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A method for detecting outlier samples in a multivariate time series dataset is proposed. It is assumed

that an outlying series is characterized by having been generated from a different process than those

associated with the rest of the series. Each multivariate time series is described by means of an

estimator of its quantile cross-spectral density, which is treated as a multivariate functional datum.

Then an outlier score is assigned to each series by using functional depths. A broad simulation study

shows that the proposed approach is superior to the alternatives suggested in the literature and

demonstrates that the consideration of functional data constitutes a critical step. The procedure runs

in linear time with respect to both the series length and the number of series, and in quadratic time

with respect to the number of dimensions. Two applications concerning financial series and ECG signals

highlight the usefulness of the technique.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Complexity, speed and volume of data is growing at an un-

precedented pace. In particular, time series data have become

ubiquitous in our days, arising frequently in a broad variety of

fields including medicine, computer science, economics, finance,

and environmental sciences, among many others. Although uni-

variate time series (UTS) were the norm until recently, multivari-

ate time series (MTS) have received lately a great deal of attention

due to the advance of technology and storage capabilities of

everyday machines. Examples of MTS are multi-lead ECG signals

of patients or temporal records of several economic indicators for

a specific country.

In particular, detection and analysis of anomalous behaviors

in temporal data constitutes an important problem in time series

data mining and has been addressed in different works in the

The code (and data) in this article has been certified as Reproducible by
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950-7051/© 2021 The Author(s). Published by Elsevier B.V. This is an open access a
iterature. A current review presenting a structured and com-

rehensive state-of-the-art on outlier detection techniques in

ime series data can be seen in [1]. Several methods have been

roposed either for UTS [2–11] or MTS [12–15]. These techniques

ocus on detecting time series showing an unusual behavior over

more or less long-term period or even in a specific time point.

ence, the outlier is characterized by an unexpected performance

ver a time window. Nevertheless, only a few works have ad-

ressed the detection of outlier time series objects, i.e., whole

ime series exhibiting an anomalous behavior compared with the

ajority of time series in a given dataset. Examples of works

andling this problem are [16–20] for UTS and [21] for MTS.

The first contribution of this paper is to propose an algo-

ithm aimed to detect outlier MTS samples. We consider this

roblem to be of paramount importance. For instance, compa-

ies are frequently interested in detecting unusual consumer

ehaviors based on temporal patterns. In the same way, prac-

itioners aim to discover atypical ECG signals indicating that a

iven patient could be at risk. Consequently, the proposal of new

pproaches intended to successfully identify anomalous MTS in a

iven collection is highly desirable.

Several strategies have been proposed in the outlier detec-

ion literature for multidimensional time series. [22] generalized
our common types of outliers in UTS to the MTS framework,
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nd developed an iterative method for outlier detection based
n two different test statistics. [12] designed a procedure for
nomaly identification considering projections of VARMA mod-
ls. [13] constructed a method that uses independent component
nalysis to extract possible outlier patterns from an MTS. [14]
roposed a robust algorithm for detecting anomalies in noisy
TS data. The approach uses a kernel matrix alignment method
apturing the dependence relationships between variables.
All the previous techniques focus on detecting series exhibit-

ng a distorted behavior during a period of time rather than
dentifying entire MTS objects as anomalous. In the present paper,
e are interested in the latter topic, which is concerned with
xtracting whole outlying MTS from a given database. This per-
pective has been considered only in a few works. [23] presented
procedure for identifying outlying samples in an MTS dataset
ased on local sparsity coefficient [24]. In a latter work, [21] de-
igned a methodology to extract the top outlying MTS by means
f the Extended Frobenius norm (Eros). However, these works do
ot address anomaly detection directly from the point of view
f the underlying stochastic processes. In other words, they do
ot consider that an MTS is atypical when it exhibits a different
ependence structure, thus showing a dynamical pattern distinct
rom the rest of the series in the dataset. This is particularly
emarkable, since a substantial part of the literature on time
eries is devoted to modeling and explaining the underlying
ependence structures of these objects [25,26]. In this regard,
he second contribution of this work is to address the outlier
dentification task from the mentioned viewpoint. It is worth
mphasizing the high complexity of this problem when treating
ith multidimensional time series due to the interdependence
elation between the univariate components.

Our approach for outlier detection relies on the notion of
uantile cross-spectral density. This via has been successfully
pplied in clustering of MTS [27]. The excellent results reached
n clustering, clearly outperforming other alternative criteria, mo-
ivated its consideration for detecting anomalous MTS. Further-
ore, the proposed method takes advantage of the functional
ature of the quantile cross-spectral density, thus allowing to use
he concept of functional depth to assign an outlier score to each
eries. This way, the whole dataset is ranked according to the
utlying likelihood of its elements.
The rest of the paper is organized as follows. Section 2 re-

views some background knowledge on the quantile cross-spectral
density and functional data depths. Section 3 describes the novel
pproach we propose to detect outlier samples in an MTS dataset.
he main results from a wide simulation study aimed to assess
he proposed procedure are shown in Section 4. Section 5 analy-
ses the computation times of the method. The usefulness of the
approach is illustrated in Section 6 by means of its application to
real MTS datasets. Finally, the main conclusions are summarized
in Section 7.

2. Background and related works

This section reviews some background knowledge on the
quantile cross-spectral density and the concept of depth for
functional data.

2.1. The quantile cross-spectral density

Following [27], let {X t , t ∈ Z} = {(Xt,1, . . . , Xt,d), t ∈ Z} be
a d-variate real-valued strictly stationary stochastic process. De-
note by Fj the marginal distribution function of Xt,j, j = 1, . . . , d,
and by qj(τ ) = F−1

j (τ ), τ ∈ [0, 1], the corresponding quantile
function. Fixed a lag l ∈ Z and an arbitrary couple of quantile
levels (τ , τ ′) ∈ [0, 1]2, consider the cross-covariance of the
 t

2

indicator functions I
{
Xt,j1 ≤ qj1 (τ )

}
and I

{
Xt+l,j2 ≤ qj2 (τ

′)
}
given

by

γj1,j2 (l, τ , τ ′) = Cov
(
I
{
Xt,j1 ≤ qj1 (τ )

}
, I

{
Xt+l,j2 ≤ qj2 (τ

′)
})

, (1)

for 1 ≤ j1, j2 ≤ d. Taking j1 = j2 = j, the function γj,j(l, τ , τ ′),
with (τ , τ ′) ∈ [0, 1]2, so-called quantile autocovariance function
of lag l, generalizes the traditional autocovariance function.

