
GPU Accelerated Molecular Docking Simulation with 
Genetic Algorithms 

Serkan Altuntaş, Zeki Bozkus and Basilio B. Fraguel1 
Department of Computer Engineering, Kadir Has Üniversitesi, Turkey, 

serkan.altuntas@stu.khas.edu.tr, zeki.bozkus@khas.edu.tr 
1Depto. de Electrónica e Sistemas, Universidade da Coruña, Spain 

basilio.fraguela@udc.es
 

Abstract. Receptor-Ligand Molecular Docking is a very computationally expensive process 
used to predict possible drug candidates for many diseases. A faster docking technique would 
help life scientists to discover better therapeutics with less effort and time. The requirement of 
long execution times may mean using a less accurate evaluation of drug candidates potentially 
increasing the number of false-positive solutions, which require expensive chemical and 
biological procedures to be discarded. Thus the development of fast and accurate enough 
docking algorithms greatly reduces wasted drug development resources, helping life scientists 
discover better therapeutics with less effort and time. 

In this article we present the GPU-based acceleration of our recently developed molecular 
docking code.  We focus on offloading the most computationally intensive part of any docking 
simulation, which is the genetic algorithm, to accelerators, as it is very well suited to them. We 
show how the main functions of the genetic algorithm can be mapped to the GPU. The GPU-
accelerated system achieves a speedup of around ~14x with respect to a single CPU core. This 
makes it very productive to use GPU for small molecule docking cases. 
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1.  Introduction 

The binding of small molecule ligands to large protein targets is central to numerous 
biological processes. For example the accurate prediction of the binding modes 
between a ligand and a protein, which is known as the docking problem, is of 
fundamental importance in modern structure-based drug design [1]. Docking 
algorithms try to generate different poses (binding modes) throughout possible three-
dimensional conformations, which can be seen in Figure 1, with the purpose of 
evaluating them so as to choose the best possible pose. 

 

 
      Fig 1. Molecular Docking (Receptor - Ligand) 



Molecular dynamic applications use a highly sophisticated force field while searching 
only a small portion of the conformational space. This approach uses physically based 
energy functions combined with full atomic level simulations to yield accurate 
estimates of the energetics of molecular processes. However, these methods are too 
computationally time consuming to allow blind docking of a ligand to a protein. On 
the other hand, molecular docking simulations often use simpler force fields and 
explore a wider region of the conformational space [2]. 

Docking simulations require two basic components: 

• A search method for exploring the conformational space available to the system. 

• A force field to evaluate the energetics of each conformation (scoring function). 

The extensive search performed by docking algorithms involves the sampling of 
many high-energy unfavorable states. This can restrict the success of an optimization 
algorithm. Therefore the computational expense is limited by applying constraints, 
restraints and approximations to sample such a large search space. In practice a 
limited search may reduce the dimensionality of the problem in an attempt to locate 
the global minimum as efficiently as possible [1]. 

Stochastic methods such as Monte Carlo (MC) or genetic algorithms (GA) are general 
optimization techniques with a limited physical basis, and are able to explore the 
search. Evolutionary algorithms are generic iterative stochastic optimization 
procedures mimicking the adaptive process of natural evolution, classified as artificial 
intelligence techniques [3]. 

We develop a docking algorithm whose search method is a GA. Based on genotypes 
of parents. Each generation has a number of offspring, which replaces the worst 
solutions of the population since population size is limited. The latter is then exposed 
again to the scoring function, and the evolution goes on for the next iteration 
(generation). As the number of generations increases, the average fitness of the 
population of solutions is supposed to increase, and several highly fit solutions are 
expected to appear. 

The fact that almost all subunits of GAs have an embarrassingly parallel nature makes 
these algorithms very suitable for massively parallel accelerators such as graphics 
processing units (GPUs). While GPUs were originally designed to process graphics 
with a massive number of threads, in recent years, they have evolved to accelerate 
broader types of applications. This has been favored by the availability of new 
programming models such as Compute Unified Device Architecture (CUDA) [4] and 
Open Computing Language (OpenCL) [5], which allow the development of general 
purpose, non graphics programs for GPUs. We have implemented our application 
using the Heterogeneous Programming Library (HPL) [6], [7] because it largely 
improves the programmability of heterogeneous platforms with respect to CUDA and 
OpenCL, while it presents negligible performance overheads. HPL works on top of 
OpenCL, the standard for heterogeneous computing, which guarantees that our 
application can be used in a wide range of devices. 

