

Escola Politécnica Superior

Trabajo Fin de Grado CURSO 2019/20

OFFSHORE JACK-UP INSTALLATION VESSEL

Grado en Ingeniería Naval y Oceánica

ALUMNO

Antonio Melo Bello

TUTOR

Marcos Míguez González

FECHA

Septiembre 2020

1 RPA

PROYECTO NÚMERO 1920-28

TIPO DE BUQUE:

OFFSHORE JACK-UP INSTALLATION VESSEL

CLASIFICACIÓN, COTA Y REGLAMENTOS DE APLICACIÓN:

DNV GL 1 A 1 SELF-ELEVATING WIND TURBINE INSTALLATION, SOLAS, MARPOL

CARACTERÍSTICAS DE LA CARGA:

AEROGENERADORES

8000 TPM

VELOCIDAD Y AUTONOMÍA:

10KN- VELOCIDAD DE TRÁNSITO (85% MCR, 10% MM)

12KN-MÁXIMA

30 DÍAS en operación

SISTEMAS Y EQUIPOS DE CARGA / DESCARGA:

GRÚA PARA IZAMIENTO DE LA CARGA

JACK UP SYSTEM- DOBLE ANILLO PARA CONTINUAR OPERACIÓN

PROPULSIÓN:

PRINCIPAL: 4 AZIMUTH TRHUSTERS

PROPULSIÓN DIÉSEL ELÉCTRICA

BOW TUNNEL THRUSTERS: 3

TRIPULACIÓN Y PASAJE:

90 OPERARIOS

OTROS EQUIPOS E INSTALACIONES:

HELIPUERTO, AUXILIAR DE IZAMIENTO

Escola Politécnica Superior

TRABAJO FIN DE GRADO CURSO 2019/20

OFFSHORE JACK-UP INSTALLATION VESSEL

Grado en Ingeniería Naval y Oceánica

Cuaderno 11

PLANTA ELÉCTRICA Y DISTRIBUCIÓN

Contenido

1 RPA	2
2 Introducción	6
3 Definición de la planta eléctrica	8
3.1 Frecuencia y Tensión	8
3.2 Características	10
4 Desglose y cararterísticas de los Consumidores	12
4.1 Sistema de Cámara de Máquinas	13
4.2 Iluminación	14
5 Balance Eléctrico	19
5.1 Factores de Utilización y Potencias	20
5.2 Puerto Amarrando	21
5.3 Puerto Cargando	21
5.4 Navegación	21
5.5 Elevación	21
5.6 Montaje- Instalación	22
5.7 Carga en Alta mar	22
5.8 Emergencia	22
5.9 Resumen Resultados	23
6 Planta Generadora	24
6.1 Generadores Principales	24
6.2 Generador de Emergencia	27
6.3 Reserva de Energía y Pick Up	29
7 Sistema de Cableado	32
7.1 Tipología y Dimensionado de Cables	32
8 Otros componentes	37
8.1 Transformadores	37
8.2 Cuadros de Distribución	37
8.3 Protecciones de la Planta Eléctrica	37
9 Diagrama Unifilar	39
9.1 Descripción del Diagrama	39
10 Anexo	41
10.1 Cálculo de Coeficientes	41
10.2 Cálculo potencia por condición	43
10.3 Generador de Emergencia	45

2 Introducción

En este cuaderno se realizará el balance eléctrico del buque. El objetivo principal de este cuaderno es el diseño y definición de las características de la planta eléctrica.

Se estudiarán las distintas condiciones de trabajo a las que estará sometido el buque, para determinar el número de generadores necesarios para cada condición.

Para calcular la planta del buque, es necesario conocer los diferentes consumidores del buque que se han calculado en cuadernos previos (Cuaderno 6,10 y 12).

El buque con el que se va a trabajar tiene las siguientes características:

DIMENSIONES Y CARACTERÍSTICAS							
ESLORA TOTAL (Loa)	134	m					
ESLORA ENTRE PERPENDICUALRES (Lpp)	129,82	m					
ESLORA EN LA FLOTACIÓN (LWI)	133,43	m					
MANGA (B)	38,7	m					
PUNTAL (D)	11,57	m					
CALADO (T)	6,215	m					
Cb	0,812						
DESPLAZAMIENTO (Δ)	26720	t					
SUPERFICIE MOJADA	6203,899	m^2					
Ср	0,813						
Cm	0,999						
Cf	0,894						
VELOCIDAD trántiso	10	kn					
VELOCIDAD máxima	12	kn					
POTENCIA TOTAL INSTALADA	25200	kW					

Se tendrán en cuenta, a parte de estas características, las especificaciones reflejadas en la RPA expuesta previamente, donde caben destacar, que el buque ha de tener una velocidad máxima de 12kn, una velocidad de servicio de 10kn y un 85%MCR para los diésel generadores.

Se instalará un número uniforme de grupos electrógenos para asegurar una distribución de carga simétrica en las secciones de barras colectoras de los cuadros. Los consumidores deberán estar dispuestos y repartidos simétricamente en los cuadros de distribución, el cual determina el nivel de corrientes de CC que debe poder resistir y la capacidad de corte de los interruptores automáticos.

A continuación, se indica el procedimiento a seguir para el cálculo:

- Definición de la planta eléctrica
- Desglose y características de los consumidores
- Cálculo del alumbrado
- Balance eléctrico para las diversas condiciones de trabajo
- Análisis de resultados y cálculo de los generadores
- Diseño del diagrama unifilar y configuración de la planta eléctrica
- Cálculo de los cables y otros componentes

Para el cálculo de este cuaderno, es necesario seguir una serie de normas de cumplimiento y una serie de condiciones a tener en cuenta.

✓ NORMAS

- Normas UNE-CEI 21135-XXX
- o Convenio SOLAS
- Lo expuesto por la SSCC del buque (DNV)

✓ Condiciones

- <u>Condiciones Ambientales</u>
 - Inclinación → Los equipos eléctricos deberán funcionar en condiciones de buques estáticos en -25º y para buques navegando en ± 25º. Los equipos de emergencia deberán funcionar a ± 25º con un grado de trimado de 10º
 - <u>Vibraciones</u> → Deberá tolerar rangos de frecuencia de vibraciones de 5Hz a 50Hz y un rango de amplitud de 20mm/s.
 - Temperatura → La temperatura de ambiente deberá ser como máximo de 45°C, siendo diferente la mínima en función de la zona de operación del buque.

o Grado de Protección

 Los grados de protección de la instrumentación dependerá de la zona del buque en la que esté situada. Estos grados de protección viene especificados en la sociedad de clasificación, en este caso: DNV Part 4 Charter 8 Section 10

3 DEFINICIÓN DE LA PLANTA ELÉCTRICA

El buque tendrá una instalación eléctrica trifásica, este tipo de instalaciones, ofrece las siguientes ventajas más importante:

- Permitir la conexión a Puerto.
- Menos componentes, lo que implica menos gastos de mantenimiento y de respetos.
- Permiten el uso de tensión más elevada.
- No exigen un control tan elevado de la velocidad de régimen.

3.1 Frecuencia y Tensión

El buque como se ha explicado en otros cuadernos lleva una propulsión diésel-eléctrica, lo que implica que el alternador y el cuadro de distribución principal sigan una serie de principios de diseño:

- Se debe dividir simétricamente el cuadro principal para una mayor fiabilidad y ayuda a conseguir los requisitos de redundancia.
- Se debe instalar un número par en los alternadores para asegurar una carga simétrica en los embarrados del cuadro. Los consumidores deberán ser también simétricos.
- El diseño del cuadro principal queda determinado por las corrientes de cortocircuito que se deben soportar y por la capacidad de corte de los disyuntores.
- El voltaje hasta el cuadro principal depende de varios factores:

Total installed alternator power	Voltage	Breaking capacity of CB
< 10 – 12 MWe	440 V	100 kA
(and: Single propulsion motor < 3,5 MW)		
< 13 – 15 MWe	690 V	100 kA
(and: Single propulsion motor < 4,5 MW)		
< 48 MWe	6600 V	30 kA
< 130 MWe	11000 V	50 kA

En este cuaderno se seleccionará el tipo de motor generador, pero las características de la planta eléctrica del buque se consideran las siguientes:

$$U = 6600 V$$

 $Capacidad\ de\ corte = 30kA$

Se situará el cuadro en la cámara de control de las cámaras de máquinas.