The d × d matrix given by

Γ (l, τ , τ ′) =
(
γj1,j2 (l, τ , τ ′)

)
1≤j1,j2≤d , (2)

jointly provides information about both the cross-dependence
(when j1 ̸= j2) and the serial dependence (because the lag l is
considered). To obtain a much richer picture of the underlying
dependence structure, Γ (l, τ , τ ′) can be computed over a range
of prefixed values of L lags, L = {l1, . . . , lL}, and r quantile levels,
T = {τ1, . . . , τr}, thus having available the set of matrices

Γ X t (L, T ) =
{
Γ (l, τ , τ ′), l ∈ L, τ , τ ′

∈ T
}
. (3)

In the same way as the spectral density is the representa-
tion in the frequency domain of the autocovariance function,
the spectral counterpart for the cross-covariances γj1,j2 (l, τ , τ ′)
can be introduced. Under suitable summability conditions (mix-
ing conditions), the Fourier transform of the cross-covariances
is well-defined and the quantile cross-spectral density (QCD) is
given by

fj1,j2 (ω, τ , τ ′) = (1/2π )
∞∑

l=−∞

γj1,j2 (l, τ , τ ′)e−ilω, (4)

for 1 ≤ j1, j2 ≤ d, ω ∈ R and τ , τ ′
∈ [0, 1]. Note that

fj1,j2 (ω, τ , τ ′) is complex-valued so that it can be represented in
terms of its real and imaginary parts, which will be denoted by
ℜ(fj1,j2 (ω, τ , τ ′)) and ℑ(fj1,j2 (ω, τ , τ ′)), respectively. The quantity
ℜ(fj1,j2 (ω, τ , τ ′)) is known as quantile cospectrum of (Xt,j1 )t∈Z and
(Xt,j2 )t∈Z, whereas the quantity -ℑ(fj1,j2 (ω, τ , τ ′)) is called quantile
quadrature spectrum of (Xt,j1 )t∈Z and (Xt,j2 )t∈Z.

Proceeding as in (3), QCD can be evaluated on a range of
frequencies Ω and of quantile levels T for every couple of compo-
nents in order to obtain a complete representation of the process.
In this way, we can consider the set of matrices

fX t (Ω, T ) =
{
f(ω, τ , τ ′), ω ∈ Ω, τ , τ ′

∈ T
}
, (5)

where f(ω, τ , τ ′) denotes the d × d matrix in C

f(ω, τ , τ ′) =
(
fj1,j2 (ω, τ , τ ′)

)
1≤j1,j2≤d . (6)

Representing {X t , t ∈ Z} through fX t , complete information
on the general dependence structure of the process is available.
However, the true QCD is unknown in practice and a proper
estimator is required given a realization of length T , {X1, . . . ,X T },
from the process {X t , t ∈ Z}. Following [28], a consistent estima-
tor of fj1,j2 (ω, τ , τ ′) can be obtained by smoothing a modified ver-
sion of the traditional cross-periodogram based on ranks. Specif-
ically, the called rank-based copula cross-periodogram (hereafter
referred as CCR-periodogram) is defined by

I j1,j2
T ,R (ω, τ , τ ′) =

1
2πT

dj1T ,R(ω, τ )dj2T ,R(−ω, τ ′), (7)

where

djT ,R(ω, τ ) =

T∑
t=1

I{F̂T ,j(Xt,j) ≤ τ }e−iωt ,

with F̂T ,j(x) = T−1 ∑T
t=1 I{Xt,j ≤ x} the empirical distribu-

ion function of Xt,j. Consistency and asymptotic performance of
he smoothed CCR-periodogram, Ĝj1,j2 (ω, τ , τ ′), are established
T ,R
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n Theorem S4.1 of [28]. A detailed description of the smoothed
CR-periodogram is deferred to the Appendix.
Based on previous comments, the set of complex-valued ma-

rices fX t (Ω, T ) in (5) characterizing the underlying process can
e estimated by

ˆX t (Ω, T ) =
{
f̂(ω, τ , τ ′), ω ∈ Ω, τ , τ ′

∈ T
}
, (8)

where f̂(ω, τ , τ ′) is the matrix

f̂(ω, τ , τ ′) =

(
Ĝj1,j2
T ,R (ω, τ , τ ′)

)
1≤j1,j2≤d

. (9)

2.2. The notion of depth for functional data

A functional variable is one whose values depend on a con-
tinuous magnitude such as time. Thus, a univariate functional
dataset is a set of real-valued curves {X1(t), . . . ,Xn(t)}, t ∈ [a, b],
whereas a multivariate functional dataset is a set of vector-valued
curves {X 1(t), . . . ,X n(t)}, t ∈ [a, b]. Without loss of generality,
it is often assumed that a = 0 and b = 1. In practice, each curve
is observed only in a finite set of points t0, . . . , tm ∈ [0, 1] = D.

Given a set of curves, it is often desirable to know which of
them lay ‘‘in the middle of the set’’ for most of the time. This
idea corresponds in a functional setting to the intuitive notion of
median. In the same way, the curves laying ‘‘outward the set’’ for
most of the time could be considered to exhibit an anomalous be-
havior. The concept of depth for functional data arises to address
this problem by providing a centrality measure for the elements
of the dataset. Although many depth notions for functional data
have been established [29–32], here we focus our attention on
the Fraiman–Muniz depth [30]. This depth frequently leads to the
best performance of the approach proposed in this manuscript
(see Section 4).

Let D be a depth measure in R. The Fraiman–Muniz depth for a
univariate functional datum Xi(t) concerning the set
{X1(t), . . . ,Xn(t)} is defined as

FMD(Xi) =

∫
D
Zi(t)dt, (10)

where, for every tj ∈ D, Zi(tj) = D(Xi(tj)) is the univariate depth
of the quantity Xi(tj) with respect to the set {Xk(tj)}nk=1. Several
notions of depth for univariate data have been also proposed.
In this paper, we consider the Tukey depth, also referred to as
halfspace depth. The Tukey depth of a point y with respect to a
set of univariate points {y1, . . . , ys} is defined as

TD(y) =
1
s
min{#{yi ≤ y},#{yi ≥ y}}, (11)

here # denotes the cardinal of a set. It is straightforward to see
hat the median is the point with maximal Tukey depth.

