
NUMERICAL METHODS IN ENGINEERING AND APPLIED SCIENCES 
H. Alder, J.C. Heinrich, S. Lavanchy, E. Oñate and B. Suárez (Eds.) 

CIMNE, Barcelona 1992 

DIMENSIONING INFLUEN~E ON THE FINAL CRITICAL 
STAGE OF DOUBLE-LAYER SPACE TRUSSES 

J. Estévez and J. Pérez 
Department 01 Technology 01 Construction, 
E.T.S. 01 Architecture 01 La Coruña, 
ESPAÑA 

SUMMARY 

The present paper suggests the application of a non-linear model of analysis 
to study the final critical stage of double-Iayer space trusses. A description of the 
analysis techniques is proposed to take into account the resistant and geometric non­
linearity. The model developed has been applied to the study of the repercussion that 
the dimensioning of the members has on the stress-strain curves of the structure, as 
well as in the evaluation of itsbearing capability when the final limit stage is 
reached. In order to exemplify this, various solved cases are enclosed, corresponding 
to different typologies of trusses and dimensions for which different dimensioning 
criteria have been used. Furthermore, a new method is proposed for the 
dimensioning of space structures, starting from the described technique of non-linear 
analysis. 

1. INTRODUCTION 

It's evident that the application of computer technology in the calculation (Uld 
dimensioning of space structures of bars has originated a substantial variation in the 
number and quantity of bars that shape a given structure, thus making less 
predicta9le its behaviour when reaching the critical stage of stress. Not only is it less 
predictable, but also more denotative, when there is a clear tendency to a 
standardization in types of bars, usually by zones, a design criteria associated with 
simplified methods of calculation for the assimilation of the structure which advances 
in computer technology have made obsolete. The latest significant achievements 
confirm this tendency, especially from the time that systems CAD-CAM have begun 
to flourish which allow, with guaranteed success, such a number of types of bars 
within a structure. 

In this situation, tending to optimized structures with strict dimensioning it is 
worthwhile to consider their behaviour upon nearing the final limit stage and what 
effect the criteria of dimensioning of bars may have. 

Clearly, the formulation of analysis for situations at critical stage necessitates 
abandoning the linear model as a valid instrument for structural analysis of space 
trusses in situations of fatigue, and requires adopting a non-linear model of analysis. 
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2. NON-LINEAR MODEL OF ANALYSIS 

The non-linear model of analysis must allow us to consider simultaneously: 

* Resistant non-linearity, which include geometrical, as well as mechanical 
non-linear behaviour of the bars that make up the spacestructure. 

* Geometrical non-linearity of tbe structure, resulting from the fact that, 
as we near the critical stages, the displacement of the knots, even in doub1e 
layer trusses, is not insignificant and, therefore, it is necessary to formulate 
the balance over the deformed geometry of the structure. 

2.1 UNlAXIAL CONSTlTUTIVES LA WS 

The first step in dealing with the problem of non-linear analysis is to obtain 
the constitutive equations which control the behaviour of the bars giving shape to 
structure. The study has been proposed in the case of thin-walled circular hollow 
sections which, as such, represent the most idoneous typology for these construction 
and practically dominate the choice of structures built. 

The study of buclding in bars with a certain degree of imperfections Fi , 

assuming its representation in an initial curvature, allow us to obtain tbe stability 
functions for the elastic buckling (1), as well as anelastic buckling by applying in 
this case either the tangential (2) or the reduced modulus theory (3). 
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where 13 define the position of the neutral axis and is determined by the intersection 
of the curves given by the equations (5) and (6). 
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(5) 

(6) 

In order to analyze the collapse of the space structure, it is of utmost 
importance to reproduce tbe bebaviour oC tbe bars in post-buckling so as to 
evaluate its contribution to the load-bearing capacity of the structure. 

The integration of the differential equation for the elastic, obtained form the 
exact value of the curvature, allows us to obtain the expression for the shortening 
through bending, resulting from buckling , subject to angle ()[ which forms the 
tangent to the deformation in the end joints with the rectilinear axis of the bar (7). 