De la Norma UNE 21-135-93/201 se tienen las tensiones de trabajo: Tensiones y frecuencias en corriente alterna en función de los tipos de consumidores

Utilización	Tensiones nominales (V)		Frecuencias nominales (Hz)		
1 Motores, calefacción y cocina. Equi-	Trifásica	Trifásica	Trifásica	Trifásica	
pos fijos y permanentemente conec-	120	50	60	1 000	
tados. Tomas de corriente alimen-	2201)	50	60	1 000	
tando a aparatos puestos a masa, sea	2401)	50	-	1 000	
de forma permanente por fijación o	3802)	50	-	1 000	
por una conexión específica que in-	4152)	50	-	1 000	
corpore un conductor de masa di-	440	-	60	1 000	
mensionado conforme a la tabla 1	6603)*	50	60	1 000	
de la norma CEI 92-401: Instalación	3 000*/3 300*	50	60	11 000	
y Pruebas de recepción.	6 000*/6 600*	50	60	11 000	
20	10 000*/11 000*	50	60		
Y	Monofásica	Monofásica	Monofásica	Monofásica	
	120	50	60	500	
	2201)	50	60	500	
(1)	2401)	50		500	

Monofásica

250

250

	en los puntos 1 y 3, pero destinados a aparatos con aislamiento reforza- do o doble aislamiento, o conecta- dos con un cable flexible que incluya un conductor de masa de dimensio- nes conforme a la tabla 1, norma CEI 92-401.	2201) 2401)	50 50	60 -	250 250	
3	Tomas de corriente para usos que precisen de precauciones especiales contra el choque eléctrico:	Monofásico 24 120 2201)	Monofásico 50 50 50	Monofásico 60 60 60	Monofásico 55 250 250	

2401)

Monofásica

120

Monofásica

50

50

Monofásica

60

2 Alumbrado fijo incluyendo tomas de

corriente para fines no mencionados

a) Alimentación con o sin transfor-

mador de aislamiento. b) En caso de empleo de un transformador de aislamiento alimentando a un solo consumidor.

En la RPA no se ha especificado la zona de opreración, por tanto, la frecuencia de trabajo se elegirá según las zonas donde pueda operar el buque. Se supondrá una frecuencia de 50Hz que corresponde con las frecuencia Europea.

De la tabla, se seleccionan las tensiones que tendrá el buque:

690V; 50 Hz 230V; 50 Hz

El cuadro principal como se ha mencionado previamente está alimentado a 6600V, y este cuadro alimenta a los paneles de los propulsores y alimenta también al panel de baja tensión.

El panel de baja tensión es de 690V que sería el secundario. Este panel, es el de distribución, que alimenta una red trifásica a la cual se conectan todos los consumidores.

Se tendrá también una red de 230V para la iluminación y pequeños consumidores de la habilitación.

Ambos conductores de tales sistemas deberán estar aislados de masa. En el futuro, solamente 230 V 2) En el futuro, solamente 230 V
3) En el futuro, solamente 690 V
*Solamente para fuerza motriz

3.2 Características

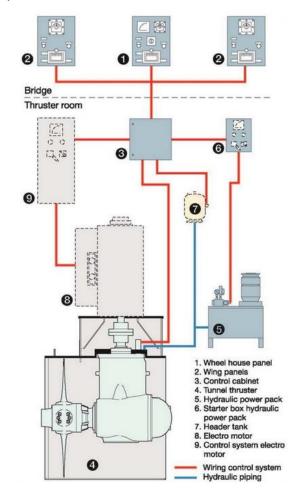
El tipo de propusición especificada en la RPA es diésel eléctrica como se ha mencionado previamente. La propulsión diésel eléctrica es un tipo de propulsión en la cual se dispone de unos motores principales con generadores , y estos suministran energía eléctrica a todo el buque, incluyendo energía eléctrica para la propulsión. El combustible de estos motores generadores es diésel.

Los motores generadores han de poder ser capaces de suministrar la potencia necesasria para la propulsión al porcentaje de carga especificada en la RPA (85%MCR).

La propulsión diésel eléctrica es una solución flexible y eficiente para una amplia y variada gama de potencia de propulsión. La hélice es accionada por un motor eléctrico a través de una cada de engranajes de reducción. La potencia se entrega desde un sistema de suministro eléctrico del barco (desde los generadores mencionados previamente). La solución más eficiente se logra a través de RPM varibales del motor eléctrico, para garantizar que la hélice tenga condiciones de trabajo optimizadas en todo el rango de potencia.

Los propulsores son Azimutales, como se han especificado en cuadernos previos:

- ABB HIGH SPEED DRIVE 500
- 4 motores propulsores
- 2050 kW
- 900 RPM


La planta propuslora diésel eléctrica consta de los sigueintes componenetes principales:

- Generadores Diésel: Son los encargados de generar la energía eléctrica necesaria para alimentar los motores eléctricos y para el resto de consumidores del buque.
- Cuadros de Distribución: Se dispone de un cuadro principal y otro de emergencia.
 Estos cuadros serán los encargados de recibir la potencia directamente de los generadores y alojar los dispositivos necesarios para el acoplamiento de los alternadores y elementos de protección y distribuir la corriente a los demás servicios del buque.
- Transformadores: Son necesarios para aquellos sistemas que produzcan tensiones inferiores a las nominales de la isntalación correspondiente a los sistemas de fuerza.
- Convertidores de frecuencia: No son siempre necesarios, solo para aquellos casos en los que los consumidores trabajen a diferentes frecuencias.
- Motores eléctricos: Son los encagados de la propulsión.

A continuación, se muestra un esquema del suministro de potencia desde los generadores hasta los motores propulsores (en este caso, serían los motores de los Thrusters):

Se muestra el esquema para el funcionamiento de los azimutales

4 DESGLOSE Y CARARTERÍSTICAS DE LOS CONSUMIDORES

Para la determinación de los consumos, es necesario conocer las características de los equipos y motores eléctricos empleados. Para ello:

- Se ha fundamentado en las potencias obtenidas en los cálculos en el Cuaderno 10 de Cámara de Máquinas y en el Cuaderno 12 de Equipos y Servicios.
- En el caso de motores eléctricos sin control mediante de convertidores de potencia se han empleado las potencias normalizadas que se muestran a continuación. De esta forma, obtendremos los valores del factor de potencia, rendimiento y la potencia consumida por los equipos eléctricos.
- Con el apartado anterior y determinando la forma de arrangue se determina la aparamenta y la sección de cable de los equipos eléctricos del buque.

Table with efficiency classes: IE 60034-30 (2008) IE-1 - Standard efficiency IE3 - Premium efficiency 60 Hz 50 Hz 60 Hz 50 Hz 73.0 77.4 75.5 79.6 75.0 79.6 82.5 81.4 50 Hz 60 Hz 50 Hz 60 Hz 50 Hz 70.0 82.5 77.0 77.0 72.1 78.5 75.0 75.9 82.5 82.5 78.0 80.0 80.7 85.5 78.9 78.5 79.0 75.0 72.9 84.0 78.1 85.5 82.7 84.0 84.1 86.5 87.5 84.3 85.5 79.7 81.5 79.7 83.2 84.3 87.5 81.8 85.9 86.5 86.7 83.0 87.5 89.5 89.5 81.5 81.5 79.7 84.6 85.5 83.3 87.1 87.7 85.6 85.0 5 84.5 83.5 87.5 87.5 87.5 88.5 89.5 83.1 81.4 88.6 85.0 87.0 89.5 91.7 86.0 88.5 89.5 89.5 84.7 84.7 83.1 87.0 87.7 86.0 89.2 89.6 88.0 87.2 86.0 87.5 86.0 87.5 84.7 86.0 88.7 89.5 90.1 90.2 90.4 10 87.6 87.6 88.5 89.4 91.0 87.5 89.0 92.4 20 88.7 88.5 88.7 89.5 87.7 89.5 90.3 90.2 90.6 91.0 89.7 90.2 91.9 91.0 92.1 93.0 89.5 90.4 92.6 89.3 89.3 90.5 88.6 90.2 90.9 91.2 92.4 92.4 93.6 93.0 91.0 30 89.2 92.7 89.9 89.5 89.9 40 90.7 90.2 90.7 90.2 91.7 92.0 92.3 93.0 93.0 93.3 92.4 93.6 94.1 92.9 94.1 50 91.2 91.5 92.4 90.8 91.7 92.5 92.4 92.7 93.0 92.2 93.0 93.7 93.0 93.9 94.5 93.3 93.0 95.0 94.3 75 92.1 92.4 92 1 93.0 91.9 92.1 93.2 93.0 93.5 94.1 93.1 93.6 93.6 946 95.4 94.1 04.5 94.5 94.7 100 92.7 93.0 92.7 93.2 92.6 93.0 93.8 93.6 94.0 93.7 94.1 94.1 95.0 95.4 94.6 95.0 94.1 95.0 95.2 95.2 95.4 93.3 945 95.0 94.3 95.0 150 93.0 93.3 93.5 93.3 94.1 94.5 95.0 95.8 95.1 95.8 94.6 94.7 94.6 93.5 93.5 93.5 95.4 95.6 95.4 94.1 94.5 95.0 95.0 96.2 150 200 94.1 96.0 95.8 94.8 160 93.8 93.8 93.8 94.8 95.8 94.1 94.1 95.8 185 200 94.0 94.0 94.0 94.1 95.1 95.8 94.5 94.5 94.1 95.8 94.0 94.0 94.0 95.0 95.4 95.1 95.4 95.0 95.0 95.8 95.8 96.0 96.2 95.8 450 940 940 94.5 940 95.0 95 1 95.4 95.0 95.8 95.8 960 95.8 95.8 95.4

Para el resto de los equipos y en especial unidades de gran potencia controladas por convertidores de potencia, se han consultado sus fichas técnicas para determinar la potencia real consumida en punto de trabajo.

