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Abstract
The dynamic features of a dilute suspension of nanoparticles (nanofluid) are fully modified depending on the dominant 
particles slip mechanism acting in the suspension. Self-diffusion effects in highly sheared diluted suspensions (entrance 
conditions and microapplications) can lead to a particles distribution fully different from the bulk one. The reported inves-
tigation proposes a model to determine the self-diffusion of three-planes symmetric nonelongated particles inmersed in a 
sheared Stokes flow. The model is based on the real displacements between any pair of particles and an statistical approach 
to determine contact kinematic irreversibilities. According to the proposed model, the source of hydrodynamic irreversibility 
is closely related to the particles shape. This is clearly demonstrated through the application of the model to cubic particles. 
The main conclusion is that the particles shape plays a significant role in the dynamic behavior of the suspension and, as a 
result, in the self-diffusion coefficient. The reported results arising from the cubic particles trajectories in a Stokes flow are 
reasonably close to the ones reported by Brady and Morris (J Fluid Mech, 348:103–139, 1997) for suspensions under high 
Pe number, and Zarraga and Leighton (Phys Fluids 13(3):565-577, 2001).

Keywords Particle migration · Stokesian dynamics · Micro-/nanoscale phenomena · Particle/fluid flows

1 Introduction

Nanofluids production and thermal performance have been 
intensely investigated and reported during the last twenty 
years [8, 22]. Most of the investigations have stressed the 
convective heat transfer enhancement associated with nano-
fluids though, as expected, accompanied by a correspond-
ing pressure drop increment. Their thermal performance has 
been related to a nanoparticles concentration field affected 

by different diffusion mechanisms [5]. It is interesting to 
note that though a number of investigations have obtained 
significant convective heat transfer increments, as suggested 
by [24], others have obtained slight enhancements and even 
decrements in the heat transfer rate under internal flow con-
ditions of nanofluids [11]. In any case, it can be concluded 
that the nanoparticles concentration field is affected when 
the nanofluid is submitted to heat transfer from a heated wall, 
and, as a conclusion, thermal performance is closely related 
to this field [10]. The concentration field is significantly 
affected in the region close to the heated (or cooled) wall 
due to thermophoretic diffusion effects. Thus, it is certain 
that the mechanisms of nanoparticles transport with respect 
to the base fluid play an important role in determining the 
behavior of the nanofluid under heat transfer conditions.

Hwang et al. [15] clearly identified a convective enhance-
ment higher than 8.0% for a water alumina nanofluid in the 
fully developed region of a 1.812-mm inner-diameter pipe. 
The small amount of particles in suspension, up to 0.3% in 
volume, does not seem to explain the reported enhancement 
in terms of the nanofluid modified transport properties due 
to the particles concentration field. They also stated that the 
detected convective enhancement depends on the distance 

Technical Editor: Monica Carvalho.

 * P. Fariñas Alvariño 
 pablo.farinas@udc.es

 J. M. Sáiz Jabardo 
 jose.saiz.jabardo@udc.es

 L. Cabezas-Gómez 
 lubencg@sc.usp.br

1 Escola Politécnica Superior, University of A Coruña, 
Mendizábal s/n, 15403 Ferrol, A Coruña, Spain

2 Heat Transfer Research Group, Department of Mechanical 
Engineering, São Carlos School of Engineering, University 
of São Paulo, São Carlos, SP, Brazil

http://orcid.org/0000-0002-9598-5249
http://orcid.org/0000-0002-4606-0493
http://orcid.org/0000-0002-9550-9453
http://crossmark.crossref.org/dialog/?doi=10.1007/s40430-021-03101-6&domain=pdf


 Journal of the Brazilian Society of Mechanical Sciences and Engineering (2021) 43:392

1 3

392 Page 2 of 18

from the inlet of the particular cross section along the fully 
developed region. Several mechanisms were proposed in 
[15] in order to explain the detected enhancement: (i) ther-
mophoresis, (ii) self-diffusion and (iii) viscosity gradient.

In the same way, though under a numerical perspective, 
[19] developed a model inspired in the Buongiorno’s one [5]. 
They reported significant enhancement under fully devel-
oped flow conditions for highly loaded nanofluids, up to 
5.0% in volume, whereas for loads below 1.0% , as in [15], the 
enhancement became negligible. As a result, the enhance-
ment observed in the [15] results must be explained in terms 
of different particles interaction mechanism, not considered 
in [19], which becomes macroscopically apparent.

Metzger et al. [18] developed an investigation to devise 
the apparent thermal conductivity of sheared suspensions. 
They reported an apparent increase in the thermal diffusion 
coefficient (up to three times) depending on the particles 
concentration and shear rate. Furthermore, they found a 
correlation between the apparent thermal diffusion and the 
measured self-diffusion coefficients. It must be stressed that 
self-diffusion cannot take place in the absence of kinematic 
irreversibilities [13], which are generated through two mech-
anisms: particles collisions [7] and hydrodynamic interac-
tions between particles [23]. The investigation reported by 
[18] was developed for pure sheared suspensions, Couette 
laminar flow, with spherical PMMA (polymethylmeth-
acrylate) particles of millimetric size. If the spheres sur-
face is free of asperities in the dilute limit, [1] (which is 
not the case for nanofluids) cannot generate self-diffusion 
due to particles collisions. [18] experimentally proved the 
previous statement, even for their highly loaded suspensions 
tests, since their developed numerical results considering 
the particles hydrodynamics alone matched the experimental 
ones. Therefore, in [18], the effects of particles collisions are 
neglected or, at least, the collisional mechanism is not the 
main source of kinematic irreversibilities.

Self-diffusion, also designated as “shear diffusion,” has 
been neglected for dilute suspensions of particles of sizes of 
the order of nanometers, though as will be demonstrated in 
this paper could play an important role under certain condi-
tions. Its importance with respect to Brownian diffusion is 
characterized by the so-called Péclet number, Pe, defined for 
spherical particles by the following expression:

where � is the shear rate, a represents the radius of the 
equivalent sphere, � stands for the fluid dynamic viscosity, 
k is the Boltzmann constant and T is the fluid temperature 
[K], respectively. According to Eq. 1, the Peclet number 
is the ratio between shear and Brownian diffusion. Thus, 
nanoparticles diffusion caused by shear effects should be 

(1)Pe =
6��a3�

kT

disregarded as significant mechanism in nanofluids due to 
the low values of the Péclet number typical of these suspen-
sions, except either in microsized applications [12], or in the 
case of nonspherical nanoparticles [21]. In the latter case, 
self-diffusion might be enhanced orders of magnitude with 
respect to the case of spherical particles, where there is a 
dominance of hydrodynamic interactions, due to the incre-
ment in the hydrodynamic irreversibility related to the inter-
particles forces (nonspherical particles) [2]. On the other 
hand, since characteristic dimensions of microapplications 
could attain values lower than 100 μ m (see, for example, [6] 
and [12]), shear diffusion would no longer be a negligible 
diffusion mechanism in those applications. In fact, for this 
range of channel sizes, the Péclet number could attain values 
significantly higher than the unity, Pe ≫ 1 , due to the shear 
rate which increases as the size of the channel diminishes.

A literature survey of self-diffusion in suspensions has 
revealed two different approaches to its investigation: (i) the 
one that focuses on the particles trajectories and (ii) from a 
rheologic point of view, which focuses on the particles 
“induced stresses” related to the particles. The approach 
related to the particles trajectories is based on the well-
known Stokes flow, which is hydrodynamically reversible. 
However, shear or self-diffusion in suspensions is the result 
of particles induced irreversibility in the flow, a mechanism 
that was initially devised by [9] in their experimental inves-
tigation. Their study consisted in measuring the self-diffu-
sion coefficient in neutrally buoyant spherical and disk-
shaped particles suspensions. They suggested that 
self-diffusion is the result of the action of two physical 
mechanisms, namely: (i) hydrodynamic interactions of a 
couple of approaching particles which lead to “multiple 
passing interactions overlap” and a net lateral streamlines 
displacement; (ii) particles interaction forces resulting from 
either particles collisions or other causes. Any of the two 
mechanisms would cause the so-called hydrodynamic irre-
versibility. In addition, [9] claimed that, for volumetric con-
centrations lower than 20% , the self-diffusion coefficient Ds 
increases linearly with the volumetric concentration ( � ) in 
such a way that D

s

a2�
∝ � . It is interesting to note that further 

investigation of the physical mechanism related to self-dif-
fusion in suspensions by different researchers has confirmed 
the physical model proposed by [9].

