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SUMMARY

The present paper suggests the application of a non-linear model of analysis
to study the final critical stage of double-layer space trusses. A description of the
analysis techniques is proposed to take into account the resistant and geometric non-
linearity. The model developed has been applied to the study of the repercussion that
the dimensioning of the members has on the stress-strain curves of the structure, as
well as in the evaluation of its bearing capability when the final limit stage is
reached. In order to exemplify this, various solved cases are enclosed, corresponding
to different typologies of trusses and dimensions for which different dimensioning
criteria have been used. Furthermore, a new method is proposed for the
dimensioning of space structures, starting from the described technique of non-linear
analysis.

1. INTRODUCTION

It‘s evident that the application of computer technology in the calculation and
dimensioning of space structures of bars has originated a substantial variation in the
number and quantity of bars that shape a given structure, thus making less
predictable its behaviour when reaching the critical stage of stress. Not only is it less
predictable, but also more denotative, when there is a clear tendency to a
standardization in types of bars, usually by zones, a design criteria associated with
simplified methods of calculation for the assimilation of the structure which advances
in computer technology have made obsolete. The latest significant achievements
confirm this tendency, especially from the time that systems CAD-CAM have begun
to flourish which allow, with guaranteed success, such a number of types of bars
within a structure.

In this situation, tending to optimized structures with strict dimensioning it is
worthwhile to consider their behaviour upon nearing the final limit stage and what
effect the criteria of dimensioning of bars may have.

Clearly, the formulation of analysis for situations at critical stage necessitates
abandoning the linear model as a valid instrument for structural analysis of space
trusses in situations of fatigue, and requires adopting a non-linear model of analysis.
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2. NON-LINEAR MODEL OF ANALYSIS
The non-linear model of analysis must allow us to consider simultaneously:

* Resistant non-linearity, which include geometrical, as well as mechanical
non-linear behaviour of the bars that make up the space structure.

* Geometrical non-linearity of the structure, resulting from the fact that,
as we near the critical stages, the displacement of the knots, even in double
layer trusses, is not insignificant and, therefore, it is necessary to formulate
the balance over the deformed geometry of the structure.

2.1 UNIAXIAL CONSTITUTIVES LAWS

The first step in dealing with the problem of non-linear analysis is to obtain
the constitutive equations which control the behaviour of the bars giving shape to
structure. The study has been proposed in the case of thin-walled circular hollow
sections which, as such, represent the most idoneous typology for these construction
and practically dominate the choice of structures built.

The study of buckling in bars with a certain degree of imperfections F,,
assuming its representation in an initial curvature, allow us to obtain the stability
functions for the elastic buckling (1), as well as anelastic buckling by applying in
this case either the tangential (2) or the reduced modulus theory (3).
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where B define the position of the neutral axis and is determined by the intersection
of the curves given by the equations (5) and (6).
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In order to analyze the collapse of the space structure, it is of utmost
importance to reproduce the behaviour of the bars in post-buckling so as to
evaluate its contribution to the load-bearing capacity of the structure.

The integration of the differential equation for the elastic, obtained form the
exact value of the curvature, allows us to obtain the expression for the shortening
through bending, resulting from buckling , subject to angle o which forms the
tangent to the deformation in the end joints with the rectilinear axis of the bar (7).
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The value of angle o is obtained by formulation the balance for the
transversal section corresponding to the midpoint of the bar, assuming that the
section is totally plasticized, which allow us to determinate the value of the maximum
deflection which, due to the balance of the bar, is equal to the value of the maximum
deflection of the elastic (8).
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In this way we may determine the shortening due to the bending produced by
buckling which, when added to the axial shortening, by applying the tangential
modulus (9) or the reduced modulus (10), leads us to the total unit shortening.
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THe above equations permit us to represent, depending on the slenderness of
the bar, the type of steel use, and the degree of imperfections considered, the
constitutive law of the members of space trusses. The results obtained show a
substantial concordance with the available experimental ones and with those obtained
through other techniques of analysis.
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Fig.1.- CONSTITUTIVE CURVES COMPRESSED BARS Fig.2.- INFLUENCE OF THE STEEL USED AND
INFLUENCE OF IMPERFECTION PARAMETER IMPERFECTION PARAMETER
Slendernesses 100 and 150. Steel A42 Slenderness 100 Steels A42 AS2
Imperfection L/1000,L/500,L/100,L/50 Imperfections L./1000,L/500,L/100,L/50

The usual non-linear analysis techniques, from the standpoint of idealizing the
behaviour of the bars, have focused mainly on the elimination of the bars which
reach a critical stage, either of tension (elastic limit stress) or compression (critical
buckling stress) and in the balance, in a new cycle of calculation, of forces that result
in eliminating the critically compressed bars. While this analysis technique overly
simplifies the problem, since it views buckling as a sudden and rough phenomenon
with a rapid and total loss of the load-bearing capacity of the affected bars, which
neither corresponds to the experimental results nor, as we have seen, to the
constitutive laws developed and, evidently, does not consider the collaboration of
such bars in the behaviour of the truss. For this reason, idealizing the bars at critical
stage has been resorted to as an analysis technique, modifying the modulus of
elasticity in accordance with the different sections in which the constitutive law of
each bar has been idealized. This technique, although somewhat recent, is by no
means new, and has already shown its possibilities in earlier works by other authors,
albeit in very simple structures. .