95.4

95.0

Se elegirán las potencias y eficiencias normalizadas de motores de 4 polos, trabajando a la frecuencia citada previamente, 50 Hz.

95.0

- Para motores con potencia inferior a 20kW, se emplearán motores de eficiencia estándar, y para motores con potencias superiores, se emplearán de alta eficiencia.
 - P < 20 kW- IE-1 Standard efficiency

94.0

P > 20 kW- IE-2 High efficiency

94.0

Para el resto de los equipos y servicios calculados en cuadernos previos, se considerará la potencia calculada con la eficiencia incluida. En los casos en los que sea preciso, se consultarán los catálogos comerciales para obtener la potencia consumida.

Los consumidores de dividen en los siguientes grandes grupos:

- 1. Sistema de Cámara de máquinas
 - a. Servicio de propulsión
 - b. Sistema de refrigeración
 - c. Sistema de combustible
 - d. Sistema de lubricación
 - e. Sistema de aire de arranque
- 2. Equipos y servicios
 - a. Sistema de Elevación
 - b. Sistema de lastre
 - c. Sistema CI
 - d. Sistema de fonda y hotel
 - e. Equipos de navegación...
 - f. Sistema de aire AC y ventilación
 - g. Equipos de cubierta
 - h. Servicio de sentinas
- 3. Sistema de Iluminación
 - a. Definición y características
 - b. Cálculo de alumbrado principal
 - c. Cálculo de alumbrado de emergencia

4.1 Sistema de Cámara de Máquinas

Como se ha desglosado previamente, en el sistema de cámara de máquinas se incluirá el sistema de propulsión a pesar de que el sistema de propulsión no esté situado en la cámara de máquinas.

A continuación, se muestran los sistemas correspondientes para:

- Servicio de propulsión
 - Azimutales popa
 - Bow tunnel thusters
- Sistema de refrigeración
 - Bombas de accionamiento mecánico LT y HT
 - o Bomba de agua salada
- Sistema de combustible
 - o Bombas de trasiego de combustible
 - Bombas de alimentación
- Sistema de lubricación
 - o Bomba de cebado de aceite
 - Separador de aceite
- Sistema de aire de arranque
 - Compresores de aire

4.2 Iluminación

En el sistema de iluminación, se han de diferenciar 3 instalaciones que se deben de tener en el buque:

- Alumbrado Exterior: Es el alumbrado que se dispone en el exterior del buque para permitir el trabajo de la instalación de los aerogeneradores y para alumbrar la cubierta principal,
- Alumbrado General: Es el alumbrado que se dispondrá en la habilitación y los diferentes espacios por debajo de la cubierta principal.
- Alumbrado de Emergencia: Es el alumbrado que permite la iluminación en caso de fallo de los generadores principales. Este alumbrado deberá funcionar de forma automática y este alumbrado está normalmente alimentado por baterías para mantener los servicios esenciales del buque.

Para el sistema de iluminación, se emplea la siguiente fórmula:

$$L = E * S * \frac{F_D}{F_U}$$

Donde:

 $L = flujo \ luminoso \ en \ l\'umenes \ (Lm)$

E = Iluminación en luxes

 $S = Superficie\ a\ iluminar$

 $F_D = Factor \ se \ suciedad; \ se \ toma \ un \ valor \ medio (2)$

 $F_{II} = 0.5$; Factor de utilización

Las iluminancias se tomarán diferentes en función de los espacios en los que se disponga la iluminación. Las iluminancias se toman según la siguiente tabla:

Locales	
lluminancias (lx)	
Camarotes de pasajeros y oficialidad	200-250
Camarotes de tripulación	150-200
Camarotes de lujo	250-300
Pasillos del pasaje	100-150
Pasillos de la tripulación	100-150
Locales de reunión	100-15 0
Locales de reunión:	
Pasaje	200-400
Tripulación	120-250
Locales sanitarios	200-250
Locales de servicios	250-300
Enfermeria	500-1000
Puentes de paseo y puentes descubiertos	20-40
Puentes de botes	10-20
Salas de máquinas	300-450
Puestos de maniobra	500-750
Salas de calderas	250-350
Bocas de calderas	500-750
Túneles y compartimientos< 200 m³	100-150
Talleres de montaje y precisión	1000-2000
Talleres de maquinaria	500-1000
Salas de dibujo	750-1500
Oficinas normales	400-750
Salas de espera, archivos, etc	75-150

Las superficies para iluminar han sido medidas de la disposición general del cuaderno 7:

Los espacios son los siguientes:

- Habilitación
 - o 1º Cubierta
 - Pasillo
 - Gambuza -18°C
 - Gambuza Seca
 - Cocina
 - Aseos
 - Local de Ropa
 - Lavandería
 - Local gen. Emergencia
 - Local CO2
 - Sistema CI
 - Aire AC
 - o 2º Cubierta
 - Gimnasio
 - Comedor Oficiales
 - Comedor Marinería
 - Sala de Reuniones
 - Aseos
 - Sala descanso Oficiales
 - Sala descanso Marinería
 - o 3º Cubierta
 - Camarotes Tripulantes
 - Pasillo
 - Locales de Limpieza
 - o 4º Cubierta
 - Camarotes Tripulación
 - Camarotes Oficiales
 - Despachos Camarotes
 - Pasillo
 - o Puente
 - Puente
 - Aseos
 - Alumbrado Navegación
 - Hospital
 - Aseos
 - Consultas
 - Pasillo
 - Hospital
- Sala de Máquinas
 - o Cámara de máquinas
 - o Cámara de Bomba

A continuación, se muestra la potencia de iluminación de las cubiertas:

7011			CUREREIOUE			51111011111111111111111111111111111111	. (DENIENTE	DOTELIOL (1) 10
ZONA	CANTIDAD	ILUMINANCIA(lx)	SUPERFICIE	Factor Suciedad	Factor Utilización	FLUJO LUMINOSO(lm)	LÁMPARA	RENDIMEINTO LUMINOSO (lm/W)	POTENCIA (kW)
1º CUBIERTA									
PASILLO	1	150	124	2	0,5	74400	LED	150	496
GAMBUZA -18	1	100	15,3	2	0,5	6120	LED	150	40,8
GAMBUZA SECA	1	100	18,4	2	0,5	7360	LED	150	49,06666667
COCINA	1	250	54,6	2	0,5	54600	LED	150	364
ASEOS	1	250	21	2	0,5	21000	LED	150	140
LOCAL DE ROPA	1	250	31,1	2	0,5	31100	LED	150	207,3333333
LAVANDERÍA	1	250	36,2	2	0,5	36200	LED	150	241,3333333
LOCAL GEN. EMERGENCIA	1	300	42	2	0,5	50400	LED	150	336
LOCAL CO2	1	300	16,56	2	0,5	19872	LED	150	132,48
SISTEMA CI	1	300	12,56	2	0,5	15072	LED	150	100,48
LOCAL	1	250	12,56	2	0,5	12560	LED	150	83,73333333
LOCAL AIRE AC	1	250	12,56	2	0,5	12560	LED	150	83,73333333
				TOTAL					2,27496
					A CHIDIEDTA				
GIMNASIO	1	300	72,3	2	º CUBIERTA	96760	LED	150	578,4
COMEDOR OFICIALES	1	300	72,3 33,6	2	0,5 0,5	86760 40320	LED	150	268,8
COMEDOR OFICIALES COMEDOR MARINERÍA	1	300	37,8	2	0,5	45360	LED	150	302,4
SALA DE REUNIONES	1	300	16,8	2	0,5	20160	LED	150	134,4
ASEOS	1	250	21	2	0,5	21000	LED	150	140
SALA DESCANSO OF.	1	300	42	2	0,5	50400	LED	150	336
SALA DESCANSO MAR.	1	300	67,2	2	0,5	80640	LED	150	537,6
			·	TOTAL					2,2976
				3	º CUBIERTA				
CAMAROTES LARGOS	22	200	10,62	2	0,5	186912	LED	150	1246,08
CAMAROTES CORTOS	21	200	7,97	2	0,5	133896	LED	150	892,64
CAMAROTES 2TRIP.	2	200	27,34	2	0,5	43744	LED	150	291,6266667
PASILLO	1	150	204	2	0,5	122400	LED	150	816
CUARTOS LIMPIEZA	2	150	10,6	2	0,5	12720	LED	150	84,8
				TOTAL					3,331146667
				4	º CUBIERTA				
CAMAROTES LARGOS	20	200	10,62	2	0,5	169920	LED	150	1132,8
CAMAROTES CORTOS	15	200	7,97	2	0,5	95640	LED	150	637,6
CAMAROTES OFICIALES	4	200	9,92	2	0,5	31744	LED	150	211,6266667
DESPACHOS	4	300	16,3	2	0,5	78240	LED	150	521,6
CAMAROTES 2 TRIP.	2	200	27,34	2	0,5	43744	LED	150	291,6266667
PASILLO	1	150	193	2	0,5	115800	LED	150	772
				TOTAL	D. LEWIS .				3,567253333
ACEOC	1	250	12.52		PUENTE	12520	LED	150	92 4666667
ASEOS PUENTE	1 1	250 700	12,52 460	2 2	0,5 0,5	12520 1288000	LED LED	150 150	83,46666667 8586,666667
PUENIE	1	/00	400	TOTAL	U,3	1288000	LED	130	8,670133333
				TOTAL	HOSDITAL				8,0/0133333
DAÑOS	2	250	4.51	2	HOSPITAL	0020	LED	150	60 1222222
BAÑOS CONSULTA	1	250 750	4,51 36,3	2	0,5 0,5	9020 108900	LED LED	150	60,13333333 726
PASILLO	1	150	76,3	2	0,5	45780	LED	150 150	305,2
HOSPITAL	1	1000	76,3	2	0,5	212000	LED	150	1413,333333
HOSHIAL	±	1000	33	TOTAL	درن	212000	LLU	130	2,504666667
				TOTAL					22,646