Later on, [17], based on experiments performed in a typi-
cal concentric cylinders rheometer, reported self-diffusion 
results in both the shear plane direction and in the plane 
normal to it. [17] performed a thorough analysis of the [9] 
investigation, concluding that, contrary to what those authors 
claimed, possibly their data were affected by wall effects. As 
a result, according to [9, 17] underestimated the shear diffu-
sion coefficient, which instead they claim that should be 
proportional to the square of the volumetric concentration, 
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its dimensionless expression being the following D
s

a2�
∝ �2 . 

They also claim that their expression correlates very well [9] 
data for concentrations below 20%.

[2] developed an experimental investigation on self-
diffusion of dilute suspensions of PPMA (polymethylmeth-
acrylate) particles of average diameter of the order of 771 
� m. Their experimental setup, consisting of a basic Couette 
viscometer, was similar to the one of the [17] investigation. 
The particles of their investigation were eccentric with an 
average aspect ratio of 1.19. Surface dimensionless rough-
ness (referred to the average particles radius) of the parti-
cles was of the order of 1 × 10−3 . The following are some 
of the main conclusions of this study: (i) the dimensionless 
self-diffusion coefficient depends linearly on the volumet-
ric concentration; (ii) the observed particles diffusion was 
attributed to the breaking of the symmetry of two particles 
interaction; though the cause was not certain, the authors 
limited themselves to speculate about the possible mecha-
nisms; (iii) the surface roughness of the particles could not 
account for its effect; (iv) the dimensionless self-diffusion 
coefficient obtained in the investigation was 20 times the 
one obtained by [7] for equally sized spheres and the same 
surface roughness; [2] claim that in order to obtain the same 
self-diffusion coefficient of their investigation, the average 
dimensionless roughness should be of the order of 0.07, that 
is, 70 times greater than the actual one, what led the authors 
to state that there must exist a kind of self-diffusion promot-
ing mechanism related to the particles shape.

[23] developed a model aimed at determining the hydro-
dynamic perturbation caused by two particles over the flow 
streamlines and a third particle trajectory in the dilute limit 
of suspensions. By determining the streamlines and particles 
deflections in the velocity gradient and vorticity directions of 
a shear flow, they were able to conclude that the dimension-
less self-diffusion coefficient is proportional to the square 
of the volumetric concentration, thus confirming the trend 
previously observed by [17]. However, their proportionality 
coefficient was somewhat lower than that proposed by [17]. 
Thus, it could be stated that [23] provided a theoretical sup-
port to the fact that self-diffusion is closely related to the 
hydrodynamic irreversibility caused by the hydrodynamic 
interaction of two particles over a third one.

An alternative approach to the hydrodynamic irreversibil-
ity was taken by [7], who proposed a model based on the 
collisions of spherical particles. They assumed that the sur-
face of particles is rough, the roughness being characterized 
by the “asperity,” � , a dimensionless parameter defined in 
terms of the particle radius, a. They claimed that the closest 
dimensionless distance between the centers that two parti-
cles could attain is equal to (2+� ). This concept is closely 
related to the so-called excluded volume which is the volume 
surrounding a particle that is not penetrable by other 

particles, which in the case of the da Cunha and Hinch’s 
model is the spherical ring with inner and external dimen-
sionless radii, respectively, equal to 1 and (1+�

2
 ). By deter-

mining the trajectories of colliding particles in a shear flow, 
[7] were able to obtain the self-diffusion coefficient in the 
velocity gradient and vorticity directions as a function of the 
particles asperity. According to their model results, the 
dimensionless self-diffusion coefficient in both directions 
increases with the asperity and is proportional to the volu-
metric concentration, that is, D

s

a2�
∝ � , a trend similar to the 

one proposed by [9].
The second approach to deal with self-diffusion in dilute 

suspensions is the one related to the “induced stresses.” 
This procedure is based on the determination of the induced 
stresses from the rheological performance of the suspension. 
It is interesting to note that hydrodynamic irreversibility is 
closely related to the non-Newtonian behavior of the sus-
pension. [4] proposed general expressions for the induced 
stresses based on the suspension resistance tensors. Accord-
ing to [4], three physical mechanisms are responsible for 
the induced stresses: (i) hydrodynamic interactions between 
particles; (ii) Brownian diffusion; and (iii) forces over the 
particles. The procedure proposed by [4] provides the tools 
needed for the induced tensions determination from the par-
ticular mechanism that originates them. In that respect, the 
procedure allows to investigate the hydrodynamic irreversi-
bility resulting from the [23] and the [7] mechanisms, but, in 
this case, from the induced stresses point of view. Later on, 
[3], following a similar procedure, obtained self-diffusion 
coefficients for suspensions of hard spheres under different 
flow conditions. They were able to differentiate among the 
different mechanisms the one responsible for the observed 
hydrodynamic irreversibility. For a shear flow, they proposed 
the following expression for the self-diffusion coefficient in 
the velocity gradient direction:

where c is half the minimum distance between particles 
centers, which, for the case where particles forces are domi-
nant, does not coincide with the particle radius, a. One could 
argue that in a sense, a and c are closely related to the [7] 
asperity concept. In addition, [3] suggest that their results 
are only approximate in contrast to those from [7], which 
are based on “the actual pair trajectory and, therefore, in 
principle, have determined the correct diffusivity.”

Zarraga et al. [26] determined the self-diffusivity through 
the full set of approaches for non-Brownian suspensions of 
spheres. They used the concepts of the excluded volume 
radius, c, the hydraulic particles radius, a, and its relation to 
the da Cunha et al. asperity [7]. Zarraga et al. [26] compared 
their self-diffusivity results with [7]’s ones and obtained 

(2)Ds =
16

45�
�c2�c
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very good agreement for low asperities. Furthermore, they 
extended the da Cunha’s model and reported results up 
to a value of c corresponding to an asperity equal to 10. 
They, even, compared this high asperity results with their 
proposed analytical solution "in the absence of hydrody-
namics.” Under this condition, they found a full agreement 
between the values reported by the da Cunha’s model and 
their analytical one. However, Zarraga et al. [26] state that 
their results are different from the ones reported in [3], Eq. 2, 
by a factor of 4

3
 and that they cannot “account for this dis-

crepancy.” It seems, therefore, that the particles trajectories 
method becomes a valid approach in order to calculate the 
self-diffusion of non-Brownian suspensions of spheres.

Several theoretical investigations have been reported on 
the self-diffusivity of hard spherical particles, but very few, 
[20] and [21], aimed at nonspherical particles, which are 
dominant in the field of nanofluids. There is, therefore, a 
lack of knowledge in the effect of particles shape (nano-
fluids particles are not spheres) both on self-diffusion and 
apparent thermal conductivity for sheared suspensions. Up 
to the authors knowledge, there is no previous work deter-
mining the full effect (hydraulic and thermal) on kinematic 
irreversibilities due to particles collisions for suspensions of 
nonspherical particles. In addition, the new insight reported 
herein might provide useful information to take advantage 
in some other disciplines, such as [14].