Our heterogeneous implementation prepares in the host the receptor binding site and 
ligand conformation and then it transfers it to the accelerator (the GPU). This device 
then creates the first population and starting from this point to the final result, all the 
GA operations are computed on the GPU. The design is a very important contribution 



of our work, as the fact that there is no CPU involvement during the execution of the 
GA, so that everything is locally computed in the GPU, avoids costly data movements 
between CPU and GPU, which would affect performance negatively. Following this 
strategy our implementation achieved in our tests average speedups of around 14x 
with respect to a single core CPU. We have also analyzed the reason for the 
performance obtained, identifying a several memory optimizations to improve the 
performance even further. 

2. Docking Algorithm 
Small molecule docking is the algorithm to predict the preferred binding pose of a 
small molecule to a target molecule (a protein). Small molecules are known as ligands 
and they may have different poses, which are different orientations on 3D space of the 
same chemical component. These orientations can be stored with the coordinates of 
an indicator atom and torsion angles of ligand molecule. Torsion angles represent the 
rotation between two imaginary geometric planes of the molecule. The number of 
torsions is known as the torsion size and it is fixed on all poses. 

The receptor has many atoms that are not related to the docking of the ligand. This 
way, only a part of the receptor atoms interact with the ligand, and for the sake of fast 
execution docking algorithms target directly to a local site on the molecule. This site 
(also called; binding site, binding pocket, binding cavity) is decided by the user and 
defined as a sphere by a center point and a radius. If the binding site covers all 
receptor (this means that the user does not have information about the specific binding 
site) the docking is called blind docking. This kind of docking algorithm should find 
the pocket first. As a result blind docking requires more GA runs and uses all the 
atoms of receptor. 

Molecular Docking consists of three basic steps, which are seeding, selection and 
diversity. In general both MC and GA based molecular docking simulations perform 
these three basic steps with different styles. We now briefly describe these three steps 
in turn:  

2.1. Seeding 
Decoys from the reference coordinates of the ligand populate the first population from 
generation zero. These decoys are called as seeds and each one of them is generated 
by means of a random rotation and translation beginning from the reference 
coordinates [3]. 

2.2. Selection 
After the creation of the first generation, the scoring function is applied to all the 
individuals. Then, the parents of the next generation and the leaving individuals are 
identified based on the rankings obtained. 

The scoring function is important for the accuracy of the docking algorithm. 
Unfortunately, its complexity can largely increase run-time. If we are doing the 
virtual screening of millions of compounds, we can employ a lightweight scoring 
function for faster turnaround. On the other hand, some docking algorithm employs 
adaptive scoring techniques such as changing the complexity of the functions in the 
last iterations of the simulation [3]. 



2.3. Diversity 
In order to generate a child, two parents are randomly chosen according to their rank 
after the selection step. Although the features of each child come from its parents and 
yet this step can also create new features by adjusting valence angles and bond 
lengths [3]. 

3. GPU Parallelization: Algorithms and Implementation 
Figure 2 describes the docking software architecture, which should be executed for 
each receptor ligand complex. The figure is simplified to represent only the single 
docking experiment but the actual preparation of the receptor and the ligand requires 
some more operations according to the docking software.  

3.1 Overview of Data Structure 
 

 
Our docking simulation is based on a genetic algorithm for its conformational search. 
This particular conformational search is the process to find the best possible pose with 
respect to the receptor. The pose is the single individual which includes the 3D 
conformation of a molecule. There are different properties of each pose like atom 
types, atom coordinates, number of branches, branch values and calculated scores. 
These properties are stored inside multiple arrays that are referred as property arrays 
of individuals (PAI) in this article. 