Cuaderno 11: Planta Eléctrica y Distribución Antonio Melo Bello-OFFSHORE JACK-UP INSTALLATION VESSEL-Proyecto 1929-28

ZONA INFERIOR CUB. PRINCIPAL									
CM PROA	1	350	501,3	2	0,5	701820	LED	150	4,6788
PISO SUP CM PROA	1	350	365,7	2	0,5	511980	LED	150	3,4132
CM POPA	1	350	501,3	2	0,5	701820	LED	150	4,6788
PISO SUP CM POPA	1	350	365,7	2	0,5	511980	LED	150	3,4132
CÁMARA DE BOMBAS	1	350	177,9	2	0,5	249060	LED	150	1,6604
PISO SUP C. BOMBAS	1	350	106,74	2	0,5	149436	LED	150	0,99624
CÁMARA AZIMUTALES	1	350	342,4	2	0,5	479360	LED	150	3,195733333
TOTAL								22,037	

EXTERIOR EXTERIOR									
CUBIERTA	1	1000	3800	2	0,5	15200000	LED	150	101,3333333
OPERACIÓN	5					15000	LED	150	0,75
TOTAL							102,084		

La potencia de las luces de navegación tiene el siguiente valor:

LUZ	COLOR	ÁNGULO	MILLAS	POTENCIA (Kw)
DE TOPE	BLANCA	225	6	13
COSTADO BABOR	ROJA	112,5	3	4,6
COSTADO ESTRIBOR	VERDE	112,5	3	2,9
DE ALCANCE	BLANCA	135	3	2,8
DE TODO HORIZONTE	BLANCA	360	3	4,8
	28,1			

A continuación, se muestra la tabla de resumen de potencias de luces calculadas:

TOTAL							
1º CUBIERTA	2,27						
2º CUBIERTA	2,30						
3º CUBIERTA	3,33						
4º CUBIERTA	3,57						
PUENTE	8,67						
HOSPITAL	2,50						
ZONA DEBAJO C.PRAL.	22,04						
EXTERIOR	102,08						
NAVEGACIÓN	28,10						
TOTAL (KW)	146,77						

Como se ha visto en las tablas, las bombillas escogidas para la iluminación son de tipo LED, puesto que son las más eficientes ya que la energía empleada es transformada en luz en lugar de en calor.

5 BALANCE ELÉCTRICO

El balance eléctrico es un estudio de las necesidades energéticas del buque en las distintas condiciones de carga eléctrica. Es un cálculo más probabilista que determinista, es una estimación del consumo de cada receptor en las diversas situaciones de operación del buque.

Las condiciones de consumo de carga eléctrica se estiman para las siguientes condiciones de trabajo estimadas.

Las condiciones de trabajo del buque estimadas son:

Puerto Amarrando

Se estudiará la condición del buque de atraque, estimando un tiempo de 4 horas para dicha maniobra.

Puerto Cargando

Se estudiará la condición del buque en la que estará utilizando las grúas para la carga de los aerogeneradores. El tiempo de carga ha sido explicada en cuadernos previos.

Navegación

Se estudiará la condición de navegación a máxima velocidad. La velocidad a alcanzar es la definida en la RPA, y es de 12 kn.

Elevación

Se estudiará la condición en la cual el buque realiza la operación de descenso de las patas para la posterior elevación del buque. En esta condición, opera la posición dinámica del buque y el grupo hidráulico dispuesto para la elevación del buque. Los tiempos para este proceso, están calculados en cuadernos previos.

Montaje-Instalación

Esta condición es la posterior a la elevación. En este proceso, los consumidores más significativos, serán las grúas dispuestas para la elevación y montaje de los aerogeneradores.

Carga en alta mar

Para la condición de carga en alta mar, se toman los mismos valores que para el montaje, puesto que se utilizarán los mismos recursos para cargar como para el montaje de los aerogeneradores, pero el tiempo de operación, será ligeramente menor, puesto que solo se requerirá el tiempo necesario para la estiba de los pesos.

Emergencia

Para esta condición, se estudiarán los consumidores que deben funcionar en condición de emergencia, esta condición viene dada en el SOLAS PARTE D, REGLA 43, y se detallará más adelante.

5.1 Factores de Utilización y Potencias

Para el balance será necesario tener en cuenta la potencia absorbida de cada consumidor. La potencia absorbida, se obtiene de la siguiente manera:

$$P_{abs} = \frac{P_{\text{ú}til}}{\eta}$$

Donde:

- Pútil es la potencia que suministra el consumidor. Será la potencia normalizada.
- η es el rendimiento de cada consumidor.

La potencia total para los grupos de consumidores se calculará de la siguiente manera:

$$P_{TOTAL} = P_{abs} * N^{\circ}_{equipos}$$

La estimación de la potencia consumida por cada equipo o conjunto de equipos vendrá dada por la siguiente expresión:

$$P_{necesaria} = K_u * P_{TOTAL}$$

Donde:

K_u es el coeficiente o factor de utilización

Los coeficientes se calculan de la siguiente manera:

$$K_u = K_n * K_{sr}$$

Donde:

- K_n es el factor de simultaneidad en marcha.

$$K_n = \frac{N^{\underline{o}}_{aparatos.servicio}}{N^{\underline{o}}_{aparatos.instalados}}$$

K_{sr} es el coeficiente de régimen y servicio.

$$K_{Sr} = K_S * K_r$$

- K_s es el coeficiente de servicio, depende del funcionamiento de los aparatos.

$$K_{S} = \frac{N^{\circ}_{horas.servicio}}{24}$$

- K_r es el coeficiente de régimen, depende del régimen al que trabaja cada máquina.

$$K_r = rac{Potencia\ absorbida\ por\ el\ motor\ en\ servicio}{Potencia\ absorbida\ en\ régimen\ nominal}$$

$$K_r = \frac{P_{abs}}{P_{\text{\'util}}} * \eta_{el\'{e}ctrico}$$

El coeficiente de régimen y servicio $K_{sr}=1$ cuando el aparato o grupos de aparatos funcionan de manera continua a pleno régimen.

El coeficiente de régimen y servicio $K_{sr} < 1$ cuando los aparatos funcionen de manera discontinua o intermitente durante un servicio.

La determinación de los factores de simultaneidad y servicio es función de:

- La funcionalidad del servicio, estimada por el diseñador
- La operatividad del buque
- Las costumbres de uso de la tripulación...

Por lo general se reserva un margen a fin de poder hacer frente al exceso de potencia requerida.

La determinación del factor de servicio y régimen en muchas ocasiones no es posible realizarla de manera matemática debido al desconocimiento exacto de sus variables, y el constructor se inspirará en su experiencia y otros diseños.

En este caso, se utilizará el cálculo matemático, utilizando la formulación indicada. Las horas de trabajo de cada equipo se establecen de manera aproximada según los tiempos de operación estimados de cada condición de trabajo. En ciertos casos de operación (como es el caso de la elevación), se tomará el coeficiente de régimen y servicio 1 a pesar de que el aparato o grupo de aparatos no estén en funcionamiento las 24horas, pero para ese servicio, es necesario calcular el pico de potencia, y esos equipos para dicho servicio, se considerará que trabajan de manera continua a pleno régimen mientras dure el servicio en cuestión.