The idealization of the constitutive law has been resolved with a total of seven
sections which attempt to reproduce as precise as possible the bahavioural
characteristics (Fig.3):
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Fig.3.-IDEALIZATION OF THE UNIAXIAL CONSTITUTIVE LAWS

Likewise, within each section, the corresponding segments of elastic recovery

have been predicted (9 a 12,14 y 15). These segments are essential when what is

attempted is to carry the study of structural behaviour to stages beyond the final
phase of fatigue, since the necessary unloading of the structure causes frequent force
inversions and, therefore, elastic recoveries of bars that were already in non-elastic

areas of behaviour within their corresponding constitutive laws.

Non-linear analysis war applied to the study of diverse space structures with

differing dimensioning criteria. The process was rapid in trusses in which only a few
types of bars were used since, generally, the critical area of the truss was situated in

very specific, predictable areas and affected very few bars. In those cases in which
the dimensioning of the bars was strict, the pattern of behaviour was considerably
different so that the number of bars affected was much greater, thus producing a very
considerable lengthening of calculation cycles and often entered infinite loops where
the critical stage of certain bars and the consequent modification of the rigidity matrix
of the structure produced the elastic recovery of bars proceeding from former critical
stages and the new assembling of the matrix led us back to the initial problem.

After successive verifications in several structures what we agreed to call
"CRITICAL BANDS" was finally decided upon. These will include all those bars
which, in a calculation iteration, reach critical stage with variations in the total load
value of the structure equal to less than a prefixed value (in the accompanying
examples 1Kg./m% was considered). This allows, instead of only one bar in each

iteration reaching a critical stage (the first reaches a significant point within its

idealized constitutive law), all the bars which form the "critical band" corresponding

to that iteration reach said critical stage simultaneously. This technique brought with
it the advantages of elimination infinite loops and reducing the number of calculation

iterations.
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2.2 CONSIDERATION OF THE DEFORMED GEOMETRY IN
FORMULATING THE BALANCE

Frequently, in double layer structures, a strict formulation is not chosen of
the non-linear geometry based on an iterative incremental algorithm through small
grades of load within which we would have to formulate the balance over the
deformed geometry of the structure arid balance the forces that would be unbalances
in that iteration. This simplification is reasonable when one considers that, given the
great rigidity of the double-layer truss, the complexity of the analysis is not justified
by the repercussion that this phenomenon has on the results.

Nonetheless, when we analyze the structure up to a critical situation, the
arrival at critical stage of successive critical bands causes a not insignificant lessening
of rigidity of the unit and a greater repercussion each time of the importance of
considering this non-linear geometrical phenomenon. Therefore, after continued
analysis, a mixed solution has been chosen, beginning with a non-linear analysis,
keeping in mind the deformed geometry in the formulation of the balance, not by
loading grades, but rather by starting from the first critical situation of the structure
(first critical band), in which the reduction of unit rigidity is produced. This mixed
technique allows us to lessen considerably the number of calculation cycles. This,
together with the reduction already obtained upon applying the model of critical
bands leads, in the end, to considerable time saving in calculation, without any loss
of precision in the structural analysis.

The application of the model, both in flat structures, as well as those of
simple or double curvature, allows a complete description of the maximum
deflection-critical load curves. Three example of these curves follow.

§IEEZY

COLD FOMMD STERL STRUCTURML TUBNG.

38 EsEEILBBTEEEEIRE

TUBES MAGE FROM HO1 AOLLED PROOUCTS

CRICAL LOAD N Kg./m2.

HEEEEEEEEEEEEEEE]

DEFLECTION NODE 198 N mm.

Fig.4.- FLAT TETRAEDRIC SPACE TRUSS Fig.5.- MAXIMUM DEFLECTION-CRITICAL LOAD
$=1039 m*. Q=150 Kg./m?. P=12.59 Kg./m’. FLAT TETRAEDRIC SPACE TRUSS
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Fig6- CYLINDRICAL SPACE TRUSS OF Fig.7- MAXIMUM DEFLECTION-CRITICAL LOAD
SEMIOCTAHEDRONS CYLINDRICAL SPACE TRUSS
$=1000 m?. Q=150 Kg./m?. P=13.51 Kg./m".
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Fig.8.- SPHERICAL SPACE TRUSS WITH STRAIGHT Fig.9.- MAXIMUM DEFLECTION-CRITICALLOAD
PRISMATIC MODULES SPHERICAL SPACE TRUSS

$=900 m’. Q=100 Kg./m’. P=10.51 Kg./m".