 

       Fig. 2. Threads & Memory Access Patterns 



Algorithms and Memory Access Patterns 
Our program has two parts. One part runs on CPU and we refer to it as the host 
program. The other part runs on a GPU and we call it the kernel program, so that our 
application applies heterogeneous programming.  

 
Algorithm 1 presents the pseudo-code of our host program. The host code first reads 
all the required files and prepares with them the required data structures for the 
receptor and ligand. Then the unused parts of receptor are trimmed, the binding site is 
generated, and the movement of initial pose is carried out in order to make possible 
the score calculation. 

 

ALGORITHM 1: PSEUDO-CODE FOR THE HOST SIDE: 
conf = read_conf() 
receptor = read_receptor(conf.receptor_path) 
ligand = read_ligand(conf.ligand_path) 
 
// trim rest of the receptor, 
// only binding site remains 
site = prepare_binding_site(conf, receptor) 
 
// move ligand into the center of binding site 
initial = move_ligand_into_site(conf, ligand) 
 
// genetic algorithm for conformational search 
result = dock(conf, site, initial)  // GPU accel. 
 
// create the pdb file of best results 
write_pdbs(result) 

ALGORITHM 2: PSEUDO-CODE FOR THE GA: 
// get receptor <receptor>, 
// ligand <ligand>, 
// configuration parameters <conf> 
population = populate(ligand) 
 
// loop: with number of generations 
foreach generation from conf { 
 
  // energy calculation 
  score(population, receptor) 
 
  // selection 
  tournament(population) 
 
  // mate the winners and 
  // overwrite 3/4 of population 
  mate(population) 
 
  // mutate 
  mutate(population) 
 } 

 



Algorithm 2 presents the kernel portion of our GPU program which is the most 
computationally intensive part and which implements the conformational search. This 
algorithm consists of five different main subroutines, all of which are offloaded to the 
accelerator device. Our GA iterates and terminates according to a predefined number 
of generations, which is set by user. Each subroutine of the GA has slightly different 
memory access patterns such as map and gather. The map access pattern reads and 
writes data following a regular fashion. On the other hand the gather access reads and 
writes following an irregular fashion that restricts the memory bandwidth of the GPU. 
Figure 2 summarizes these patterns. We now briefly describe in turn the five stages of 
the kernel program of our application. 

The number of threads used in the kernel executions is relative to the population size 
(number of individuals) so the global thread domain size is equal to population size. 
Since the algorithm has been optimized the algorithm to take advantage of local work 
groups the local domain size is 1. 

populate: 
 

 
The first step of the conformational search is the generation of a population of a fixed 
size. Until this point, there is only one pose of the initial ligand, which is specifically 
moved into the binding site. It is identified as the 0th element of the property array of 
individuals that represents the whole population. 

In this kernel, each thread t reads the 0th element of the array as input, creates a 
slightly different variation of it and writes the output to the t-th position of the 
property arrays. Figure 3 describes the map access type data movement of this step, 
which is performed only once, just before the simulation loop. 

score: 
The genetic algorithm relies on the fitness function to take its decisions and find the 
best fitting individuals. Here the fitness function is the scoring function of the 
molecular docking.  

 

       Fig. 3. Data Flow for populate 



 
The score of each pose is calculated a different thread in a map access fashion, as 
shown in Figure 4, calculates the score of each pose. The scoring function also uses 
the binding pocket data, which is the same for all the individuals during the 
simulation. 

tournament: 
 

 
The tournament selection is designed to terminate the underperforming individuals in 
order to create space for new generations. The population is divided into groups of 
four individuals. The selection method has two stages: semi-final and final. The semi-
final stage compares the score of two consecutive individuals and eliminates the worst 
half. Then, the final competition chooses a single winner for each group after 
comparing the results of the semi-final stage. Figure 5 represents this process. As we 
can see this method cannot use all the available GPU threads, which is a problem that 
is typical of reduction processes. Namely, the semi-final stage uses half of the threads, 
while the final stage only uses a quarter of all threads. 