The present paper reports the results of an investigation 
whose main contribution is to demonstrate that the self-
diffusion coefficient in dilute suspensions depends strongly 
on the shape of the particles and, for this type of particles, 
is independent on the Péclet number. The development of 
a model applicable to hard particles with three symmetry 
planes will be presented along with its application in the 
determination of the self-diffusion coefficient for equally 
sized cubic particles. For this purpose, the authors present 
a methodology to calculate the self-diffusion coefficient for 
cubic particles suspensions in the dilute limit and prove that, 
under this condition, the collision irreversibilities become 
the main source mechanism responsible for self-diffusion 
in sheared flows. The proposed methodology can be easily 
adapted, in future investigations, to calculate the apparent 
thermal conductivity following, for example, the proposals 
reported in [16]. It is also shown that, for the case of cubic 
particles, the self-diffusion is clearly enhanced with respect 
to the typically expected ones reported, for example, in [2, 
7, 27].

2  Self‑diffusion model

The present paper aims at developing a procedure to deter-
mine the self-diffusion coefficient of suspensions of non-
spherical nanoparticles, though not elongated, characterized 

by three symmetry planes. One can think of polyhedral parti-
cles with an “equivalent spherical particle” of radius a. The 
dynamic performance of the proposed model is developed 
in this section based on the assumption that the trajecto-
ries of the polyhedral-shaped particles are identical as the 
ones corresponding to the equivalent spheres. The relative 
motion of a pair of particles will be assumed as similar to 
the one proposed by [1]. Though the relative displacement 
of the pair of particles has been previously studied by [7], 
the relative rotation rate of the particles has not been treated 
yet. Thus, the present model includes the determination of 
both the relative linear and angular velocities for any relative 
position of the pair of particles.

The determined relative spatial positions and rotation rate 
will be used in order to estimate the collisions rate when the 
particles are in the neighborhood of each other. The “neigh-
borhood” is defined as the region of the space where the 
particles can physically collide with each other. For a regular 
polyhedron particle, it is defined as the minimum possible 
distance between centers when both particles are oriented 
in such a manner that their vertices are aligned along the 
straight line that connects both centers. This concept is 
somewhat related to the “excluded volume” of [3] and the 
“asperity” of [7]. For the moment, the term “neighborhood” 
will be assumed as being the particles interaction region. 
Under the proposed model, the self-diffusion coefficient is 
fully affected by the kinematic irreversibility sources (colli-
sions rate) inside the interaction region.

Finally, the deflection of the pair of particles trajectories 
will be used to determine the self-diffusion coefficient. In a 
reversible Stokes pure shear flow, both particles approach 
each other in the compressional quadrant and the relative 
trajectory of one particle with respect to the other (assumed 
at origin of coordinates) is fully symmetric with respect to 
the three coordinate planes. If kinematic irreversibilities take 
place in the interaction region, the trajectories are no longer 
symmetric but rather they are deflected. The pair of particles 
will be assumed as being immersed in a pure shear flow in 
the proposed model, with the relative positions of the parti-
cles varying from far upstream to far downstream of one of 
the particles with respect to the other. The model allows the 
determination of the trajectories deflection and finally the 
self-diffusivity associated with pure sheared suspensions. As 
an example, the model will be applied in the determination 
of the self-diffusion coefficient of cubic-shaped particles.

2.1  Relative motion description

The relative motion of a pair of polyhedral particles is 
assumed as in [1] for spherical particles. A schematic view 
of the particles is shown in Fig. 1. One of the particles is 
located in the origin of coordinates, whereas the other moves 
around. According to [1], the relative motion of a pair of 
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spherical particles in a Stokes flow is described by the fol-
lowing expressions corresponding, respectively, to the veloc-
ity and rotational fields

In the above relations, V is the particles velocity vector, r 
the particles relative position vector, �ijk the Levi–Civita 
tensor, Θj the rotational rate component of a pure sheared 
flow, Eij the straining rate of the sheared flow, and �  is the 
particles rotation rate. Note that, since the Stokes flow is 
a linear one, both the velocity and the rotational fields are 
linearly dependent on the strain rate, Eij . Functions A, B 
and C are known as “mobility functions.” These functions 
depend on the relative positions of both particles, the flow 
field and the shape of the particles. For a pure shear flow, 
U = (�y, 0, 0) , and hard spherical particles [1] developed 
the following expressions for the components of the rela-
tive velocity between the particles:

(3)

Vi(r) = �ijkΘjrk + rjEij

−

[
A
rirj

r2
+ B

(
�ij −

rirj

r2

)]
rkEjk

(4)�i(r) = Θi + C�ijkEkl

rjrl

r2

(5)
V1(r)

�
= y +

[
(B − A)

xy

r2
x −

1

2
By

]

(6)
V2(r)

�
=
[
(B − A)

xy

r2
y −

1

2
Bx

]

where the subscripts correspond to the components in the 
main directions, x, y and z are the inertial coordinates located 
at the center of particle 1, r is the distance between centers 
of the particles, that is, r2 = x2 + y2 + z2 . The same set of 
equations was used by [7] in their evaluation of the paths 
of the particles needed to determine the self-diffusion coef-
ficient. In addition, in the present model, the relative rota-
tional speed will be evaluated in order to determine the over-
all relative motion between the particles. For a pure shear 
flow, the components of the rotational motion, Eq. 4, can 
be written as:

The present model assumes that the mobility functions are 
the ones applicable to a pair of equivalent spheres of radius 
a, proposed originally by [1] and later on by [25] and [7], 
with the following expressions:

(7)
V3(r)

�
= z

xy

r2
(B − A)

(8)
�1

1

2
�
= −C

xz

r2

(9)
�2

1

2
�
= C

yz

r2

(10)
�3

1

2
�
= C

x2 − y2

r2
− 1

(11)A(r) =

⎧⎪⎨⎪⎩

5r−3 − 8r−5 + 25r−6 − 35r−8 + 125r−9 − 102r−10 + 12.5r−11 + 430r−12 ⇔ r ≥ 2.5

−4.3833 + 17.7176r−1 + 14.8204r−2 − 92.4471r−3 − 46.3151r−4 + 232.2304r−5 ⇔ 2.01 < r < 2.5
16.3096−7.1548r

r
⇔ 2.0 ≤ r ≤ 2.01

Fig. 1  Schematic diagram of 
two approaching particles and 
the slip projections in the refer-
ence plane
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where L = −Ln(r − 2).
The integration of the above set of equations (5 to 10) can 

be performed numerically. In a time interval �t , the relative 
displacement of the particles results from the superposition 
of a linear displacement, �r , with an angular one related to 
the relative rotational speed, �  . Both the relative displace-
ment and rotational speed are clearly illustrated in the sketch 
of Fig. 1.

The collision rate inside the interaction region will be 
determined based on the relative slip of the surfaces of the 
equivalent pair of spheres. The relative slip, �D , originates 
from the superposition of both relative motions: the angu-
lar, �  , and linear one, whose displacement is designated 
as �r . In order to determine the collision rate, it is neces-
sary to realize that not all the relative motions can lead to 
a collision. The only motions resulting in net slip between 
the surfaces of both particles constitute an effective source 
for collisions. In order to make it clear to the reader, the 
reference plane has been used in the analysis. It is a mid-
distance plane normal to the segment joining the centers of 
the particles. Note that when the second particle enters the 
interaction region, only relative motions contained on the 
reference plane will promote an eventual collision.

In order to obtain the displacement �D on the reference 
plane (Fig. 1), it is necessary to focus on the projection of 
the angular velocity, �  , on this plane. This component of 
�  is the only responsible for the mentioned displacements, 
�D . �D is contained in the reference plane too but normal 
to the projection of �  . The rotational rate in the radial 
direction does not promote net displacements in the refer-
ence plane and will not be considered in the collision rate 
determination.

The net displacement vector, �r , can be decomposed into 
two main directions: the projection over the reference plane, 
�D|[(r×�r)×r]�r , and the radial one. Obviously, the collision 
rate depends only on the projected component. As a result, 
on the reference plane there are two main directions: (i) 
(r × �r) × r which correspond to the projection of the vector 
�r and (ii) the perpendicular one ( r × �r ). The next subsec-
tion is intended to determine the relative slip components 
along these directions.