The formulation of non-linear analysis described allow us, moreover, to
evaluate the extraordinary influence which the dimensioning criteria has, both on the
deformation-load curves, as well as on the bearing capacity of the structure upon
reaching the last critical stage and since the use of uniform dimensioning, besides
leading us to significantly lower performance, does not provide a single advantage
from the structural point of view. Likewise, it cannot be said to provide a safety
reserve in case of an increase in the load initially predicted in design.
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To support this argument, the results corresponding to two trusses analyzed
are included. En Fig.10 the curves corresponding to a flat truss with straight
prismatic modules of the following characteristics:

*Truss 30%30m’. hold up by 8 supp: Modules 2.5%2.5m. Thick 2m. Load =150Kg./m’.
*Curve 1.- Strict dimensioning Weight = 10.55 Kg/m®.
*Curve 2.- Upper chord 65.3 Lower chord 65.2 Diagonals 50.2 Weight = 10.71 Kg/m?.
*Curve 3.- Upper chord 100.3 Lower chord 125.5 Diagonals 100.4 Weight = 37.72 Kg/m’.
*Curve 4.- Upper chord 80.3 Lower chord 100.3 Diagonals 100.3 Weight = 25.41 Kg/m?.

Fig.11 represents the curves in the case of a flat tetraedrical truss:

*Truss 30*30m’. hold up by 8 supp Modules 2.5*2.5m. Thick 2m. Load=150Kg./m?.

*Curve 1.- Strict dimensioning Weight = 12.23 Kg/m?.

*Curve 2.- Upper chord 125.5 Lower chord 125.6 Diagonals 200.5 Weight = 77.81 Kg/m?.

*Curve 3.- Idem curve 2 with the first critical memeber 200.5 Weight = 77.85 Kg/m?.

*Curve 4.- Upper chord 125.4 Lower chord 100.6 Diagonals 175.5 Weight = 64.55 Kg/m?.
First critical member 200.5

*Curve 5.- Idem curve 4 with the second and the third critical members 200.8 Weight = 64.65 Kg/m?.
Diagonals in supports zones 125.5 Weight = 22.93 Kg/m?.
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Fig.10.-  MAXIMUM DEFLECTION-CRITICAL LOAD Fig.11.- MAXIMUM DEFLECTION-CRITICAL LOAD

INFLUENCE OF DIMENSIONING OF BARS INFLUENCE OF THE DIMENSIONING OF BARS
FLAT TRUSS OF PRISMATIC MODULES FLAT TETRAEDRIC TRUSS

Finally, Fig. 12 shows the comparison between the curve corresponding to a strict
dimensioning (1) and that obtained when starting with said dimensioning and
subsequently adding on the section of the successive bars which enter critical
situation (2). In spite of having considered only the first six critical bands, a
noticeable improvement in performance is accomplished, which creates interesting
future expectations related do the use of non-linear analysis as a procedure in the
optimization of the dimensioning of the structure, in order to achieve minimum
weight. Likewise, the curve (3) has been graphed when the section of the first 4
critical bars has been reduced. This causes a remarkably lower performance, which
supports the validity of the proposed model in the study of structural performance
with regards to dimensioning of the bars in a truss.
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3.- CONCLUSIONS

The non-linear model of analysis described
here has been shown to be an extremely
useful instrument for discovering the
entire background of the behaviour of a
space structure with bars up to the
moment it reaches its critical state of
fatigue, allowing us to continue the
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i ¢ analysis beyond this, to later stages. In
£ addition, the technique described has
§ demonstrated its possibilities for the study
i of the effects that the dimensioning of bars
oo L PRIRREEIRRTED pag on the loading capacity of the
structures and constitutes the basis for the
Fig.12- OPTIMIZATION OF DIMENSIONING definition of an algorithm of optimization
FLAT TRUSS OF FRISMATIC MODULES of the dimensioning of this type of
structure.
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APPENDIX. NOTATION

A «eee e maximum deflection of a bar with an initial curvature.

) elasticity modulus of a material.

F,=L/a, . . . imperfection factor.

K 555 9535 nondimensional coefficient.

| D length of a bar.

N....... coefficient of reduction to buckling.

(o JRP angle which forms the tangent of the elastic on the end joints with the
rectilinear axis of the bar.

B ..., angle defining the position of the neutral axis of a section.

€x < 5w www @ unitarian shortening produced by the axial.

€M ¢ 00 v s s unitarian shortening produced by bending through buckling.

Ve & mw sme geometrical slenderness.

) reduced stress = o/o;.

Op o v v v e critical stress of proportionality.

Tz » 50 s Euler’s critical stress.