The notion of depth for multivariate functional data can be
asily generalized from the concept of depth for univariate func-
ional data just introduced. Let X i(t) = {X1,i(t), . . . ,Xd,i(t)}
be a d-variate functional datum and DUF any depth measure
for univariate functional data. The corresponding depth for the
multivariate functional datum X i is given by

DMF (X i) =

d∑
k=1

DUF (Xk,i). (12)

2.3. The quantile cross-spectral density as multivariate functional
data

Note that, for fixed j1, j2, τ and τ ′, the quantile cross-spectral
density in (4) is a complex-valued function of the frequency ω.
onsider now the set of complex-valued functions

′ ′
fj1,j2 (ω, τ , τ ), 1 ≤ j1, j2 ≤ d, τ , τ ∈ T }. (13) t

3

Taking separately the real and imaginary parts of the functions
in (13), we obtain the set of curves

{W [fj1,j2 (ω, τ , τ ′)], 1 ≤ j1, j2 ≤ d, τ , τ ′
∈ T }, (14)

here W (·) is used interchangeably to denote the real part (ℜ(·))
nd imaginary part (ℑ(·)) operators. Hence, each multivariate
rocess {X t , t ∈ Z} can be characterized by means of a set of
d2r2 real-valued functions, with r = #T being the number

of selected probability levels. In the same way, we can use the
smoothed CCR-periodogram in (9) to describe each MTS through
2d2r2-dimensional functional datum.
The functional representation of QCD is useful for different

easons. First, it is well known that, in practice, considering a
unctional data representation is often advantageous in compar-
son with the use of large finite-dimensional vectors [33] . On
he other hand, our goal is to rank the sample data to detect
he most extreme elements, which are associated with the lowest
epths. However, the effective calculus of multivariate depths in
igh dimensional spaces is extremely complex for computational
easons [30].

. Algorithms

In this section, the proposed approach for outlier detection
s described and structured throughout two algorithms. The first
ne generates a multivariate functional dataset from an MTS
ataset. The second algorithm extracts the top outlier samples
rom the functional dataset.

.1. From time series to functional data

The first stage in our method involves obtaining a collection
f multivariate functional curves from the original MTS dataset.
ote that each MTS is stored in a matrix of the form: number of
ime observations × number of dimensions. For each time series,
he smoothed CCR-periodogram is computed according to all
airs of variables and quantile levels as a function of the Fourier
requencies. Two real curves are extracted from the smoothed
CR-periodograms, one corresponding to the real part and the
ther to the imaginary part, as indicated in Section 2.3. Then, all
he curves associated with a given MTS are stored together and
ransformed into functional data. Algorithm 1, entitled From time
eries to functional data (FTSTFD), describes the steps.

In Algorithm 1, the ith MTS is described by means of the
atrix AL[[i]] before the consideration of functional data. The

irst half of the rows in this matrix are associated with real parts
f the smoothed CCR-periodograms, whereas the second half of
he rows are associated with imaginary parts. Specifically, the
uxiliary matrices ALR[[i]] (real parts) and ALI[[i]] (imaginary
arts) are stacked together by rows to constitute AL[[i]]. Each
ow vector in AL[[i]] can be seen as a discretization of a real
urve in the interval (0, 2π ). Note that the length of each row in
L[[i]] is the same as the length of the vector Ω , as the smoothed
CR-periodograms are computed at the Fourier frequencies. The
unction fdata() performs a row-wise transformation of AL[[i]]
nto a functional space, returning the multivariate functional el-
ment DSMF[[i]]. The dimension of this functional object (i.e., its
umber of curves) is 2×cols2×levels2 as indicated in Section 2.3.
ote that the factor 2 is due to the fact that real and imaginary
arts are treated independently.
Each CCR-periodogram is obtained by means of the Fast Fourier

ransform (FFT). The FFT of a series of length T has a time com-
lexity of O(T log T ) [34], and the algorithm performs a number of
2d2 FFT for each MTS in the initial set. Therefore, it is concluded

2 2
hat the complexity of Algorithm 1 is O(nr d T log T ).
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3.2. Outlier detection

The second algorithm corresponds to the outlier detection
tage. Given a multivariate functional dataset and a univariate
unctional depth, DUF , the multivariate depth of each element
n the set is computed and stored in a vector. The quantities of
his vector are sorted in increasing order and their corresponding
ndexes are stored. This way, the original samples are ranked from
he most outlying series to the less outlying one. A rate α has to
e set as to decide which is the desired proportion of outliers
o detect. Algorithm 2, entitled Outlier detection (OD), gives a
escription of the steps.
4

In Algorithm 2, the vector mdepth contains the depth of
each element in the multivariate functional collection DSMF.
The indexes associated with the lowest values in this vector are
returned in the vector outliers.

The time complexity of Algorithm 2 depends on the selected
functional depths. In our numerical experiments, we have consid-
ered the Fraiman–Muniz and the Tukey depths (see Section 4).
The input of Algorithm 2 is a multivariate functional dataset
with n elements, each one containing 2d2r2 curves evaluated
t the Fourier frequencies. Let ω be one of these frequencies

and fix one of the 2d2r2 curves. According to (10), we have to
compute the univariate Tukey depths (i.e., the elements Zi) for the
corresponding n values. Note that, by virtue of (11), computing
the depth of n points with respect to themselves can be done by
sorting these points. The best algorithm for sorting a set of points
is Quicksort [35], having an average case complexity of O(p log p)
or a set of p points. Thus, we assume a complexity of O(n log n)
for this stage. As we need to repeat the process for all the ⌊T/2⌋+

1 Fourier frequencies (⌊·⌋ denoting the floor function), this yields
a complexity of O(Tn log n). This is the complexity to compute the
Tukey depths for one of the curves. Replicating the methodology
for all the curves gives a complexity of O(Tnd2r2 log n) (Step 1).
Once this is done, the integral in (10) needs to be computed
for each one of the curves. Note that, at this point, the curves
are described by means of ⌊T/2⌋ + 1 values (univariate Tukey
depths) calculated in Step 1. By using Simpson’s rule [36], the
complexity of each integral is O(T ), thus being the complexity of
the integration step O(Tnd2r2) (Step 2). Finally, once we have the
final depths for each multivariate functional element, sorting it
through Quicksort requires O(n log n) time (Step 3).

As the time complexity of Steps 2 and 3 is lower than that
of Step 1, the total computational complexity of Algorithm 2 is
O(Tnd2r2 log n).

As the number r of probability levels is fixed and small, we
can conclude that the complexities of Algorithms 1 and 2 are
O(Tnd2 log T ) and O(Tnd2 log n), respectively. Thus, the complex-
ity of the proposed outlier detection method is O(Tnd2(log T +

og n)). Note that the difference between T , n and log T , log n,
espectively, becomes larger as T and n increase. Therefore, for
oderately large values of n and T (which is often the case in
ractice), the approach follows approximately linear time in T
nd n, and quadratic time in d.
Fig. 1 displays a flowchart of the outlier detection procedure.

. Assessing the outlier detection approach: A simulation study

In this section, we carry out a set of simulations with the aim
f assessing the performance of the outlier detection procedure.
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Fig. 1. Flowchart of the outlier detection method.

ifferent scenarios are considered. Firstly we describe the simu-
ation mechanism, and then we explain how the assessment of
he proposed approach was done. Finally, we show the results of
he simulation study.