(12)B(r) =

⎧
⎪⎨⎪⎩

1

3

�
16r−5 + 10r−8 − 36r−10 − 25r−11 − 36r−12

�
⇔ r ≥ 2.5

−3.1918 + 12.3641r−1 + 11.4615r−2 − 65.2926r−3 − 36.4909r−4 + 154.8074r−5 ⇔ 2.01 < r < 2.5
2

r

0.4056L2+1.49681L−1.9108

L2+6.04250L+6.32549
⇔ 2.0 ≤ r ≤ 2.01

(13)C(r) =

{
2.5r−3 − 6.25r−6 ⇔ r ≥ 2.01

0.5940 −
1.238

L
+

1.135

L2
⇔ 2.0 ≤ r ≤ 2.01

2.2  Slip displacements on the reference plane

In what follows, the relative displacement between parti-
cles for each �t resulting from translation and rotation will 
be evaluated through their projection in the reference plane 
along the main directions shown in Fig. 1. Since the rotation 
rate vector, �  , promotes slips perpendicular to its direction, 
it is necessary to identify the components of �  along the 
main directions in the reference plane shown in Fig. 1.

The direction normal to the linear displacement projec-
tion in the reference plane, r × �r , is

where the symbol � means finite difference and êi is a ver-
sor. The modulus is needed to determine the vector in this 
direction.

The dimensionless angular velocity projection along this 
direction is:

Since both particles are identical, it can be stated that they 
rotate at the same angular speed due to the symmetry of the 
C mobility function. Thus, the relative angular velocity must 
be equal to twice the particle rotational speed. The relative 
displacement of the second sphere surface due to rotation in 
the present direction can be written as (see Fig. 1):

If the dimensionless time and rotational speed are defined 
as: �t∗ = ��t and � ∗ =

�
1

2
�
 , Eq. 18 can be easily manipulated 

to obtain the dimensionless slip along the direction 
(r × �r) × r.

(14)
r × 𝛿r = (y𝛿z − z𝛿y)ê1 + (z𝛿x − x𝛿z)ê2 + (x𝛿y − y𝛿x)ê3

(15)
|r × �r| = [

(y�z − z�y)2 + (z�x − x�z)2

+ (x�y − y�x)2
] 1

2

(16)� |
r×�r =

r × �r

|r × �r|�

(17)

� |
r×�r

1

2
�

=

−C
xz

r2
(y�z − z�y) + C

yz

r2
(z�x − x�z) +

(
C

x2−y2

r2
− 1

)
(x�y − y�x)

[
(y�z − z�y)2 + (z�x − x�z)2 + (x�y − y�x)2

] 1

2

(18)�D|
r×�r = 2� |

r×�ra�t
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where �D stands for the slip distance increment, equal to 
�� in its dimensionless form, t is time, � means the relative 
rotational angle between particles and the superscript ∗ refers 
to dimensionless slip distance and time.

Proceeding in a similar way as in the previous case, one 
can determine the projection of the slip displacement in the 
r × �r direction, which in the reference plane is given by 
the rotational rate projection along the (r × �r) × r direction.

The dimensionless angular velocity projection along this 
direction is:

The dimensionless slip promoted by the rotation rate along 
the direction r × �r:

Finally the linear displacement in the direction of the projec-
tion of the linear displacement in the reference plane, 
(r × �r) × r , promotes the last relative slip displacement 
component that can be easily determined from the following 
general expression: (r×�r)×r|(r×�r)×r|�r whose expression in terms of 
the relative separation coordinates is:

(19)�D∗|
r×�r =

� |
r×�r

1

2
�

�t∗

(20)

(r × 𝛿r) × r =
(
r2𝛿x − (x𝛿x + y𝛿y + z𝛿z)x

)
ê1

+
(
r2𝛿y − (x𝛿x + y𝛿y + z𝛿z)y

)
ê2

+
(
r2𝛿z − (x𝛿x + y𝛿y + z𝛿z)z

)
ê3

(21)
|(r × �r) × r| = r

[
r2
(
�x2 + �y2 + �z2

)
− (x�x + y�y + z�z)2

] 1

2

(22)
� |(r×�r)×r

1

2
�

=
(r × �r) × r

|(r × �r) × r|
�
1

2
�

(23)

� |(r×�r)×r
1

2
�

=
−C

xz

r2

(
r2�x − (x�x + y�y + z�z)x

)

r
[
r2
(
�x2 + �y2 + �z2

)
− (x�x + y�y + z�z)2

] 1

2

+
C

yz

r2

(
r2�y − (x�x + y�y + z�z)y

)

r
[
r2
(
�x2 + �y2 + �z2

)
− (x�x + y�y + z�z)2

] 1

2

+

(
C

x2−y2

r2
− 1

)(
r2�z − (x�x + y�y + z�z)z

)

r
[
r2
(
�x2 + �y2 + �z2

)
− (x�x + y�y + z�z)2

] 1

2

(24)�D∗|(r×�r)×r =
� |(r×�r)×r

1

2
�

�t∗

Note that Eq.  25 is expressed in its dimensional form. 
Its dimensionless form can be easily obtained simply by 
expressing all coordinates related to the radius of the parti-
cles (equivalent sphere), a. Note also that two of the above 
displacements (the first one and the last one) occur in the 
same direction ( (r × �r) × r ) and must be added algebrai-
cally. Since the second displacement is in the normal direc-
tion to the other two, the net dimensionless displacement can 
be obtained from the following expression:

It must be stressed at this point that the net dimensionless 
displacement corresponding to each �t could be considered 
as a relative rotation of one particle with respect to the other 
since the reference plane is parallel to the tangent plane of 
the equivalent spherical particles.

Since the relative rotation of both particles is a signifi-
cant information to determine the potential collision between 
them, it is interesting to develop a model to determine the 
maximum allowable rotation previous to a collision in order 
to compare with the real rotated angle, �� , given by Eq. 26. 
The model will be complete if the maximum allowable rota-
tion is determined in terms of the distance between particles 
centers. This maximum allowable rotation function will be 
designated as a “mean free angle” (mfa), which obviously 
will be defined in the interaction region.

2.3  Mean free angle and mean deflection model

The objective now is how to determine the intersection of 
two polyhedrons (particles), the center of one of them, par-
ticle 1, is located at the origin of coordinates and stands 
still, whereas the other, particle 2, whose center is located 
at r , is free to rotate. The impact will occur when particle 2 
gets into the neighborhood of particle 1. The procedure for 
the intersection of the two polyhedrons, corresponding to 
the particles impact, is a standard one and will not be intro-
duced here for space saving purposes. The impact could be 
obtained by following the trajectory of particle 2 and check-
ing if the impact might occur at each relative displacement 
corresponding to a time interval �t . This procedure, though 
plausible, would require a significant computer CPU time. 
Instead, an approximate procedure has been devised in order 
to determine the impact condition and its effects over the 
relative deflection of the particles. The procedure involves 

(25)

�D|[(r×�r)×r]�r =
r2
(
�x2 + �y2 + �z2

)
− (x�x + y�y + z�z)2

r
[
r2
(
�x2 + �y2 + �z2

)
− (x�x + y�y + z�z)2

] 1

2

(26)
�D∗ =

[
�D∗|2

(r×�r)×r
+
(
�D∗|

r×�r

+ �D∗|[(r×�r)×r]�r
)2] 1

2

= ��
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the determination of the so-called mean free angle, mfa, and 
“mean deflection,” md, parameters that can be determined in 
advance, previously to the integration of the trajectories set 
of equations, since they depend on the particles geometry. In 
the development of the procedures for the determination of 
mfa and md, particle 2 will be assumed in the neighborhood 
of particle 1, and thus, in a condition that potentially could 
lead to impact.