A continuación, se muestran las diferentes condiciones de trabajo con sus correspondientes coeficientes:

5.2 Puerto Amarrando

En la condición de trabajo de puerto amarrando, se estima que el buque entra a puerto funcionando los propulsores para el desplazamiento del buque y los servicios de alumbrado y servicios de navegación para la entrada del buque a puerto.

En el Anexo, se calcula la condición de trabajo propuesta, con su respectivo cálculo de coeficientes.

5.3 Puerto Cargando

En la condición del buque cargando en puerto, el buque está conectado a puerto, y se utilizarán los servicios de habilitación, las grúas para la carga de los aerogeneradores, la ventilación de cámara de máquinas...

En el Anexo, se calcula la condición de trabajo propuesta, con su respectivo cálculo de coeficientes.

5.4 Navegación

En la condición de navegación se utiliza la propulsión de popa a la velocidad máxima establecida en la RPA (12kn), los sistemas de navegación, comunicaciones y electrónico, la iluminación, y los servicios auxiliares de las cámaras de máquinas...

En el Anexo, se calcula la condición de trabajo propuesta, con su respectivo cálculo de coeficientes.

5.5 Elevación

En el sistema de elevación se utiliza la propulsión de popa y proa en la condición de posicionamiento dinámica a la vez que el buque procede a la bajada de las patas, una vez que las patas penetran en el fondo, el buque comienza a elevarse. El sistema de elevación utiliza un grupo hidráulico para el movimiento de las patas y en consecuencia el casco. A esto hay que añadirle los consumidores como son la iluminación, los sistemas auxiliares, los consumidores de habilitación...

En el Anexo, se calcula la condición de trabajo propuesta, con su respectivo cálculo de coeficientes.

5.6 Montaje-Instalación

Para esta condición de trabajo, se tendrán los consumidores de la habilitación, los del puente como pueden ser los de la comunicación, el alumbrado del buque, y los sistemas auxiliares de la cámara de máquinas. A estos consumidores hay que añadir las grúas, ya que son las responsables del movimiento e instalación de los aerogeneradores.

En el Anexo, se calcula la condición de trabajo propuesta, con su respectivo cálculo de coeficientes.

5.7 Carga en Alta mar

Para la carga en alta mar, se suponen los mismos consumidores que los establecidos en los consumidores de montaje- instalación, puesto que el buque estará elevado y operará con las grúas para la carga de más aerogeneradores en alta mar.

En el Anexo, se calcula la condición de trabajo propuesta, con su respectivo cálculo de coeficientes.

5.8 Emergencia

Para el sistema de emergencia se calculan los consumidores para una condición de emergencia supuesta.

La condición de emergencia se dimensiona en base a los requerido en el SOLAS, PARTE D, Regla 43.

Los servicios que se tienen que alimentar en caso de emergencia, por ser un buque de carga, son los siguientes:

- Durante un periodo de 18h:
 - Alumbrado de Emergencia
 - o Instalación Radioeléctrica
 - Aparatos náuticos de a bordo
 - Luces de navegación
 - o Bombas CI
- Durante un periodo de 30min:
 - Toda puerta estanca
 - o Dispositivos de emergencia que impulsan los ascensores hasta la cubierta

En el Anexo, se calcula la condición de trabajo propuesta, con su respectivo cálculo de coeficientes.

5.9 Resumen Resultados

A continuación, se muestran las potencias de cada condición.

Todas las potencias que se muestran en la tabla, están en kW:

SERVICIO	PUERTO AMARRANDO	PUERTO CARGANDO	NAVEGACIÓN	ELEVACIÓN	MONTAJE- INSTALACIÓN	CARGA EN ALTA MAR
SERVICIO DE PROPULSIÓN	1010,83	0,00	8200,00	11805,00	0,00	0,00
SISTEMA DE REFRIGERACIÓN	13,34	0,00	80,03	180,06	80,03	80,03
SERVICIO DE LUBRICACIÓN	4,63	0,00	27,75	32,44	27,75	27,75
SERVICIO DE COMBUSTIBLE	0,37	0,00	4,71	4,94	2,20	2,20
SERVICIO DE AIRE DE ARRANQUE	0,00	0,00	15,00	15,00	0,00	0,00
SERVICIO DE SENTINAS	3,26	0,00	19,59	78,35	19,59	19,59
SERVICIO DE AGUA DE LASTRE	0,00	0,00	13,64	0,00	0,00	0,00
GRÚAS	0,00	4750,00	0,00	0,00	4750,00	4750,00
EQUIPOS DE MANTENIMIENTO	0,00	9,33	9,33	0,00	2,33	2,33
ILUMINACIÓN	174,12	44,68	174,12	174,87	174,87	174,87
EQUIPOS DE NAVEGACIÓN, COMUNICACIONES Y ELECTRÓNICA	16,00	5,00	16,00	16,00	16,00	16,00
SERVICIO DE AGUA SANITARIA	78,16	96,00	78,16	78,16	78,16	78,16
SERVICIO CONTRAINCENDIOS	0,00	0,00	0,00	0,00	0,00	0,00
SISTEMA DE ELEVACIÓN	0,00	0,00	0,00	3260,00	0,00	0,00
SERVICIO DE VENTILACIÓN DE CÁMARA DE MÁQUINAS Y AIRE AC	146,67	146,67	90,42	371,67	146,67	146,67
EQUIPOS DE CUBIERTA	40,00	0,00	0,00	0,00	0,00	0,00
EQUIPOS DE FONDA Y HOTEL	49,26	76,69	141,80	24,76	68,66	68,66
TOTAL	1537,00	5129,00	8871,00	16042,00	5367,00	5367,00
TOTAL CON MARGEN (20%)	1844,40	6154,80	10645,20	19250,40	6440,40	6440,40

Se ha decidido incluir un margen de un 20% como sobredimensión, en el que se incluyen consumidores que no han sido considerados en el balance, rendimientos eléctricos, posibles pérdidas de los aparatos eléctricos ocasionados por el tiempo, y con este margen también, se tienen en cuenta posibles modificaciones de algunos consumidores por otros más modernos con el paso del tiempo, de manera que los nuevos consumidores serán más sofisticados y puede que consuman más potencia que los que se han supuesto en este balance.

En cuadernos previos, donde se calculan las capacidades de los tanques, se han utilizado las potencias sobredimensionadas que se indican en la tabla.

6 PLANTA GENERADORA

Con los datos de potencia obtenidos previamente de cada condición de carga, se pueden dimensionar los motores generadores. En este caso, al tratarse de un buque de propulsión eléctrica, los generadores serán capaces de alimentar a todos los consumidores del buque aparte de alimentar a la propulsión. Los motores generadores se dimensionarán para la situación más desfavorable, que, según las situaciones estudiadas, será el buque en condición de elevación.

Según lo establecido en la RPA, los motores generadores, deberán funcionar al 85% MCR, por tanto, los motores generadores, tendrán que poder proporcionar la potencia obtenida previamente al 85% de su carga.

Los generadores al no trabajar al 100%, se consigue alargar su vida útil.

En este apartado se hará una selección de los motores generadores más adecuados para la potencia que se ha calculado previamente.

6.1 Generadores Principales

Como se ha establecido en cuadernos previos, se dispondrá de dos cámaras de máquinas separadas, con el mismo número de generadores cada uno. Los generadores se pondrán en funcionamiento dependiendo de las necesidades según las diferentes condiciones de trabajo establecidas previamente. Los motores generadores se irán alternando en funcionamiento para que vayan funcionando todos durante la navegación.

En cada cámara de máquinas se dispondrá de 3 motores generadores.

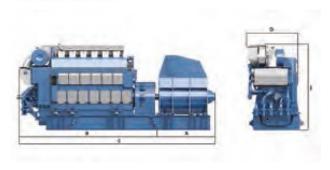
La condición más desfavorable en cuanto a consumo es la denominada como elevación, teniendo la siguiente potencia demandada:

$$P_{elevaci\'on} = 19250 \; kW$$

La potencia que se tiene en cuenta para la elevación es la potencia de elevación con la sobredimensión mencionada previamente del 20%.

Esta potencia la tendrán que poder proporcionar los motores generadores en una condición de 85% MCR, condición establecida en la RPA. En caso de que uno de los motores generadores quede inutilizado, se podría seguir funcionando a pesar de que no cumplan con el 85% MCR.

Antes de hacer la selección de los motores generadores, es necesario definir los espacios en los que se dispondrán, puesto que será necesario conocer el espacio disponible para la puesta de los motores.


El dimensionamiento de las cámaras de máquinas se calculó de manera aproximada mediante formulación en cuadernos previos. En el Cuaderno 10, se comprobó que el espacio de cada cámara de máquinas fuera el suficiente para poder albergar los motores generadores y todos los equipos auxiliares para los generadores.

