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Abstract

Heterogeneous devices require much more work from programmers than traditional CPUs,
particularly when there are several of them, as each one has its own memory space. Multi-
device applications require to distribute kernel executions and, even worse, arrays portions
that must be kept coherent among the different device memories and the host memory.
In addition, when devices with different characteristics participate in a computation, opti-
mally distributing the work among them is not trivial. In this paper we extend an existing
framework for the programming of accelerators called Heterogeneous Programming Library
(HPL) with three kinds of improvements that facilitate these tasks. The first two ones are
the ability to define subarrays and subkernels, which distribute kernels on different devices.
The last one is a convenient extension of the subkernel mechanism to distribute computa-
tions among heterogeneous devices seeking the best work balance among them. This last
contribution includes two analytical models that have proved to automatically provide very
good work distributions. Our experiments also show the large programmability advantages
of our approach and the negligible overhead incurred.

Keywords: programmability, heterogeneity, parallelism, portability, libraries, load
balancing, OpenCL

1. Introduction

The main drawbacks of heterogeneous systems are their higher programming complexity
and the potential lack of portability, unless OpenCL is used. The added programming costs
stem from the usual requirement to use extended languages and environments, together
with the need to deal with the particular characteristics and limitations of these devices,
which often require a tedious error-prone management. This latter problem is particularly
strong in OpenCL, being the price to pay for its portability. Besides, the cost of these
activities grows with the number of devices available. An additional difficulty that arises in
applications that try to exploit all the resources available in heterogeneous environments is
the optional distribution of work among the devices, given their very diverse features.
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This situation has led to much research to improve the programmability of heterogeneous
systems [9, 4, 5, 20, 24, 18, 32]. A recent proposal is a pure library-based environment called
Heterogeneous Programming Library (HPL) [43]. It avoids requiring language extensions
by providing a language embedded inside C++ in which the kernels to run in the heteroge-
neous devices can be written. HPL has maximum portability thanks to OpenCL being its
backend, and it fully automates the management required by heterogeneous resources while
introducing negligible overheads. Also, its adaptive runtime allows to even outperform in
some cases native OpenCL codes [44].

This paper explores three mechanisms to reduce the programming effort of applications
that exploit several heterogeneous devices using HPL as framework given its advantages. A
first idea is the ability to use subarrays, that is, regions of arrays, that can be used in one or
several devices without becoming separate data structures, so that it is always possible to
keep a view of the underlying full array, while automatically keeping the consistency of the
data. The second idea are mechanisms to split kernels for their execution in several devices,
giving place to what we call subkernels. Our experiments show that these mechanisms can
largely improve programmability, their overhead being minimal. The final contribution is
an alternative to our initial subkernel proposal that is more flexible and allows to easily
explore and choose the best workload distribution when a computation is accelerated using
devices with different capabilities. This proposal, which includes analytical models capable
of choosing optimal or near-optimal work distributions, not only helps programmability but
also performance.

The rest of this paper is organized as follows. The next section explains the semantics
and syntax of HPL. This is followed by the explanation of the new extensions in Section 3
and our evaluation in Section 4. Related work is reviewed in Section 5, with our conclusions
and future work proposals closing the paper.

2. The Heterogeneous Programming Library

The Heterogeneous Programming Library (HPL) is publicly available under GPL license
at http://hpl.des.udc.es. Its programming model follows that of OpenCL. The hardware
model considers a host with some computational devices. Each device has a separate memory
and processors that can only work on the device memory, so that data must be transferred
in and out of it. Also, all the processors in a device run the same code in a SPMD fashion.
We now explain the basics of HPL programming and how its multi-device programs look

like.

2.1. Library Basics

HPL applications consist of a main program that runs in the host, and functions to run in
the heterogeneous devices, called kernels. Each kernel is executed in parallel by a number of
threads defined by a space of between one and three dimensions called global domain. These
threads can be grouped in subsets of a size given by another space of the same number of
dimensions as the global domain, called local domain. The threads in the same group enjoy
barrier synchronizations and share a fast scratchpad memory unavailable to other threads or
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void mxProduct(Array<float,2> ¢, Array<float,2> a, Array<float,2> b, Int p)
{Int i;

1

2

3

4  clidx][idy] = 0.f;

5 for(i=0,i<p,it++)
6 c[idx][idy] += a[idx][i] * b[i][idy];
7}

8
9

Array<float,2> c(M, N), a(M, P), b(P, N);
10
11 eval(mxProduct)(c, a, b, P);

Figure 1: Naive matrix product in HPL

the host. There is also a regular global memory, a constant memory that the device threads
can only read, and a private memory that is exclusive of each thread.

HPL kernels are regular C++ functions written in a C-like embedded language provided
by the library [43], whose details are out of the scope of this paper. The function arguments
are the kernel inputs and outputs, and they must have type Array<type, ndim [, memo-
ryFlag/>, which represents a ndim-dimensional array of elements of the C++ type type, or
a scalar for ndim=0. The memoryFlag indicates the kind of device memory, and it defaults
to Global (global device memory) when it is not specified in the host code or the kernel
arguments. However, its default value for variables declared inside the kernel functions is
Private, which locates them in memory private to each thread, or following OpenCL ter-
minology, work-item. There are also convenient types to define scalars (e.g. Float, Uint,

Figure 1 shows in lines 1-7 a naive HPL kernel for the matrix product c=axb in which
thread (idx, idy) computes c[idx] [idy], where idx and idy are predefined variables pro-
vided by HPL that uniquely identify each thread within the global domain. The differences
with a regular C function are the use of the predefined variables that identify the thread
running the kernel, the HPL required data types, and the use of macro for_ to represent
a for loop. The associated host code, in lines 9-11, declares the kernel arguments and in-
vokes it with syntax eval(f) (args) where fis the kernel function. Non-scalar arguments
must be declared in the host code as Arrays, while standard C/C++ scalars are directly
supported. By default the dimensions of the global domain of the kernel correspond to the
dimensions of the first argument, while the local domain is chosen by HPL, which suits our
example. Method invocations between the eval and its arguments allow to specify these
domains and the device in which the kernel must run. For example, eval (f) .device(GPU,
0) .global(50) .local(10) (a, b) runs kernel £ in the GPU number 0 on the arguments a
and b using a global domain of 50 threads divided in groups of 10.

Since device memories are separated from that of the host, HPL builds buffers for the
arrays that are not yet allocated in the target device and transfers those inputs that are
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missing in the device before the kernel begins its execution. HPL analyzes kernels to learn
which are their input and output arrays. It also tracks the accesses to the Arrays in the
host code to know whether they are read or written. These mechanisms allow HPL to learn
where is the most up-to-date version of an array, and which arrays need to be transferred in
each direction between the host and the device where each kernel is executed without any
user intervention. A lazy copying policy that minimizes the number of transfers is applied,
so that only when an access to data that is not available in a memory is requested, a transfer
from the memory with the current version is performed. All these operations are totally
transparent to users, who only need to focus on the application semantics.

2.2. Multi-device Applications

Once the host requests the execution of a kernel, it continues running its own code.
Therefore the subsequent computations in the host, including kernel launches in other de-
vices, proceed in parallel with the kernel computations in the device, which enables the
development of multi-device applications. The host only waits for a kernel completion when
its outputs are required for some other computation.

HPL facilitates the development of multi-device applications by providing a coherent
view of Arrays to the devices and the host, Arrays being the unit of transfer, allocation and
coherency. This is completely automated thanks to the mechanisms that allow the library
to know when an Array is read or written, commented in Section 2.1.

While the programming style enabled by HPL for multi-device programs is much better
than that of alternatives such as OpenCL, it has some limitations. The most important
one is that since the Array is the unit of coherency, using the same Array in several kernel
executions serializes them, even if each kernel operates on disjoint parts of its data, unless
it is a read-only input to all these kernels. This way, the parallel execution of kernels that
update different portions of an array in several devices requires defining a different Array
per device, associated to the specific portion updated in that device. This policy also makes
sense for read-only arrays when each device only needs to read a portion of them. The
objective in this case is to minimize the data transferred, as the Array is also the unit of
allocation and transfer.

Figure 2, which parallelizes cm=amxbm among several GPUs splitting the work by rows,
illustrates this programming style. For simplicity the code assumes that the number of rows
M is a multiple of the number ndevices of GPUs, obtained in line 4 with a function provided
by HPL. The underlying matrices are declared in line 1 as regular arrays. Since the whole
matrix bm is used in each one of the parallel kernel executions, a single HPL Array b is
declared in line 2 that contains it. It deserves to be mentioned that the constructor of an
Array allows an optional pointer to the host memory where its data resides. If not provided,
HPL allocates and deallocates the space for the data in the host as needed.

Since the parallel execution of kernels requires separate Arrays for cm, an array of
ndevices pointers to Arrays is built in line 5. Then each Array of the appropriate size
is created, associating its storage to the corresponding portion of matrix cm in line 9. The
same approach is followed for matrix am in order to minimize the amount of data transferred.
There is also the added benefit that this way we can continue using the original kernel that
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float cm[M][N], am[M][P], bm[P][N];
Array<float,2> xxc, x*a, b(P, N, bm);

const int ndevices = getDeviceNumber(GPU);
c = new Array<float, 2> * [ndevices|;
a = new Array<float, 2> % [ndevices|;

for(i = 0; i < ndevices; i++) {
c[i] = new Array<float, 2>(M/ndevices, N, cm+ix(M/ndevicesxN));
afi] = new Array<float, 2>(M/ndevices, P, am+ix(M/ndevicesxP));

}

© 00 =] D U W=

e
b = O

for(i=0; i< ndevices; i++)
eval(mxProduct).device(GPU, i)(xcli], *ali], b, P);

— =
=

Figure 2: Matrix product on multiple GPUs using basic HPL features

uses the same row index in the Arrays ¢ and a. Otherwise the kernel would require an
additional argument to specify which is the row of the whole array a that is associated to
the computation of the first row of the subarray of ¢ computed by this kernel execution.
Finally, the kernel executions in line 14 use the i-th Arrays of ¢ and a for the run in the i-th
GPU. We will use this code as running example to illustrate the new proposals presented in
Sect. 3 because of its simplicity. A more advanced example based on a stencil code can be
found in Appendix A.