• Mean free angle (mfa). The relative position of the par-
ticles is determined by the position vector of particle 2, 
r , and its orientation vector, expressed as � . The particles 
impact could be monitored by a flag function for contact 
detection, F, depending on r and � , and defined as: 

 For a given position of particle 2, a “free of impact 
angle” could be devised as being the angle that particle 
2 would rotate without impacting into particle 1. Since 
the orientation (angular position) vector components are 
�1 , �2 and �3 , one could consider a free of impact angle 
for each of this components, the other two remaining 
constant. For example, for the component 3, the free of 
impact angle, � , would be given by: 

 where p is the number of times that F occurs over a 
complete rotation, 0 ≤ 𝜙i < 2𝜋 , and � =

(
�1,�2,�3

)
 is 

the angular relative orientation between particles. The � 
average extended to all possible angular orientations is: 

 Two particles can approach each other either at the near 
end or at the beginning of the ⟨�(r)⟩ interval. In the first 
case, the impact would be imminent, whereas in the lat-
ter the particle would rotate ⟨�(r)⟩ for the impact. It can 
be stated that none of both cases are significant since the 
expected value cannot correspond to these two extreme 
cases. The present model assumes that the most prob-
able (expected) free of impact interval is half ⟨�(r)⟩ . The 
mfa is the average of half ⟨�(r)⟩ extended to any spatial 
orientation, r̂ . Any versor, r̂ , is associated with its dif-
ferential area element, dSp , of the surface of particle 1 
and therefore: 

(27)F(r,�) =

{
1 ⇔ contact

0 ⇔ elsewhere

(28)�
(
r,�1,�2

)
=

2� − ∫ 2�

0
F
(
r,�1,�2,�3

)
d�3

p

(29)

⟨�(r)⟩ = 1

2� �
2�

0

�
1

2� �
2�

0

�d�2

�
d�1

=
1

p

�
2� −

∫ 2�

0
∫ 2�

0
∫ 2�

0
F(r,�)d�1d�2d�3

4�2

�

 Since mfa is an average value, the associated root-
mean-square could be determined in order to estimate 
the expected error. Sp represents the superficial area of 
the shaped particle.

  Having introduced the mean free angle, the next step 
is to check for the impact occurrence if the particle 
rotates an angle �� in a time interval �t . Since �� is a 
fraction of mfa, the ratio ��

mfa
 can be considered as the 

probability of impact in the time interval �t . A “cumula-
tive impact probability” could be defined as the sum of 
the impact probabilities over the relative displacement of 
the particles so that the impact would occur when the 
cumulative probability would attain the unity. After the 
particles impact, a deflection occurs, the accumulated 
probability is set to zero, and the procedure is resumed.

• Mean deflection (md).
  The particles impact will cause a deflection whose 

extent must be determined. A function �  is introduced 
for that purpose. It is defined as the distance that the par-
ticles must separate after the impact to reach a nonimpact 
condition. The previously defined flag function, F, will 
again be useful in the determination of the function �  . 
This can be done by keeping a given initial orientation 
constant and checking for possible impacts for successive 
r increments. The procedure continues up to the point 
where no impact is obtained. Thus, �  can be considered 
as the difference between the modulus of the final posi-
tion vector and the initial one (just after impact) for a 
given � and spatial, r̂ , orientations. A function G(r,�) , 
similar to F, which reports the required increment in the 
separation distance to avoid the impact, is introduced and 
defined as: 

 According to the proposed model, the “mean deflection” 
is defined as the average deflection, � , extended to all 
possible orientations. As for the case of the mean free 
angle, in this case, for a complete rotation of the angular 
coordinate �3 , the average deflection, representing the 
average required increment in the separation distance in 
case of contact for a full impact period, is given by the 
following expression: 

(30)mfa(r) =
1

2

∫
Sp
⟨�(r, r̂)⟩ dSp(r̂)

Sp

(31)G(r,�) =

{
� ⇔ F(r,�) = 1

0 ⇔ F(r,�) = 0

(32)�
(
r,�1,�2

)
=

∫ 2�

0
G
(
r,�1,�2,�3

)
d�3

∫ 2�

0
F
(
r,�1,�2,�3

)
d�3
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The md function is obtained as the � average extended to all 
possible spatial and angular orientations. The procedure is 
analogous to the one for mfa based on �.

3  Application of the proposed model 
to cubic particles

The objective of this section is to present an example of 
application of the proposed procedure in the determination 
of the mean free angle and the mean deflection for cubic 
particles. In order to do so, the values of the functions F and 
�  will be determined based on a discrete number of relative 
positions.

Let particle 1 be centered at the origin of coordinates 
and the center of the particle 2 at a position r , as shown in 
Fig. 2a. Particle 1 is considered to be at rest with its faces 
oriented along the coordinates system, whereas particle 2 is 
free to rotate. Particle 2 angular orientation, � , is related to 
a local coordinate system, XYZ, displaced r from the gen-
eral one, xyz. As a result, each cube vertex can be located 
in space by a position vector, r , and an orientation one, �.

Due to symmetry, the cubic particle full rotation ( 2� ) 
is not required in the function F determination. Instead, a 
rotation in the range ± �

4
 is enough in this case. The deter-

mination of the deflection, � , is based on a geometric series 
iterative procedure in order to reduce the related uncertainty. 
If the impact has been confirmed, the minimum noncontact 
distance (final r) can only assume a value between the given 
radial distance r and the outer edge of the interaction region. 

For a pair of cubic particles, the maximum r value is equal 
to 3

1

2 b, which corresponds to the particles in a position such 
that two opposite cube vertices are in contact. Obviously 
the direction in space,r̂ , and the orientation,� , must be kept 
constant over the contact check procedure. The minimum 
noncontact distance will be determined by checking the 
contact on the extreme of geometric series intervals. In the 
first iteration, contact occurs in the inner radius though not 
at the outer one. The next check is performed assuming the 
new check point as the mid one between the inner and outer 
radius of the previous iteration. Two possible scenarios will 
result at this point: (i) If contact does occur at this new loca-
tion, it is assumed as the inner radius of the next iteration, 
whereas the outer one is the same as the previous one. (ii) 
In case of no contact, the new location is assumed as the 
outer radius, whereas the inner one remains the same of the 
previous iteration.

The iteration procedure will go on up to the point where 
the chosen precision is attained. It is interesting to note that 
the difference between radial distances after 9 or 10 itera-
tions is of the order of 0.1% of the maximum possible range, 
3

1

2 b. The number of iterations assumed in all the cases con-
sidered in the present study has been set equal to 9 unless 
otherwise specified.

3.1  Discretization of the angular, � , and spatial r 
orientations.

The proposed procedure for the determination of mfa and 
md described in previous section requires integration over 

Fig. 2  Discretization of the 
relative orientation of a pair of 
cubic particles

(a)
(b)
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the orientation and separation vectors. This is done by a 
discretization procedure that will be described in what fol-
lows for cubic particles. Two particles close to each other 
are illustrated in Fig. 2a. It must be noted that due to sym-
metry of cubic particles, the direction can be set using just 
one of the faces of the still cube, for example, the upper 
surface. Again, due to symmetry, one can work with just one 
of the quadrants of this surface, for example, the positive 
one ( x ≥ 0 ; y ≥ 0 ). This quadrant is divided into I points in 
the x direction and J in the y one, as shown in Fig. 2b. Each 
of the points in each axis is designated, respectively, by i 
and j such that 1 ≤ i ≤ I and 1 ≤ j ≤ J . By joining a point 
on the surface, given by the pair (i, j), with the center of the 
cube different directions of the r vector are defined. Having 
defined the directions, it remains to characterize the modulus 
of the separation vector, r. It must be noted that in the so-
called interaction region, the r varies in the range from b to 
3

1

2 b. The separation distance r is discretized by dividing it in 
K points each one designated by k so that 1 ≤ k ≤ K . Thus, 
given the above discretization procedure, the separation vec-
tor can be expressed as:

The dimensionless components of the position vector are 
given by the following expressions:

where i, j, k are indexes related to the relative particles ori-
entation discretization, I, J, K represent the total number of 
the relative orientation positions in the discretization, X, Y 
and Z are the local coordinates of the center of particle 2, 
and b is the side size of the cubic particle. In the case of the 
orientation vector, the rotation angle is divided in L points.

