can happen when 𝑠′

is being calculated as the second child in a division operation
(i.e., the 𝑆 set of the denominator) with the semantics of the first
child 𝑥𝑖. This means that, even any value (denoted as 𝐼𝑛𝑓 ) is valid
as a result of a division operation in which the numerator is a
valid number, the denominator must be different from 0 (0 is not
in the domain).

• 𝑠′𝑖 = 𝐼𝑛𝑓 ⋅𝑦𝑖 = 𝐼𝑛𝑓 when 𝑦𝑖 ≠ 0. This can happen when 𝑠′ is being
calculated as the first child in a division operation (i.e., the S set
of the numerator) with the semantics of the denominator 𝑦𝑖 ≠ 0.
This means that if the result of a division operation can be any
value (𝐼𝑛𝑓 ) and the denominator is different from 0, then the first
child can take any value in R.

• 𝑠′𝑖 = 𝐼𝑛𝑓 ⋅ 𝑦𝑖 = 𝑁𝑎𝑁 when 𝑦𝑖 = 0. This can happen when 𝑠′ is
being calculated as the first child in a division operation (i.e., the
𝑆 set of the numerator) with the semantics of the denominator
𝑦𝑖 = 0. This means that even if the result of a division operation
can be any value, if the second child evaluates as 0, then there is
no valid value for the first child.

• Operations between 𝑁𝑎𝑁 and/or 𝐼𝑛𝑓 values will not happen
because these operations take place between the semantics of the
S set, which may contain 𝑁𝑎𝑁 and 𝐼𝑛𝑓 values, and semantics of
the nodes of the tree, which may not. The definition of the 𝑆 set
is done to prevent the semantics of the nodes from having 𝑁𝑎𝑁
and 𝐼𝑛𝑓 values.

Any semantics 𝑥 to be applied to Eq. (6) of any node in order to
compute the 𝑀𝑆𝐸 from that node must be first checked with its 𝑆
set. For each semantics 𝑠 in 𝑆, if there is any value in which 𝑠𝑖 = 𝑥𝑖
or 𝑠𝑖 = 𝑁𝑎𝑁 , then those semantics cannot be used because it would
lead to having out-of-domain values in preceding nodes. When any
𝑠𝑖 = 𝑁𝑎𝑁 , since there are no valid values, the whole 𝑆 set is labeled
as 𝑁𝑎𝑁 for the sake of simplicity.

It is important to highlight that the use of this 𝑆 set ensures that no
divisions by zero are being performed within the tree with the training
set. Therefore, the result of the evaluation of the training set will never
be 𝐼𝑛𝑓 or 𝑁𝑎𝑁 . However, these values can appear in the evaluation of
new data (the test set). For example, the expression 1∕(𝑥1−10) does not
return 𝐼𝑛𝑓 if the variable 𝑥1 in the training set does not take any value
of 10. However, when evaluating this tree with a new data sample in
which 𝑥1 = 10, the result will be 𝐼𝑛𝑓 . Since the future values to be
taken by variables cannot be known, in this system, the selection of a
consistent training set that represents the future data that will be used
by the resulting expressions is very important.
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2.5. Local search on the nodes of the tree

The evaluation process of the tree goes from the bottom of the tree
to the top. Once the tree has been evaluated, the four vectors (a,b,c,d)
of Eq. (6) and the 𝑆 set are calculated for each node. This process goes
rom the top, with values of 𝑎𝑖 = 1, 𝑐𝑖 = 0, 𝑑𝑖 = −1, 𝑏𝑖 = 𝑡𝑖 and 𝑆 = ∅,

to the bottom of the tree, following the described equations.
Once these values have been found for each node, the search for

subtrees that can substitute a node begins. For any subtree that could
substitute a node, first its semantics are checked with the 𝑆 set of the
node. If all of the values are valid, then the semantics are evaluated
on Eq. (6) of that node. This subtree can replace the node if the result
of the following equation is positive:

𝑀𝑆𝐸 − 1
𝑁

𝑁
∑

𝑖=1

(

𝑎𝑖 ⋅ 𝑜𝑖 − 𝑏𝑖
𝑐𝑖 ⋅ 𝑜𝑖 − 𝑑𝑖

)2
(27)

If there are several subtrees that could replace a node, the selected
subtree will be the one with the highest positive value in this equation.
The search for subtrees has 4 different methods: search for constants
(constant search), search for variables (variable search), search for con-
stants combined with variables (constant-variable search) and search
for constants combined with expressions (constant-expression search).
These searches do not take place in those nodes in which 𝑆 = 𝑁𝑎𝑁 ,
since there are no valid values. However, since this method always
builds correct trees, no nodes with 𝑆 = 𝑁𝑎𝑁 are expected. The
following subsections discuss each of these searches.

2.5.1. Search for constants
One of the biggest problems in GP is the generation of constants.

In the first approaches, the generation of constants was left to the
evolutionary process. An ephemeral random constant was included in
the terminal set, so each time it was selected in the building of a
tree, a random constant in a predefined interval was generated. The
building of a useful value was left to the evolutionary process, by a
successive combination of these random constants. However, there are
some approaches using gradient descent (Chen et al., 2015)(Kronberger
et al., 2018) to optimize these constants.

Within a tree, constants take place as a terminal node. Therefore,
they can be seen as trees with a single node, representing its constant
value, and therefore they are also considered as a model, with its
semantics. The particularity of the semantics of a constant k is that all
the elements of the semantic vector take the same value: 𝑜𝑖 = 𝑘. In
other words, the semantics of all of the constants are situated on the
line, 𝑠𝑝𝑎𝑛(1, 1,… , 1).

Given a node of the tree, with its corresponding equation, the
objective is to find the constant that maximizes Eq. (27), i.e., the
constant k that minimizes the following equation:

1
𝑁

𝑁
∑

𝑖=1

(

𝑎𝑖 ⋅ 𝑜𝑖 − 𝑏𝑖
𝑐𝑖 ⋅ 𝑜𝑖 − 𝑑𝑖

)2
= 1

𝑁

𝑁
∑

𝑖=1

(

𝑎𝑖 ⋅ 𝑘 − 𝑏𝑖
𝑐𝑖 ⋅ 𝑘 − 𝑑𝑖

)2
(28)

The way to find this constant is to calculate the derivative of this
expression, set it equal to zero, and calculate that value 𝑘. As the
original equation is a sum of squared expressions, any value of 𝑘 that

akes the derivative equal to 0 will be a minimum, since Eq. (28) does
ot have a maximum. The derivative of this expression is the following
quation:

2
𝑁

𝑁
∑

𝑖=1
(𝑏𝑖 ⋅ 𝑐𝑖 − 𝑎𝑖 ⋅ 𝑑𝑖)

𝑎𝑖 ⋅ 𝑘 − 𝑏𝑖
(𝑐𝑖 ⋅ 𝑘 − 𝑑𝑖)3

(29)

In general, calculating the values in which this expression becomes
is a time-consuming task, because it involves building a 3N-order

olynomial and finding its roots, with 𝑁 possibly being very high. Also,
here are many possible values for k. However, this calculation can be
9

implified in some common situations:
• 𝑐𝑖 = 0 and 𝑎𝑖 = 0 (i=1, . . . ,N). In this case, the function is constant
and has no minimum.

• 𝑐𝑖 = 0 (i=1, . . . ,N) and any 𝑑𝑖 = 0. In this case, the function cannot
be calculated and therefore there is no minimum.

• 𝑐𝑖 = 0 and 𝑑𝑖 ≠ 0 (i=1, . . . ,N). In this case, the only minimum
value of k is given by:

𝑘 =

∑𝑁
𝑖=1

𝑎𝑖⋅𝑏𝑖
𝑑2𝑖

∑𝑁
𝑖=1

𝑎2𝑖
𝑑2𝑖

(30)

This equation can be simplified in the following situations:

– 𝑎𝑖 are constants (𝑎𝑖 = 𝑘𝑎) and 𝑑𝑖 are constants (𝑑𝑖 = 𝑘𝑑).
The case with 𝑘𝑑 = −1 happens when no division has been
performed yet. The minimum 𝑘 is given by:

𝑘 = 1
𝑘𝑎 ⋅𝑁

𝑁
∑

𝑖=1
𝑏𝑖 (31)

– 𝑎𝑖 are constants (𝑎𝑖 = 𝑘𝑎) and 𝑑𝑖 are not constants. The
minimum 𝑘 is given by:

𝑘 = 1
𝑘𝑎

∑𝑁
𝑖=1

𝑏𝑖
𝑑2𝑖

∑𝑁
𝑖=1

1
𝑑2𝑖

(32)

– 𝑎𝑖 are not constants and 𝑑𝑖 are constants (𝑑𝑖 = 𝑘𝑑). The
minimum 𝑘 is given by:

𝑘 =
∑𝑁

𝑖=1 𝑎𝑖 ⋅ 𝑏𝑖
∑𝑁

𝑖=1 𝑎
2
𝑖

(33)

• Any 𝑐𝑖 = 0 and 𝑑𝑖 = 0 (i=1, . . . ,N). In this case, the function cannot
be calculated and therefore has no minimum.