3. Improving Multi-device Support

We propose three features to facilitate the exploitation of multiple devices, which are the
usage of subarrays and two approaches to easily split kernels on multiple devices. The last
one of these mechanisms also incorporates facilities to optimally use resources with different
computing properties that participate in the computation of a kernel. The three proposals
are now described in turn, followed by the description of unified memory exploitation, a
general optimization that has been recently incorporated in HPL, and whose usage requires
no effort from the user.

3.1. Subarrays

Making the Array the unit of allocation, transfer and consistency forces to build separate
Arrays to enable parallel executions and to reduce the amount of data allocated and copied.
Allowing the independent use of regions of an Array, while providing a coherent view of it,
is much more convenient. We thus enabled the selection of regions of Arrays using Ranges,
Range(a,b) corresponding to the inclusive range of integers [a,b]. HPL subarrays are not
copies by value, but references to the data of the underlying Array, so that updating them
changes the corresponding portion of their parent Array. Using this feature, the matrix
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float cm[M][N], am[M][P], bm[P][N];
Array<float,2> c¢(M, N, cm), a(M, P, am), b(P, N, bm);

const int ndevices = getDeviceNumber(GPU);

for(i=0; i< ndevices; i++) {

Range rows(i * (M/ndevices), (i+1) * (M/ndevices) — 1);

eval(mxProduct).device(GPU, i)(c(rows, Range(0, N—1)), a(rows, Range(0, P—1)), b, P);
}

© 00 =1 D U W~

Figure 3: Matrix product on multiple GPUs using subarrays

product example using multiple GPUs can be written as Fig. 3 shows. The main Arrays are
defined using as storage the original C-style arrays defined in line 1, following an approach
similar to that of Fig. 2, but they could have been defined on their own, as in Fig. 1. Ranges
are objects of their own, so for example line 7 builds the Range rows, which identifies the
range of M/ndevices consecutive rows of the matrices ¢ and a that are used in the i-th
device. Line 8 uses this range together with appropriate ranges that span the N columns of
c and the P columns of a to select the subarrays used in the execution in the i-th GPU.

Supporting subarrays, with the need to keep them consistent with their parent arrays,
required deeply redesigning the HPL internal coherency mechanisms. The runtime keeps
track of the relations between the different Arrays that need to be kept consistent, enforcing
waits for pending writes and performing the required transfers as necessary in a process that
is transparent to the user. The management is highly optimized in several ways, as HPL
caches the subarrays structures in order to avoid costly creation processes in each reuse,
performs the minimum possible number of transfers, and whenever a subarray is used in
a memory that already holds an Array that contains the new subarray, this new subarray
does not allocate new memory, but just maps in the memory of the existing Array. A
detailed explanation of the coherency and data movement strategy implemented can be
found in Appendix B.

It is important to mention that subarrays can be also used to copy portions of an Array
using the assignment operator. Assignments are allowed between Arrays of the same size
and from scalars to arbitrary Arrays, which replicates the scalar in all the elements of the
destination. Finally, subarrays also facilitate the implementation of algorithms in single
device environments when they need to work on different portions of arrays in different
kernel invocations (e.g. matrix factorizations).

3.2. Subkernels based on annotations

Launching kernels in multiple devices, with the associated iteration on the devices and
selection of the portion of each array to process in each kernel, can be simplified in several
ways. We propose here a simple mechanism to split a kernel in multiple executions, called
subkernels, ensuring that each subkernel uses the appropriate arguments. Our approach
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input: Number of devices requested for the kernel execution n

input: Vector of devices to use in the kernel execution E) = (do,dy,...,dn—1)
input: Number of arguments for the kernel k

input: Vector of arguments to the kernel (Fg); = (argo,argi,...,argg—1)

1 if n =0 then

2 getAccelerators (3, n)
s end
4 fori=0ton—1do

5 for j=0to k—1do

a if arg; is a scalar or a non-annotated array then
T ‘ local Arg; = arg;

8 else

o ‘ localArg; = getPartition(arg;,n,1)

10 end

11 end

12 eval(d;) (local Arg)

13 end

Figure 4: Algorithm for an eval invocation based on annotations

consists in allowing a single eval invocation to split a kernel execution among an arbitrary
number of devices, and annotating the arguments to specify how they must be partitioned
among such devices.

A first modification made to enable this mechanism was to extend the device modifier
of an eval to support as argument a vector of HPL device handles. This allows the user
to specify among which devices the kernel must be split. The second and most critical
modification required is the introduction of annotations in the kernel array arguments, whose
purpose is to express how these arrays must be distributed among the devices. For example,
the notation PART1(a) indicates that Array a must be evenly distributed among the devices
involved in the kernel execution by its first (most significant) dimension, so that each chunk
is a consecutive region of data. Namely, if the size of this dimension is n and the kernel must
be split among D devices, the array will be partitioned along this dimension in D —1 chunks
of [n/D] elements that will be assigned in order to the first D — 1 devices, while the last
device will receive the last n — [n/D](D — 1) elements of the dimension. Similar notations
allow to partition the arrays by other dimensions. Our annotations also support an optional
argument to express overlapping, so that PART1(a,n) extends each partition in n additional
elements in each direction, which is convenient to parallelize stencil codes. Non annotated
arrays are not partitioned, but replicated in each device. Also, non annotated arrays as well
as arrays labeled with different annotations can be mixed in the same invocation. In this
case, the non annotated arrays are replicated (i.e. used as a whole) for the subkernel run in
each device, while for each partitioned array the i-th device gets the i-th chunk of the array
according for the partitioning specified for it.
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1 float cm[M][N], am[M][P], bm[P][N];

2 Array<float,2> c¢(M, N, cm), a(M, P, am), b(P, N, bm);
3

4 eval(mxProduct)(PART1(c), PART1(a), b, P);

Figure 5: Matrix product on multiple GPUs using annotations

The behavior just described is better illustrated in Fig. 4, which represents the implemen-
tation of an eval based on annotations. The pseudocode uses a vector notation to represent
lists of arguments for conveniency. This strategy is used whenever at least one annotated
array appears in the list of arguments to a kernel, even if the invocation used no device
modifier. In this latter situation, managed in lines 1-3 of the pseudocode, the execution
is distributed among all the accelerators in the system, which are retrieved through the
function getAccelerators. The other function used in the algorithm, getPartition(a,n,i),
retrieves the i-th out of n subarrays in which the array a is partitioned according to the
annotation applied to it.

When the global domain is not specified in an eval of this kind, the consistent behavior
of adopting as global domain of each subkernel the one associated to its first argument is
followed. Similarly, unspecified local domains are chosen by HPL. The modifiers that specify
these domains have been extended allowing that any or all their arguments are vectors of
integers, so that the i-th component indicates the domain for the execution of the subkernel
in the i-th device.

This approach allows to write our running example based on a matrix product distributed
among the GPUs in the system as Fig. 5 shows. The annotations on the argument arrays
c and a indicate that they must be partitioned by their first dimension (PART1), that is,
by rows, among the participating devices. Since the array argument b is not annotated, it
will be replicated in the devices used. Finally, scalars such as P are always just inputs to
the kernels and they cannot be annotated. As we can see, this code distributes the data
structures and the kernel execution in exactly the same way as Figs. 2 and 3, while being
considerably simpler.

3.3. Subkernels based on execution plans

While the proposal in Sect. 3.2 is very convenient, it has some restrictions. The most
important one is that when several argument arrays are partitioned, it necessarily uses the
i-th subarray generated of each one of them in the i-th subkernel. Although this perfectly
fits most kernels, some require more flexible patterns. Also, some kernels may require a more
ad-hoc partitioning. This led us to design a more complex subkernel generation strategy.
We first describe the general use of this strategy in Sect. 3.3.1. This is followed on an
explanation of how HPL allows to use it to perform automatic load balancing between
devices in Sect. 3.3.2.



1 void partitioner(FRunner& fr, Range rg[2],

2 Array<float,2>& c, Array<float,2>& a,

3 Array<float,2>& b, int P) {

4 ﬁ( C(I‘g[O], rg[l]), a(rg[[)], R.a:nge((}, P_l))1 b(Range(O, P_l): I‘g[l]), P)?
5}

6

7 ExecutionPlan ep(partitioner);

8 ep.add(GPU, 0, 50);

9 ep.add(GPU, 1, 50);
10 eval(mxProduct).executionPlan(ep)(c, a, b, P);

Figure 6: Matrix product on multiple GPUs using an execution plan

3.3.1. Ezecution plans

This proposal is based on an object, which we call execution plan (ExecutionPlan class),
that encapsulates the information needed to partition the work expressed by the global
domain of a kernel. This information is the list of devices to use, the percentage of the
work that each device will perform, and how to partition the arguments for each subkernel
responsible for a portion of the computation. This last item is expressed by means of a
user-provided function, which we call partitioner, that given a range of work and the kernel
arguments, performs the subkernel invocation partitioning accordingly the arguments.