(33)r = (x(i, j, k), y(i, j, k), z(i, j, k))

(34)

x(i, j, k)

b
=

i−1

I−1[(
i−1

I−1

)2

+
(

j−1

J−1

)2

+ 1

] 1

2

[
1 +

k − 1

K − 1

(
3

1

2 − 1

)]

(35)

y(i, j, k)

b
=

j−1

J−1[(
i−1

I−1

)2

+
(

j−1

J−1

)2

+ 1

] 1

2

[
1 +

k − 1

K − 1

(
3

1

2 − 1

)]

(36)

z(i, j, k)

b
=

1

[(
i−1

I−1

)2

+
(

j−1

J−1

)2

+ 1

] 1

2

[
1 +

k − 1

K − 1

(
3

1

2 − 1

)]

The procedure for mfa and md determination consists in 
evaluating the average of all directions, defined by I and J, 
and angular positions, L, for each value of k, correspond-
ing to a given value of r. For each value of k, the average 
procedure is repeated.

3.2  Application of the discretization procedure 
to the F and �  functions

As an example of application of the discretization procedure 
described above, functions F and �  will be determined as a 
function of the rotation of particle 2 for the X direction, �X . 
The number of points in the upper face of particle 1 was set 
as I = J = 3 , so that only 9 pair of points are considered. The 
number of points in the separation vector has been set equal 
to 20, that is, K = 20 . The separation vector is thus deter-
mined from Eqs. 34, 35 and 36. As mentioned above, only 
the �X component of the orientation vector of particle 2 will 
be considered, the other two being set equal to 0. This simple 
set of orientations allows to easily determine the particles 
relative location in space and their F and �  symmetries.

The results of the discretization procedure are shown 
in Fig. 3 where F and �  functions are overlaid in the plot 
against �X , for different pairs of points (i, j) of the upper sur-
face of the still particle, characterizing different directions of 
r . The corresponding distances between centers for the dif-
ferent orientations of Fig. 3 are, respectively, the following: 
k = 4(i = 2, j = 1) ; k = 8(i = 1, j = 2) ; k = 8(i = 2;j = 1) ; 
and k = 9(i = 2;j = 2) . A total of 31 angular positions, 
corresponding to an angular step of 3 degrees, have been 
assumed for the results of Fig. 3. Results for directions cor-
responding to the edges of the superior plane, i = j = 3 , of 
particle 1 have not been displayed in this figure due to their 
straightforwardness given that the rotation of particle 2 is 
with respect to the X axis. The deflection function, �  , has 
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Fig. 3  F and � functions for four given sets of relative positions
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been determined for 11 points truncation geometric series 
terms.

The following are some conclusions drawn from the plot 
of Fig. 3:

– The assumed symmetry with respect to �
2
 is confirmed.

– As should be expected, the flag function and the deflec-
tion are asymmetric with respect to 0 degree rotation 
angle.

– Depending on the particles relative vector position, the 
deflection function asymmetry does not follow the same 
pattern than that of the flag function. In that respect, it 
is interesting to note that the results for the pairs ( i = 1 , 
j = 2 ) and ( i = 2 , j = 1 ), for equal particles separation 
( k = 8 ), present a shift in the pattern between them.

3.3  Mean free angle and deflection function results

F and �  have been determined according to the discretiza-
tion procedure described in the preceding section. Thus, the 
evaluation of mfa and md will depend on the number of 
discrete points used in the determination of F and �  . The 
plot of Fig. 4 has been raised to check for the effect of the 
number of discrete points and, based on the obtained results, 
set this number aiming at obtaining reasonable precision in 
the mfa and md determination. In the results shown in Fig. 4, 
three different pairs of discrete points were used for the posi-
tion vector, r , characterized by the values of I and J. As for 
the angular position vector, � , three different values of L 
have been used to cover the range 

(
±

�

4

)
 . The number of 

shells, K, has been set equal to 10 in the results of Fig. 4, 
corresponding to the interaction region given by 1 ≤ r

b
≤ 3

1

2

.

From Fig. 4, it may be concluded that mfa and md do 
not depend on the chosen set of discrete points. Thus, in 
what follows, the number of discrete points will be set as 
I = J = 5 , K = 10 , and L = 9 , in order to optimize CPU 
time/memory.

It could be argued that the mfa and md functions have 
lost their physical meaning since they are the result of an 
average procedure. However, the average value loses its 
meaning when the root-mean-square, rms, of the considered 
parameter is high. The plots of Fig. 5 have been raised to 
check for the adequacy of the mfa and md functions obtained 
from the proposed procedure through the root-mean-square 
of each of these parameters. The uncertainty bars of these 
plots correspond to the average value plus or minus the rms 
of each parameter, for the number of discrete points previ-
ously suggested for the present study. It can be noted that 
the mfa presents significant uncertainties in the mid of the 
range, whereas toward the ends the uncertainty tends to zero. 
In the case of the md, the uncertainty increases toward the 
inner limit.

4  Results

This section will focus on an analysis of the numerical 
results from the proposed model applied to cubic particles. 
The analysis will be focused initially in evaluating the model 
and its sensibility to certain intervening parameters. In the 
second part, model results will be applied in the determina-
tion of the self-diffusion coefficients of dilute suspensions 
of cubic particles. It must be stressed that the adopted pro-
cedure will be based on the one proposed by [7] for the 
determination of both the particles trajectories and the dif-
fusion coefficients.
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4.1  Model evaluation

As previously noted, the analysis involves the interaction 
of a couple of particles and their relative trajectories. The 
particles are located in a pure shear flow field of the kind 
U = (�y, 0, 0) with the initial relative vector position of the 
particles being the same as the one adopted by [7] in their 
analysis. The particles are assumed to depart from a far 
upstream plane in the compressional quadrant and perpen-
dicular to the main velocity, U , located 10 dimensionless 
units from the origin of coordinates, r

a
=
(
−10, y0, z0

)
 . In 

order to analyze the model performance, one single-particle 
trajectory departing from r = (−10, 0.1, 0.1) will be reported, 
as in [7]. The components of the position vector given above 
are related to the spherical radius, a, whose adequate speci-
fication will be described further on. The time step and the 
integration of the trajectories equations, by a fourth-order 
Runge–Kutta algorithm, will be the same as the ones of the 

paper by [7]. In the far field, r
a
> 2.5 , �t∗ = 0.01 ; in the 

intermediate region 2.01 ≤ r

a
≤ 2.5 , �t∗ = 0.005 ; and in the 

lubrication region 2.0 <
r

a
< 2.01 , �t∗ = 0.0001 . Note, from 

the results shown, that the pair of particles separation are, 
in any case, above 2.4-2.5 [-], and therefore, they can never 
enter into the lubrication region.

The first set of results has been obtained for cubic par-
ticles of side equal to b with the corresponding spherical 
particle being that of radius a =

b

2
 , that is, the sphere is cir-

cumscribed by the cube. The corresponding functions mfa 
and md are the ones plotted in Fig. 4. The projections of the 
trajectories are reported in the plots of Fig. 6. It can be noted 
that the displacement in the y direction is higher than in the z 
one. It can also be noted that once the particles get in touch, 
successive impacts occur characterized by the ripples in the 
curves which continue up to the point of maximum deflec-
tion. Beyond that point, no contact is observed. Most of the 
impacts occur in the compressional quadrant, x < 0 , though 
a couple of collisions can be noted in the extensional quad-
rant, x > 0 . The latter collisions are clearer in the plots of 7, 
where the projections of the rotational speed on the refer-
ence plane, �t and �l , are plotted along with the dimension-
less separation distance, r

5a
 , against the longitudinal position 

of the particles, x
a
 . Note that �t and �l correspond to the 

components on the reference plane of the rotational speed 
in the (r × �r) , Eq. 16, and (r × �r) × r , Eq. 22, directions. 
The successive impacts are clearly shown in these plots. The 
most influential component of the rotational speed is �t for 
the present particles. As a result, the component is also the 
dominant one in generating irreversibilities. With respect to 
the separation distance, two aspects are clearly noted in the 
plot of Fig. 7: (i) the seesaw behavior corresponding to the 
aforementioned successive impacts and (ii) the minimum 
separation distance between the particles, corresponding to 
the minimum of the curve, which in this case is equal to 2.5 
radius of the circumscribed sphere. Regarding the results 
from Figs. 6 and 7, it can stated that the observed trends 
comply with the expected physical insight of the problem 
though the obtained trends are clearly different from the ones 
obtained by [7] for their highest asperity values.