• 𝑐𝑖 ≠ 0 and 𝑑𝑖 = 0 (i=1, . . . ,N). In this case, the only minimum
value of 𝑘 is given by:

𝑘 =

∑𝑁
𝑖=1

𝑏2𝑖
𝑐2𝑖

∑𝑁
𝑖=1

𝑎𝑖⋅𝑏𝑖
𝑐2𝑖

(34)

As happens with Eq. (30), this equation can be simplified for the
cases in which 𝑏𝑖 and/or 𝑐𝑖 are constants.

• 𝑐𝑖 and 𝑑𝑖 are constants 𝑐𝑖 = 𝑘𝑐 and 𝑑𝑖 = 𝑘𝑑 (i=1, . . . ,N), and 𝑘𝑐 ≠ 0
and 𝑘𝑑 ≠ 0. In this case, the only minimum value of 𝑘 is given by:

𝑘 =
∑𝑁

𝑖=1 𝑏𝑖 ⋅ (𝑏𝑖 ⋅ 𝑘𝑐 − 𝑎𝑖 ⋅ 𝑘𝑑 )
∑𝑁

𝑖=1 𝑎𝑖 ⋅ (𝑏𝑖 ⋅ 𝑘𝑐 − 𝑎𝑖 ⋅ 𝑘𝑑 )
(35)

In any of these cases, once the minimum 𝑘 has been found, it has
o be checked against the 𝑆 set. For each semantics 𝑠 ∈ 𝑆, if any value
𝑠𝑖 = 𝑘, then this search is unsuccessful.

If none of these situations occur, as was stated, the finding of
the minimum values can be time-consuming. However, in this paper,
we propose the alternative solution of evaluating a set of points that
can have a low value in Eq. (6). These values are the zeros on each
term inside the sum. These values are given by 𝑏𝑖∕𝑎𝑖. In general, the
minimum value of Eq. (6) will not be any of these values. However,
one of them will take a close value. To avoid rounding errors in
these calculations, the zeros with values close to any poles (𝑑𝑖∕𝑐𝑖) are
excluded.

Therefore, in the general case the process is as follows:

1. Take the 𝑁 𝑧𝑖 = 𝑏𝑖∕𝑎𝑖 zero values.
2. Compare each 𝑧𝑖 with all the values of each 𝑠 ∈ 𝑆. If there is

any coincidence, delete 𝑧𝑖, since it is not valid.
3. Exclude the values that are too close to any root of the denomi-
nator of Eq. (6).
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Fig. 4. Examples of (a) constant search, (b) variable search, (c) constant-variable search, (d) constant-expression search.
4. Evaluate the remaining 𝑧𝑖 with Eq. (6) and select the one with
the lowest value (lowest 𝑀𝑆𝐸) as 𝑘.

Once a value of 𝑘 has been found for a node, if the result of Eq. (27)
is positive, then this search was successful and a single-node terminal
tree representing this constant can substitute this node in the tree,
leading to an improvement in the 𝑀𝑆𝐸.

This process allows the creation and refinement of constants. How-
ever, this is not limited to changing the value of one constant for
another (i.e., one terminal node representing a constant for another
terminal node representing a constant). It is important to highlight that
this process of finding a constant can be performed for each node of the
tree to be improved, whether it is a constant, variable or a non-terminal
node. Users may decide on which nodes they want this search to be
performed. Therefore, the node selected to be replaced by a constant
can be a non-terminal one. In this case, if this search is successful, the
tree is being reduced, resulting in a lower number of nodes.

In general, it has been found that as a result of this search, most
of the times a constant is changed into another. Therefore, this search
technique is very useful for refining the constant values of the nodes of
the tree. Sometimes a variable or a non-terminal node (thus reducing
the tree) is changed by a constant. However, since the occurrence of
these situations is rare, much computational time can be saved by
performing this search only on constant nodes, and exploring the rest
of the nodes only when needed. Users can decide whether they want
to perform this search only on constant nodes or perform a full search
on all of the nodes of the tree.

Fig. 4 (a) shows an example of a constant search. The shape
given by Eq. (6) has an intersection with the gray line defined as
𝑠𝑝𝑎𝑛(1, 1,… , 1). Any constant node is on this line. Therefore, any
constant node on this line and inside the ellipsis would give a lower
𝑀𝑆𝐸 than the given tree. This method returns the constant that returns
the lowest 𝑀𝑆𝐸 for this shape.

2.5.2. Search for variables
This process is easier to calculate than the previous one. As in

constants, each variable is represented by a terminal node, with its
semantics. Therefore, variables are also points in the search space.

Given a node of the tree, with its Eq. (6) and its 𝑆 set, the first thing
to do is to check all the variables to see whether their semantics are
valid with the 𝑆 set. For those variables with valid semantics, Eq. (27)
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is evaluated with their semantics. Again, a positive value means a
reduction in 𝑀𝑆𝐸. These are variables inside the shape of that node
in the semantic space. The selected variable will be the one with the
highest reduction in 𝑀𝑆𝐸.

As in the previous search process, any node of a tree can be selected
to be changed with a variable, regardless of whether this node is
constant, variable or non-terminal. Therefore, the number of nodes in
the tree cannot grow with this method, and the tree can be reduced.
As in the previous search, users may decide on which nodes they want
to perform this search. Obviously, if this search is being performed on
variable nodes, those variables equal to the nodes being explored are
excluded.

Also, as what happened with the constant search, it has been found
that this search is successful most of the times on constant nodes,
and thus changing constant to variables. Therefore, computational time
can be saved if this search is performed only on constant nodes, and
exploring the remaining nodes only when needed.

Fig. 4 (b) shows an example of a variable search. The variable
𝑥3 was found to be inside the shape given by Eq. (6). Therefore, the
given tree can be replaced by this variable, thereby improving 𝑀𝑆𝐸.
Variables 𝑥1 and 𝑥2 do not lead to improving 𝑀𝑆𝐸.

2.5.3. Search for variables combined with constants
With the two search methods already described, it is possible to

reduce the number of nodes of the tree. However, it is often necessary
to find larger and more complex trees to get closer to the solution. This
subsection allows the finding of simple subtrees with 3 nodes to replace
another node of the tree. If the node to be replaced is a terminal node,
then the tree will grow.

The idea behind this search method is a combination of the two
previous methods. After the calculation of each equation on the nodes
of the tree, it is possible not to find a constant or a variable that
improves the 𝑀𝑆𝐸 (a constant or a variable inside any of the shapes
in the space). However, although a variable 𝑥 is not inside any of the
shapes, the models 𝑘 + 𝑥, 𝑘 − 𝑥, 𝑘 ⋅ 𝑥 or 𝑘∕𝑥 may be inside one of the
shapes, for any value of 𝑘. Each of these four expressions represent,
a line in the semantic space. This search method will look for the
intersection of one of these lines with each of the shapes. Looking for
intersections is equivalent to looking for the best value of 𝑘. Therefore,
this third method proposes the search of a variable combined with a
constant, with one of the four arithmetic operations. For each variable
𝑥, the possibilities are:
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• Addition operation. Although the variable 𝑥 represents a single
point in the search space, the expression (𝑘 + 𝑥) represents a
line in the search space. This line is parallel to the line with the
constants. Therefore, if the variable 𝑥 is not inside any of the
shapes, any section of the line (𝑘 + 𝑥) may be inside the shapes.
The expression (𝑥 + 𝑘) is represented by a tree with three nodes:
a non-terminal node representing the sum, and two nodes, with
the constant 𝑘 and the variable 𝑥.
The objective here is, given a node with its equation calculated,
to find a constant value that maximizes Eq. (27) for the semantics
of the tree (𝑘 + 𝑥). To do this, a new equation is calculated from
the 𝑎𝑖, 𝑏𝑖, 𝑐𝑖, 𝑑𝑖 and 𝑆 values of the equation of this node. As the
constant is going to be situated as the first child of the addition
operation, this new equation is calculated as in Eq. (9), with
𝑎′𝑖 = 𝑎𝑖, 𝑏′𝑖 = 𝑏𝑖 − 𝑎𝑖 ⋅ 𝑥𝑖, 𝑐′𝑖 = 𝑐𝑖 and 𝑑′𝑖 = 𝑑𝑖 − 𝑐𝑖 ⋅ 𝑥𝑖, where
𝑥𝑖 are the values of the variable 𝑥 for each data sample. Also,
𝑆′ is calculated from 𝑆 with the method previously described
for the addition operator. With this new equation, the constant
optimization process described in Section 2.5.1 is performed. As a
result, an improvement value is returned, a positive one indicates
that this node can be replaced with (𝑘 + 𝑥).

• Subtraction operation. As in the previous case, the expression (𝑘−
𝑥) represents a line in the semantic space, parallel to the constant
line, and parallel to the (𝑘+ 𝑥) line. It should be highlighted that
in the previous case the position of the constant and variable
is indifferent: (𝑘 + 𝑥) and (𝑥 + 𝑘) leads to the same expression.
However, in this case, the constant must be the first argument of
the subtraction operation, and the variable the second. Otherwise,
we would be again in the previous case. To keep coherence, in all
these four cases the constant is going to be the first argument.
The process is similar in all of the four cases: given a node with
an equation represented by 𝑎𝑖, 𝑏𝑖, 𝑐𝑖, 𝑑𝑖 and 𝑆, a new equation
is calculated, this time from Eq. (19): with 𝑎′𝑖 = 𝑎𝑖, 𝑏′𝑖 = 𝑏𝑖 +
𝑎𝑖 ⋅ 𝑥𝑖, 𝑐′𝑖 = 𝑐𝑖, 𝑑′𝑖 = 𝑑𝑖 + 𝑐𝑖 ⋅ 𝑥𝑖, and 𝑆′ calculated from 𝑆 with
the method previously described for the subtraction operation
Once this equation has been calculated, the constant optimization
process is performed.