La disposición de los motores generadores se hará en paralelo y quedarán dispuestos de la siguiente manera:

Para tener dos cámaras de máquinas simétricas, se tendrán que disponer el mismo número de motores generadores en cada cámara de máquinas. Se ha optado por disponer de 3 generadores en cada cámara de máquinas, como se ha mencionado previamente.

A continuación, se muestran los motores generadores tenidos en cuenta para la elección del adecuado. Los motores generadores son de ROLLS-ROYCE Bergen B33:45L:

Bergen B33:45L

Principal dimensions

Cylinder diameter 330mm. Piston stroke 450mm.

						Weights dry				
Engine type	A	В	C	D	E	Engine**	Alternator	Total		
B33:45L6A	3410	5870	9280	2431	4100	46000 kg	18200 kg	64200 kg		
B33:45L7A	3410	6405	9815	2431	4100	53100 kg	19600 kg	72700 kg		
B33:45L8A	3505	6940	10445	2488	4250	60100 kg	21000 kg	81100 kg		
B33:45L9A	3505	7475	10980	2488	4250	67100 kg	22300 kg	89400 kg		
B33:45V12A*	4033	6870	10900	3140	4800	85000 kg	25000 kg	110000 kg		

Technical data

Engine type		B33:45L6A	B33:45L7A	B33:45L8A	B33:45L9A	B33:45V12A*
Number of cylinders		6	7	8	9	12
Engine speed	r/min	720/750	720/750	720/750	720/750	720/750
Mean piston speed	m/s	10.8/11.2	10.8/11.2	10.8/11.2	10.8/11.2	10.8/11.2
Max. cont. rating (MCR)	kW	3600	4200	4800	5400	7200
Max. cont. rating altern, (η=0.97)	kW	3492	4074	4656	5238	6950
Max. cont. rating altern, (Cosφ=0.8)	kVA	4365	5093	5820	6548	8690
Max. cont. rating altern, (Cosφ=0.9)	kVA	3880	4526	5173	5820	7722
Mean effective pressure (BMEP)	bar	26/25	26/25	26/25	26/25	26/25
Specific fuel consumpion	g/kWh	177	177	177	177	176
Specific lub. oil consumpion	g/kWh	0.5	0.5	0.5	0.5	0.8
Cooling water temp. engine outlet	°C	90	90	90	90	90

Para la elección de los motores generadores, se tendrá en cuenta la normativa SOLAS, que dice lo siguiente: "la capacidad de los grupos electrógenos debe ser tal que, aunque en caso de fallo de uno cualquiera de ellos se pare sea posible alimentar los servicios necesarios para lograr las condiciones operacionales normales de propulsión y seguridad". Esto quiere decir que se tendrá que poder operar en caso de fallo de uno de los motores generadores, aunque no tendrá que cumplir con el MCR, y podrán trabajar a más del 85% de su capacidad.

A continuación, se muestran las potencias de las diferentes opciones tenidas en cuenta para la disposición de la cámara de máquinas. La potencia para la condición más desfavorable es la condición de elevación, y es de:

$$P_{elevación} = 19250 \, kW$$

GENERADORES	Nº GENERADORES	POTENCIA CADA UNO	%MCR	POTENCIA AL MCR	POTENCIA CON n-1
B33:45L6A	6	3600	0,85	18360	18000
B33:45L7A	6	4200	0,85	21420	21000
B33:45L8A	6	4800	0,85	24480	24000
B33:45L9A	6	5400	0,85	27540	27000

La elección de motor generador es la de: B33:45L7A.

Con este generador, se tiene una potencia al 85% de MCR que cumple con la condición de trabajo que más demanda requiere y, además, cumple con la condición de poder operar con 5 de los 6 generadores en caso de fallo de uno de ellos.

Se han seleccionado en todos los casos 6 generadores puesto que, al disponer 2 cámaras de máquinas separadas, tendrán que situarse el mismo número de generadores en cada una de ellas, por tanto, si se quieren disponer menos generadores, se tendrían que disponer 2 por cámara de máquinas, y para poder cumplir con la potencia de la situación más desfavorable, la potencia de cada motor generador será muy superior a la que se tiene con 3 motores generadores.

A continuación, se muestran las diferentes condiciones de funcionamiento de los generadores dependiendo de las diferentes condiciones de carga estudiadas previamente:

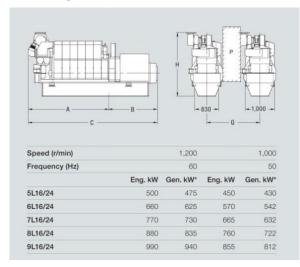
GENERADORES	POTENCIA INSTALADA	%MCR	POTENCIA AL 85%MCR (kW)	POTENCIA CONDICIÓN (kW)	Nº GEN	%CARGA
PUERTO AMARRANDO	25200	0,85	21420	1844,40	1	44
PUERTO CARGANDO	25200	0,85	21420	6154,80	2	74
NAVEGACIÓN	25200	0,85	21420	10645,20	3	85
ELEVACIÓN	25200	0,85	21420	19250,40	6	77
MONTAJE- INSTALACIÓN	25200	0,85	21420	6440,40	2	77
CARGA EN ALTA MAR	25200	0,85	21420	6440,40	2	77

Con esta selección de motor generador, para las diferentes condiciones con la sobredimensión, se cumple que los motores son capaces de suministrar la potencia sin ningún problema. Una de las razones por las que se ha seleccionado este motor generador es porque para la condición de navegación (10645'20kW) los motores generadores están trabajando al 85% de su potencia (3 generadores), de manera que se cumple con el MCR del 85% establecido en la RPA.

Otra razón por la que se ha seleccionado este motor generador es debido a que la reserva de cada motor generador en la condición de elevación es de un 23% cuando trabajan los 6 a la vez, y trabajando 5, sería capaz de suministrar la potencia necesaria, pero al 92%, de manera que se decide tener algo de margen en la reserva de potencia de los generadores para esta condición, puesto que un fallo en la condición de elevación podría ocasionar graves daños.

6.2 Generador de Emergencia

En caso de emergencia se ha estimado una potencia de 357'3 kW para poder suministrar la suficiente energía como se establece en el SOLAS para alimentar a los receptores indispensables en condición de emergencia. Estos consumidores se han reflejado en el apartado de las diferentes condiciones de carga del buque.


Por lo general, los generadores de emergencia se colocan lo más elevados posibles para protegerlos, así, de una posible inundación. El generador de emergencia se ha de situar en un espacio por encima de la cubierta principal, como no es posible que esté cerca del guardacalor, se dispondrá en la zona de habilitación, en la cubierta más baja.

Estos generadores de emergencia deberán ser independiente al resto de los servicios.

El arranque de estos generadores se debe realizar por aire o baterías. Para el arranque por aire se colocarán 3 botellas y para el arranque por baterías, una sola batería.

El tiempo de alimentación a los servicios establecidos como de emergencia, están dispuestos previamente en la definición de la condición de emergencia del buque.

Para el generador de emergencia se ha decidido montar un MAN L16/24 que tiene el siguiente rango de potencias:

Entrando en la tabla, se escoge en primer lugar el generador para 50Hz, y escogemos un generador que tenga una potencia superior a la potencia demandada por los consumidores en la condición de emergencia:

$$P_{emergencia} = 357,3 \, kW$$

A esta potencia de emergencia se le añade un 10% de margen, siendo:

$$P_{emergencia} = 393 \, kW$$

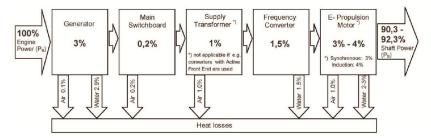
El generador escogido:

$$P_{genemergencia} = 430 \text{ kW}$$

$$%Carga = 91,4%$$

Quedando así un 8'6% de carga disponible.

A continuación, se muestran los consumidores supuestos para emergencia:


SERVICIO	EMERGENCIA (kW)
SERVICIO DE PROPULSIÓN	0
SISTEMA DE REFRIGERACIÓN	0
SERVICIO DE LUBRICACIÓN	0
SERVICIO DE COMBUSTIBLE	0
SERVICIO DE AIRE DE ARRANQUE	0
SERVICIO DE SENTINAS	0
SERVICIO DE AGUA DE LASTRE	130,9
GRÚAS	0
EQUIPOS DE MANTENIMIENTO	0
ILUMINACIÓN	17,5
EQUIPOS DE NAVEGACIÓN, COMUNICACIONES Y ELECTRÓNICA	16
SERVICIO DE AGUA SANITARIA	0
SERVICIO CONTRAINCENDIOS	167,9
SISTEMA DE ELEVACIÓN	0
SERVICIO DE VENTILACIÓN DE CÁMARA DE MÁQUINAS Y AIRE AC	0
EQUIPOS DE CUBIERTA	0
EQUIPOS DE FONDA Y HOTEL	25
TOTAL	357,3
TOTAL CON MARGEN (10%)	393

6.3 Reserva de Energía y Pick Up

La principal función del sistema de gestión de energía es la de iniciar y detener los generadores de acuerdo con la carga de red y capacidad de los alternadores.