When an eval is provided with an execution plan, it uses this object to partition the
global domain provided for the kernel in chunks that are proportional to the amount of work
to be performed in each device. Our current implementation partitions the most significant
dimension of the global domain of the kernel in chunks that are proportional to the ratios
requested for the user. The reason for focusing the partitioning on this dimension is that
the less significant dimensions are usually the ones with more locality and where coalesced
accesses (in devices such as GPUs) are exploited. The resulting global domain partitions are
also automatically rounded to ensure that they are multiples of the local domain if the user
has specified one. Then, it invokes the partitioner with a functor object called FRunner that
encapsulates the information needed to run a subkernel, an array of ranges that provide the
portion of the global domain assigned to that subkernel in each dimension, and the kernel
arguments. The partitioner must invoke the FRunner as a function whose arguments are the
subarrays of the global argument arrays that are associated to the range(s) of the global
domain computed by the execution plan.

Figure 6 implements our matrix product example using this approach. The ExecutionPlan
is built in line 7 providing the partitioner defined in lines 1-5. A partitioner always has as
first argument the FRunner that runs the kernel. The second argument is always an array of
up to three ranges that describes the portion of the global domain associated to a subkernel,
each Range being associated to one dimension of the problem. These two arguments are
followed by the actual list of arguments of the kernel. While its body can contain more
things, a partitioner only needs to invoke the FRunner with the arguments associated to the
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portion of the global domain associated to the input ranges. Lines 8 and 9 add GPUs 0 and 1
to the ExecutionPlan ep, respectively, each one being assigned 50% of the work. Finally,
the parallel multi-device kernel execution using ep is requested in line 10. As we can see,
this strategy allows to easily and flexibly split the work between devices assigning arbitrary
portions of work to each one of them while supporting any custom required subarrays.

3.3.2. Automatic load balancing

Execution plans can be either completely specified by the user, as seen above, or pro-
grammed to search for a distribution of work that balances the load among the devices that
participate in the kernel execution. This second possibility is very appealing when heteroge-
neous devices with different communication latencies and bandwidths and/or computational
capabilities can be used to execute a portion of the considered kernel. In order to use an
execution plan in this second way, the user has to specify in its constructor the search al-
gorithm to use and whether only the computation or also the transfer times of the kernel
must be taken into account in the balancing. Also, there is no need to provide the ratios of
work for each device that is added to the plan, as they will be automatically derived by our
library. The search will be performed the first time that the execution plan is used in the
execution of the kernel. Subsequent usages of the object will reuse the distribution found
unless the user resets it.

Currently HPL execution plans provide three algorithms to search for the best work dis-
tribution. The simplest and most expensive one is the EXHAUSTIVE search, which tries all the
legal combinations of distributions that differ in a given minimum step and chooses the best
one. The default step variation is 5% of the global domain, but users can choose a different
one. Just as in the other search algorithms, the library will only time the kernel execution
or it will also perform and time the transfers for the inputs and the outputs to choose the
best option depending on what the user specified in the construction of the execution plan.
Notice that the two possibilities make sense in different scenarios, as sometimes the user may
know that the data will have to be transferred for each execution of the kernel, while in other
situations, such as iterative algorithms, the vast majority of the kernel executions do not
require transfers. It also deserves to be mentioned that in order to avoid noise measurement
problems, each distribution considered both in this scheme and in the ones described below
is timed a number of times that the user can configure, the default being twice.

The other two possibilities are based on profiling and a simple model that relates the
portion of the global domain assigned to a device with its runtime. Both models start with an
execution in which each one of the N Devices devices involved is assigned (100/N Devices)%
of the global domain, and the times gathered are stored in a vector of times ¢ . Figure 7
shows the load balancing algorithm of the first model, called SINGLE_STEP_MODEL because it
is not iterative. Starting from the measured times ¢ , this algorithm assigns to each device
a ratio of work that is proportional to the speedup it achieved with respect to the slowest
device in the set in this initial execution (line 3). The rationale is that this speedup is
proportional to the amount of work that the corresponding device can receive in a balanced
distribution of work, as this number should be proportional to its computing (and transfer,
if included) performance. Lines 4 and 5 scale this initial ratio to a percentage making
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. —
Algorithm balance( t)
input : Vector of times measured in each device t = (tg,t1,...,tn),n = NDevices — 1

[

output: Vector of percentage of work to be performed in each device
W= (wo, w1, ...,wy),n = N Devices — 1

2 MazTime = max{t;, 0 < i < NDevices}
3 u; = MazTime/t;, 0 < i < NDevices
1 U— Zi\:{l)&mces—l ui

5 w; = u; x 100/U,0 < i < N Devices
a Adjust =10
T for i = 0 to NDevices — 1 do

s if m < Threshold then

o Adjust = Adjust + w;

10 w; =0

11 end

12 end

18 w; = w; X 100/(100 — Adjust),0 < i < N Devices
14 return o

Figure 7: SINGLE_STEP_MODEL load balancing algorithm

sure the addition for all the devices covers the whole global domain. Lines 6-12 compute
whether with this distribution the estimated runtime for some device falls below a measured
threshold. If this is the case, the device receives no work (line 10), and its portion of the
problem is added to Adjust (line 9), so that it is redistributed among the remaining devices
in line 13. This last stage of the algorithm avoids sending very small amounts of work to
devices that do not compensate the reduced fixed overhead associated to this process. Notice
that since this model requires a single execution, and it is made at runtime on correct inputs,
thus generating correct outputs, this model can make just as many kernel executions as an
untuned code.

The second model is iterative, so it can adjust its distribution with more precision in
situations where the workload is not necessarily directly proportional to the ratio of the
global domain assigned to each device. This model, called ITERATIVE MODEL, starts applying
the SINGLE_STEP_MODEL and measures the runtimes of the distribution it chooses. Then, as
long as the runtime for the slowest device is % or more longer than the runtime in the
fastest device, it recomputes the percentage of the global domain assigned to each device
using the algorithm in Fig. 8 and makes a new execution to measure the new times. The
value of § defaults to 5, but it can be chosen by the user. The algorithm estimates which
would have been the runtime for each device in an execution in which all of them received the
same amount of work based on the actual distribution of work made and the time measured,
and then applies the SINGLE STEP_MODEL to these times. After the second iteration the
algorithm applies a relaxation mechanism (lines 4-6). Its purpose is to avoid oscillations in
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1 Algorithm adaptiveBalance (_t), ?, iter, m)
input : Vector of times measured in each device ? = (to,t1,..., tn),n = N Devices — 1
input : Vector of percentage of work that was performed in each device
= (vo,v1, ..., Un ), = N Devices — 1

input : Number of iteration iter
input : Vector of percentages of work computed in the previous iteration or zeros in the first

iteration m = (Wprevy Wprevy s -+ Wprev, ), = N Devices — 1
output: Adapted vector of percentage of work to be performed in each device

= (wp, w1, ...,wy),n = N Devices — 1
,  ti 100
2 ti = — X =
vi NDevices

3 W= balance(?)

0 <1 < NDevices

4 if iter > 2 then

o ﬁ_w Teu
5 ‘ TU} = Wprev + iterzl
8 end
T return @

Figure 8 ITERATIVE_MODEL adaptive load balancing algorithm

the algorithm that could delay it or even incur in an infinite loop, something that indeed
happened in our experiments before this mechanism was added to the algorithm. When
the relaxation is applied, instead of suggesting as optimal distribution the newly computed
one, the algorithm rather moves the existing distribution Tm in the direction of the new
prediction @, the length of the movement being shorter in each successive iteration thanks
to the division by iter — 1.

A problem that appears when users let the library choose the work distribution is that
they lose the information on which portion of each array has been loaded and updated in
each device. This never endangers the correctness of the HPL applications because whenever
the host code or a kernel invocation tries to use an Array or a portion of it, our library knows
where is the most up-to-date version of this data. Nevertheless performance will suffer if
these automatic mechanisms introduce unnecessary transfers. HPL provides two mechanisms
to avoid these problems. First, an ExecutionPlan can be built as a copy of an existing one
so that it retains the same devices and work distribution, only changing the partitioner.
Second, these objects provide methods to retrieve the distribution performed so that the
user can know which portion of each array was used in each device and act accordingly.

3.4. Unified memory exploitation

Some devices have a memory that is separated from that of the host, while others work
on the same physical memory. This is the case of the CPU when it is used under OpenCL,
or the integrated GPUs that ship with many current CPU models. When the memory of
a device is unified with that of the host transfers between both memories can be avoided
or optimized. The exploitation of this property in OpenCL requires programmers to follow
a series of steps that are different from the usual ones, an example being working based
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Table 1: Benchmarks characteristics.

Benchmark Kernels Data Baseline
exchanges SLOCS PE (Ks)
EP lu - 325 1612
FT Ju+Tr all to all 1656 35219
MG 6u+37r stencil 3076 106666
MMRow lu - 220 1082
Summa, 1r broadcast 208 1867
ShaWa 3r stencil 572 3430

on mapping and unmapping of OpenCL buffers instead of usual read and write operations.
This way, performing this optimization further adds to the complexity of OpenCL programs.

HPL automatically detects when the device used for a kernel execution has its memory
unified with that of the host, and internally applies the suitable OpenCL protocol to min-
imize the communication cost between this device and the host, making the optimization
totally transparent and effortless to users.

4. Evaluation

Since the HPL backend is OpenCL, this is the standard tool with which it is fairer to
compare our library. The C++ OpenCL API has been chosen for the baseline, as this is
the language in which HPL, and thus its benchmarks, have been developed, so that both
approaches enjoy the same language.