.1. Experimental design

The simulated scenarios cover a wide variety of generating
rocesses. Specifically, three bivariate setups were taken into
ccount, namely outlier detection of (1) VARMA processes, (2)
onlinear processes, and (3) dynamic conditional correlation pro-
esses. The selection of such kind of processes was made with
he goal of performing the assessment task in a fair and general
anner. Indeed, the three chosen setups are pivotal in several
pplication domains.
Each of the considered settings is formed by twenty realiza-

ions from a base generating process plus one or two outliers
eries drawn out from different generating models. The consid-
red scenarios and the specific generation schemes are given
elow.

utlier detection of linear models

ase generating process: A VAR(1) process given by

Xt,1
Xt,2

)
=

(
0.2 −0.4
0.5 0.1

)(
Xt−1,1
Xt−1,2

)
+

(
ϵt,1
ϵt,2

)
.

cenario 1.1: Twenty series simulated from the base generating
rocess plus one outlier time series simulated from the VAR(1)
rocess

Xt,1
Xt,2

)
=

(
−0.2 −0.3
0.4 0.2

)(
Xt−1,1
Xt−1,2

)
+

(
ϵt,1
ϵt,2

)
.

cenario 1.2: The twenty one series in Scenario 1.1 plus a second
utlier generated from a bivariate white noise process (WN).

utlier detection of nonlinear models

ase generating process: A nonlinear autoregressive (NAR) pro-
ess given by

Xt,1
)

=

(
0.7|Xt−1,1|/(|Xt−1,2| + 1)

)
+

(
ϵt,1

)
.
Xt,2 0.7|Xt−1,2|/(|Xt−1,1| + 1) ϵt,2

5

Scenario 2.1: Twenty series simulated from the base generating
process plus one outlier time series simulated from the exponen-
tial autoregressive (EXPAR) process(
Xt,1
Xt,2

)
=

(
0.3 − 10 exp(−X2

t−1,1 − X2
t−1,2)Xt−1,2

0.3 − 10 exp(−X2
t−1,1 − X2

t−1,2)Xt−1,1

)
+

(
ϵt,1
ϵt,2

)
.

cenario 2.2: The twenty one series in Scenario 2.1 plus a second
utlier consisting of a realization from the threshold autoregres-
ive (TAR) process

Xt,1
Xt,2

)
=

(
0.9Xt−1,2I{|Xt−1,1|≤1} − 0.3Xt−1,1I{|Xt−1,1|>1}
0.9Xt−1,1I{|Xt−1,2|≤1} − 0.3Xt−1,2I{|Xt−1,2|>1}

)
+

(
ϵt,1
ϵt,2

)
,

here I stands for the indicator function.

utlier detection of dynamic conditional correlation models

ase generating process: Consider

Xt,1, Xt,2)⊺ = (at,1, at,2)⊺ = (σt,1ϵt,1, σt,2ϵt,2)⊺,

enoting ⊺ the transpose operator. The data-generating process
onsists of two Gaussian GARCH models [37], one which is highly
ersistent and the other which is not.
2
t,1 = 0.01 + 0.05a2t−1,1 + 0.94σ 2

t−1,1,

2
t,2 = 0.5 + 0.2a2t−1,2 + 0.5σ 2

t−1,2,(
ϵt,1
ϵt,2

)
∼ N

[(
0
0

)
,

(
1 ρt
ρt 1

)]
.

The correlation between the standardized shocks, ρt , is given
y 0.5.

cenario 3.1: Twenty series simulated from the base generating
rocess plus one outlier time series simulated from an analogous
rocess with ρt = 0.2.

cenario 3.2: The twenty one series in Scenario 3.1 plus a sec-
nd outlier which is given by an analogous process with ρt =
0.99

log(t+2) I{t odd} −
0.99

log(t+2) I{t even}.
In Scenarios 1.1, 1.2, 2.1 and 2.2, the vector error process

{(ϵt,1, ϵt,2)⊺, t ∈ Z} consists of iid vectors following a standard
bivariate Gaussian distribution.

Scenarios 1.1 and 1.2 deal with classical VARMAmodels, which
are broadly used in many fields. Note that the choice of the
coefficient matrices is driven by the requirements of station-
arity. Scenarios 2.1 and 2.2 consist of multivariate extensions
of univariate NAR and TAR processes proposed in [38] and the
univariate EXPAR process given in [39]. Nonlinear UTS arise in
several application fields [40–42]. Hence, it is natural to consider
their multivariate extensions. Scenarios 3.1 and 3.2 are motivated
by the landmark work [43], where the dynamic conditional cor-
relation models are introduced. Some of the processes in these
scenarios have been partially considered in [27].

To bring insight into the usefulness of the proposed outlier
detection approach, we generated large sample size realizations
(T = 2000) from two processes concerning the linear mod-
els setting. Specifically, we selected the VAR(1) model in the
base generating process and the WN process. Then, we simu-
lated 50 MTS from each process. For each one of the total 100
realizations, we obtained the imaginary part of the smoothed
CCR-periodogram for j1 = 1, j2 = 2, τ = 0.1 and τ ′

= 0.5, eval-
ated over the set of Fourier frequencies, Ω . The corresponding
ollection, {ℑ(Ĝ1,2

T ,R(ω, 0.1, 0.5)), ω ∈ Ω} was transformed into a
unction. Note that the considered curve is one of the components
f the multivariate functional datum used for describing each
TS as explained in Section 2.3.
Plots of the 100 curves are given in Fig. 2. A different color was

sed according to the underlying generating process. The curves
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Fig. 2. Imaginary part of smoothed CCR-periodogram for j1 = 1, j2 = 2, τ = 0.1,
and τ ′

= 0.5, regarding 50 large sample size (T = 2000) realizations from each
one of the processes VAR(1) (orange color) and white noise (blue color).

Fig. 3. DD-plot of the curves in Fig. 2.

rom the VAR(1) model (orange color) are clearly different from
he ones corresponding to the WN process (blue color). Indeed,
he latter functions oscillate around zero, as the QCD of a WN
rocess is zero across all frequencies. The differences between
oth groups of curves can be explained by means of functional
epths. For instance, the average Fraiman–Muniz depth of the
roup of WN curves with respect to the group of VAR(1) curves
s 0.0822 (standard deviation of 0.0497). Conversely, the average
epth of the group of VAR(1) functions with regard to itself is
.4997 (standard deviation of 0.0907). Both quantities clearly
iffer and give understanding about the fact that a WN series
ould be seen as an anomalous element concerning the group of
AR(1) series.
Another interesting graphical tool to visualize the suitability of

unctional depths to differentiate between underlying structures
s the DD-plot [44]. In the case of the previous example, the DD-
lot displays, for each functional datum X , the pair of points

DVAR(X ),DWN (X )
)
, (15)

here DVAR(X ) and DWN (X ) are the depths of X with respect
o the data in the VAR(1) and WN groups, respectively. Fig. 3
hows the DD-plot, where we have used the same color as in
ig. 2 to represent the processes. Each group of points is located
t a different region of the plane. The depths of the VAR(1)
WN) series with regards to the WN (VAR(1)) group are smaller,
hereas the depths of the WN (VAR(1)) series in relation to its
roup are larger. Thus, in this context, the use of depths seems
onvenient to differentiate between the generating processes of

group of MTS.