A second sensibility analysis could be performed in con-
nection with the mfa and md plots of Fig. 5 and their associ-
ated root-mean-square values. This analysis has to do with 
the maximum and minimum irreversibility generation. In 
that respect, as should be expected, the irreversibility not 
only increases with the observed deflection, characterized by 
the value of mean deflection, md, but also with the number 
of impacts of the particles which increase for lower values 
of the mean free angle, mfa. Thus, the results reported in 
Fig. 5 suggest two limit conditions, superior and inferior, 
with respect to the average, corresponding to the maxi-
mum and minimum irreversibility generation, respectively, 
whereas the average condition corresponds to the results of 
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Fig. 4, the superior and inferior values of the pair (mfa, md) 
would be set as:

– Superior: 
(
mfa − RMSmfa

)
 , 
(
md + RMSmd

)
  In the case of the mean free angle, its superior values 

are set equal to zero when negative.
– Inferior: 

(
mfa + RMSmfa

)
 , 
(
md − RMSmd

)
  Based on the results of Figs. 4 and 5, the inferior value 

of the mean free angle is set equal to �
4
 when exceeding 

this value, whereas negative mean deflection values are 
set equal to zero when negative.

The plots of Fig. 8a, b illustrate the effect of the variation of 
the pair (mfa, md) from its average to its superior and inferior 
values, respectively. The superior pair causes an increment 
in the deflection with the opposite effect being noted for the 
inferior pair, as should be expected. Similar effect is noted 
in the case of the separation distance, as shown in Fig. 8a. 
It is interesting to note that the deflection effects of Fig. 8b 
could be important in characterizing the uncertainty range 
in the determination of self-diffusion coefficients based on 
the proposed model.

A third sensibility analysis could be devised in relation 
with the effect of the mobility functions, A, B and C, since 
in the present case they were assumed as those for spherical 
particles from the study by [1]. Though not shown here, the 
obtained results clearly indicate that suppressing function 
C, in other words, setting it equal to zero, does not affect the 
relative deflection of the particles. This could be explained 
by the fact that the main rotation effect is the one related 
to the pure shear flow assumed in the present study. The 
effect of functions A and B will be investigated consider-
ing different relations between the sizes of cubic shape and 
the corresponding sphere. As an initial statement, it must 
be stressed that the use of the assumed mobility functions 
for nonspherical particles is questionable. However, given 
the unavailability of adequate functions, their use must be 
considered an approximation in the self-diffusion evalua-
tion. Similar arguments could be used regarding the model 
proposed by [7], and even the one by [2], who assumed a 
spherical particle of radius a, with the so-called asperities 
being external to the spherical surface. From the conceptual 
point of view, this approach to the problem is also question-
able since the fluid cannot penetrate into the sphere surface 
given the presence of the asperities.

Fig. 8  Reference particle rela-
tive trajectories (a) and separa-
tion distances (b)
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As previously mentioned, the effect of the mobility func-
tions A, B and C will be evaluated by varying the relative 
size of the equivalent sphere with respect to the cubic par-
ticle. The procedure begins by assuming that the radius of 
the sphere is half the side of the cubic particle. Now, the 
side of the cubic particle will diminish with respect to the 
sphere radius from the condition where the sphere is cir-
cumscribed in the cube, a =

b

2
 , to the one where the cube is 

circumscribed in the sphere, a =
3
1
2

2
b = 0.866b . The former 

corresponds to a geometrical relation between the sphere 
particles and the cubic ones with a maximum irreversibility 
due to the number of particles collisions, whereas in the 
case of the latter relation there is no irreversibility since the 
particles are effectively spheres. The general conclusions 
previously drawn for the maximum irreversibility case will 
hold for cases for which the irreversibility diminishes down 
to the reversible case.

The trajectories for different a
b
 ratios are overlaid in the 

plot of Fig. 9a, corresponding to the following particular 
cases: (i) a

b
= 0.5 , sphere circumscribed in the cube, the ref-

erence case (ii) a
b
= 0.62 , sphere of equal volume (iii) 

a

b
= 0.74 and (iv) a

b
= 0.866 , cube circumscribed in the 

sphere, the reversible case. Note that the coordinates of the 
plot are referred to the spherical particle radius which is 
constant for all cases, whereas the cube side is diminished 
for each case down to the reversible one. Using the terminol-
ogy of [7], each case could be considered one of different 
asperity, characterized by the ratio a

b
 , with the latter being 

the smooth surface sphere one. The location 
(

y

a

)
 of the par-

ticles for each case far downstream 
(

x

a
= 15

)
 tends to differ 

significantly between each other, with the one corresponding 
to the higher asperity 

(
a

b
= 0.5

)
 being the most distant from 

the original location far upstream 
(

x

a
= −10

)
 . This trend is 

a clear indication of the occurrence of irreversibility. The 

particles separation distance for each case is shown in the 
plot of Fig. 9b. From this plot, it can be concluded that the 
trajectory corresponding to the case a

b
= 0.74 is not physi-

cally realistic since the closest distance between particles for 
this case is almost twice the spherical particle radius. This 
would correspond to an approximation of the particles for 
which the lubrication regime would hold, a condition that is 
not physically attainable with cubic particles. The mobility 
functions are dominant in the flow in such cases, and as a 
result, they should be discarded as physically unsound. As a 
final note regarding the plots of Fig. 9, one must recognize 
that the sphere radius in the mobility functions has no physi-
cal meaning since it is just a reference size used in their 
evaluation. Thus, it would be interesting to check what the 
trajectories would look like if instead of being referred to the 
sphere radius, the coordinates were referred to the half side 
of the cube, b

2
 . This is shown in Fig. 10 for the same cases of 

Fig. 9. By doing so, the result is that the trajectories tend to 
collapse into a single curve in the compressional quadrant, 
whereas their differences tend to diminish in the extensional 
quadrant, as can clearly be noted in the plot.

As previously suggested, results from cases (i) a
b
=

1

2
 cor-

responding to a circumscribed sphere, and (iv) a
b
= 0.866 , 

for a circumscribed cube, illustrate limiting cases of the pro-
posed model and do not reproduce realistic patterns. The 
two intermediate cases are (ii) a

b
= 0.62 and (iii) a

b
= 0.74 

that, as shown in Figs. 9 and 10, display a different pattern. 
However, note that both figures show that, for a

b
= 0.74 , the 

minimum distance between particles is attained over a wide 
region, with almost no impacts, which does not seem realis-
tic for cubic particles. On the other hand, note that in terms 
of dimensionless cube size (Fig. 10b) the case a

b
= 0.62 

keeps almost the same distance between particles than for 
the a

b
= 0.5 case, though with a number of impacts signifi-

cantly lower, which seems to constitute a more plausible 
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pattern. As a result, from the observed trends in Figs. 9 and 
10, one can conclude that the optimal case in terms of the 
sphere/cube size ratio is the one corresponding to the equiv-
alent sphere (equal volume) which is the one with a reliable 
physical meaning.

Based on the sensibility analysis, one can conclude that 
the coefficient of self-diffusion must be evaluated from par-
ticles trajectories obtained from mobility functions based on 
the equivalent spherical particles. The uncertainty in their 
evaluation must be estimated based on the root-mean-square 
values from Fig. 5.

4.2  Self‑diffusion coefficients

Self-diffusivity is related to the net flux in a given direction. 
Thus, it is determined in terms of the streamline deflection 
of the relative trajectories of a pair of particles [7]. The 
center of mass of a pair of particles runs along a “stream-
line.” The deflection of the mass center of a pair of particles 
in the direction i of space, �Hi , is related to the trajectories 
by the following expression:

The superscript ±∞ denotes the far downstream and 
upstream trajectories coordinates, respectively. The trajec-
tories are considered to be at x+∞ (far downstream) and x−∞ 
(far upstream) if x

a
≥ 10 and x

a
= −10 , respectively.