 
        Fig. 4. Data flow for score 

 

       Fig. 5. Data Flow for tournament 



mate: 

 
The tournament process eliminates ¾ of all the individuals. The mating stage should 
fill the empty spaces because the GA relays on a fixed population size. In this process, 
illustrated in Figure 6, each thread randomly picks two parents among the alive 
individuals, produces new offsprings from the chosen parents, and writes them to the 
available spaces, marked as empty. The user sets a crossover ratio, which is a 
floating-point number between 0 and 1. Based on this ratio some offsprings will have 
parts from both parents and some may be exact copies of one of their parents. 
Although mating is the only process that produces newly formed individuals, 
crossover is applied by chance. 

mutate: 

 
Mutation is a key part of GA because it is the main source of biologically inspired 
variation. In this stage of the algorithm each thread gets an individual and makes 
variations based on a variation ratio, which is set by user. Figure 7 represents the map 
access for mutate function. 

4. Performance Results 
In this section we show the results of our experiments to compare the performance 
results of serial and parallel GA. We used a Tesla C2050/C2070 GPU as experimental 
platform. The device has 448 thread processors with a clock rate of 1.15 GHz and 
6GB of DRAM and it is connected to a host system consisting of 4x Dual-Cores Intel 
2.13 GHz Xeon processors. The compiler used for all tests was g++ 4.7.1 with 
optimization level O3. This compiler supports C++11 standards, which is necessary 
for our code. 

 

      Fig. 6. Data Flow for mate 

 

       Fig. 7. Data Flow for mutate 



Figure 8 represents the execution time over a varying number of GA runs for a single
docking performs docking between a ligand of 25 atoms and a large receptor. In our 
docking algorithm, we choose a binding site from the receptor with 528 atoms. 

Users of docking programs (i.e. AutoDock) prefer at least 10 GA runs to make sure 
the results are satisfying. The reason is that although every GA run includes a full 
population and iterates for the number of generations specified by the user, a single 
GA run is not enough for finding a good enough pose because GAs are easy to stuck 
on local solutions.  

 
We have performed our speedup tests using three different compounds (A, B, C). 
Each one has a different torsion size (7, 5, 8) and a different number of atoms (25, 19, 
28). As Table 1 and Figure 9 represent, the compound size (number of atoms and 
number of torsions) does not have any important effect on the speedup, but the 
number of GA runs makes a difference.  

     Fig. 8. Execution time over number of GA runs 



 
The main reason for the increasing speedup as the number of runs grows is the 
initialization cost of the HPL/OpenCL framework. In addition, our program spends a 
fixed amount of time for preparing the receptor and the ligand during a single docking 
experiment. That is, at the beginning of the first simulation there is a one time cost for 
the whole docking simulation, which is the same no matter how many GA runs will 
be performed.  

TABLE I.  SPEEDUP 

 
Speedup 

25 GA runs 50 GA runs 100 GA runs 

Compound A 11 14 16 

Compound B 12 14 16 

Compound C 9 14 15 

 
We profiled our GPU code for performance bottlenecks. This analysis revealed that 
our algorithm is not fully using the memory bandwidth of GPU. We concluded that 
our implementation needs two kind different memory optimizations. The first 
approach is to use tiling with the shared memory of the GPU streaming multi 
processors (SM) and in general reconsider the kind of memory used for our data. For 
example the receptor binding site data is currently accessed from global device 
memory but this data never changes during the computation, so the memory type for 
this data should be reconsidered. The second important optimization is to transform 
the data layout in order to increase the number of coalesced memory access to global 
memory at the GPU. Namely our code currently stores its data using arrays of 
structures (AOS). Changing this layout to use structures of arrays (SAO) will allow 
improving the bandwidth of our accesses to the global memory. 
 

 

Fig. 9. Speedup on Tesla C2050/C2070 GPU for Docking Algorithm 



5. Related Work 
AutoDock is one of the best-known docking applications. In fact it was the most cited 
docking program in the ISI Web of Science database in 2005 [8], [9]. In addition to 
single CPU docking implementations, many research groups have created GPU and 
FPGA based solutions. 

GPU Based Molecular Docking Implementations 
Micevski D. et al, [10], [11] profiled the original AutoDock code and identified two 
different functions (eintcal and trilininterp) that were suitable to be ported to GPU. 
Each time these functions are called in their version the corresponding CUDA kernel 
is executed instead of the original function. In both cases the number of threads within 
the kernel equals to the number of ligand atoms. This gives place to a very low 
utilization of the GPU device. 