• Multiplication operation. In this case, the expression (𝑘 ⋅ 𝑥) repre-
sents a line in the search space in which the vector 𝑥 is included,
i.e., all of the vectors in (𝑘 ⋅ 𝑥) are collinear to 𝑥. The objective
here is the same: find the value of 𝑘 that minimizes Eq. (6).
Given a node of the tree with an equation represented by 𝑎𝑖, 𝑏𝑖,
𝑐𝑖, 𝑑𝑖 and 𝑆, a new equation is calculated, this time from Eq. (13):
𝑎′𝑖 = 𝑎𝑖 ⋅ 𝑥𝑖, 𝑏′𝑖 = 𝑏𝑖, 𝑐′𝑖 = 𝑐𝑖 ⋅ 𝑥𝑖, 𝑑′𝑖 = 𝑑𝑖, and 𝑆′ calculated from 𝑆
with the method previously described for the multiplication op-
eration. With this equation, the previous constant search process
is undergone, having as result a value of reduction in 𝑀𝑆𝐸.

• Division operation. In this case, the expression (𝑘∕𝑥) represents a
line in the search space in which the vector given by the values
1∕𝑥𝑖 is included, i.e., all of the vectors in (𝑘∕𝑥) are collinear to the
vector given by 1∕𝑥𝑖. With the same objective as in the previous
cases, and given a node, from the equation of this node a new one
is calculated, with Eq. (19): 𝑎′𝑖 = 𝑎𝑖, 𝑏′𝑖 = 𝑏𝑖 ⋅ 𝑥𝑖, 𝑐′𝑖 = 𝑐𝑖, 𝑑′𝑖 = 𝑑𝑖 ⋅ 𝑥𝑖,
and 𝑆′ calculated from 𝑆 with the method previously described
for the division operation. The same constant optimization is
performed.
As in the subtraction operation, this operation does not allow
changing the order of the children. If (𝑥∕𝑘) was chosen instead
of (𝑘∕𝑥), then an operation similar to the previous one (constant-
variable search with multiplication operation) will be being per-
formed, resulting in the value of 1∕𝑘.

In this search, for each of the four operations, a set 𝑆′ has to be
calculated from the 𝑆 set of the node. If 𝑆′ = 𝑁𝑎𝑁 , then the constant
search for that operation, node and variable does not take place, since
11

there are no possible values for the constant. A particular case happens
in the division operator when the variable has any 0 in its semantics. In
this case, the result of the calculation of 𝑆′ is 𝑁𝑎𝑁 , excluding variables
with 0 values in semantics from being the second child of a division
operation.

This process can be done for each node of the tree, whether it is a
constant, variable or non-terminal. As a result, the combination selected
is the one that returns a higher value in Eq. (27), in case it is higher
than 0. This combination states which node can be changed, and which
3-node subtree can be inserted in its place. The node to be changed can
be terminal or non-terminal, so this search process can lead to having
the tree increase or decrease the number of nodes. However, it has been
observed that most of the time this search is successful only on terminal
nodes (constants and variables), and sometimes on non-terminal nodes.
As in previous searches, performing this search only on terminal nodes
may save computational time.

Fig. 4 (c) shows an example of a constant-variable search. The
shape given by Eq. (6) does not have an intersection with the gray
line defined as 𝑠𝑝𝑎𝑛{(1, 1,… , 1)}, and there are not variables inside
this shape. Therefore, constant and variable searches would not be
successful. However, from the variable 𝑥1 four different lines can be
defined: 𝑘+𝑥1, 𝑘−𝑥1, 𝑘⋅𝑥1 and 𝑘∕𝑥1. In this case, the gray lines 𝑘+𝑥1 and
𝑘 ⋅𝑥1 intersect the shape, so in both cases, a constant can be calculated
to have an expression 𝑘 + 𝑥1 or 𝑘 ⋅ 𝑥1 that improves 𝑀𝑆𝐸. The given
ree would be replaced with this expression.

It is important to highlight that this search must be used carefully
o that it does not ‘‘hide’’ a constant search. For instance, the branch
‘(3.2 + 𝑥3)’’ can be selected for this search. As a result, this node could
e changed by ‘‘(3.5 + 𝑥3)’’ in this constant-variable search. However,
n practice the constant node was changed from a value of 3.2 to a
alue of 3.5. For this reason, for a specific variable and each of the four
perations (+,-,*,/), this search is not performed on nodes representing
he same operation, with a constant as the first child and the same
ariable as the second child.

Moreover, even with the described precaution, it is possible to use
his operation to ‘‘hide’’ a constant search. Another example could be in
he tree (3.4+ 𝑥2), in which 𝑥2 could be replaced by (0.1+ 𝑥2). This has
s result the tree (3.4+(0.1+𝑥2)), which has its semantics equivalent to

(3.5+𝑥2), and could be generated by a constant search. Another example
could be ((1.2 ⋅ 𝑥1) + 𝑥1). In this tree, the second 𝑥1 could be changed
into (0.5⋅𝑥1), and the resulting tree would be ((1.2⋅𝑥1)+(0.5⋅𝑥1)), which
has its semantics equivalent to (1.7 ⋅ 𝑥1) or ((0.7 ⋅ 𝑥1) + 𝑥1). This last tree
could be found from the original one, by performing a constant search
on the constant leaf.

In general, it is hard to determine when a constant-variable search
can ‘‘hide’’ a constant search. This situation makes the trees unneces-
sarily large, with possibly a high number of nodes (see Section 2.6). If
a constraint to the size of the tree is set, then the algorithm could be
prematurely stopped because of having too many nodes that could be
simplified.

One way to avoid this problem is, before this search takes place, to
optimize all of constants. This process is described in Section 2.6, and
is based on constant search.

Another possibility is to perform a constant search at the same
time this search is performed. With this approach, a modification of a
constant and a constant-variable search that modifies the same constant
will have the same 𝑀𝑆𝐸 reduction. The first of them (constant search)
would be chosen to modify the tree.

2.5.4. Search for expressions combined with constants
The previous search allows the tree to grow by replacing terminal

nodes with small branches. However, once a part of the tree has
been built, it will unlikely be modified, and its modification involves
the deletion of a branch and substitution by a constant, variable or
constant-variable branch. This can be undesirable since the deleted part
of the tree has proved to be useful. Therefore, a method that allows the

modification of a branch without deleting it is desirable.
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This search allows the tree to grow by modifying a non-terminal
node of the tree. This modification is done as in the previous cases:
finding a better branch and replacing the whole subtree with this
branch. However, in this case, the branch contains the previous subtree,
so it is not deleted but modified. For instance, a node 2.5∕(3 + 𝑥2) can
e replaced by the branch (3.4+2.5∕(3+𝑥2)), in which the second child
s the previous subtree.

The idea behind this search method is similar to the constant-
ariable search. In this case, the node selected represents a point 𝑝 in
he semantic space in the border of the 𝑀𝑆𝐸 shape. There may be a
onstant 𝑘 that makes (𝑘 + 𝑝) inside the 𝑀𝑆𝐸 shape, thus improving
he 𝑀𝑆𝐸. As in the previous search, (𝑘 + 𝑝) is the line that intersects
, parallel to the constant line (1,1, . . . ,1). Similarly, there may be a
onstant 𝑘 that makes (𝑘 ⋅ 𝑝) inside the 𝑀𝑆𝐸 shape. (𝑘 ⋅ 𝑝) is the line
hat goes through p and (0,0, . . . ,0). In both cases, finding a value for k
eans finding a point in the corresponding line inside the 𝑀𝑆𝐸 shape.
ther approaches such as (𝑘−𝑝) or (𝑘∕𝑝) are not explored, because they
o not begin in the border of the 𝑀𝑆𝐸 shape and thus are not likely
o return an improvement in 𝑀𝑆𝐸. In the first case, (𝑘 − 𝑝), the line
oes though −𝑝 instead of 𝑝, and in the second case, (𝑘∕𝑝), the line goes

through 1∕𝑝 instead of 𝑝.
Contrary to the previous searches, this one is performed only on

on-terminal nodes, because when it is performed on a terminal node:

• If this terminal node is a constant, then a constant search is being
performed.

• If this terminal node is a variable, then a constant-variable search
is being performed.

The behavior of this search is very similar to the constant-variable
earch. In the case of performing a (𝑘 + 𝑝) search on a node 𝑝 with its

equation, a constant value that maximizes Eq. (27) for the semantics
of the tree (𝑘 + 𝑝) has to be found. To do this, a new equation is
calculated from the 𝑎𝑖, 𝑏𝑖, 𝑐𝑖, 𝑑𝑖 and 𝑆 values of the equation of this
node. As the constant is going to be situated as the first child of the
addition operation, this new equation is calculated as in Eq. (9), with
𝑎′𝑖 = 𝑎𝑖, 𝑏′𝑖 = 𝑏𝑖 − 𝑎𝑖 ⋅ 𝑝𝑖, 𝑐′𝑖 = 𝑐𝑖, 𝑑′𝑖 = 𝑑𝑖 − 𝑐𝑖 ⋅ 𝑝𝑖, where 𝑝𝑖 are the
values of the node 𝑝 for each data sample, and 𝑆′ is calculated from
𝑆 with the method described for the addition operation. With this new
equation, the constant optimization process described in Section 2.5.1
is performed. As a result, an improvement value is returned, a positive
one indicates that this node can be replaced with (𝑘 + 𝑝).