Consider a uniformly diluted suspension where different 
deflections are not correlated with each other. It can be stated 
that the collision rate between a particle at rest, located at 
the origin, and the entering particles far upstream at any 
given y−∞ is: n�|y−∞|dy−∞dz−∞ , where n is the number of 
particles per unit volume. Therefore, the self-diffusivity can 
be expressed as [7]:

Note that � = nvp , where vp is the volume of a particle. 
Therefore, Eq. 38 dependence on n can be expressed in 
terms of � . For the case of spherical particles, the dimen-
sionless form of Eq. 38 assumes the following expression:

where �H∗
isphere

=
�H

a
 , and y∗

sphere
=

y

a
 . Similarly, the dimen-

sionless self-diffusivity for a suspension of cubic particles 
can be written as:

(37)�Hi =
1

2

(
x+∞
i

− x−∞
i

)

(38)Ds
i
=

1

2 ∫
∞

−∞ ∫
∞

−∞

(
�Hi

)2
n�|y−∞|dy−∞dz−∞

(39)
Ds

isphere

��a2
=

3

8� ∫
∞

−∞ ∫
∞

−∞

(
�H∗

isphere

)2|y∗−∞sphere |dy∗−∞sphere dz
∗−∞
sphere

where �H∗
icube

=
2�H

b
 , y∗

cube
=

2y

b
 , and b is, again, the cubic 

particle side, ±∞ refers to far downstream and upstream, 
respectively, and �H is the streamline deflection. Equa-
tions 39 and 40 can be related as:

In the preceding section, it has been assumed that the equiv-
alent spherical particle of a cubic one is the equal volume 
sphere. Therefore the 

(
2a

b

)
 relation is known, and as a result, 

Eq. 41 can be written as:

The set of Eqs. 37, 39 and 42 allows the determination of the 
self-diffusivity (coefficient of self-diffusion for a given direc-
tion) of cubic particles in a dilute suspension. The procedure 
is directly related to the equivalent spheres suspension previ-
ously proposed by [7].

The streamlines at far downstream, x+∞ ≥ 10[−] , 
are depicted in Fig.  11 for departures from the plane 
x−∞ = −10[−] , previously indicated. The axis is in dimen-
sionless form referred to the cubic particle side, b, for the 
three irreversibility cases corresponding to the average, 
superior and inferior cases. Figure 11a reports the results of 
the superior limit of the irreversibility generation, whereas 
Fig. 11b reports the inferior limit. Finally, the mean expected 
streamlines are shown in Fig. 11c. The displacement of the 
stream lines is clearly visible in this figure, with the dis-
placement in the z direction being clearly inferior to the one 
in the y direction for the three cases considered.

The self-diffusivities are determined for the three cases 
shown in Fig. 11. The results provided for the superior, aver-
age and inferior kinematic irreversibilities are: 0.326; 0.233; 
0.115 which correspond to dimensionless self-diffusion 
coefficient of 

Ds
y

��

(
b

2

)2 = 0.233 ± 45% . It must be noted that 

this is the self-diffusion coefficient, in the y direction, for a 
dilute suspension of cubic particles. It is interesting to 
observe that self-diffusion coefficient thus obtained is appli-
cable to any shear rate and, as a result, is not associated with 
a particular Pe number.

(40)
Ds

icube

��

(
b

2

)2
=

1

16 ∫
∞

−∞ ∫
∞

−∞

(
�H∗

icube

)2|y∗−∞cube |dy∗−∞cube dz∗−∞cube
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(
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2

)2
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(
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2

)2
=
(
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3
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isphere

��a2



 Journal of the Brazilian Society of Mechanical Sciences and Engineering (2021) 43:392

1 3

392 Page 16 of 18

Furthermore, for a suspension of spherical particles in the 
absence of hydrodynamics, [3] found that the dimensionless 
self-diffusion coefficient, given by Ds

��cc
2
=

16

45�
 , is equal to 

0.113, a value that, though different, is unexpectedly close 
to the result of the present investigation. [26], for the case of 
absence of hydrodynamics, reports a value of 0.085, lower 
than the one proposed by [3]. The procedure proposed by 
[26] assumed that � = 2

(c−a)

a
 . Let the radius of the interaction 

region be the hard spere radius of [26], c = 3
1
2 b

2
 , and keep in 

mind the relationship found in the present investigation: 
a

b
=
(

3

4�

) 1

3

= 0.62 . It follows that � = 0.792 . Since the vol-
umes of cubes and spheres are equal, no correction in terms 
of suspension volume concentration is needed. Therefore, 
according to the present investigation, the dimensionless 
self-diffusion coefficient 

Ds
y

��

(
b

2

)2 = 0.233 , for an “equivalent” 

asperity, � , of 0.792.
A suspension of spheres with an asperity equal to 0.792, 

in the absence of hydrodynamics, according to [26] would 
result in a dimensionless self-diffusion coefficient 
Ds

��cc
2
= 0.085  .  T h u s ,  c

a
= 1 +

�

2
= 1.396  a n d 

�c =
(

c

a

)3

� = 2.721� . It follows Ds

��c2
= 0.231 . As a result, 

it can be stated that the results from the present investigation 

match reasonably well the [26] results for spherical particles 
in the absence of hydrodynamics under a pure shear flow.

The following three main conclusions can be drawn from 
the previous comparison: (i) The absence of hydrodynam-
ics model for spherical particles can be correctly adapted to 
cubic particles in order to determine the self-diffusion coef-
ficient; (ii) at least for cubic particles, it can be stated that 
the “equivalent” spherical particles size, a

b
= 0.62 , adopted 

to model the pair hydrodynamics seems to work properly 
to report the self-diffusion in the absence of hydrodynam-
ics; and (iii) the collision pattern can be considered realis-
tic since the self-diffusion is dependent on how, when and 
where the collisions take place.

Finally, it can be stated that the results provided by the 
proposed model demonstrate that the hard particles shape 
does play a role in the self-diffusion value up to the limit of 
the “absence of hydrodynamics.”

5  Conclusions

A non-Brownian of hard cubic particles suspension in the 
dilute limit has been studied in order to obtain the self-
diffusion coefficient under pure shear rate. The proposed 
model considers the impacts between particles as sources 

Fig. 11  Stream lines for the 
cubic particles far downstream, 
corresponding to a dimension-
less x distance equal to 10
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of kinematic irreversibilities in the Stokes flow. The col-
lisions are studied in a statistical manner for the particular 
cubic shape through the so-called mean free angle and mean 
deflection functions and the slip mechanisms between par-
ticles. The following are the main conclusions drawn from 
the reported investigation.

– The mechanism responsible for the kinematic irrevers-
ibilities is the main rotational rate produced in the shear 
flow. Small changes in the separation of the particles 
inside the interaction region result in significant change 
in the number of impacts.

– The model is quite sensitive to the root-mean-square 
of the mfa and the md functions. Displacements of mfa 
curve toward the inner or outer zones of the interaction 
region affect the self-diffusion values causing an incre-
ment of the uncertainty related to the root-mean-square 
of this parameter.

– In a suspension of cubic particles, kinematic irreversibili-
ties are generated by the particles shape alone. The self-
diffusion is strongly affected by the particles shape which 
can become the main source for the self-diffusivity. This 
issue has been previously proposed by [2]. [3] reported 
similar self-diffusivity for suspensions where the colli-
sions between particles become dominant, though they 
linked this behavior to high values of the Péclet number, 
1 ≪ Pe < ∞.

More research is under development to obtain a deeper 
insight into the nonspherical particles migration in dilute 
suspensions, considering particles of other formats. The 
reported results will be applicable to macroscopic CFD 
models which include self-diffusion as a potential particles 
diffusion in continuum mechanics [10].
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