6

The previous toy example highlights the usefulness of the
roposed approach for outlier detection of MTS samples based
n QCD and functional data depths.
The simulation study was carried out as follows. For each one

f the six scenarios, 200 simulations were performed for different
alues of the series length. We considered T ∈ {200, 400, 600}
n Scenarios 1.1, 1.2, 2.1 and 2.2, and T ∈ {400, 800, 1200} in
cenarios 3.1 and 3.2.
With regards to the implementation of the proposed approach,

he set of probability levels in Algorithm 1 was chosen to be
= {0.1, 0.5, 0.9}. This set of levels has been shown to perform
ell in practice when working with quantile-based quantities [27,
9,45,46]. Therefore, we have decided not to increase the com-
utational time of the algorithm by looking for a proper set. The
yperparameter α was chosen as to detect the top 1 outlier in
cenarios 1.1, 2.1 and 3.1, and the top 2 outliers in Scenarios 1.2,
.2 and 3.2. The depth DUF in Algorithm 2 was chosen as the
raiman–Muniz depth in (10). Note that this depth has an asso-

ciated depth for univariate data (represented by Zi in (10)). The
choice for this univariate depth was the Tukey depth provided
in expression (11). We have also analyzed other types of depths,
but the mentioned choices gave the best overall results in terms
of outlier detection success.

4.2. Alternative approaches and assessment criteria

To shed light on the performance of the designed method,
which we will refer to as quantile cross-spectral density functional
for outlier detection (QCD-F-OD), we decided to compare this
approach with a simpler version of itself that does not con-
sider functional data and with two well-known approaches. The
alternative techniques are described below.

• The quantile cross-spectral density as multivariate data for
outlier detection (QCD-M-OD). This strategy performs in the
following way. First, for each MTS, the smoothed CCR-
periodograms in (9) are computed for a fixed set of probabil-
ity levels, T , and evaluated at the Fourier frequencies. Next,
real and imaginary parts of all the elements are obtained
separately and concatenated in a vector describing the MTS.
Once this vector has been obtained for all the series, outlier
detection is carried out by considering the Tukey depth for
multivariate data. Several other depths have been analyzed,
but the Tukey depth attained the best results in terms
of outlier identification (see Section 4.3). Note that this
approach can be seen as a benchmark regarding whether or
not the treatment of QCD as functional data is advantageous
for outlier detection. Concerning the implementation, the
probability levels and values for α employed for QCD-F-OD
were also considered for QCD-M-OD.

• Feature-based approach for outlier detection (FB-OD). We
considered the approach for anomaly detection proposed
in [16]. This strategy is originally designed to deal with UTS.
It consists of three stages: (i) extracting a variety of features
from each UTS, (ii) performing principal component analysis
(PCA) on the feature-space and (iii) retaining the first two
principal components and applying outlier detection in the
reduced space. The third stage can be performed either by
means of a density-based method or a procedure consider-
ing α-hulls. The numerical experiments carried out in [16]
showed that the latter approach is more effective. Here, we
extend the technique of [16] to the multidimensional setting
by applying the algorithm to each UTS conforming the MTS.

α-hulls are considered for the third stage.
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verages rates of correct outlier identification for scenarios with one outlying
eries. For each scenario and value of the series length, the best result is shown
n bold.

Length QCD-M-OD QCD-F-OD FB-OD EB-OD

Scenario 1.1 T = 200 0.335 0.670 0.175 0.270
T = 400 0.440 0.955 0.300 0.435
T = 600 0.540 0.990 0.305 0.600

Scenario 2.1 T = 200 0.550 0.985 0.210 0.225
T = 400 0.755 1 0.275 0.280
T = 600 0.830 1 0.335 0.335

Scenario 3.1 T = 400 0.350 0.550 0.100 0.460
T = 800 0.450 0.920 0.095 0.520
T = 1200 0.605 0.990 0.125 0.590

• Eros-based procedure for outlier detection (EB-OD). A method-
ology for discovering outlying elements within an MTS
database is provided in [21]. The procedure is based on
the Eros distance measure [47]. First, the pairwise distance
matrix of the MTS dataset is computed. Next, an outlier
score is assigned to each element by taking into account the
distance to its k nearest neighbors.

Fixed an scenario, a value for T , and a simulation trial, we
omputed the top 1 outlier (Scenarios 1.1, 2.1 and 3.1) or the
op 2 outliers (Scenarios 1.2, 2.2 and 3.2) according to the four
nalyzed procedures. In the former scenarios, we recorded the
roportion of times over the 200 trials that the outlier detection
ask was successful. In other words, we obtained the proportion
f times that the series identified as outlying by the methods was
he true outlier series. In the case of Scenarios 1.2, 2.2 and 3.2,
e computed the proportion of times that the procedures: (i)
uccessfully detected both true anomalous series, (ii) successfully
dentified one true anomalous series but failed to detect the
emaining one, and (iii) identified as anomalous series two series
enerated from the base generating process. Note that the three
revious metrics provide a comprehensive summary about the
ffectiveness of the different algorithms in scenarios containing
wo outliers.

Since the feature-based approach FB-OD performs anomaly
dentification in each component of the MTS, we considered this
ethod successful if it succeeded at least in one of the com-
onents. Concerning EB-OD, we analyzed all the possible values
or the number of neighbors, k, being enough that the procedure
etected the outlier MTS for one of the values of k. Note that the
revious remarks mean a considerable advantage of FB-OD and
B-OD over QCD-F-OD and QCD-M-OD in the assessment task.