If a (𝑘 ⋅ 𝑝) search is performed on a node with an equation repre-
sented by 𝑎𝑖, 𝑏𝑖, 𝑐𝑖, 𝑑𝑖 and 𝑆, a new equation is calculated, this time
from Eq. (13): 𝑎′𝑖 = 𝑎𝑖 ⋅𝑝𝑖, 𝑏′𝑖 = 𝑏𝑖, 𝑐′𝑖 = 𝑐𝑖 ⋅𝑝𝑖, 𝑑′𝑖 = 𝑑𝑖, and 𝑆′ is calculated
from 𝑆 with the method described for the multiplication operation.
With this equation, a constant search process is undertaken, resulting
in a value of reduction in 𝑀𝑆𝐸.

With this search, the size of the tree is always increased in two
nodes.

Fig. 4 (d) shows an example of a constant-expression search. In this
case, the node is represented by the semantics p. From this point, two
lines can be defined: 𝑘 + 𝑝 and 𝑘 ⋅ 𝑝, having a part of both inside the
shape. Thus, a constant can be calculated for each line, and the tree
can be replaced by either 𝑘+𝑝 or 𝑘 ⋅𝑝. Only addition and multiplication
operations are considered because on 𝑘 − 𝑝 and 𝑘∕𝑝 the nodes −𝑝 and
1∕𝑝 are not tangent to the shape and it is less likely to find a line
intersecting the shape.

As happens with constant-variable searches, constant-expression
searches can hide a constant search. For example, if the tree is (3+2⋅𝑥1)
and the operation (𝑘+𝑝) is used, then the result would be (𝑘+(3+2⋅𝑥1)),
which has its semantics equivalent to (𝑘 + 3) + (2 ⋅ 𝑥1), and could be
generated by a constant search on the first constant leaf.

One way to partially avoid this situation is not to perform constant-
expression searches with the operation (𝑘 + 𝑝) on non-terminal nodes
with the operation ‘‘+’’ or ‘‘-’’, and one of the children is a constant. In
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the same way, constant-expression searches with the operation (𝑘 ⋅ 𝑝)
on non-terminal nodes with the operation ‘‘*’’ or ‘‘/’’, and one of the
children is a constant should be avoided too.

Even with these precautions, a constant-expression search can hide
a constant search. For example, the tree ((2 − 𝑥4) + (4 ⋅ 𝑥4)) with the
operation (𝑘 + 𝑝), would result 𝑘 + ((2 − 𝑥4) + (4 ⋅ 𝑥4)), which has its
semantics equivalent to ((𝑘 + 2) − 𝑥4) + (4 ⋅ 𝑥4). This last tree could be
found by a constant search.

Another example could be the tree (3 + (2 ⋅ 𝑥1)), in which the node
where the constant-expression search takes place is 𝑝 = (2 ⋅ 𝑥1). In this
ase, a (𝑘 + 𝑝) constant-expression search could take place and 𝑝 could
e replaced by (𝑘 + (2 ⋅ 𝑥1)). In this example, the final tree would be
3 + (𝑘+ (2 ⋅ 𝑥))), which has its semantics equivalent to ((3 + 𝑘) + (2 ⋅ 𝑥)).
his tree could be found by means of a constant search.

Therefore, the same situation as in the previous search repeats
tself. It is hard to know in advance when a constant-variable search
r a constant-expression search will hide a constant search. As stated
reviously, this leads to the problem of having excessively large trees
nd stopping the algorithm too early. The same two solutions can be
pplied: performing optimization of all of the constants before these
earches or performing a constant search at the same time.

.5.5. Deletion of parts of the tree
The deletion of a branch of the tree implies replacing its father with

ts ‘‘sibling’’ branch. For instance, in the tree (2 ⋅𝑥1+3 ⋅𝑥2), the deletion
f the branch 3 ⋅ 𝑥2 leads to having (2 ⋅ 𝑥1+?) and then replacing the
oot with the first child, resulting in 2 ⋅ 𝑥1. In this example, this is
quivalent to having performed a constant search in the 3 ⋅ 𝑥2 branch
nd achieving as result an improvement in 𝑀𝑆𝐸 with the constant 0,
eading to the tree (2 ⋅ 𝑥1 + 0). If the root were the operators of -, * or
, the corresponding constants would be 0, 1 and 1.

Therefore, in all the cases deleting a branch of the tree is similar
o performing a constant search in that branch, and having as a result
ne of those constants, which is a very unlikely scenario. Therefore,
eletion of parts of the tree is not considered in this method, because it
an be performed by constant, variable, and constant-variable searches.

.6. Optimization of constants

As the tree is being built, each time a constant is generated, its
alue is the best for that tree. However, as the improvement process
ontinues, the tree will be modified, therefore this previously calculated
onstant value will not be the best for the new tree and, consequently,
his tree will not return the best possible result with that structure. This
appens with all the constants of the tree. Therefore, each time the tree
s modified, an optimization of the constants could be performed to
ind their new best values. Also, it has been found that, after a tree has
een modified, during several iterations in which only constant search
s performed, the 𝑀𝑆𝐸 is improved.

For this reason, a constant optimization process is proposed. This
rocess is simply based on examining the tree, taking all the constant
odes and subsequently performing the following steps for each one:

1. Calculate the equation in this node.
2. Perform a constant search, having as result the value of 𝑀𝑆𝐸

reduction.
3. If this reduction of 𝑀𝑆𝐸 is higher than a value (see Section 2.8

for details of this parameter), then modify the constant of the
node with the result of the search.

Once these steps are executed on a constant node, the process goes
into the following one. When the last constant node has been processed,
this process begins again with the first. This process finishes when none
of the constant nodes can be optimized. Note that before that point is
reached, each node may have been optimized several times.

A different constant optimization process could be considered, in
which in each iteration a constant search is performed on all the
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constant nodes, and the one with the highest reduction (in case it is
higher than the parameter value) is modified. However, this would
need the calculation of all the equations of the constant nodes in each
iteration. Since the calculation of an equation needs the calculation of
the equations of the previous nodes and the constant nodes are always
leaves of the tree, this implies the calculation of a high number of
equations of the tree. This can be a time-consuming task. Therefore, the
approach described is proposed instead, which is much more efficient,
since only a small number of equations need to be calculated in each
iteration. However, if the user wishes to perform a constant optimiza-
tion process in which in each iteration the constant to be changed is the
one with the highest 𝑀𝑆𝐸 reduction, this can be done by repeatedly
executing constant searches on constant nodes.

As stated in Sections 2.5.3 and 2.5.4, the optimization of constants
can be very useful for preventing some successful searches that in
practice only modify the value of a constant, causing an artificial
growth of the tree. One way to prevent these situations is, before the
selected searches take place, to optimize all the constants of the tree. If
this is done, obviously a constant search will be unsuccessful and will
only consume computational time.

2.7. Constraints to the tree

As one of the aims of this paper is to find simple expressions that
are easy to analyze by humans, it is interesting to limit the complexity
of these expressions. With this objective, two constraints are used: the
height of the tree and the number of nodes. The user may make use of
either of these two, or none.

Both restrictions have an effect on in the constant-variable and
constant-expression searches described in Sections 2.5.3 and 2.5.4. In
the other two searches, there is no need to apply complexity constraints
because in both searches the result would be a tree with the same
or less complexity. Only on constant-variable and constant-expression
searches, the complexity of the tree is increased.

The application of these two constraints is very straightforward. If
the maximum height constraint is being used, instead of performing
these two searches in all the nodes of the tree, they will be done only
in the nodes whose depth is lower than the maximum height. If the
maximum number of nodes (n) constraint is being used, the tree has r
nodes and each node of the tree represents a subtree with s nodes, then
the constant-variable search is performed only on those nodes that meet
the constraint 𝑛−𝑟+𝑠 ≥ 3. The constant-expression search is performed
if 𝑛 − 𝑟 ≥ 2

These two constraints are closely related. Since only binary opera-
tions, arithmetic functions, are used, the height constraint sets a limit
to the number of nodes. The number of nodes of a tree of height h can
be up to 2ℎ−1. Moreover, in this tree these 2ℎ−1 must be balanced, so
a height limit is a constraint to the number of nodes, but also to the
structure of these nodes in the tree. Also, it was already demonstrated
that a binary tree with n nodes has an average height of 2

√

𝜋𝑛 (Flajolet
Odlyzko, 1982). Therefore, to allow the building of a tree with n

odes without any structure constraint, the maximum height should
e higher than 2

√

𝜋𝑛, which would lead to having more than 22
√

𝜋𝑛−1

odes, which is a very large number. For this reason, the height limit
s not used, and the only constraint is the number of nodes.