1 -

2: 
2 

f J 1 - p2 . sin2Q . dO 
o (7) 

The value of angle ()[ is obtained by formulation the balance for the 
transversal section corresponding to the midpoint of the bar, assuming that the 
section is tota11y plasticized, which allow us to determinate the value of the maximum 
deflection which, due to the balance of the bar, is equal to the value of the maximum 
deflection of the eiastic (8). 

p 2 {2 (- 1t) = .. cos 0.-
A . 1t . a 2 (8) 

In this way we may determine the shortening due to the bending produced by 
buckling which, when added to the axial shortening, by applying the tangential 
modulus (9) or the reduced modulus (10), leads us to the total unit shortening. 
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THe- aboye equations permit us to 'represent, depending on the slendemess of 
the bar, the type of steel use, and the degree of imperfections considered, the 
constitutive law of the members of space trusses. The results obtained show a 
substantial concordance with the available experimental ones and with those obtained 
through other techniques of analysis. 

Fig .1.- CONSTITUTIVE CURVES COMPRESSED BARS 
INFLUENCE OF lMPERFECfION PARAMETER 
Slendemeasea lOO and ISO. Steel A42 
Imperfectioo UlOOO,U500,UlOO,U50 

~ 

~: 
!~~~rlhnn~,. ............ .-

Fig.2.- INFLUENCE OF THE STEEL USED AND 
lMPERFECfION PARAMETER 
Slendemeu lOO Steels A42 A52 
Imperfectioos UlOOO,U500,UlOO,U50 

The usual non-linear analysis techniques, from the standpoint of idea1izing the 
behaviour of the bars, have focused mainly on the elimination of the bars which 
reach a critica1 stage, either of tension (elastic limit stress) or compression (critical 
buckling stress) and in the balance, in a new cyc1e of calculation, of forces that result 
in eliminating the critically compressed bars. While this analysis technique overIy 
simplifies the problem, since it views buckling as a sud den and rough phenomenon 
with a rapid and total loss of the load-bearing capacity of the affected bars, which 
neither corresponds to the experimental results nor, as we have seen, to the 
constitutive laws developed and, evidently, does not consider the collaboration of 
such bars in the behaviour of the truss. For this reason, idea1izing the bars at critical 
stage has been resorted to as an analysis technique, modifying the modulus of 
elasticity in accordance with the different sections in which the constitutive law of 
each bar hás been idea1ized. This technique, although somewhat recent, is by no 
means new, and has already shown its possibilities in earlier works by other authors, 
albeit in very simple structures. 

The idea1ization of the constitutive law has been resolved with a total of seven 
sections which attempt to reproduce as precise as possible the bahavioural , 
characteristics (Fig.3): 
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Fig .3.-IDPALIZATION OF THE UNIAXIALCONSTITtrrIVELAWS 

* linear section (1). 

* plastic plateaus in areas of tension 
and compression (7 y 2). 

* hardening section through 
deformation in tension (8). 

* sections of unloading in post­
buclding (3 y 4). 

* remaining or residual load in 
post-buclding (5). 

Likewise, within each section, the corresponding segments of elastic recovery 
have been predicted (9 a 12,14 Y 15). These segments are essential when what is 
attempted is to carry the study of structural behaviour to stages beyond the fmal 
phase of fatigue, since the necessary unloading of the structure causes frequent force 
inversions and, therefore, elastic recoveries of bars that were already in non-elastic 
areas of behaviour within their corresponding constitutive laws. 

Non-linear analysis war applied to the study of diverse space structures with 
differing dimensioning criteria. The process was rapid in trusses in which only a few 
types of bars were used since, generally, the critical area of the truss was situated in 
very specific, predictable areas and affected very few bars. In those cases in which 
the dimensioning of the bars was strict, the pattern of behaviour was considerably 
different so that the number ofbars affected was much greater, thus producing a very 
considerable lengthening of calculation cycles and orten entered infinite loops where 
the critical stage of certain bars and the consequent modification of the rigidity matrix 
of the structure produced the elastic recovery of bars proceeding from former critical 
stages and the new assembling of the matrix led us back to the initial problem. 