Table 1 describes the benchmarks used in the experiments in terms of their name, the
number of kernels used in unique (u) and repetitive (r) invocations (i.e. inside some loop),
the most common pattern of communication between subtasks when they are split among
several devices and the source lines of code (SLOCs) and Halstead’s programming effort [17]
(PE, expressed in thousands) of the host-side implementation of the baseline. This latter
metric is an estimation of the cost of the development of a code based on a reasoned formula
that takes into account the number of unique operands, unique operators, total operands and
total operators found in the code. For this, the metric regards as operands the constants and
identifiers, while the symbols or combinations of symbols that affect the value or ordering
of operands constitute the operators. We think that the programming effort is a fairer
measurement of the productivity than SLOCs, since lines of code can largely vary in length
and complexity. Our programmability analysis only focuses on the host side of applications
because kernels are not affected by the proposals made in this paper, their length and
complexity being besides very similar in OpenCL and HPL. Our baselines encapsulate the
lengthy initialization of OpenCL in reusable routines that are placed in a library out the
host code, which just calls these routines. As a result they are not measured in the baseline,
which corresponds to the minimum amount of code that is required for these applications

when using the OpenCL host C++ APIL
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Table 2: Programmability improvement for several strategies.

Benchmark HPL-md HPL-sub HPL-ann HPL-exp
ASLOC APE ASLOC APE ASLOC APE ASLOC APE
EP 16.9 36.7 151 326 175  39.0 16.0 33.1
FT 188 374 157 313 259 421 16.7 25.9
MG 24.3  30.7 234  26.1 25.7 31.8 21.1 244
MMRow 182 290 186 323 29.1 519 20.5 40.2
Summa 25.2  37.7 39.9 61.8 - - 37.3 564
ShaWa 31.0 433 40.2  52.2 56.3  76.7 50.0 58.8

EP, FT and MG codes come from the SNU NPB suite [37], an optimized OpenCL
implementation of the NAS Parallel Benchmarks. MMRow is the matrix multiplication
distributed by rows that has been used as running example in the preceding sections, but
using an optimized kernel instead of the naive kernel in Fig. 1. Namely, for the sake of
reproducibility we have used the matrix product kernel taken from the Nvidia OpenCL
SDK. Summa code implements the Summa algorithm for matrix multiplication [42], which
divides the matrices in tiles and interleaves stages of local multiplication in each device with
stages of communications consisting of broadcasts across columns and across rows of the two
input arrays. Finally ShaWa is a shallow water simulator [45] whose main computational
pattern is a stencil. This way, it is parallelized using ghost regions that replicate a portion
of the data in another processor and must be refreshed in each iteration.

4.1. Programmoability

Table 2 shows the percentual reduction in SLOCs and programming effort with respect
to the baseline when the applications are developed with basic multi-device HPL (md),
subarrays (sub), subkernels based on annotating the distribution of the arguments (ann)
and subkernels based on execution plans (exp). These three last techniques were explained
on Sections 3.1, 3.2 and 3.3, respectively. Notice that the higher the reductions, the better
the programmability. Annotations can only be used when the i-th regions obtained in the
partitioning of the arrays are always used together, that is, the first subkernel uses the first
subarray of all the inputs, the second subkernel the second subarray, etc., which is not the
case in Summa. [t also deserves to be mentioned that since stencils require using a portion of
the array assigned to a device for communications, which is not straightforward in HPL-md,
and we had two benchmarks (MG and ShaWa) based on stencils, we wrote their HPL-md
versions in different ways. Namely, our MG HPL-md version copies the whole arrays to the
host, then exchanges the neighbor rows in the host memory, and finally copies the arrays
back to the accelerators in the next iteration. Although this is much more inefficient than
only transferring the required neighbor rows of the arrays, Section 4.2 will show that this
version can outperform the native optimized version in some environments. Our ShaWa
HPL-md code is written in the most possible efficient way without using subarrays. Namely
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it uses auxiliary arrays of a single row that (1) receive their data from the main arrays by
means of copy kernels executed in the accelerators, (2) are exchanged between the devices
to copy this information and (3) provide their data to the destination array also by means
of a copy kernel run in the accelerator.

Programming effort reductions are always stronger than SLOC reductions because this
indicator takes into account the complexity of each line, the OpenCL API often having many
parameters. Since we argue that this more complex metric is fairer than SLOCs, this is good
news.

The techniques introduced in Section 3 provide better programmability than HPL-md
in all the tests except the HPL-sub and HPL-exp implementations of the NPB applica-
tions. In the case of HPL-sub the main reason is that the arguments of the kernels of these
applications have different sizes, which does not allow to reuse Ranges in their indexing.
Nevertheless subarrays positively impact MMRow, and largely improve upon HPL-md in
Summa and ShaWa. Their programmability metrics improvements over the baseline are in
fact between 21% and 64% larger in relative terms that those of HPL-md for these bench-
marks. In the case of MG another important reason why HPL-sub and HPL-exp do not
offer better programmability than HPL-md is the very simple strategy used by this latter
implementation, which copies the whole arrays to memory, while all the other versions only
exchange one row.

HPL-exp is the next technique in terms of easiness for the programmer, as it achieves
an average 26.9% SLOCs reduction with respect to the baseline, compared to the 22.4%
of HPL-md and the 25.5% of HPL-sub. Similarly, it reduces the programming effort by a
noticeable 39.8%, above the 35.8% of HPL-md and the 39.4% of HPL-sub. HPL-exp main
programmability advantages are that execution plans avoid loops and the computations of
most of the ranges required to split the work. On the other hand, this strategy requires
defining the execution plan and the related partitioner. Also, the kernels with arguments of
different sizes make sometimes insufficient the predefined Ranges provided by the execution
plans. So in these cases the user must define new Ranges, like in the HPL-sub case. This is
the reason why HPL-exp does not offer better programmability than HPL-md in the NPB.
In the case of MG, this is also motivated by the simplicity of the HPL-md implementation.
The biggest asset of HPL-exp with respect to the other options is that it is the only one that
allows to exploit the automatic load balancing features described in Section 3.3.2, which are
evaluated in Section 4.2.2.

Finally, HPL-ann systematically improves upon HPL-md and the other alternatives pre-
sented in this work. This happens even in the simplest benchmarks, where it is more
complicated, as the baseline is all the host code, including host computations and data ini-
tialization. This way, for example annotations remarkably achieve up to 60% larger SLOCs
reduction over the baseline than HPL-md in MMRow. The largest improvement takes place
in this application and ShaWa, where HPL-ann almost doubles the programming effort re-
duction of HPL-md over OpenCL. On average, in the five benchmarks where it can be used,
HPL-ann reduces the SLOCS and the programming effort by 30.9% and 48.3% with respect
to the baseline, respectively, making it the default option when it is applicable and no au-
tomatic load balancing is needed. Overall these results largely justify the interest of our
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Table 3: Execution time of the baselines (in seconds).

Accelerator EP  FT MG MMROW SUMMA SHAWA

Fermi 1.49 33.81 14.86 5.74 39.33 973.20
K20 143 3347 17.81 3.55 20.90 400.00
Xeon Phi 215 9.65 15.73 10.29 64.93 1819.20

proposals.

4.2. Performance

The performance evaluation uses three platforms, two based on GPUs and another one
on Xeon Phis. The first one, called Fermi, has a 6-core Intel Xeon X5650 (2.67 GHz), 12
GB memory and two Nvidia M2050 GPUs with 3 GB and 448 cores at 1.55 GHz each. The
second platform, called K20, has two 8-core Intel E5-2660 (2.2 GHz), 64 GB memory and
two Nvidia K20m GPUs with 5 GB and 2496 cores at 0.705 GHz each. Both systems used
the Nvidia OpenCL driver version 325.15. The Xeon Phi platform, called Phi for short,
has the same host CPU and main memory as the K20 system, the accelerators being two
Intel Xeon Phi 5110P with 60 cores at 1.056 GHz and 8 GB with the Intel OpenCL driver
version 4.5.0.8. The compiler was g++ 4.7.2 with optimization level 03. The problem sizes
used in the experiments are C, B and B for EP, FT and MG, respectively. MMRow and
Summa multiply double precision matrices of 8000 x 8000 elements, while ShaWa processes
a 2000 x 2000 mesh.

The same version of the programs were used for all the tests. This means that since GPUs
and Xeon Phis have a quite different architecture, we had to choose for which architecture
to optimize the kernels. Since two of our platforms were based on GPUs and only one on
Xeon Phis, we used kernels optimized for GPUs. This is reflected in Table 3, which shows
the runtime of the baseline OpenCL applications in the three platforms when using the two
accelerators available. It is interesting that despite this fact the Xeon Phi obtained the best
performance for the most memory intensive benchmark, showing the interest of the two
kinds of accelerators for different problems.

We now first compare the performance of the different HPL notations with the native
OpenCL baseline and then evaluate our algorithms for work distribution.

4.2.1. Comparison with the OpenCL baseline

Figures 9 to 11 show the speedup of the HPL versions with respect to the OpenCL base-
line in executions using the 2 accelerators in the Fermi, K20 and Phi systems, respectively.
Notice that there is no data for Summa using annotations because this benchmark cannot
be written using this strategy. The kernels of the HPL versions mimic those of the OpenCL
baselines, so that they exhibit exactly the same behavior and performance, which has al-
ready been proved in all the previous publications about HPL, such as [43]. While HPL does
not try to optimize the kernels provided by the user, it has an adaptive runtime that chooses
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the best strategy to exchange data between different devices [44], the possibilities being (a)
the use of two transfers in sequence using as temporary buffer the host memory, or (b) the
built-in c1EnqueueCopyBuffer OpenCL routine. This allows HPL to noticeably outperform
manually optimized codes in multi-device environments when those codes do not rely on the
best strategy for the accelerator considered. This is the case for the FT and MG multi-device
implementations from [37], which use a strategy for data exchange between devices that is
well-suited for the Xeon Phi but not for the GPUs. As a result, HPL strongly outperforms
them in the Fermi and K20. It is particularly interesting that despite following an inefficient
strategy for the data exchanges that copies the whole arrays to the host memory, our MG
HPL-md is much faster than the OpenCL baseline (51% in Fermi and 70% in K20) thanks
to the selection of the best transfer method. The speedup of HPL MG grows to 98% and
146% in Fermi and K20, respectively, in the versions written using the proposals in this
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paper, which largely facilitate the implementation of stencils. The situation is different for
the Xeon Phi because the data exchange strategy of the OpenCL baseline is the best one.
Despite this fact, our HPL-md version for FT still provides a 18.3% speedup, with the ver-
sions enabled by the novelties presented in this paper reaching a 22.8% speedup. As for MG,
the optimized MG HPL versions get a performance similar to the baseline, while the naive
HPL-md version has a considerable lower performance. ShaWa HPL-md is slightly slower
than the baseline (1% in Fermi, 1.7% in K20 and 3.3% in the Xeon Phi) because the lack of
subarrays complicates the refresh of the shadow region of one row in each GPU, requiring
additional buffers and copies. The slowdown is reduced to between 0.2% and 0.6% when
HPL incorporates the novelties described in this paper, allowing to use a simple assignment
to a subarray for these updates.