Setting a limit on the complexity of the tree has two interesting
eatures. First, it makes it possible to obtain simple, easily understood
xpressions. Second, it is possible to obtain models with better gener-
lization abilities and to control overfitting. The described system can
row until a good enough result in the training set is found. However,
xcessive growth, resulting in a very large tree and a very complex
odel, may lead to overfitting the training set. Therefore, the user may

et a limit to this growth in the maximum number of nodes that the tree
an have. Thus, this parameter will be important, and experiments will
e performed with it.
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2.8. Algorithm

The method proposed in this paper allows the creation of trees with
a low 𝑀𝑆𝐸 value. However, contrary to GP, in which many different
trees are created, in DoME, a simple tree is continuously improved.

The algorithm begins with a simple initial tree made of a single
node representing a constant. This constant is the point in the constant
line closer to the target point. To calculate it, it is necessary to set
the constraint that the vectors 𝑘 and 𝑘 − 𝑡 must be perpendicular, and
herefore the dot product ⟨𝑘, 𝑘−𝑡⟩ = 0. Developing this expression leads
o

=
𝑁
∑

𝑖=1
𝑘 ⋅ (𝑘 − 𝑡𝑖) =

𝑁
∑

𝑖=1
𝑘2 −

𝑁
∑

𝑖=1
𝑘 ⋅ 𝑡𝑖 = 𝑁 ⋅ 𝑘2 − 𝑘 ⋅

𝑁
∑

𝑖=1
𝑡𝑖 (36)

And therefore 𝑘 = 1
𝑁

∑𝑁
𝑖=1 𝑡𝑖 is the average value of the targets. As

his constant node is already the best value, it will not be optimized
ue to the constant search process. This value could also be obtained
ith a constant search from Eq. (30) (𝑎𝑖 = 1, 𝑏𝑖 = 𝑡𝑖, 𝑐𝑖 = 0, 𝑑𝑖 = −1,
= ∅).
It has been found that in several datasets the algorithm sometimes

talls in the first iteration. This happens because this tree is a local
inimum with a low number of nodes. As it has few nodes, the

lgorithm has few places to search and might not find any improvement
n these places.

To solve this, one possibility is, when this happens, to change the
nitial tree to a more complex one. This new tree does not consist only
f the constant 𝑘 calculated above, but initially has combinations of the
ariables up to a specific order, but with the semantics of the 𝑘-tree
alculated above. For example, for a problem with 2 inputs and order
, the initial tree will be the following:

+ 0 ⋅ 𝑥1 + 0 ⋅ 𝑥2 + 0 ⋅ 𝑥1 ⋅ 𝑥1 + 0 ⋅ 𝑥1 ⋅ 𝑥2 + 0 ⋅ 𝑥2 ⋅ 𝑥2 (37)

In general, with L inputs, the initial tree of order n will be as follows:

+
𝐿
∑

𝑖=1
0 ⋅ 𝑥𝑖 +

𝐿
∑

𝑖=1

𝐿
∑

𝑗=𝑖
0 ⋅ 𝑥𝑖 ⋅ 𝑥𝑗 +

𝐿
∑

𝑖=1

𝐿
∑

𝑗=𝑖

𝐿
∑

𝑘=𝑗
0 ⋅ 𝑥𝑖 ⋅ 𝑥𝑗 ⋅ 𝑥𝑘 +⋯ (38)

This tree can be calculated by the following recursive relation,
here 𝑇𝑛(𝑥1, 𝑥2,… , 𝑥𝐿) is the tree of order n for L inputs:

0(𝑥1, 𝑥2,… , 𝑥𝐿) = 0

𝑇𝑛(𝑥1, 𝑥2,… , 𝑥𝐿) =
𝐿
∑

𝑖=1
𝑥𝑖 ⋅ 𝑇𝑛−1(𝑥𝑖, 𝑥𝑖+1,… , 𝑥𝐿)

+ 𝑇𝑛−1(𝑥1, 𝑥2,… , 𝑥𝐿) (39)

And, therefore, for an order n and L possible variables, the initial
ree will be 𝑘 + 𝑇𝑛(𝑥1, 𝑥2,… , 𝑥𝐿).

In this way, when the initial tree does not allow to leave this
local minimum, successively more complex trees are generated (with
a higher order) but with the same semantics, until one of them makes
it possible for the search process to leave this local minimum, or until
the maximum number of nodes is reached.

After this initial tree has been created, the iterative process be-
gins. On each iteration, the constant search, variable search, constant-
variable, and constant-expression search can be performed on any
nodes, whether they are constant, variable or non-terminal nodes,
following a specific strategy. For instance, some possible strategies
could be:

1. ‘‘Exhaustive’’: perform the four searches at the same time and
substitute the corresponding node with the result of the strat-
egy with a higher reduction in 𝑀𝑆𝐸, in case it is positive.
This is the strategy that makes a full search, however, it is
also the most time-consuming strategy since much computa-
tional time is wasted in performing operations that will not
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lead to improving the tree. It is important to note that in this
strategy constant search is performed in constants, together
with constant-variable search and constant-expression search,
to avoid the above-mentioned problem of ‘‘hiding’’ changes in
constants and tree growing.

2. ‘‘Exhaustive with constant optimization’’: perform the four
searches at the same time; however, perform constant search
only in variables and non-terminal nodes. After any modification
is made to the tree, perform the constant optimization pro-
cess. This optimization ensures that the next constant-variable
and constant-expression searches do not ‘‘hide’’ a change in
constants.
These two strategies can be seen as similar in the sense that
in the second one a constant optimization step is performed
on each iteration, while in the first one a constant search on
the constant nodes of the tree is performed on each iteration.
Therefore, in the first strategy successive iterations may perform
a constant refinement while in the second strategy the constant
refinement is performed on each iteration. However, this con-
stant refinement performed in the first strategy will be stopped
when any other search returns a higher 𝑀𝑆𝐸 reduction, while in
the second strategy the constant refinement is stopped when no
𝑀𝑆𝐸 reduction is found in the constant optimization process.

3. ‘‘Selective with constant optimization’’: To save computational
time, searches that are found to be unsuccessful most of the time
can be avoided. Also, the searches can be performed sequen-
tially, and when one of the searches is successful, the rest are
not performed. This strategy proposes to run the following steps
on each iteration:

(a) Perform variable search only on constant nodes.
(b) If the previous search was not successful, perform a

constant-expression search (this search is always only
performed on non-terminal nodes).

(c) If either of the two previous searches were unsuccessful,
perform a constant-variable search on terminal nodes.

(d) If none of the three previous searches was successful,
perform together:

• Constant search on variable and non-terminal nodes.
• Variable search on variable and non-terminal nodes.
• Constant-variable search on non-terminal nodes.

(e) If any of the previous searches were successful, perform a
constant optimization.

The objective of this search is to perform the searches that are
unlikely to be successful only when the rest are unsuccessful.
This usually happens when the tree has reached the maximum
limit. As can be seen, the searches that are performed when this
happens are those that allow the tree to become smaller.

4. ‘‘Selective’’. In a similar way to the first and second strategies,
this fourth strategy is like the third, but without the constant
optimization process at the end. Instead, the first step of this
strategy is a constant search on constant nodes (refinement
of constant values). If a constant is modified, then no fur-
ther searches are performed and this iteration is finished. If no
constant is modified, then a strategy similar to strategy 3 is
executed, except for the final constant optimization, which is not
performed.

These four strategies were used in the experiments because they
escribe two different situations: an exhaustive strategy in which in
ach iteration all the searches are performed in all the nodes, and a
ighter strategy in which in each iteration the whole tree is examined
nly when no previous search was successful. In both strategies, their
ariants with and without constant optimization are explored too.

However, users may decide to use other strategies they may con-
ider useful. Other examples are:
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• Perform the searches consecutively. Modify the tree accordingly
for each search.

• Perform a constant and/or variable search and if the tree is not
modified, perform a constant-variable search. If no modifications
are made, perform a constant-expression search.

• Perform a constant search. If no modification is made, perform a
variable search. If no modification is made in this second search,
perform a constant-expression search. If no modification is made
in this third search, perform a constant-variable search.

Once a strategy has been set, this process is iteratively performed
until a stopping criterion is met. This criterion can be defined by the
user. This paper proposes the use of the following criteria:

• The number of iterations exceeds a fixed value.
• The 𝑀𝑆𝐸 in the current tree reaches the goal value set by the

user.
• The tree could not be improved in the last iteration. A hyperpa-

rameter defining the minimum improvement to consider that a
search has been successful is needed.

The result is a system whose configuration depends on a low number
of hyperparameters:

• Maximum number of iterations to be executed. Default value:
infinite.

• Goal in 𝑀𝑆𝐸. Default value: 0.
• Minimum improvement in the 𝑀𝑆𝐸 for any search. A search

is found to be successful if the reduction in 𝑀𝑆𝐸 is positive
and higher than the previous 𝑀𝑆𝐸 value multiplied by this
parameter. For example, if this parameter has a value of 10−2,
then a search will be successful only if the reduction in 𝑀𝑆𝐸 is
greater than 1% of the 𝑀𝑆𝐸. This value is also applied to the
constant optimization process described in Section 2.6. Default
value: 10−6.

• Maximum number of nodes of the tree. This parameter sets a limit
to the complexity of the equations to be developed by the system.
The default value is infinite, which means that arbitrarily complex
expressions may be developed to meet the 𝑀𝑆𝐸 goal.

• Strategy to be used on each iteration.