After successive verifications in several structures what we agreed to call 
"CRITICAL BANDS" was finally decided upon. TI1ese will include all-those bars 
which, in a calculation iteration, reach critical stage with variations in the total load 
value of · the structure equal to less than a prefixed value (in the accompanying 
examples lKg.lm2• was considered). This allows, instead of only one bar in each 
iteration reaching a critical stage (the first reaches a significant point within its 
idealized constitutive law), all the bars which form the "critical band" corresponding 
to that iteration reach said critical stage simultaneously. This technique brought with 
it the advantages of elimination infinite loops and reducing the number of calculation 
iterations. 
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2.2 CONSIDERATION OF THE DEFORMED GEOl\1ETRY IN 
FORMULATING THE BALANCE 

Frequent1y, in double layer structures, a strict formulation is not chosen of 
the non-linear geometry based on an iterative incremental algorithm through small 
grades of load within which we would have to formulate the balance over the 
deformed geometry of the structure arid balance the forces that would be unbalances 
in that iteration. This simplification is reasonable when one considers that, given the 
great ngidity of the double-Iayer truss, the complexity of the analysis is not justified 
by the repercussion that this phenomenon has on the results. 

Nonetheless, when we analyze the structure up to a critical situation, the 
arrival at critical stage of successive critical bands causes a not insignificant lessening 
of rigidity of the unit and a greater repercussion each time of the importance of 
considering this non-linear geometrical phenomenon. Therefore, after continued 
ana1ysis, a mixed soiution has been chosen, beginning with a non-linear analysis, 
keeping in mind the deformed geometry in theformulation of the balance, not by 
loading grades, but rather by starting from the first critical situation of the structure 
(first critical band), in which the reduction of unit rigidity is produced. This mixed 
technique allows us to lessen considerably the number of calculation cyc1es. This, 
together with the reduction already obtained upon applying the model of critical 
bands leads, in the end, to considerable time saving in calculation, without any loss 
of precision in the structural analysis. 

The application of the model, both in flat structures, as well as those of 
simple or double curvature, allows a complete description of the maximum 
deflection-criticalload curves. Three example of these curves follow. 

Fig.4 .- FLAT TETRAEDRlCSPACE TRUSS 
S=1039 ni . Q=150Kg.lm2

• P=12.59 Kg.lm2
• 

Fig.5 .- MAXIMUM DEFLECTION-CRITlCALLOAD 
FLA T TETRAEDRIC SPACE TRUSS 
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Fig .6 .- CYLINDRICAL SPACE TRUSS OF 
SEMIOCTAHEDRONS 
S=lOOOm' . Q=lSOKg.lm'. P=13 .S1 Kg.lm'. 

Fig.8.- SPHERICAL SPACE TRUSS WITH STRAIGHT 
PRISMA TIC MODULES 
S =900 m' . Q=lOO Kg.lm' . P=lO.Sl Kg.lm' . 

Fig .7 .- MAXIMUM DEFLECTlON-CRITICAL WAD 
CYLINDRICAL SPACE TRUSS 

Fig.9.- MAXIMUM DEFLECTION-CRITICALLOAD 
SPHERICAL SPACE TRUSS 

The formulation of non-linear analysis described allow us, moreover, to 
evaluate the extraordinary influence which the dimensioning criteria has, both on the 
deformation-Ioad curves, as well as on the bearing capacity of the structure upon 
reaching the last critical stage and since the use of uniform dimensioning, besides 
leading us to significantly lower performance, does not provide a single advantage 
from the structural point of view. Likewise, it cannot be said to provide a safety 
reserve in case of an increase in the load initially predicted in designo 
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To support this argument, the results corresponding to two trusses analyzed 
are included. En Fig.lO the curves corresponding to a flat truss witb straigbt 
prismatic modules of the following characteristics: 

.-¡'russ 30'"3010'. hold up by 11 IUpports. Modules 1.S·1.Sm. Th.idmeao 1m. Load = ISOKe./m'. 