All in all, the programmability improvements proposed have from a neutral to a very
positive impact on performance while allowing a much more natural way of expressing the
algorithms at hand.

4.2.2. Automatic load balancing

The main interest of the execution plan approach lies in its ability to automatically op-
timize the distribution of work among different devices. We have measured the performance
of the automatic load balancing provided by execution plans in the most time consuming
kernel of each one of our benchmarks. Summa was excluded of the experiment because it is
based on the assumption that each parallel task operates on a sub-matrix of the same size.
While the kernels of EP, MMRow and ShaWa have a high arithmetic intensity, those of FT
and MG have a high ratio of memory accesses per computation. They also have different
patterns, as ShaWa and MG follow a stencil pattern, MMRow operates on a tiled way on
its matrices, F'T computes a complex FFT using a scratch array and EP makes most of its
computation in private and local memory. This way, our tests rely on kernels with very
different nature.

We performed the experiments using two configurations. In the first one, HPL was asked
to automatically distribute the work among the CPU and one GPU in the K20 system.
In the second configuration HPL had to split the work among the CPU and the two K20
GPUs. The OpenCL driver used for the CPU was the version 1.2.0.8 from Intel. Also, in
both cases the two algorithms proposed in Section 3.3.2 were tried. We also sought for the
optimal distribution using its exhaustive search feature using steps of 1% of the workload.
Also, in all the experiments the CPU benefited from the automatic unified memory support
provided by HPL (see Section 3.4).

In all of the five benchmarks, the two automatic distribution algorithms based on ana-
lytical models provided the optimum distribution identified by the exhaustive search in the
CPU+single GPU scenario. Figure 12 shows the relative performance of the distributions
found by the analytical models with respect to the best one found by exhaustive search
when using the CPU in conjunction with the two K20 GPUs. Both models found again the
best point for the FT and MG kernels, and they were just 0.4% slower than the optimal
distribution in MMRow. In ShaWa they chose a distribution that is only 2% different from
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Table 4: Slowdown of the worst distribution with respect to the best one in the two configurations tested.

Environment EP FT MG MMRow ShaWa

CPU + GPU 276 17.73 51.61 3.98 6.68
CPU +2GPU 422 17.73 51.61 7.75 10.80

the optimal one (namely, it assigned to the CPU 8% of the total work, while the optimum
portion was 6%), but since this is a problem extraordinarily well suited for GPUs [45], this
distribution was 6.3% slower than the optimum one, which is still a very good value. Fi-
nally, in EP the ITERATIVE_MODEL showed that it can better pinpoint the best distribution
than the SINGLE_STEP_MODEL, as it found the optimum distribution, while the simpler model
found a distribution just 1.4% slower. Table 4 shows how many times slower is the worst
distribution with respect to the best one for each kernel and configuration considering all
the distributions tried by the exhaustive search using steps of 1% of the workload. This
table further helps to assess the quality of our balancing algorithms, as we can see that the
algorithms achieve optimal or near-optimal distributions in environments in which the worst
distribution is between 2.76 and 51.61 times, or in percentages, between 176% and 5061%,
slower than the best one.

Regarding the search cost, we used the default HPL configuration that runs each test
twice to reduce the measurement noise. This way, since the SINGLE_STEP_MODEL requires
evaluating a single distribution, while the ITERATIVE MODEL always converged in two, or
very seldomly, three iterations, the optimization processes based on analytical models only
required between 2 and 6 executions. It also deserves to be mentioned that the non-first one
executions of the ITERATIVE_MODEL start from a point near the optimal one, making them
often much faster than the initial excution. This way, in practice the ITERATIVE_MODEL only
required 48% more time than the SINGLE_STEP_MODEL.

The ITERATIVE_MODEL is particularly interesting in the presence of applications in which
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found (left axis) and number of iterations required for convergence by the ITERATIVE MODEL (right axis)
when distributing an unbalanced load between the CPU and a GPU in the K20 system.

the workload is not uniformly distributed across the problem domain. Since the benchmarks
considered in the previous experiments are balanced, we designed a simple unbalanced bench-
mark to compare the behavior for the SINGLE_STEP_MODEL and the ITERATIVE MODEL in this
kind of problems. Our benchmark considers a single-precision floating-point matrix a and
it performs a single flop where a(i,j) is zero and 1001 flops, without additional memory
accesses, where it is a non-zero. We then run this benchmark using input matrices in which
0%, 10%, 20%, ..., 100% of the entries where non-zeros, concentrating all the zeros in the
top rows of the matrix and the non-zeros in the bottom rows. Figure 13 shows the results
of this experiment when distributing by rows a 4096 x 4096 input matrix among the CPU
and a GPU in the K20 system. The figure represents for each percentage of non-zeros the
runtime achieved by the best and the worst possible distributions found using the exhaus-
tive search, as well as by the distributions computed by the SINGLE_STEP_MODEL and the
ITERATIVE MODEL. We can see that the ITERATIVE_MODEL always finds a near-optimal distri-
bution of the work, while the SINGLE_STEP_MODEL finds distributions that can be up to four
times slower. It is therefore very interesting to use the ITERATIVE_MODEL when we know or
suspect that the workload may be unbalanced. Regarding the number of iterations required
by the ITERATIVE MODEL to converge, it is always between one and a maximum of 5, the
average being just 2.8.

Overall, we find these results to be very satisfactory, not only because of the quality of
the distributions found and the very reasonable cost of our models, but also because of the
simplicity of the API involved.

5. Related work

Most efforts to facilitate the use of multiple heterogeneous devices mainly try to avoid
communication APIs in clusters. These proposals provide a programming model in which
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a sequential program can allocate buffers and submit tasks to the devices that exist in a
cluster. While some of these works [23, 34, 40] are based on CUDA, which restricts their
portability, many [3, 10, 14, 19] rely on OpenCL. Most of these latter proposals closely follow
the OpenCL API and concepts with some extensions, and thus require a much lower level
management than HPL. Exceptions that abstract some details are [3, 14]. Nevertheless,
the Many GPUs Package [3] involves compiler directives that must indicate the inputs and
outputs of each task and specify synchronization points, or a library that in addition to
these specifications explicitly uses contexts and buffers. It also includes a gather-scatter
API which, unlike HPL, requires to scatter and gather the data in a single task which is the
only one that can work with the chunks. Similarly, libWater [14] relies on explicit kernel
creation processes, buffers associated to devices that are explicitly read and written, and
synchronizations based on OpenCL-like events, supporting neither subbuffers nor automated
kernel partitioning. HPL is currently restricted to the exploitation of the devices in a single
node, but it offers a much higher level view. This way n-dimensional arrays rather than
buffers in a given memory or device are the objects that users manipulate, being able to
work even on subregions of these arrays, and leaving the synchronizations, buffer allocations,
data transfers and consistency management to the HPL runtime.

A particularly original proposal is PARRAY [7], a language to represent arrays of data
and threads using a very flexible notation together with a novel Single-Program-Multiple-
Codeblock programming style. Unlike HPL arrays, PARRAY data arrays are entities located
in a specific physical memory and they must be managed (created, updated and deallocated)
by hand.

Our work is also related to the task superscalar paradigm, because HPL synchronizations
and scheduling are automatically defined by the task data dependencies. Nevertheless, the
existing proposals to apply this paradigm to heterogeneous computing [8, 2| require users to
explicitly annotate the tasks inputs and outputs, contrary to the fully automated extraction
of the dependencies of HPL. They also suffer from long boilerplate codes to use OpenCL and
lack mechanisms to split a kernel in parallel subtasks with a single command. In addition [§]
requires a special compiler and does not provide convenient array classes with mechanisms
to define and operate on subarrays. Partitioning arrays using predefined distributions is
allowed by [2]|, although unlike HPL, it does not allow selecting arbitrary subarrays. A
task superscalar project that, like ours, automatically extracts the data dependencies of the
parallel tasks is [13], but it only supports regular CPUs.