A key feature of this algorithm is its deterministic nature, i.e., each
time it is run with the same dataset it will return the same result. This
means that it only has to be tun once for each parameter configuration.

This algorithm was implemented in Julia (Bezanson et al., 2017)
v1.4.2. The source code of this technique can be downloaded from
https://github.com/danielriveroc/DoMEv1 along with detailed instruc-
tions on how to repeat the experiments described in this paper, and how
to run this system so that it can be used by anyone in their experiments.

3. Example of equation development

This section describes the application of DoME for developing an
easy and well-known expression: Newton’s law of universal gravita-
tion (Newton, 1687). This equation measures the force of attraction
between two masses. This force is proportional to the product of both
masses and inversely proportional to the square of their distance. This
expression is given by Eq. (40), in which 𝑀1 and 𝑀2 are the masses, 𝑑
is the distance, and 𝐺 = 6.67392 ⋅ 10−11 is the gravitational constant.

𝐹 = 𝐺 ⋅
𝑀1 ⋅𝑀2

𝑑2
(40)

This equation can be applied to arbitrarily large or small masses
and/or distances, i.e., it can be applied to calculate the force between
either small particles or big planets. In this example, this second case
will be explored, in order to show that the system can return good
results with arbitrarily different values since masses and distances
belong to different ranges.

To apply this equation, 1000 random data samples were built. Each
one is composed of:

https://github.com/danielriveroc/DoMEv1
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Table 4
Summary of the execution for developing Newton’s law of universal gravitation.
Iteration Node selected for substitution Resulting expression 𝑀𝑆𝐸

0 – 9.185106275464827 ⋅ 1020 2.7645 ⋅ 1043

1 9.185106275464827 ⋅ 1020 (1.1526861538137104 ⋅ 1030∕𝑑) 2.1717 ⋅ 1043

2 1.1526861538137104 ⋅ 1030 ((434063.57187533064 ⋅𝑀2)∕𝑑) 1.9183 ⋅ 1043

3 434063.57187533064 (((3.93202929320367 ⋅ 10−19 ⋅𝑀1) ⋅𝑀2)∕𝑑) 5.1733 ⋅ 1042

4 3.93202929320367 ⋅ 1019 ((((6.673920000000007 ⋅ 10−11∕𝑑) ⋅𝑀1) ⋅𝑀2)∕𝑑) 3.1828 ⋅ 1013
• 𝑀1: Mass of the first planet: a random number between 1023 and
1025

• 𝑀2: Mass of the second planet: a random number between 1023

and 1025

• 𝑑: Distance between both planets: a random number between 108

and 1012

• target: the result of the application of Eq. (40)

With this dataset, the system was configured with the following
hyperparameters:

• Maximum number of nodes: Infinite
• Strategy: The first strategy described in Section 2.8
• Goal in 𝑀𝑆𝐸. This parameter is very important in this example,

since we are working with a wide range of values, from very
small (𝐺) to very large (𝑀1 and 𝑀2). The targets were also in
a large scale, from 1012𝑁 to 1022𝑁 . Due to the limitation of
the use of floating-point values, even when 64 bits are used for
their storage, when working with such a wide range, inaccuracies
may occur due to operating with numbers on very different
scales. For instance, the operation 1020 + 10−10 − 1020 returns
an incorrect value of 0. This may result that, even though the
correct expression has been obtained, the 𝑀𝑆𝐸 calculated is not
0 due to inaccuracies, and the system keeps trying to improve this
expression with inaccurate calculations. For this reason, a target
𝑀𝑆𝐸 of 0 was not used in this example. Instead, the target used
was the average value of the targets.

Table 4 shows a summary of one execution of this system with the
described dataset. As was described, before the execution is performed,
an initial tree with a single constant node is built. In this execution,
this constant had a value of 9.185106275464827 ⋅ 1020. From this initial
tree, four iterations were performed until an expression with an 𝑀𝑆𝐸
below the goal was found. All the operations performed were constant-
variable searches, and the nodes selected for substitutions were the
constants. This example also shows the ability of this system to develop
the constants needed for the expressions to be returned. For this reason,
the constants are shown in this Table with a large number of decimals.

Finally, as a result of this execution, the expression
((((6.673920000000007 ⋅10−11∕𝑑) ⋅𝑀1) ⋅𝑀2)∕𝑑) is returned by the system,
which is similar to Eq. (40).

4. Experiments and discussion

The previous section showed that the system described in Sec-
tion 2.2 can be successfully used as a tool for developing mathematical
expressions. These mathematical expressions can also be used as an ML
model. For this purpose, a number of databases from the PMLB (Penn
Machine Learning Benchmark) repository (Olson et al., 2017) have
been taken and this method has been run with them, as they have been
extensively used to test different SR techniques (La Cava et al., 2021;
Moscato et al., 2021; Orzechowski et al., 2018). This makes it possible
to provide a comparison of the results obtained with this system and
those obtained with other already published SR models. In particular,
the results of this system have been compared with those published
in Moscato et al. (2021), since that paper shows the numerical values
obtained by other models. However, it is interesting to evaluate the AI
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Feynman dataset since it is based on trigonometric operations, and this
would allow to evaluate the previously mentioned problems that this
system may have when other behavior (such as periodic) is required.
This task is left as a future work.

From the 94 datasets used in Moscato et al. (2021), 64 were
artificially generated from the Friedman function (Friedman, 1991;
Friedman et al., 1983), with different values of colinearity degree, dif-
ferent number of samples, and different number of features (if greater
than 5, the remainder are random). These 64 datasets have been set
aside and have not been used as benchmarks in this study. The reason
for this is to avoid the results in this particular function having an
excessive impact on the overall performance of this system. If 64 out of
94 datasets refer to the same function, then this function has a weight
of 68.1% in the overall results, when ideally the weight should be 1/94.
For this reason, in this paper, the remaining 32 datasets will be used.

The experiments carried out in this part have the objective of
demonstrating the applicability of this technique. In this sense, as
shown in Section 2.7, it is important to limit the complexity of the trees.
For this reason, the experiments will focus on studying the impact of
the parameter described in Section 2.7 that limits the size of the tree:
maximum number of nodes. In this sense, different numbers of nodes
varying from 5 to 200 growing in intervals of 5 were used. Also, the
hyperparameter of minimum improvement in 𝑀𝑆𝐸 plays an important
role. For this reason, it was used in the experiments. The values chosen
for this parameter are 10−1, 10−2, 10−3, 10−4, 10−5, 10−6 and 10−7.
Finally, the experiments performed in this section were run with the
four strategies explained in Section 2.8.

A grid search (Raschka, 2015) was performed with all the values of
these three parameters, i.e., all of the possible combinations of the val-
ues of the three parameters were tried. For each combination of these
parameter values studied, a 10-fold cross-validation was performed.
Since this system is deterministic, only one training in each fold was
done. Cross-validation is a widely used technique for comparing differ-
ent methods and hyperparameter configurations. In a cross-validation
approach, the results used for the comparison are the average of the
test results in each fold. Thus, for each hyperparameter configuration,
the 10 test results are averaged. However, this section will show the
median of the results obtained in the 10 independent runs, rather than
the mean, because the paper used for the comparison uses the median
as the basis for comparison. In order to correctly compare the results,
the same training and test sets were used in all of the experiments
performed.

An important measure of the performance of this system is the com-
putational time. All the experiments were run on an Intel(R) Gold(R)
CPU 6240R, with a frequency of 2.40 GHz. A measure of time was
performed on each of the experiments performed.

Table 5 shows the results obtained for each combination of problem
and strategy. Due to the high number of experiments carried out,
only the configurations that returned the best results are shown in
these Tables. For each dataset, this Table shows the best median 𝑀𝑆𝐸
result (in test, second column) and, in the following 3 columns, the
hyperparameter configuration (strategy, minimum 𝑀𝑆𝐸 reduction and
maximum number of nodes, as described at the end of Section 2.8) in
which the training process returned that 𝑀𝑆𝐸 value. The hyperparam-
eter related to the maximum number of nodes limits the complexity
of the system. This is directly related to the generalization ability of
the system. Therefore, the configurations that generalize best are not

those that have used the highest number of nodes. With respect to
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Table 5
Results obtained. For each problem, this table shows the best median MSE obtained in test, the hyperparameter configuration (strategy used to go through the
nodes, minimum improvement in MSE for a search to be considered successful and maximum number of nodes in the tree) that returned this value, the median
training time of this configuration (measured in seconds), and a stability measure of this configuration.
Problem Best test 𝑀𝑆𝐸 Strategy Min MSE reduction Maximum num nodes Average time (s) Stability (100%)