·Curve 1.- Strict dimen,ioning 
*Curve 2.- Upper chord65 .3 
·Curve 3.- Upper chord 100.3 
·Curve 4.- Upper chord 80.3 

Lower chord 6S .2 
Lower chord 12S.S 
Lower cbord 100.3 

Dia¡ooab SO.2 
Dia¡ooaJa 10Q.4 
Dia¡ooaJa 100.3 

Weight = 10.SS !(g/m'. 
Weight = 10.71 !(g/m'. 
Weight = 37.72 !(g/m'. 
Weight = 2S .41 !(g/m'. 

Fig.ll represents the curves in the case of a flat tetraedrical truss: 

.-¡'russ 30*3Qm'. bold up by lI.upports. Modules 1.S·1.Sm. Th.ickneaolm. Load=lSOKg.lm'. 

·Curve \.- Strict dimensioning 
·Curv·e 2.- Upper chord 12S.5 Lower chord 125.6 
·Curve 3.- ldem curve 2 with the frrst criticaJ memeber 200.S 
·Curve 4 .- Upper chord 12S.4 Lower chord 100.6 

Fint criticaJ member 200.5 

Dia¡ooa\s 200.5 

Diagonal, 17S .S 

Weight = 12.23 !(g/m'. 
Weight = 77.81 !(g/m'. 
Weight = 77.85 !(g/m'. 
Weight = 64.55 Kg/m'. 

·Curve S. - Idem curve 4 with the secOlld and the lhird criticaJ members 200.8 
Diagonals in supports zoocs 125 .S 

Weight == 64.65 !(g/m'. 
Weight = 22.93 !(g/m'. 

Fig . IO.- MAXIMUM DEFLECfION-CRITICALLOAD 
INFLUENCE OF DIMENSIONlNG OF BARS 
FLA T TRUSS OF PRISMA TIC MODULES 

Fig.I\.- MAXIMUM DEFLECfION-CRITICALLOAD 
INFLUENCE OF THE DIMENSIONlNG OF BARS 
FLA T TETRAEDRlC TRUSS 

Finally, Fig. 12 shows the comparison between the curve corresponding to a strict 
dimensioning (l) and that obtained when starting with said dimensioning and 
subsequentIy adding on the section . of the successive bars which enter critical 
situation (2). In spite of having considered only the first six critical bands, a 
noticeable improvement in performance is accomplished, which creates interesting 
future expectations related do the use of non-linear analysis as a procedure in the 
optimization of the dimensioning of the structure, in order to achieve minimum 
weight. Likewise, the cu~e (3) has been graphed when the section of the first 4 
critical bars has been reduced. This causes a remarkably lower performance, which 
supports the validity of the proposed model in the study of structural performance 
with regards to dimensioning of the bars in a truss. 
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Fig.12.- OPTIMIZATION OF DIMENSIONING 
FLA T TRUSS OF PRISMA TI(: MODULES 

structure. 
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APPENDIX. NOTATIQN 

élo . . . . . . . maximum deflection of a bar with an initial curvature. 
E . . . . . . . elasticity modulus of a material. 
F¡=L/élo ... imperfection factor. 
K . . . . . . . nondimensional coefficient. 
L . . . . . . . length of a bar. 
N ....... coefficient of reduction to buclding. 
Ci ••••••• angle which forms the tangent of the elastic on the end joints with the 

rectilinear axis of the bar. 
B ....... angle defining the position of the neutral axis of a section. 
fA ••••.•• unitarian shortening produced by the axial. 
EM • • • • ••• unitarian shortening produced by bending through buclding. 
\ ........ geometrical slenderness. 
a ....... reduced stress = al af. 
ap • • • • • • • critical stress of proportionality. 
aeuler ••••• Euler's critical stress. 