.3. Results and discussion

Performance metrics concerning the 200 trials of the sim-
lation procedure are given in Table 1 for scenarios with one
utlying series and in Table 2 for scenarios with two outlying

series. The abbreviation CDO in the third column of Table 2 stands
or Correctly Detected Outliers. As indicated in Section 4.2, results
or Scenarios 1.2, 2.2 and 3.2 are given separately depending on
he number of true outliers correctly detected. Note that, for a
iven scenario, method, and value for the series length, the three
orresponding quantities in Table 2 add up to one.
When there was only one outlier, we can see from Table 1

that QCD-F-OD outperformed the remaining methods by a large
degree. The feature-based approach FB-OD obtained the worst
average scores for all scenarios and series lengths. This is probably
due to the fact that a lot of the extracted features are not useful
to distinguish the outlier series from the rest, thus incorporating
a lot of noise in the anomaly classification task. The method
7

based on the Eros distance achieved acceptable results, specially
in Scenarios 1.1 and 3.1. It is clear that this method is able
to detect MTS coming from a distinct generating process, as
its performance significantly improves with the series length.
However, this procedure needs very long series to get perfect
results, a condition which is not always guaranteed in practice.
The results concerning QCD-M-OD show that this technique is
useful for outlier detection purposes, but significantly worse than
QCD-F-OD. The latter strategy attained average rates of correct
outlier identification substantially greater than the former. In fact,
QCD-F-OD exhibited success rates doubling those obtained by
QCD-M-OD in several settings. Table 1 also shows that both QCD-
based methods and the feature-based approach attained the best
results in the nonlinear setting, just where EB-OD struggled the
most.

Results in Table 2 also reveal the superiority of QCD-F-OD in
the scenarios with two anomalous series. QCD-M-OD and QCD-F-
OD correctly detected the two outliers (CDO = 2) with similar
rates to those obtained in scenarios with one outlying series.
The scores attained in the former case are slightly worse than
in the latter, which is expected since identifying two outliers
is more challenging than detecting only one. It is worth noting
that these methods barely failed to discover both atypical series
(CDO = 0). In fact, the functional-based approach QCD-F-OD
always identified correctly at least one outlying series in all the
considered settings and simulation trials. The worst results of
QCD-F-OD arose from Scenarios 1.2 and 3.2 with the shortest
series (T = 200 and T = 400, respectively), where this technique
failed to detect one outlier (CDO = 1) a considerable number
of times. However, its performance substantially improved when
increasing the series length.

Regardless of the value for T , the procedure QCD-M-OD was
unable to identify at least one outlier in Scenarios 1.2 and 3.2
in more than 50% of the trials. Furthermore, the rates associated
with CDO = 1 for QCD-M-OD in Scenario 3.2 do not decrease
when increasing the series length. This is unexpected, since it
indicates that QCD-M-OD struggled to accurately identify both
anomalous MTS even for large sample sizes. It is interesting to
remark that, most of the times, the method successfully detected
the series associated with the time-varying correlation. By con-
trast, it was not able to spot the series associated with ρt = 0.2.
Thus, We can conclude that the use of functional data through
QCD-F-OD clearly provides a useful tool for the detection of this
series.

With regards to FB-OD and EB-OD, both procedures substan-
tially decreased their performance in comparison to the simpler
scenarios. In particular, FB-OD completely failed to detect both
outliers (CDO = 2) in all scenarios whatever the value of T . Actu-
ally, this method identified as outliers two non-anomalous series
(CDO = 0) most of the times. On the other hand, the Eros-based
method behaved poorly in Scenario 2.2 (nonlinear processes),
where it generally misidentified to regular series as outliers.
This technique attained the best results in Scenario 3.2 (dynamic
conditional correlation processes) where it either identified both
outliers (half of the time) or at least one. Finally, in Scenario 1.2,
EB-OD clearly improved its behavior when increasing the series
length, although it still frequently missed at least one outlier for
T = 600.

In summary, the proposed method QCD-F-OD is clearly supe-
rior to the alternative approaches for outlier detection of MTS
provided that the outlyingness is characterized by the generating
process. Additionally, a big part of its success is undoubtedly
attributed to the treatment of QCD as functional data.
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able 2
roportion of times that each method correctly identified 2, 1 or 0 outliers. The column CDO stands for the number of Correctly Detected Outliers. For each scenario
nd value of the series length, the best result is shown in bold provided that CDO = 2.

Length CDO QCD-M-OD QCD-F-OD FB-OD EB-OD

Scenario 1.2 T = 200 2 0.245 0.615 0 0.070
1 0.610 0.385 0.315 0.465
0 0.145 0 0.685 0.465

T = 400 2 0.325 0.945 0 0.200
1 0.650 0.055 0.340 0.575
0 0.025 0 0.660 0.226

T = 600 2 0.460 0.990 0 0.375
1 0.535 0.010 0.305 0.545
0 0.005 0 0.695 0.085

Scenario 2.2 T = 200 2 0.545 0.940 0 0.015
1 0.450 0.060 0.270 0.295
0 0.005 0 0.730 0.690

T = 400 2 0.680 1 0 0.020
1 0.320 0 0.370 0.285
0 0 0 0.630 0.695

T = 600 2 0.750 1 0 0.045
1 0.250 0 0.385 0.455
0 0 0 0.615 0.500

Scenario 3.2 T = 400 2 0.330 0.515 0 0.425
1 0.500 0.485 0.150 0.560
0 0.170 0 0.850 0.015

T = 800 2 0.415 0.805 0 0.525
1 0.545 0.195 0.175 0.465
0 0.040 0 0.825 0.010

T = 1200 2 0.445 0.920 0 0.550
1 0.550 0.080 0.180 0.450
0 0.005 0 0.820 0
5. Time consumption analysis

In this section, we analyze the time consumption of QCD-F-
D as a function of the series length, T , the number of MTS in
he collection, n, and the number of components (UTS), d. We
ecorded the runtime of the corresponding programs until the
epths of all the elements were obtained. In order to measure the
omputation time as a function of one parameter, we maintained
he rest of the parameters constant. The corresponding fixed
alues were T = 500, d = 2, n = 40. All the experiments were
arried out in a MacBook Pro with processor Quad-Core Intel Core
7, a speed of 2.9 GHz and a RAM memory of 16 GB. The programs
ere coded and executed in RStudio. The R version was 3.6.1.
Figs. 4 show the CPU runtime according to T , n and d, re-

pectively. As expected, in the three cases, there is an increase
n time consumption of the method as the value of the corre-
ponding parameter increases. With regards to the series length
nd the number of MTS, there is a linear increase, whereas for
he number of components, there is a quadratic trend. This is
easonable, as the smoothed CCR-periodogram is computed for
ach pair of dimensions, and the number of obtained smoothed
CR-periodograms is in direct relationship with the dimension
f the considered multivariate functional data. These empirical
esults are totally in accordance with the time complexity of the
rocedure derived in Section 3.
f5

. Applications

In this section, we illustrate the usefulness of the proposed
pproach in applications with real MTS datasets. It is important to
ote that, in practice, some MTS are non-stationary. Although our
ethod relies on QCD, which is well-defined only for stationary
rocesses, the results from a comprehensive set of numerical
xperiments provided in [27] reveal that the use of the QCD-
ased features as descriptive quantities can give also valuable

nformation about non-stationary series.