En caso de que la potencia disponible por generador disminuya hasta un límite, el propio sistema será capaz de poner en marcha otro generador. Este arranque según la normativa está previsto para un máximo de 15 segundos con la sincronización y los grupos de carga.

Una planta diésel eléctrica cuenta con las siguientes pérdidas:

La potencia que ofrece el alternador tras las pérdidas será la siguiente:

$$P_{generador} = P * 0.913 = 4200 * 0.913 = 3834.6 \text{ kW}$$

Se tiene que tener en cuenta, que la condición más desfavorable como se ha explicado previamente será la condición de elevación del buque, lo que quiere decir, que, durante otras situaciones, el buque tendrá la mayor parte de los motores en STAND-BY y tendrá mucha reserva de potencia.

• % de carga a los que se somete cada generador según la condición de trabajo del buque:

					%CARGA					
			CON	SUMO	GENERADOR 1	GENERADOR 2	GENERADOR 3	GENERADOR 4	GENERADOR 5	GENERADOR 6
PUEI	RTO AMARRA	NDO	184	14,4	49	STAND-BY	STAND-BY	STAND-BY	STAND-BY	STAND-BY
PUE	ERTO CARGAN	IDO	615	54,8	81	STAND-BY	STAND-BY	81	STAND-BY	STAND-BY
	NAVEGACIÓN	ı	106	45,2	93	93	STAND-BY	93	STAND-BY	STAND-BY
	ELEVACIÓN		192	50,4	84	84	84	84	84	84
MON	Taje- instal	ACIÓN	644	10,4	84	STAND-BY	STAND-BY	84	STAND-BY	STAND-BY
CAR	IGA EN ALTA I	MAR	644	10,4	84	STAND-BY	STAND-BY	84	STAND-BY	STAND-BY

Como se puede comprobar, para la condición de navegación, no se cumple con la condición de la RPA del 85% de MCR como se explicó previamente (apartado 6.1). En este caso no se cumple debido a que el generador no proporciona la potencia que se indica en el catálogo, puesto que hay una serie de pérdidas. Para el cálculo de la potencia de todas las condiciones se ha supuesto un 20% de margen, y estas pérdidas irían incluidas en ese

apartado, de manera que la carga de los generadores para las condiciones de trabajo calculadas, se ajustarán más a la carga que se calculó en el apartado 6.1

 % de reserva de potencia de cada generador y % de reserva de potencia total de todos los generadores. Se indica también la reserva total en kW de todos los generadores.

			PICK-UP DISPONIBLE					RESERVA		
	CONSUMO	GENERADOR 1	GENERADOR 2	GENERADOR 3	GENERADOR 4	GENERADOR 5	GENERADOR 6	RESERVA %	POTENCIA kW	
PUERTO AMARRANDO	1844,4	51	STAND-BY	STAND-BY	STAND-BY	STAND-BY	STAND-BY	51	2235,024	
PUERTO CARGANDO	6154,8	19	STAND-BY	STAND-BY	19	STAND-BY	STAND-BY	38	1665,312	
NAVEGACIÓN	10645,2	7	7	STAND-BY	7	STAND-BY	STAND-BY	21	920,304	
ELEVACIÓN	19250,4	16	16	16	16	16	16	96	4207,104	
MONTAJE- INSTALACIÓN	6440,4	16	STAND-BY	STAND-BY	16	STAND-BY	STAND-BY	32	1402,368	
CARGA EN ALTA MAR	6440,4	16	STAND-BY	STAND-BY	16	STAND-BY	STAND-BY	32	1402,368	

• % de reserva de potencia de los generadores que están en la condición de STAND-BY, y la potencia de reserva en kW de los mismos.

				PICK-UP DISPONIBLE					RESERVA		
	cor	NSUMO	GENERADOR 1	GENERADOR 2	GENERADOR 3	GENERADOR 4	GENERADOR 5	GENERADOR 6	RESERVA %	POTENCIA kW	
PUERTO AMARRANDO	1	844,4	0	100	100	100	100	100	500	21912	
PUERTO CARGANDO	6	154,8	0	100	100	0	100	100	400	17529,6	
NAVEGACIÓN	10	1645,2	0	0	100	0	100	100	300	13147,2	
ELEVACIÓN	19	1250,4	0	0	0	0	0	0	0	0	
MONTAJE- INSTALACIÓN	6	440,4	0	100	100	0	100	100	400	17529,6	
CARGA EN ALTA MAR	6	140,4	0	100	100	0	100	100	400	17529,6	

• % de reserva de potencia total (PICK-UP+STAND-BY) y se muestra la potencia en kW de reserva.

CONDICIÓN	% RESERVA	RESERVA (kW)
PUERTO AMARRANDO	551	24147,02
PUERTO CARGANDO	438	19194,91
NAVEGACIÓN	321	14067,50
ELEVACIÓN	96	4207,10
MONTAJE- INSTALACIÓN	432	18931,97
CARGA EN ALTA MAR	432	18931,97

Como se puede comprobar, la situación de carga que se ha considerado como la de mayor demanda, es la de elevación, que tendría una reserva de potencia relativamente baja en comparación con otras condiciones de operación. Para el resto de las condiciones de

operación del buque, se tiene mucha reserva de potencia ya que el buque no estaría operando en las condiciones de mayor demanda.

La potencia de reserva de cada situación será suficiente como para afrontar una demanda de potencia mayor a la estimada en cada una de ellas.

Estas reservas de potencia son las calculadas con el rendimiento del generador supuesto del 0'913 indicado al principio de este apartado, de manera que la reserva de potencia será un poco mayor puesto que ese rendimiento de alguna manera ya se ha tenido en consideración cuando se sobredimensionaron las potencias de cada condición, de manera que la reserva para cada condición será algo superior a la que se ha calculado.

7 SISTEMA DE CABLEADO

En este apartado se realizará el cálculo del sistema de cableado que se instalará en el buque.

Los cables que se instalarán tendrán las siguientes características:

- CONDUCTOR
- Cobre recocido de clase 2 IEC 60228
- AISLAMIENTO
- Polietileno Reticulado libre de halógenos (HF XLPE) IEC 60092-351
- RECUBRIMIENTO INTERNO
- Poliolefina termoplástica, libre de halógenos
- CUBIERTA EXTERIOR
- Poliolefina termoplástica, libre de halógenos (SHF1) IEC 60092-359

El XLPE es polietileno reticulado, y presenta una reducida deformación frente al aumento de temperaturas, permitiendo hasta aproximadamente 90°C y su aislamiento podrá soportar 10°C más. Este tipo de cables, tienen propiedades mecánicas y eléctricas óptimas y permiten espesores menores que los del etileno reticulado.

Si estos cables van situados a locales húmedos o están a la intemperie, deberán tener una cubierta impermeable o estanca.

7.1 Tipología y Dimensionado de Cables

Se recuerda la tensión del cuadro principal con su poder de corte correspondiente indicado en "3.1 Frecuencia y Tensión":

Total installed alternator power	Voltage	Breaking capacity of CB
< 10 – 12 MWe	440 V	100 kA
(and: Single propulsion motor < 3,5 MW)		
< 13 – 15 MWe	690 V	100 kA
(and: Single propulsion motor < 4,5 MW)		
< 48 MWe	6600 V	30 kA
< 130 MWe	11000 V	50 kA

 $Voltaje_{Cuadro.pral} = 6600V$

 $Capcidad\ de\ corte = 30\ kA$

Para conocer la sección de los cables, es necesario conocer la intensidad que demanda cada consumidor. Para el cálculo de las intensidades, se utiliza la siguiente tabla:

Máquina	Corriente [kA]	Leyenda
Alternador		P _r : Potencia [kW]
	$P_r / (\sqrt{3} * U_r * \cos \varphi_{instal})$	U _r · Voltaje [V] cos φ: Factor de Potencia de la instalación (= 0.9)
Transformador	S _r / (√3 * U _r)	S, Potencia Aparente[kVA] U, Voltaje [V]
Motor controlador por		P _r : Potencia [kW]
Variador de Potencia	P_r / ($\sqrt{3}$ * U_r * COS φConvertidor* ηMotor *ηConvertidor)	U, Voltaje [V] $\cos \phi$: Factor de potencia del $Convertidor$ (típico= 0.95) η_{Motor} : típico= 0.96 $\eta_{Convertidor}$: típico= 0.97
Motor		P _r : Potencia[kW]
(Arranque: Directo, Υ/Δ, Arrancador suave)	$P_r/(\sqrt{3} * U_r * cos\phi_{Motor}$ * η_{Motor}	U; Voltaje [V] $\cos \varphi$: Factor de potencia del Motor (típico= 0.850.90) η_{Motor} : típico = 0.96

Se utilizará la siguiente fórmula:

$$I_{abs} = \frac{P_{abs}}{raiz(3) * U * \cos(\varphi)}$$

Se utilizará un coseno de phi normalizado de 0,9.