Kannan S. et al, [11], [12] reported the migration of AutoDock to NVIDIA CUDA 
with the only exception of the local search part, since genetic algorithms are relatively 
straightforward to be ported to GPU platforms. Their implementation keeps the 
storage of the ligand coordinates in fast shared memory, which makes the score 
evaluation faster.  For determining the atom-receptor intermolecular energy, each 
thread first performs a trilinear interpolation for a different ligand atom, and then each 
thread evaluates the scoring function directly for a different ligand-ligand atom pair. 
Trilinear interpolation offers a further optimization, since NVIDIA GPUs support the 
fast access of 3D data by hardware. As a result of this they end up with ~50x speedup 
on fitness function evaluation and 10x to 47x speedup on the core genetic algorithm. 

Unfortunately CUDA is a vendor specific model to address parallel execution that is 
well suited to NVIDIA GPUs, but it is not portable to other architectures. Our 
implementation however is based on the Heterogeneous Programming Library (HPL) 
[6], [7], which creates OpenCL code on runtime. Since OpenCL is the portable 
standard for heterogeneous computing, we are able to run our code on any OpenCL 
enabled CPU/GPU from different vendors, and other co-processors like Xeon Phi. 

Local search is an important factor for the accuracy of AutoDock [13], and 
performing it on the CPU gives place to underutilization of GPU resources. Pechan I. 
et al, [11], [14] introduced two different kernels to add local search functionality. 
Namely one of them creates and evaluates a whole population and the other one 
performs the local search. They share the same scoring function but they differ in the 
calculation of the degree of freedom. As a result of that, they achieved speedups of 
x30 and x64 with respect to CPU executions, when performing 10 and 100 
independent runs, for a large set of ligands, respectively. 

FPGA Based Molecular Docking Implementations 
Pechan I. et al, [15] targeted the parallel execution of distinct docking runs, which is 
an obvious approach since there is no relation between different docking runs. Also 
they evaluated different entities of the same population simultaneously, which 
resulted in remarkably high performance. Their implementation applies pipelines and 
fine-grained parallelization, and achieves x10-40 speedup over a 3.2Ghz CPU. In 
addition to this, they manipulated the scoring function in order to fit it better to FPGA 
devices. Namely instead of computing the scoring function with floating point 
precision, they used fixed-point arithmetic, as it is likely that the performance of the 



algorithm does not decrease with this change, while it fits better the capabilities of an 
FPGA.  

VanCourt T. et al, [16] used a 3D correlation method on FPGA devices. Their 
approach, based on direct summation, allows straightforward combination of multiple 
forces and enables nonlinear force models. The latter, in particular, are incompatible 
with the transform-based techniques typically used. 

MPI Based Molecular Docking Implementations 
Zhang X. et al, [17] created an MPI and multithreading hybrid which is a task parallel 
solution of the AutoDock Vina [18]. The aim of their research was to develop having 
a faster virtual screening result, so they did not report the improvement of single 
docking performance. 

6. Conclusions and Future Work 
We describe a GPU-accelerated molecular docking code with a genetic algorithm. 
Our code achieves a speedup of around 14x with respect to a single core. We found 
that our code is not fully using the memory bandwidth of GPU system, a critical 
reason for this being that our current data layout is not well suited for the GPU and 
the special kinds of memories in GPUs, such as local memory, are not fully exploited. 
Despite this fact, the speedup achieved indicates that the GPU architecture is one of 
the best possible solutions for GA implementations. 

An interesting property of our implementation of molecular docking GA is that it is 
specifically developed for full GPU-based computation, being the host code just a 
wrapper for the I/O requirements of our software. 

Our work only includes single device executions of independent GA runs for a 
specified number of iterations. This makes the problem very suitable for multi device 
implementation, which is part of our future work. 

Finally, our GPU implementation of docking makes single docking fast but designing 
the algorithm for virtual screening  of drug candidates, which is another important 
topic for molecular docking, may lead to better results. 
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