8

Fig. 4. The CPU runtime versus the length of each MTS.

Fig. 5. The CPU runtime versus the number of components.

First, we apply the proposed methodology to two databases
containing financial series and ECG signals, respectively. Next
we provide some comments about the validity of the identified
outliers in real applications as the ones presented here.
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he top 5 outlier samples in the financial MTS dataset.
Symbol Company Depth value

TSLA Tesla Inc. 0.2555
NEE NextEra Energy 0.2584
CVX Chevron Corp 0.2628
NFLX Netflix Inc. 0.2643
MA Mastercard Inc. 0.2644

6.1. Outlier detection of financial time series

The first dataset was taken from the finance section of the
ahoo website1. It contains daily stock returns and trading vol-

ume of the top 50 companies of the S&P 500 index according
to market capitalization. The sample period spans from 6th July
2015 to 7th February 2018, thus resulting serial realizations of
length T = 655. The S&P 500 is a stock market index that tracks
the stocks of 500 large-cap U.S. companies. The top 50 contains
some of the most important companies in the world, as Apple,
Google, Facebook or Berkshire Hathaway.

It should be noted that the relationship between price and
volume has been extensively analyzed in the literature [48–50]
and constitutes itself a topic of great financial interest. Prices and
trading volume are known to exhibit some empirical linkages
over the fluctuations of stock markets. Thus, it is valuable to
characterize each of the considered companies in terms of the
time evolution of these two quantities. Our goal is to analyze the
joint behavior of prices and volume in order to perform outlier
detection. Thus, we assume that a company shows an anomalous
behavior with respect to the rest if the corresponding bivariate
time series is an outlier series.

It can be observed that both the UTS of prices and trading
volume are non-stationary in mean. Thus, all UTS are transformed
by taking the first differences of the natural logarithm of the
original values. This way, prices give rise to stock returns, and
volume to what we call change in volume. It has been already
remarked that the proposed method does not require stationary
MTS to be successful. However, this transformation is common
when dealing with this kind of series [51]. Finally, all UTS are
normalized to have zero mean and unit variance.

We applied the outlier detection approach proposed in Sec-
tion 3 to the set of transformed bivariate MTS. Just as in the
simulations, we chose T = {0.1, 0.5, 0.9} and the Fraiman–
Muniz and Tukey depths. The hyperparameter α was set to α =

0.10 so that the top 5 outlying MTS were detected. The results
of the anomaly detection procedure are given in Table 3. We
can see that the most outlying MTS sample corresponds to Elon
Musk’s company Tesla Inc (TSLA). This fact is not surprising since
TSLA is the only company in the sector of Automobile Manufac-
turers among the considered top 50. The remaining anomalous
samples correspond to two companies from the Energy sector
(NextEra and Chevron), and the well-known companies Netflix
and Mastercard.

Fig. 6 depicts the bivariate series of Tesla, whereas Fig. 7 dis-
plays the series corresponding to the deepest element in the mul-
tivariate functional dataset (depth value of 0.3026), which rep-
resents the company Danaher Corp (DHR). This company could
be considered as the prototype company among the top 50.
By comparing Figs. 6 and 7, one can see that the outlier and
the prototype series show patterns substantially different. For
instance, it is clear from the plots that TSLA has been suffering
from a greater degree of volatility than DHR over the considered
years. This feature is observed for both returns and change in
volume.

1 https://es.finance.yahoo.com.
9

Fig. 6. Returns and change in volume of the company Tesla Inc.

Fig. 7. Returns and change in volume of the company Danaher Corp.

Note that the previous analysis could be valuable in many
different financial contexts. For instance, it is common that an
investor looks for companies deviating from the regular behavior
of the index to invest in.

6.2. Outlier detection of ECG signals

The second dataset was extracted from the PTB Diagnostic
ECG Database [52] and has been broadly used for ECG classi-
fication [53–57]. We have downloaded this database from the
Kaggle repository2. The collection contains 15-lead ECG signals
from both healthy patients and people with myocardial infarction
condition. The minimum series length in this dataset is T =

2000. It is worth remarking that ECG signals are known to be
onstationary.
In this application we focused on the subset of healthy volun-

eers. There are 80 instances coming from 52 healthy volunteers.
or the sake of simplicity, the first 6 leads and 500 time obser-
ations of each ECG signal were selected. The choice of certain
ubsets of dimensions and time observations is common in ECG
ata mining [53,58].
The proposed procedure was applied to the reduced set of 80

TS. The considered parameters were the same as in the previous
pplication. Table 4 contains the top 8 outlier ECG signals along
ith the corresponding depth values. The ECG signal No. 75 is the
ost outlying one.
Figs. 8 and 9 show the ECG signals No. 75 and No. 74, re-

pectively. The signal No. 74 corresponds to the maximum depth
depth value of 0.3533), so it can be considered as the dataset
rototype. It is clear from the figures that both signals differ
ubstantially over the considered time periods. Whereas signal

2 https://www.kaggle.com/openmark/ptb-diagnostic-ecg-database.

https://es.finance.yahoo.com
https://www.kaggle.com/openmark/ptb-diagnostic-ecg-database
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he top 8 outlier samples in the ECG MTS dataset.
ECG signal Depth value

No. 75 0.1666
No. 15 0.1670
No. 31 0.1731
No. 62 0.1951
No. 67 0.1969
No. 46 0.1973
No. 47 0.2114
No. 6 0.2249

Fig. 8. The ECG signal No. 75.

Fig. 9. The ECG signal No. 74.

o. 74 shows some marked fluctuations, signal No. 75 remains
lmost flat with regards to all its components and along all the
ime span.

In this context, the use of the proposed outlier detection tech-
ique could be clearly useful. In fact, the detection of outlier ECG
ignals in a group of healthy patients could assist the physician
n detecting some patients at risk of suffering a given condition.

.3. Assessing the accuracy of outlier identification in practical ap-
lications

A common problem faced by Machine Learning practitioners
oncerns the validity of the results provided by a given algorithm.
or instance, it is often unfeasible to determine whether the
abels assigned by a classification technique for new observations
re right or wrong. The same issue arises when applying outlier
etection algorithms as the one proposed in this manuscript.
owever, it is worth highlighting that the underlying uncertainty
s precisely what makes this class of algorithms valuable. Having
10
Fig. 10. Boxplots indicating the distribution of the depths concerning the S&P
500 companies (left panel) and the ECG signals (right panel).

said that, there exist some heuristic procedures which try to
validate the output of a particular algorithm.