Multiple devices can also be exploited using compiler directives like OpenMP and Open-
ACC. However, this alternative suffers from many limitations and differences with respect
to our proposal. First, none of these families of directives reaches the degree of portability
of HPL. For example, while in this paper we have used GPUs and Xeon Phis under HPL,
as of today [30] no OpenACC compiler supports Xeon Phis and there has only been experi-
mental support of OpenMP for GPUs that has not been publicly released [26]. Nevertheless,
the most important problem of compiler directives is that they suffer from lack of a clear
performance model, reduced user capability to control the result, and strong dependence
on the compiler quality. These problems are even more important in accelerators, whose
performance is very sensitive to implementation decisions and where users have made an
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specific investment to reach higher performance. This way, in [12] out of the four transfor-
mations tested that would allow a loop nest to efficiently use a GPU, the compilers would
only apply one of them. Similarly, out of three common parallelizable idioms the compilers
were only successful with one, the other ones resulting in a sequential execution. They also
compared the quality of the code generated by the compilers for 15 Rodinia benchmarks [6]
with hand-tuned CUDA versions. While in 6 benchmarks the compiler reached 85% of the
performance of the CUDA version, 8 of them did not reach even 50%. The differences are
also usually large when full applications are considered. This way, while in [30] the com-
piler directives were between 10% and 30% slower than the manually developed kernels,
and OpenMP clearly outperformed them in the Xeon Phi (although in this case the authors
stress that the experiments suggest that there was a performance problem caused by some
issue with the architecture or software), [31], [16] and [36] report around 1.5, 3 and 3.5
times more speedup using CUDA than OpenACC in their applications, respectively. The
problems of lack of control are well exemplified by [35], which reports a slowdown in their
OpenACC version of one benchmark of over 26x that they were not able to correct. HPL
does not suffer these problems, as it allows users to totally control their kernels.

Regarding the subject of this paper, contrary to HPL, the current families of directives
for accelerators do not automatically maintain coherent the copies of the same data on
different memories. On the contrary, they make programmers responsible for the tracking of
the state of these copies and the insertion of directives to maintain the coherency. Similarly,
they cannot automatically deallocate buffers, of course keeping safe their content, whenever
the devices run out of memory. Rather, they just follow the reference counts manipulated
by means of the compiler directives inserted by the programmers, making them responsible
for the memory management. Also, none of them provides mechanisms for the convenient
distribution of arrays and kernels among different devices such as the annotations proposed
in this paper, and they totally lack automatic load balancing features like the ones enabled
by the use of executions plans. Also, contrary to HPL, these directives require the subarrays
to be contiguous blocks of memory (see Sect. 2.7.1 in [32] and Sect 2.15.5.1 in [33]). The only
exception to this rule are dynamic multidimensional C arrays based on arrays of pointers
under OpenACC, which are rarely used in HPC because of the lower performance they lead
to. Besides, in this case each pointer is managed separately, further reducing the potential
performance. Finally, in the case of OpenACC, [46] shows that the lack of certain directives
makes the exploitation of multiple accelerators much more complex.

A related work is BBMM [35], an automatic multi-GPU memory manager restricted to
loop nests with affine bounds and affine array access functions based on compile and run-
time components. HPL does not suffer from these limitations and others implied by the
required compile-time analysis such as the existence of conditionals whose outcome can only
be known at runtime. In fact, several of the benchmarks used in our evaluation do not fulfill
the conditions required by BBMM. Also, the tool generates both the host and the kernel
code, thus suffering from the limitations of current compiler technology discussed above.

Skeleton libraries [9, 29, 1, 39] are another approach to exploit multiple heterogeneous
devices with reduced programming effort. HPL has a much wider scope of application than
these tools, as they can only express computations whose structure conforms to one of their
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skeletons.

It is also important to remember that none of these approaches enjoys the run-time code
generation possibilities enabled by the HPL embedded language, which have been shown to
allow the generation of high performance kernels [11].

The fact that our proposal can automatically find a suitable distribution of work among
multiple heterogeneous devices is another difference with the preceding works, and it relates
it to the works on automatic work distribution. For example, [27] is restricted to CPUs
and Nvidia GPUs, only considers a CPU and a GPU, and is based on an offline training,
being thus less adaptive and general than our dynamic system, which relies on runtime
information and supports any arbitrary combination of devices. A work that shares the first
two limitations but uses dynamic measurements is [28]. OpenCL is the base for [15][21],
but they rely on offline static models whose construction requires extensive training runs
that need to be repeated when there changes in the platform. Another problem of these
approaches is that their decisions are based on static code features and straightforward
runtime features, thus kernels whose behavior can strongly vary depending on the contents
of the input data, either as a whole or in different work-items, are not well suited for them.
Finally, [38] is based on profiling and only considers one CPU and one GPU. Although it
elaborates on how to extend the proposal to one CPU and multiple identical GPUs, the
idea is only tested with a single kernel. Our approach has been designed in a completely
general way and it has been successfully validated using kernels with very different nature
in a multi-GPU plus CPU environment. Also, contrary to the preceding work we know of,
HPL provides a extremely simple and usable API to find and exploit the optimal distribution
among any number of devices.

6. Conclusions

One of the biggest problems for the exploitation of heterogeneity is the associated pro-
gramming complexity, which grows when several devices are in use. This paper describes
and evaluates several mechanisms to facilitate the exploitation of multiple devices in a node
using a purely library-based approach called HPL that relies on OpenCL to provide porta-
bility. The first alternative consists in allowing the use of subarrays as kernel arguments, as
well as source and destination of array assignments, which is required even for the implemen-
tation of some algorithms in single-device environments, although this is not explored in this
paper. The second one consists in defining portions of a kernel to run in parallel in different
devices, which can be achieved using a high-level notation that automatically partitions or
replicates the kernel arguments in the devices. A third contribution is an execution plan in
which the user provides a partitioning function that based on regions precomputed by our
library selects the appropriate subarray of each argument to be used in the kernel execution
performed in each device. A very relevant part of this last approach are analytical models
that automatically determine the best partitioning based on run-time profiling.

The resulting schemes are highly flexible, enjoy task superscalar execution with auto-
matic synchronization and can reduce up to 76.7% the programming effort with respect to
streamlined OpenCL baselines. The overheads of our implementation are negligible, while
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the absolute performance can be in fact much larger than that of OpenCL thanks to the
HPL adaptive runtime, which achieves in our tests up to a 146% speedup with respect to
manually developed OpenCL codes. The quality of the work distributions chosen by our
execution plans is also outstanding, as they were optimal in most of the experiments, expe-
riencing a maximum slowdown of 6.3% with respect to the best distribution found using an
exhaustive search. This way we think that HPL is a very promising approach for the ex-
ploitation of heterogeneous systems and it largely benefits from the contributions described
in this paper.

Our future work involves adding new mechanisms to HPL in order to further improve
programmability, for example integrating more object-oriented APIs in its kernels. We also
plan to extend it with notations and a runtime focused on kernel tuning, so that users can
easily express optimization possibilities for their codes that the library can explore for them.
Finally, further optimizations such as stream processing could be incorporated in the library.
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Appendix A. Example with communication between devices

This Section illustrates the programming style based on separate arrays described in
Sect. 2.2 and those enabled by the proposals in Sect. 3 using a more complex example than
the matrix product. We have chosen for this purpose a stencil code, namely the well-known
Game Of Life, whose multi-array version is shown in Fig. A.14. The application simulates
an ecosystem through a number of time steps in which the role of input and output array
is swapped between two arrays in each iteration. The computation takes the form of a
stencil in which the new value of each cell in the next iteration depends on the value of its
neighbors in the current iteration. As a result, the computations in distributed memories,
among which the arrays are distributed by rows, require a copy of the neighboring area
whose update has been assigned to other devices in order to compute the new value of the
cells located in the borders of the arrays. This copy is called ghost region and it needs to be
updated in each iteration. The most primitive implementation, based on separate arrays,
is shown in Fig. A.14. Here the user is responsible for manually calculating the limits in
which the original arrays will have to be partitioned, which is the role of the obtain sizes
function in line 1, and accordingly allocating the independent arrays required in the loop in
line 27. The approach of building the HPL Arrays using pointers to the underlying storage
of the existing C++ arrays is unsafe here because the Arrays would overlap because of the
ghost regions, thus potentially overwriting in the borders right data with wrong data when
being read from the accelerators. For this reason in this case it is safer to copy in and out
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1 void obtain_sizes(std::vector<int>& start, std::vector<int>& end, int N, int ndev)
2 {/«Computes the starting and ending row of each subarray neededs/}

3

4 void exec_and sync(std::vector< Array<int,2>x>& input_a,

5 std::vector< Array<int,2>x> &output_a, std::vector<Device>& devices) {
6 Array<int,2> tmp_up(l, M), tmp_down(1, M);

7

8 for(int i = 0; i < devices.size(); i++)

9 eval(life).device(devices|i]) (*input_a[i], *output_al[i]);

10

11  for(int j = 1; j < devices.size(); j++) {

12 const int nrows_lower = output_a[j—1]—>getDimension(0);

13

14 eval(copy_kernel).device(devices[j—1])(xoutput_a[j—1], tmp_up, (nrows_lower—2)*M, (nrows_lower

—1)xM, 0, M);
15 eval(copy_kernel).device(devices[j]) (xoutput_a[j], tmp_down, M, 2+M, 0, M);
16 eval(copy_kernel).device(devices[j—1])(tmp_down, *output_a[j—1], 0, M, (nrows_lower—1)xM,

nrows_lowerxM);
17 eval(copy_kernel).device(devices[j]) (tmp_up, *output_alj], 0, M, 0, M);
18 )
19 }
20

21 std::vector<Array<int,2>x*> w_in, w_out;

22 std::vector<int> s_s, s_e;

23 std::vector<Devices> devices;

24

25 obtain_subarray_sizes(s_s, s_e, N, devices.size());

26

27 for(i = 0; i < devices.size(); i++) {

28  w_n.push_back(new Array<int,2>(s_e[i]—s_s[i], M));

29  w_out.push back(new Array<int,2>(s_e[i]—ss[i], M));

30 }

31 /* copy data from the input array to each Array in w_in (not shown) x/
32 for(time_step = 0; time_step < NUM_TIME_STEPS; time_step++) {
33  exec_and sync(w._in, w_out, devices);

34  std::swap(w_in, w_out);