ESL 0.254 2 10−5 100 8.3 4.35%
SWD 0.368 1 10−5 60 4.15 1.49%
LEV 0.35 3 10−4 45 0.0356 0.89%
ERA 2.21 2 10−7 100 1.49 2.03%
USCrime 193 3 10−3 20 0.0124 2.48%
FacultySalaries 0.728 1 10−7 155 165 52.44%
vineyard 4.1 4 10−3 15 0.00136 16.33%
auto price 3.43e6 1 10−7 65 0.978 19.50%
autoPrice 3.41e6 2 10−4 160 7.94 17.61%
cloud 0.0676 4 10−7 55 0.0903 27.87%
elusage 89.8 1 10−3 15 0.00706 2.81%
machine cpu 1.27e3 4 10−7 70 8.41 5.84%
analcatdata vehicle 5.32e3 4 10−5 145 2.13 51.20%
vinnie 2.36 3 10−4 5 0.000948 1.41%
pm10 0.545 2 10−4 30 0.677 1.57%
analcatdata neavote 0.814 3 10−2 10 0.00081 12.57%
analcatdata election2000 1.88e7 3 10−5 100 1.91 99.83%
pollution 1.26e3 4 10−4 30 0.0186 5.40%
no2 0.242 1 10−4 50 3.4 3.23%
analcatdata apnea2 5.58e5 4 10−4 115 0.749 9.53%
analcatdata apnea1 6.97e5 1 10−6 125 5.99 8.98%
cpu 15.2 3 10−7 140 140 79.49%
sleuth ex1714 7.66e5 3 10−2 40 0.0691 13.25%
rabe 266 2.65 1 10−7 185 262 34.92%
sleuth case2002 52.7 3 10−6 30 0.109 2.81%
rmftsa ladata 2.81 1 10−3 70 0.211 8.50%
visualizing environmental 6.82 3 10−5 30 0.0472 6.63%
sleuth ex1605 85.2 2 10−7 30 0.104 8.01%
visualizing galaxy 384 1 10−7 75 19.3 8.13%
chatfield 4 212 3 10−6 30 0.319 5.03%
sleuth case1202 1.56e3 3 10−3 70 0.0875 11.89%
chscase geyser1 33.3 1 10−3 45 0.0219 2.11%
the minimum 𝑀𝑆𝐸 reduction, this hyperparameter seems to return
etter results as it takes lower values. This means that even very low
mprovements in the training sets may lead to improvements in the
est sets. Thus, this hyperparameter does not influence the possible
verfitting of the expressions to the training sets, and this overfitting is
ontrolled mainly through the maximum number of nodes.

The strategy used is shown to be an important hyperparameter, as it
s the driver of the search process through the semantic space. In order
o compare the 𝑀𝑆𝐸 results returned by the different strategies, the
ollowing process has been carried out. First, for each dataset, the four
est MSE results (one for each strategy) were divided by the best of the
our. Thus, all 4 values will be greater than or equal to 1, with 1 being
he best value. With these values, a boxplot has been made for each of
he strategies, shown in Fig. 5. In this figure, values closer to 1 indicate
etter results, in this case regarding 𝑀𝑆𝐸. As can be seen in this figure,
trategy 1 offers the best results of the 4 strategies. However, it is also
he most time-consuming strategy.

Table 5 also shows the median computational time (in seconds) used
o generate the 10 expressions corresponding to that hyperparameter
onfiguration. In order to assess the time spent by each strategy, similar
rocessing was carried out, but instead of using the MSE values, the
ime measures were used. In this way, new boxplots were generated and
re shown in Fig. 6. Again, values closer to 1 indicate shorter times. As
his figure shows, the Exhaustive strategy has a much higher execution
ime than the others. Also, the Selective strategies are sensitively faster
han the Exhaustive strategies. On the other hand, the constant opti-
ization process seems to improve the computational time. This can be

een in that the strategies using constant optimization (2 and 3) have
much shorter execution time than their corresponding ones without

ptimization (1 and 2 respectively). This reinforces the usefulness of
sing a constant optimization process. Joining these two Figs. 5 and
, it can be seen that strategy 1 performs a search that returns better
16

esults on average, at the cost of having a higher execution time. This
is to be expected since this strategy performs a more exhaustive search
in the semantic space.

The last column of this table shows a stability test. The aim is to
observe how the results vary with small changes in the data used for
training. When using a 10-fold cross-validation, 11.11% of the instances
of a training set of one fold are different from those of any other
fold; however, 100% of the instances used for testing are different in
all folds. For this reason, the stability calculation is performed with
the MSE values in the training sets, and not in the test sets. To do
this, the median absolute deviation of the 10 MSE values in training
was calculated for each hyperparameter configuration shown in the
table. This gives a measure of the dispersion of training errors when
using slightly different training datasets. This value was then divided
by the median of the 10 MSE values in training in order to calculate a
variability ratio, which is expressed in the last column as a percentage.

The results of this system have been compared with those pub-
lished in a previous work in which several SR systems were used
for comparison (Moscato et al., 2021). In that work, CFR (Continued
Fraction Regression) is compared with 15 SR algorithms. five of them
are GP-based methods and 10 are ML algorithms. However, only for
the following three methods, other than CFR, numerical results are
provided:

• eplex-1 m: ∈-Lexicase selection with stopping criteria of one
million evaluations (La Cava et al., 2016).

• xg-b: Extreme Gradient Boosting (Chen & Guestrin, 2016).
• grad-b; Gradient Boosting Regression (Friedman, 2000).

The first is a GP-based method, while the other 2 are ML algorithms.
In that paper, the numerical results of CFR and these 3 methods have
been published because they were the "top four methods that showed
no significant differences of performances" in a Critical Difference
diagram with a significance threshold of p=0.05 (Moscato et al., 2021).

Therefore, these 4 algorithms have been used in the comparison here
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Fig. 5. Comparison of the relative MSE results with the different strategies.

Fig. 6. Comparison of the relative execution time.

ecause they are the ones for which numerical data are provided in the
eference work. Also, since that paper uses the median instead of the
ean for comparison, this paper will also use the median statistic.

Table 6 shows a comparison between the best median MSE results
btained with the three different methods. The numerical results of the
algorithms used for comparison correspond to the median value for

0 independent runs of these four algorithms. In this table, for each
ataset, the results of the method that returned the lowest median MSE
re shown in bold. As expected according to NFL theorems, there is no
echnique that returns the best results in all problems. However, DoME
s the algorithm that returns the best results in most cases.

In Fig. 7 a Critical Difference diagram is shown in which the
omparison between the results obtained by the 5 methods can be
een (Calvo & Santafé, 2016; Demšar, 2006). In this diagram, after
lacing each method on the 𝑥-axis according to its MSE, the methods
etween which there is no significant difference with p≤0.05 are shown
oined by a horizontal line. As this figure shows, although DoME offers
etter results, there is no significant difference between the results
eturned by DoME and CFR. However, there is difference with respect
o the other techniques.

From the data in this Table, a similar analysis to that carried out
ith the strategies can be performed. In this case, for each dataset, the
SE results are divided by the best value obtained by any of the five
ethods. From this data, a boxplot is created for each of the methods,
hich can be seen in Fig. 8. As before, the lower the values and the
17

loser to 1, the lower the MSE. As can be seen in this figure, DoME t
Table 6
Comparison between different methods (𝑀𝑆𝐸)

Problem eplex-1 m grad-b xg-b CFR DoME

ESL 0.274 0.319 0.272 0.268 0.254
SWD 0.39 0.405 0.408 0.432 0.368
LEV 0.425 0.424 0.422 0.353 0.35
ERA 2.51 2.58 2.57 2.45 2.21
USCrime 393 257 378 220 193
FacultySalaries 4.04 8.07 4.11 1.28 0.728
vineyard 6.01 8.22 7.83 4.22 4.1
auto price 5.89e6 3.89e6 4.03e6 6.01e6 3.43e6
autoPrice 4.17e6 5.29e6 2.87e6 4.83e6 3.41e6
cloud 0.11 0.208 0.144 0.095 0.0676
elusage 135 199 137 65.8 89.8
machine cpu 3.8e3 2.23e3 2.69e3 2.1e3 1.27e3
analcatdata vehicle 4.14e4 2.41e4 4.2e4 1.55e4 5.32e3
vinnie 2.29 2.86 2.66 1.93 2.36
pm10 0.64 0.431 0.399 0.621 0.545
analcatdata neavote 1.18 0.818 0.917 0.401 0.814
analcatdata election2000 4.33e7 3.4e8 7.72e8 5.09e5 1.88e7
pollution 1.87e3 2.19e3 1.67e3 1.42e3 1.26e3
no2 0.272 0.227 0.21 0.295 0.242
analcatdata apnea2 1.12e6 9.42e5 7.86e5 6.09e5 5.58e5
analcatdata apnea1 8.16e5 9.98e5 5.28e5 6.96e5 6.97e5
cpu 175 2.36e3 883 164 15.2
sleuth ex1714 1.42e6 1.57e6 2.31e6 6.83e5 7.66e5
rabe 266 7.11 7.32 3.04 2.64 2.65
sleuth case2002 75.8 56.2 72.4 41.7 52.7
rmftsa ladata 3.01 3.51 3.21 2.76 2.81
visualizing environmental 9.62 9.8 9.54 4.7 6.82
sleuth ex1605 102 98.4 92 84 85.2
visualizing galaxy 313 268 224 434 384
chatfield 4 282 384 288 189 212
sleuth case1202 3.29e3 3.42e3 3.2e3 1.39e3 1.56e3
chscase geyser1 38.9 39.9 42.9 31.1 33.3

Fig. 7. Critical Difference diagram with the comparison of the 5 methods.

returns, on average, better results than the other techniques. However,
it is important to note that the splits of the datasets are not the same
as those used in the reference work because we have not had access to
these partitions.