An interesting way to assess the accuracy of the outliers de-
tected by QCD-F-OD in practical applications is by means of
the distribution of the computed depths. The idea is to look
for extreme values in the lower tail of this distribution. The
observations associated with these extreme depths hold a high
likelihood of outlyingness. For this purpose, a classical boxplot
displaying the distribution of the depths can be depicted. Indeed,
the existence of isolated points in the lower part of this graph
could indicate the presence of anomalous observations. Note that
this strategy is not only valid for the method QCD-F-OD, but for
every anomaly identification approach relying on depths.

This criterion was applied to the two case studies analyzed in
Sections 6.1 and 6.2 . Fig. 10 contains the corresponding boxplots
regarding the financial series (left panel) and the ECG signals
(right panel). Concerning the former boxplot, only one point can
be observed in the lower end of the graph. This point corresponds
to the company TSLA, which is associated with the lowest value
of the depth as indicated in Section 6.1. On the other hand, three
extreme observations can be noticed in the boxplot of the right
panel. These observations are associated with signals No. 75, No.
15 and No. 31 as seen in Table 4. Therefore, either TSLA in the
first case study or the three mentioned signals in the second one
could be regarded as potential outliers, clearly deserving a careful
investigation.

Note that, in the analyses carried out in Sections 6.1 and 6.2,
the number of outlier series to be detected was set in advance
by choosing α = 0.10. It is worth remarking that, in some
applications, the researcher decides beforehand the number of
anomalous observations to be trimmed away. In many other
cases, however, this quantity is not known, entailing a challenge
for the practitioner. In this regard, the approach proposed in this
section can be seen as a heuristic way of selecting the parameter
α. This tool could be also valuable in exploratory analysis stages.

Finally, it is important to highlight that it is always challenging
to guarantee the accuracy of the identified outliers in practical
cases. A wise roadmap would be to run first the outlier detection
procedure and then make a specific analysis of each potentially
outlier series. This way, the strength of the proposed algorithm
can be combined with the domain knowledge of the practitioner
in order to make an informed decision about the outlying nature
of a given element.

7. Conclusions

This work has developed a method for detecting outlying MTS
samples in a given set according to the generating process, a topic
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arely addressed in the literature. The procedure relies on the
uantile cross-spectral density, functional data, and functional
epths. These elements make a novel combination that, to the
est of our knowledge, has not been considered before. The
otion of depth allows to assign to each MTS an outlier score,
ence making straightforward the identification of the top m

outliers. A broad simulation study has shown that the treatment
of the quantile cross-spectral density as functional data is ad-
vantageous for anomaly detection. In fact, the approach shows a
higher efficacy than its non-functional counterpart. The proposed
methodology also outperforms the few other existing approaches
aimed to identify anomalous MTS. The technique has been ap-
plied to perform outlier detection in two real datasets containing
financial time series and ECG signals. A graphical tool for assess-
ing the quality of the detected outliers in real applications has
also been introduced.

Besides its effectiveness, the proposed method is computa-
tionally efficient. The parameter which increases the computa-
tional time the most is the number of dimensions, d. With respect
to this parameter, the approach has a computational complexity
of O(d2). Still, it beats the second best performed method, Weng’s
method, by an order of magnitude, being the latter O(d3).

This work opens three new research directions. First, given
hat the utilization of the functional smoothed CCR-periodograms
as proven useful for anomaly recognition of MTS, it would be
nteresting to study if these advantages transfer to a framework
f clustering or classification. Second, additional time series fea-
ures as the autocorrelations or cross-correlations could be also
onsidered as functional data. In this way, classical algorithms
or time series data mining could be adapted to the functional
ontext. Third, it is worth mentioning that the pervasiveness of
TS with a huge number of dimensions is becoming increasingly
ommon (e.g., sensor data). Therefore, it is highly desirable to
educe the computational complexity of the proposed procedure
o one which is linear, or almost linear, with respect to d. The
hree directions will be properly addressed in further works.
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Appendix. Description and implementation of the smoothed
CCR-periodogram

A detailed description of the smoothed CCR-periodogrammen-
tioned in Section 2 is provided below.

Let {X1, . . . ,X T } be a realization from the process (X t )t∈Z so
hat X t = (Xt,1, . . . , Xt,d), t = 1, . . . , T . For arbitrary j1, j2 ∈

1, . . . , d} and (τ , τ ′) ∈ [0, 1]2, [28] propose to estimate
j1,j2 (ω, τ , τ ′) by considering a smoother of the cross-periodograms
ased on the indicator functions I{F̂T ,j(Xt,j)}, where F̂T ,j(x) =
−1 ∑T

t=1 I{Xt,j ≤ x} denotes the empirical distribution func-
ion of Xt,j. This approach extends to the multivariate case the
stimator proposed by [59] in the univariate setting. More specif-
cally, the called rank-based copula cross periodogram (CCR-
eriodogram) is defined by

j1,j2
T ,R (ω, τ , τ ′) =

1
2πT

dj1T ,R(ω, τ )dj2T ,R(−ω, τ ′), (16)

where

djT ,R(ω, τ ) =

T∑
t=1

I{F̂T ,j(Xt,j) ≤ τ }e−iωt .

The asymptotic properties of the CCR-periodogram are estab-
ished in Proposition S4.1 of [28]. Likewise the standard cross-
eriodogram, the CCR-periodogram is not a consistent estimator
f fj1,j2 (ω, τ , τ ′). To achieve consistency, the CCR-periodogram
rdinates (evaluated on the Fourier frequencies) are convolved
ith weighting functions WT (·). The smoothed CCR-periodogram
akes the form

ˆ j1,j2
T ,R (ω, τ , τ ′) = (2π/T )

T−1∑
s=1

WT

(
ω −

2πs
T

)
I j1,j2
T ,R

(
2πs
T

, τ , τ ′

)
,

(17)

where

WT (u) =

∞∑
v=−∞

(1/hT )W
(
u + 2πv

hT

)
,

with hT > 0 being a sequence of bandwidths such that hT → 0
nd ThT → ∞ as T → ∞, and W is a real-valued, even, weight
unction with support [−π, π], frequently called kernel func-
ion. Consistency and asymptotic performance of the smoothed
CR-periodogram, Ĝj1,j2

T ,R (ω, τ , τ ′), are established in Theorem S4.1
f [28].
The CCR-periodograms were computed throughout this

anuscript by considering the so-called Epanechnikov kernel,
hich is defined as

(u) =
3
4π

(
1 −

u
π

)2

, for u ∈ [−π, π]. (18)

The associated bandwidth hT was chosen as hT = T−1/5/10,
which fulfills the assumptions required in Theorem S4.1 of [28]
to ensure that the smoothed CCR-periodogram is a consistent
estimate of QCD.

Computations of the smoothed CCR-periodogram were carried
out by using the R-package quantspec [60].
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