35 }

36 /x copy data from each Array in w_in to the destination array (not shown) */

Figure A.14: Game of Life example written with separated arrays and using multiple GPUs

the data from them, which is not shown and would happen in the lines 31 and 36, where
associated comments have been placed. The main loop of the application, in line 32, runs
the kernel and performs the exchange of neighboring rows in function exec_and_sync, and
then swaps the vectors of Arrays so that the current output will be the next input and
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1 void obtain_sizes(std::vector<int>& start, std::vector<int>& end, int N, int ndev)
2 {/«Computes the starting and ending row of each subarray neededs/}

3

4 void exec_and sync(Array<int,2> &input_a, Array<int,2> &output_a,

5 std::vector<int> &s_s, std::vector<int> &s_e, std::vector<Device>& devices) {

6 Range all columns(0, M—1);

7

8 for(int i = 0; i < devices.size(); i++)

9 eval(life).device(devices|i]) (input_a(Range(s_s[i], s_e[i]), all_columns),
10 output_a(Range(s s[i], s_e[i]), all_columns));
11
12 for(int j = 1; j < devices.size(); j++) {

13 Array<int,2>& lower = output_a.getSubarray(j—1);

14 Array<int,2>& upper = output_a.getSubarray(j);

15 const int nrows_lower = lower.getDimension(0);

16

17 lower(Range(nrows_lower—1), all_columns) = upper(Range(1), all_columns);
18 upper(Range(0), all_columns) = lower(Range(nrows_lower—2), all_columns);
19 )

20 }

21

22 Array<int,2> w_in(N,M), w_out(N,M);
23 std::vector<int> s_s, s_e;

24 std::vector<Devices> devices;

25

26 obtain sizes(s_s, s_e, N, devices.size());

27 /* main loop elided */

Figure A.15: Game of Life example written with subarrays and using multiple GPUs

vice versa. The function consists basically of two loops in which the first one launches a
parallel kernel execution in each device and the second one performs the exchanges of rows
between each pair of devices. Without the availability of subarrays, the most efficient way
to make this exchange is to run kernels in the devices to copy the appropriate subregions of
the output arrays into temporary arrays (tmp_up and tmp_down) and then invoke again these
kernels in the other devices, this time in order to copy out the data from the temporaries to
the ghost region. Notice how the automatic coherency provided by HPL for arrays makes
it unnecessary to specify the movement of data between devices. For example, after writing
tmp_up in the device j-1, using it as input in the kernel run in device j automatically copies
the Array to that device so that the kernel has a coherent view of it.

Our Game Of Life example is written using subarrays in Fig. A.15. Here the user is still
responsible for computing the region of the global array that each subarray has to cover,
thus obtain_sizes and the related containers for the associated indices are still required.
However,a single input and a single output Array are needed. The main loop (not shown)
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1 void exec_and sync(Array<int,2> &input_a, Array<int,2> &output_a, std::vector<Device> &
devices) {

2  Range all_columns(0,M—1);

3

4  eval(life).device(devices)(PART1(input_a,1), PART1(output_a,l));

5

6 for(int j = 1; j < devices.size(); j++) {

7 Array<int,2>& lower = output_a.getSubarray(j—1);

8 Array<int,2>& upper = output_a.getSubarray(j);

9 int nrows_lower = lower.getDimension(0);
10
11 lower(Range(nrows_lower—1), all_columns) = upper(Range(1), all_columns);
12 upper(Range(0), all_columns) = lower(Range(nrows_lower—2), all_columns);
13}
14 }
15

16 Array<int,2> w_in(N,M), w_out(N,M);
17 std::vector<Devices> devices;

Figure A.16: Game of Life example written with annotations and using multiple GPUs

is identical, with the exception of the change of the arguments of exec_and_sync, which uses
the vectors of integers s_s and s_e with the limits for the indexing of the arrays in order
to correctly build the required subarrays. Notice that these vectors were also needed in
Fig. A.14 to know the sizes of the different Arrays and their mapping with respect to the
underlying global arrays. The structure of the function is the same as in Fig. A.14, but
now subarrays are selected within the only two arrays, and copies of data can be naturally
performed by means of assignments between (sub)arrays, giving place to a cleaner notation.
The fact that these subarrays overlap does not give place to incoherencies in the parent arrays
due to two reasons. First, when a new subarray is generated, it is internally stored as a
separate entity in a container held by its parent array so that it can be reused in the future.
Second, when two subarrays overlap in their borders, HPL identifies the overlapped areas as
ghost regions, automatically identifying which is the area actually owned by each subarray
and which is the ghost region. This way, when the user requests to obtain a coherent view
of the array, each subarray only updates its own region in the parent. The ghost regions
found in the subarrays used in each device are allowed to be inconsistent, being the only case
in which manual updates are required to maintain coherency. The reason for this policy is
that if HPL automatically strictly maintained the coherency of the ghost regions, it would
have to execute in sequence the kernels in the first loop, as each one of them writes to array
positions replicated in another device. The Array API provides a method getSubarray that
allows to retrieve the i-th subarray created within an array from its internal container. Our
example benefits from this API in the second loop of exec_and_sync, which avoids repeating
the somewhat more verbose indexings performed in the first loop.
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1 void partitioner(FRunner& fr, Range rg[2], Array<int,2>& input_a, Array<int,2>& output_a) {
2  fr(input_a(Range(max(0,rg[0].origin—1), min(N—1, rg[0].end+1)), rg[1]),
3 output_a(Range(max(0,rg[0].origin—1), min(N—1, rg[0].end+1)), rg[1]));
4}
5
6 void exec_and sync(Array<int,2> &input_a, Array<int,2> &output_a, ExecutionPlan& ep) {
7  Range all columns(0,M—1);
8
9  eval(life).executionPlan(ep)(input_a, output_a);
10
11 for(int j = 1; j < ep.getNumDevicesInUse(); j++) {
12 Array<int,2>& lower = output_a.getSubarray(j—1);
13 Array<int,2>& upper = output_a.getSubarray(j);
14 int nrows_lower = lower.getDimension(0);
15
16 lower(Range(nrows_lower—1), all_columns) = upper(Range(1), all_columns);
17 upper(Range(0), all_columns) = lower(Range(nrows_lower—2), all_columns);
18}
19 }
20

21 Array<int,2> w_in(N,M), w_out(N,M);
22 std::vector<Devices> devices;
23 ExecutionPlan ep(partitioner, devices);

Figure A.17: Game of Life example written with execution plan and using multiple GPUs

As we can see in Fig. A.16, annotations largely simplify the Game Of Life example. It
is no longer needed to compute the beginning and the end of each subarray, and manual
indexing is only required for the update of the ghost regions. This latter part can also benefit
from the getSubarray API because the partitioning generates its associated subarrays in the
order in which the devices are stored in the vector provided to the eval that triggers the
distributed kernel execution.

The version of Game Of Life based on execution plans is shown in Fig. A.17. The
exchange of rows is almost identical to the one of the examples based on subarrays and
annotations in Figs. A.15 and A.16, respectively. The only difference is that since the
execution plan contains all the information on the execution of the kernel, exec_and _sync
does not need to receive the vector of devices in use as a separate argument, and the number
of devices, required to know the number of exchanges needed, is obtained from the execution
plan. The kernel execution is automatically distributed in line 9 between the devices provided
to the plan using the partitioner in lines 1-4. The example also illustrates in line 23 another
convenient way to build an execution plan. This alternative splits the execution between the
devices specified in the input vector of devices giving the same weight to each of them. The
complexity of this version is apparently very similar to the one of the code in Fig. A.15, but
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this is misleading because now the function obtain_sizes, whose content was elided, is no
longer needed. More importantly, the use of an execution plan makes it trivial to perform
load balancing using any of the algorithms provided by HPL.

Appendix B. Coherence and data movement

This appendix describes the internal mechanisms used by HPL to keep a coherent view of
the arrays it manages. Our approach provides a single view of each array to the programmer,
hiding the fact that each array can have several underlying copies, due to the distributed
nature of the accelerators and the host memory, as well as partial copies, due to the usage
of subarrays, when this is the case. The only exception to this systematic unified plain
view takes place when the programmer selects subarrays that partially overlap along their
borders. This situation happens in kernels with stencil patterns that require the replication
of neighboring data in the piece assigned to each device, forming what is known as ghost
regions. When this happens, HPL does not enforce the strict coherency of the overlapped
ghost regions so that it is possible to run in parallel the related kernel in several devices,
letting the user in charge of updating the ghost regions when needed, as shown in the detailed
example in Appendix A. When the subarrays are brought to a memory that contains the
whole array, such as the main host memory, the user does not need to worry about the
potentially incoherent ghost regions because HPL knows which is the owned region of each
subarray and thus only updates it.

HPL provides the unified view of arrays to the main thread of the application, which
orders the execution of the different kernels and array operations. Although these activities
can be run in parallel because kernels are run asynchronously, i.e., the main thread does
not wait for a kernel to finish when it orders its execution, the user sees their execution as
if it happened in a sequential order. Therefore HPL provides sequential consistency [22] to
all the accesses to its arrays in the host application, as it is the simplest model to reason
about parallel programs. With respect to the internal management of the copies, as we will
see along this explanation, the HPL runtime follows a multiple-readers/single-writer policy
(MRSW) policy [41] with an invalidation protocol on writes [25] in order to keep a single
coherent image. Along the explanation, the terms valid and updated will be used to indicate
that a given copy or buffer has the most up to date version of the data it is associated to. We
will also use the term region to refer to a set of positions within an array, typically resulting
from an indexing with ranges. Finally, an array is said to cover a region of another array
when that set of positions is shared by both arrays.