Also, an analysis of the expressions obtained can be carried out.
Table 7 shows, for each dataset, the median number of nodes and
the median height of the expressions obtained in each fold with the
configuration that gave the best results, shown in Table 6. As can
be seen, the number of nodes is usually very close to the maximum.
This means that the system makes use of as much complexity as
possible in order to fit the training data as much as possible. Interesting
information is obtained when examining the height of the resulting
trees. With respect to the height of the trees, as was expected, a higher
number of nodes leads to higher heights. However, these heights are
not on the scale of 𝑙𝑜𝑔2(𝑛), with n representing the number of nodes.

his shows that the system, with a limit of the number of nodes, finds
etter results with very unbalanced trees rather than with balanced
rees. This fact supports the idea of not using a hyperparameter to limit
he height of the tree. It is also interesting to note that in all datasets

maximum of 200 nodes has been allowed, but in no case has the
est tree needed to reach that number. As can be seen in this table,
his method not only returns expressions with a low MSE, but they are
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Table 7
Summary of the expressions obtained.
Problem Nodes Height Num. inputs Problem Nodes Height Num. inputs

ESL 99 17 4 analcatdata election2000 99 16 14
SWD 59 14 10 pollution 29 12 15
LEV 45 13.5 4 no2 49 12.5 7
ERA 78 18.5 4 analcatdata apnea2 115 23 3
USCrime 19 7 13 analcatdata apnea1 125 15.5 3
FacultySalaries 155 20 4 cpu 139 24 7
vineyard 9 4 2 sleuth ex1714 39 8.5 7
auto price 65 16.5 15 rabe 266 185 46.5 2
autoPrice 159 25.5 15 sleuth case2002 29 11 6
cloud 32 9 5 rmftsa ladata 15 7 10
elusage 15 5 2 visualizing environmental 24 9 3
machine cpu 69 15.5 6 sleuth ex1605 29 11 5
analcatdata vehicle 145 24 4 visualizing galaxy 75 13.5 4
vinnie 5 3 2 chatfield 4 29 10 12
pm10 15 6 7 sleuth case1202 69 13.5 6
analcatdata neavote 9 5 2 chscase geyser1 23 8 2
Table 8
Examples of the final expressions obtained.

Problem Expression

LEV (−0.122) +
((((

0.265 ⋅𝑋1
)

+
(

0.416 ⋅𝑋2
))

+
(

0.152 ⋅𝑋3
))

+
(

0.155 ⋅𝑋4
))

USCrime
⎛

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎝

(−0.822)
𝑋10

+

(

𝑋9+
648854.722

𝑋2

)

𝑋4

𝑋6

⎞

⎟

⎟

⎟

⎠

⋅𝑋1

⎞

⎟

⎟

⎟

⎠

+ 72690.856
𝑋13

vineyard 0.968 ⋅
((

5.663 +𝑋1
)

+𝑋2
)

cloud
(

(−0.147) ⋅𝑋5
)

+
((

0.479 ⋅𝑋3
)

+
(

(−0.047) +
(

0.733 ⋅𝑋4
)))

elusage
((

(−0.002) ⋅𝑋1
)

⋅𝑋1
)

+ ((2362.397−𝑋1)−𝑋1)
((−2.965)+𝑋1)

vinnie (−1.584) +
(

0.582 ⋅𝑋2
)

pm10 0.351 ⋅
(

13.246
((0.442⋅𝑋1)+(1.155⋅𝑋3)) +

(

1.021 ⋅𝑋1
)

)

analcatdata neavote 3.732 ⋅
(

2.602 −
((

3.022 −𝑋1
)

⋅𝑋1
))

visualizing environmental 4.346 ⋅
(

1.335 + (112.678−(1.017⋅𝑋1))
𝑋3

)

sleuth ex1605 0.761 ⋅

((
(

31.767
𝑋5

⋅𝑋4

)

𝑋3
⋅

(
((( (327.570⋅𝑋5 )

𝑋2
−𝑋2

)

−𝑋2

)

−𝑋2

)

((−95.548)+𝑋4) +𝑋2

))

+𝑋5

)

chscase geyser1
(((

31.425 −
(

0.923 ⋅
(

0.984 ⋅𝑋2
)))

−𝑋2
)

−𝑋2
)

⋅

(

(2.508−((((0.002⋅𝑋2 )⋅𝑋2 )⋅𝑋1 )+𝑋2 ))
𝑋2

𝑋2
+𝑋2

)

Fig. 8. Comparison of the relative MSE results with different methods.

lso very compact, both in the number of nodes and in height. This
able also shows the number of variables for each dataset. As can be
een, there is no correlation between the number of variables and the
umber of nodes needed to obtain the best test result.
18
Finally, for each problem, we took the configuration with the com-
bination of hyperparameters that returned the best test results for each
dataset, according to Table 5. With these configurations, this system
was re-trained again, but this time using all the data as the training
set. Table 8 shows some of the final expressions generated. To generate
this table, only the datasets whose expressions fit on the page were
taken. In addition, the number of decimal values in the expression
constants has been limited to three. As can be seen, in many cases
these expressions can be simplified to simpler ones, i.e. with fewer
nodes. In this way, for a given limit on the maximum number of nodes,
the expressions developed could have a lower training MSE using a
simplification process. However, this task has been left as a future work.

5. Conclusions

This paper presents a novel technique for Symbolic Regression,
called DoME. In this field, the most commonly used technique is GP,
which is based on evolutionary processes and no mathematical expla-
nation can be given for the equation development process. Thus, this
field has an important lack of mathematical-based methods. The tech-
nique presented in this paper makes it possible to obtain mathematical
expressions that can model an input–output relationship.

Also, the expressions obtained by this method can have a limit
in complexity. This makes it possible to obtain expressions that can
be easily analyzed by humans, in contrast with other techniques that



Expert Systems With Applications 198 (2022) 116712D. Rivero et al.

c
A
s
t
o
t
‘
b

C

I
i
B

D

c
i

A

e
a
p
c
i
w

g
t
t
I
(
b
2
2
O
p
M
f
C
2
U

R

B

B

C

C

return very large expressions. As was shown, the resulting expressions
are compact and, therefore, easier to analyze. The analysis of these
expressions is usually one of the objectives of Symbolic Regression.

Results in Section 4 show that this technique can return good results
in real-world problems. These results have also been compared with
several SR methods, concluding that this method returns, on average,
better results.

An additional advantage of this system used for Machine Learning
purposes is that the returned model is a standard equation and thus it
can be used in any programming language with no need to import any
ML library. Moreover, this expression can be used in any calculation
systems apart from programming environments. For instance, it can be
easily used in a spreadsheet as opposed to other systems such as Neural
Networks.

6. Future works

This paper opens a wide new research field in Symbolic Regression.
As was described throughout the paper, much research is still to be
done. Some of the possible developments could be:

• In the constant search, find an easy expression or method to
compute the minimum of Eq. (6) in the case when 𝑐𝑖 and 𝑑𝑖 are
vectors. One possibility could be to use gradient descent (Snyman
& Wilke, 2018) to minimize this function.

• A new constant optimization algorithm could be proposed. In
the one described in this paper, each constant is alternatively
optimized in different iterations, which needs the computation
of the equations of the corresponding nodes in each iteration.
An alternative could be to change the value of several (or all)
constants in each iteration, thus making this process faster.

• As the limit of the complexity of the tree has been proven to
be an important factor, new ways of limiting this complexity
can be found. For instance, setting a limit to the number of
addition, subtraction, multiplication or division operations that
can be used.

• Limiting the complexity of the models is a common way to
avoid overfitting. However, other methods such as the use of a
validation set can also be used. This possibility could be explored,
with the advantage of not needing to set the limit of the number
of neurons or height of the tree.

• In order to obtain expressions that are more easily understand-
able by humans, information about the structure of the desired
expressions could be given. For instance, many times the desired
expression is a division of two expressions, with no other division
performed in these two parts. This structure, as well as any other,
could be given to the system. As an additional feature, the search
process could be made faster.

• An interesting possibility could be to extend the variable search
not only with variables but also with any subtrees. The parts of
the tree that are going to be replaced with another could be stored
in a structure like a ‘‘node pool’’ and be used in the search later.
The idea is that if they were useful once, they might become
useful again later when the tree is modified.

• As mentioned above, GP is a very unstable system since it is non-
deterministic. On the other hand, although DoME is deterministic,
it could be interesting to study deeper its stability by analyzing
the resulting expressions when there is a small change in the
dataset. In this sense, the iterative improvement might make this
algorithm more stable than others.

• As mentioned, the restriction of using arithmetic operators may
make this system perform well on some problems, and poorly on
others. For this reason, it would be interesting to evaluate it on
other datasets, such as the AI Feynman benchmark, to study the
19

limitations of this system.
• Finally, since this system returns algebraic expressions, these
could be simplified. This simplification can be performed by a
search operator that could be inserted into the strategy. In this
sense, the use of Gröbner basis (Lin et al., 2008) could be useful
to develop this search operator.

Additionally, this study could also be a basis for new ways of
ombining models that are not necessarily mathematical expressions.
ny model (for instance, an ANN) can be represented in the semantic
pace as one point, that could fall inside one of the shapes. Therefore,
he tree being developed could combine mathematical expressions with
ther types of models. This could be easily done with a search similar
o the variable search, that could be called ‘‘model search’’, and a
‘constant-model search’’. In this sense, this technique would allow the
uilding of ensembles of models.
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