We first describe the main data structures used in the algorithms. Every Array keeps
a list of the subarrays of it that exist at a given point in time called subarrays. Also, all
the Arrays have a field parent that points to their parent, or ¢ if they are not subarrays,
as well as three vectors called buffer, valid and childrenValid that are indexed with a
device number. The first vector provides the physical buffer associated to that array in that
device. The second one is a boolean that indicates whether that buffer has a valid version
of the portions of the array not covered by its children in the device. The last vector plays
a similar role, indicating whether all the regions covered by subarrays are updated in the
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1 Array Array::buildArray(rangesList) {
2 tmpArr = subarrays.find(rangesList);
3 if(tmpArr == ¢) {
4 tmpArr = newSubarray(rangesList);
5 subarrays.add(tmpArr);
6 }else{
7 if(tmpArr.superSet(rangesList)) {
8 return tmpArr.buildArray(tmpArr.relative(rangesList));
9 ¥

10 }

11 return tmpArr;

12 }

Figure B.18: Array indexing algorithm

device. The host is considered for the sake of these structures as another device, namely,
the one with index 0. The buffer entry in a device is ¢ if no such buffer exists.

We now describe in turn the three basic top-level algorithms involved in this mechanism:
the identification or creation of a subarray, a generic access to an array, and finally, an
assignment, between arrays. The algorithm in Fig. B.18 shows how HPL builds a subarray
when an existing Array is indexed with ranges. This is achieved by the member function
buildArray, belonging to the Array class, whose rangesList input argument stores the
ranges used for the indexing. The pseudocode is written in a C++ style, in which class
member functions are invoked on an object of their class and they can directly access the
data members of the objects of their class. As a first step, the subarrays container of the
Array is searched in line 2 for a subarray that covers this range. If more than one subarray
covered this region the search would return an error, as portions of an array that are common
in different subarrays can be in different states in these subarrays. The typical example for
this situation are stencil computations, in which the neighboring region is replicated and
has different values in the subarray used in each device. The mechanism followed in HPL to
avoid this ambiguity when addressing these common regions is to select them by indexing the
subarray in which we are interested. This allows in practice the HPL subarrays to overlap,
and thus to enable the efficient implementation of stencil computations. If no subarray
covers this region, a subarray structure is created and added to the list. If a subarray covers
the range specified by the user, it could be the case that this range is a subarray inside a
subarray. In this case, detected in line 7, the rangesList is adapted so that its indices are
relative to the found subarray and the function buildArray is invoked on the new parent
array. Otherwise tmpArr represents the subarray requested by the user and is thus returned
by the function.

Whenever an Array is used in a kernel, HPL identifies whether the kernel will read,
write, or both read and write the data structure, as well as the device where the kernel will
be run. Similarly, when an Array is accessed in the host, the API knows the kind of access
and the host is considered as another device. In both cases, the member function access,
shown in Fig. B.19 is invoked on the Array with the device and access mode requested.
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1 Buffer Array::access(device, mode) {

2 getBuffer(device);

3  if( (mode.isRead() || mode.isReadWrite()) &&
4 I(childrenValid[device] && valid[device]) ) {
5 refresh(device);

6

7  if(mode.isWrite() || mode.isReadWrite()) {

8 markOnlyOwner(device, true);

9 }
10  return buffer[device];
11}

Figure B.19: Main access algorithm

1 void Array::getBuffer(device) {

2 if(buffer[device] == ¢) {

3 if(parent == ¢) {

4 buffer[device] = separateBuffer(device);

5 mapExistingChildren(device);

6 } else {

7 if(parent.buffer[device] = ¢) {

8 buffer[device] = map(parent, device);

9 } else {
10 buffer[device] = separateBuffer(device);
11 }
12 )
13 )
14}

Figure B.20: Algorithm for building a buffer in a device

The aim of this function is to prepare the Array for the access by the kernel as well as to
update its coherency state. The function follows three steps: it builds the physical buffer
for the array in the device if it does not exist, it updates the buffer with valid contents if it
is outdated and the array is going to be read, and finally it marks the copy in this device as
the only valid one for this array if it is going to be written. The true argument to function
markOnlyOwner indicates that the array on which it is invoked is the level of array hierarchy
where the write operation takes place. This function is explained later in this Section.

The getBuffer function that builds the buffer of an Array in a given device is shown
in Fig. B.20. If there is already a buffer in the device, there is no need to allocate one.
Otherwise, a top level Array will require for sure an actual buffer allocation, which is achieved
by means of separateBuffer. This latter function checks whether there is space for the
buffer, performing deallocations of existing buffers if necessary. The deallocation order is
LRU in order to favor temporal locality. In this process, buffers that were the only valid copy
of a (sub)array would be saved in the host before their deallocation. When a parent Array
is allocated in a device, mapExistingChildren maps into it the children Arrays that might
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1 void Array::refresh(device) {

2 if(Ivalid[device]) {

3 for(lastValidDevice = 0; (lastValidDevice < NDevices)
4 && valid|[lastValidDevice]; lastValidDevice++);
5 updateNonChildren(last ValidDevice);

6 valid[device] = true;

7}

8

9  if(!childrenValid[device]) {
10 for(s = subarrays.begin(); s |= subarrays.end(); s++) {
11 if(!s.valid[device] || !s.childrenValid[device]) {
12 s.refresh(device);
13 }
14 )
15 childrenValid[device] = true;
16}
17 }

Figure B.21: Algorithm for updating a (sub)array in a device

already exist in the device in order to free their memory and thus optimize the memory
space. Regarding subarrays, they would be also allocated as a separate buffer if their parent
does not have a buffer in the device. Otherwise they would be mapped inside this buffer,
thus saving memory and facilitating coherency.

The update of a buffer with the current version of an array is performed by member
function refresh, displayed in Fig. B.21. This function first checks whether the portions of
the array not covered by subarrays are valid or not in this device. In the second case, they
are updated from the lastValidDevice device, where they have their most up to date value
by means of the updateNonchildren function. In the second step, if not all the subarrays
are valid in the device, it iterates on them refreshing those that need it by means of a call
of this member function on them. As explained at the beginning of this appendix, in the
case of overlaps between subarrays each subarray knows which is the portion of the parent
it has to update, therefore avoiding inconsistencies.

The last step related to the array accesses not associated to array assignments is the
algorithm to manage the state of the copies due to write operations, shown in Fig. B.22.
In the first stage of the function, it invokes itself on the subarrays of this Array in or-
der to mark the copy in this device as only valid copy of them. In the second stage the
specified device is marked as the only valid source for both the regions not covered by any
subarray (valid vector) and those covered by the array subarrays (childrenValid vec-
tor). The third stage updates the state of the parents of this array. This only needs to
be done in the topmost level where the write operation takes place. For this reason it is
only made in the topmost invocation of markOnlyOwner, which is the one that receives a
true istoplevel, as the invocations to lower levels in line 3 make it false. The state
that is modified corresponds to the childrenValid vectors of these ancestors, which are
updated by propagateChildrenValidUp to indicate that not all their children are valid in
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1 void Array::markOnlyOwner(device, istoplevel) {

2  for(s=subarrays.begin(); s != subarrays.end(); s++) {
3 s.markOnlyOwner(device, false);

4}

5

6 for(i = 0; i < NDevices; i++) {

7 valid[i] = (i == device);

8 childrenValid[i] = (i == device);

9
10

11  if(istoplevel) {
12 this_child = this;

13 for(p = parent; p != ¢; p = p.parent) {

14 p-propagateChildrenValidUp(this_child, device);
15 this_child = p;

16 }

17}

18 }

Figure B.22: Algorithm for marking a device as only valid location for an array

void Array::assign(rhs_array) {
where_lhs = whereLastUsage();
where_rhs = rhs_array.whereValid(where_lhs);
copy(rhs_array, where_rhs, this, where lhs);
markOnlyOwner(where_lhs, true);

}

=2 I R L N

Figure B.23: Algorithm for array assignments

other devices, and that they could all be valid in this device. This would be the case if the
only invalid child before this access were this array (in the lowest level), or its corresponding
parent (in the upper levels), if also all the other children of that ancestor of this subarray
were valid in this device.

Accesses to arrays in the host have a treatment similar to that of kernels in the devices.
Namely, when a (sub)array is read or written in the host, the operations are analogous to
those of a read or write access in a kernel run in a device, correspondingly. The library
knows the kind of access because the interactions with the data take place through its API,
as explained in [43].

Finally, Fig. B.23 summarizes the steps followed for an assignment between arrays, which
is the other source of movements and coherency changes besides kernel executions and
accesses in the host. The member function assign is invoked on the array in the left hand
side (lhs) of the assignment, providing as argument the right hand side (rhs) array. Function
whereLastUsage returns the device where an array, or its most recently used parent array
was used for the last time. This device is the most likely location for the next usage of the
array, and thus the best place where it should be updated. Function whereValid looks for
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a device where an array has a valid copy, starting from the device provided as argument so
that it has higher priority in the search. If no device has a valid view of the whole array
implied, this function builds a valid copy in the priority device, updates correspondingly the
validity vectors, and returns the associated id. Once we have decided the source and the
target devices, copy performs the data transfer between them. Finally, since the destination
array has been written with its most up to date version in the destination device, it is marked
as the only owner of the lhs array by means of the markOnlyOwner member function.

Regarding data transfers, HPL can make them in three different ways. First, whenever
the source and the destination are in the same device, an optimized copy kernel is executed
in the device to copy the data. When inter-device communications are needed, the adaptive
algorithm explained in [44] chooses the best strategy to perform the copy. As mentioned
in Section 4.2, the best strategy can rely on using either two transfers in sequence using
a temporary buffer in the host memory, or the built-in OpenCL clEnqueueCopyBuffer
function, which copies data between buffers in the same or in different devices. As shown
in [44], while some accelerators favor the first alternative, in others the second strategy offers
the best performance.
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