La intensidad obtenida con esta fórmula será la intensidad absorbida por cada consumidor.

A continuación, se muestran las secciones normalizadas para intensidades absorbidas, según la siguiente tabla:

Table J6 Rating of c	ables with	temperat	ure class 9	0°C			
Nominal		-		rrent rating		-0.00	
cross-section (mm2)				erature 45°C)			
	Single	e-core		2-core	3 or 4-core		
1		18		15		13	
1.5		23		20		16	
2.5		30		26		21	
4		40		34		28	
6		52		44		36	
10		72		61		50	
16		96		82		67	
25		127		108	89 110		
35		157		133			
50		196		167		137	
70		242		206		169	
95		293		249		205	
120		339		288		237	
150		389		331		272	
185		444		377		311	
240		522		444	365		
300		601		511		421	
	DC	AC	DC	AC	DC	AC	
400	690	670	587	570	483	469	
500	780	720	663	612	546	504	
600	890	780	757	663	623	546	

- Se utilizarán cables con un núcleo de 3 cables.
- No se utilizarán secciones superiores a 120 mm²
- En casos en los que sea necesaria una sección mayor a la indicada, se dispondrán varios cables de no más de dicha sección que sean capaces de soportar entre todos la intensidad absorbida total de dicho consumidor.

A continuación, se muestran los cálculos:

Cuaderno 11: Planta Eléctrica y Distribución Antonio Melo Bello-OFFSHORE JACK-UP INSTALLATION VESSEL-Proyecto 1929-28

	CARACT	CARACTERÍSTICAS			CARACTERÍSTICA		CABLES										
SERVICIO	Nº INTALADO	P. Ca.	ÚTIL	P_UNITARI	P_abs	P_total N*P_abs	TENSIÓN	TENSIÓN F.D.P CORRIENTE (A) CURRENT RATING (3-4 CORE) CORRIENTE/CURRENT RATING SECCIÓN (mm²2) № CABLES NOMENCLATI									
			One	- "	1_003	11 1 303	ILIOION	1.0.1	COMMENTE (A)	conterviornio (5 4 conte)	connent y connent to third	Section (mm 2)	N- CADLES	HOMENEDATOR			
SERVICIO DE PROPULSIÓN		1	1 1		1 1												
AZIMUTALES DE POPA	4	-	-	-	2050	8200	6600	0,9	797,0155231	237	3,362934697	120	4	4/3x120			
BOW TUNNEL THRUSTERS	3	-	-	-	1475	4425	6600	0,9	430,0967914	169	2,544951429	70	3	3/3x120			
SISTEMA DE REFRIGERACIÓN		1	1 1														
BOMBA DE ACCIONAMIENTO MECÁNICO L.T	6	-	-	-	-		690	0,9									
BOMBA DE ACCIONAMIENTO MECÁNICO H.T	6	-	-	-	-	-	690	0,9									
BOMBA DE AGUA SALADA	6	-	29,5	0,983	30,0101729	180,0610376	690	0,9	167,4046515	89	1,88095114	25	2	2/3x25			
SERVICIO DE LUBRICACIÓN																	
BOMBA DE CEBADO DE ACEITE	6	-	1,35	0,96	1,40625	8,4375	690	0,9	7,844433005	13	0,603417923	1	1	1/3x16			
SEPARADOR DE ACEITE	2	-	12	1	12	24	690	0,9	22,31305388	13	1,71638876	1	2	2/3x1			
SERVICIO DE COMBUSTIBLE																	
BOMBA DE TRASIEGO DE COMBUSTIBLE	6	-	2,4	0,85	2,82352941	16,94117647	690	0,9	15,75039098	13	1,211568537	1	2	2/3x1			
BOMBA DE ALIMENTACIÓN	6	-	0,7	0,85	0,82352941	4,941176471	690	0,9	4,593864034	13	0,353374156	1	1	1/3×1			
SERVICIO DE AIRE DE ARRANQUE																	
COMPRESOR DE AIRE	2	-	45	1	45	90	690	0,9	83,67395206	89	0,940156765	25	1	1/3x6			
SERVICIO DE SENTINAS																	
BOMBA DE SENTINAS	4		19	0,97	19,5876289	78,35051546	690	0,9	72,84330305	89	0,818464079	25	1	1/3x25			
								<u> </u>			·						
SERVICIO DE AGUA DE LASTRE																	
BOMBA DE LASTRE	2	-	65	0,993	65,4582075	130,9164149	690	0,9	121,7143758	137	0,888426101	50	1	1/3x50			
	-			-,555	,	,	-50		, 240730	-3/	-your - EVAVA		•	-, 3530			
GRÚAS																	
GRÚA PRINCIPAL	1				4000	4000	6600	0,9	388,7880601	205	1,896527122	95	2	2/3x95			
GRÚA PRINCIPAL GRÚA AUXILIAR	1	-	-	-	750	750	6600	0,9	72,89776126	89	0,819075969	25	1	2/3x95 1/3x25			
TAULAUA AUAD	1	-	-	-	/30	730	0000	6,0	72,037/0120	93	0,0130/3909	25	1	1/ 28C)			
EQUIPOS DE MANTENIMIENTO																	
EQUIPUS DE MANTENIMIENTO TALADRO	2				1	2	230	0,9	5,57826347	13	0,42909719	1	1	1/3x1			
GRUPO DE SOLDADURA	2	-		-	8,5	17	230	0,9	47,4152395	50	0,42909719	10	1	1/3x1 1/3x10			
TORNO	2	-		-	3,5	7	230	0,9		21	0,94830479	2,5	1				
TORNO RECTIFICADORA	2	-	-	-	3,5	2	230	0,9	19,52392215 5,57826347	13	0,929710578	2,5	1	1/3x2,5 1/3x1			
RECTIFICADORA	2	-	+ -	-	1		230	0,9	3,376Zb347	15	0,42909/19	1	1	1/ 5X1			

	CARACT	TERÍSTICAS			CARACTERÍSTIC	AS					CABLES			
SERVICIO	Nº INTALADO		P_UNITARIA			P_total		CABLES						
	Nº INTALADO	P. Ca.	ÚTIL	η	P_abs	N*P_abs	TENSIÓN	F.D.P	CORRIENTE (A)	CURRENT RATING (3-4 CORE)	CORRIENTE/CURRENT RATING	SECCIÓN (mm^2)	Nº CABLES	NOMENCLATURA
ILUMINACIÓN														
ZONA INF. CUB PRINCIPAL	1	-	22,037	1	22,037	22,037	230	0,9	61,46409605	67	0,917374568	16	1	1/3x16
EXTERIOR	1	-	101,333333		101,333333	101,3333333	230	0,9	282,6320158	169	1,672378792	70	2	2/3x70
HABILITACIÓN	1	-	22,64576	1	22,64576	22,64576	230	0,9	63,16200788	137	0,461036554	50	1	1/3x50
NAVEGACIÓN	1	-	28,1	1	28,1	28,1	230	0,9	78,37460176	89	0,880613503	25	1	x/3x25
INSTALACIÓN	1	-	0,75	1	0,75	0,75	230	0,9	2,091848801	13	0,160911446	1	1	1/3x1
EMERGENCIA	1	-	17,4866093	1	17,4866093	17,48660933	230	0,9	48,77245703	50	0,975449141	10	1	1/3x10
EQUIPOS DE NAVEGACIÓN, COMUNICACIONES Y ELECTRÓNICA														
EQUIPOS DE RADIO	1	-	5	1	5	5	230	0,9	13,94565868	16	0,871603667	1,5	1	1/3x1,5
EQUIPOS DE NAVEGACIÓN	1	-	6	1	6	6	230	0,9	16,73479041	21	0,796894781	2,5	1	1/3x2,5
AUTOMATIZACIÓN	1	-	5	1	5	5	230	0,9	13,94565868	16	0,871603667	1,5	1	1/3x1,5
SERVICIO DE AGUA SANITARIA														
BOMBA DE SUMINISTRO	2	-	15	0,932	16,0944206	32,1888412	690	0,9	29,92630617	36	0,831286283	6	1	1/3x6
BOMBA DE CIRCULACIÓN A.F	1	-	2,5	0,97	2,57731959	2,577319588	690	0,9	2,396161285	13	0,184320099	1	1	1/3×1
BOMBA DE CIRCULACIÓN A.C	1	-	1,2	0,97	1,2371134	1,237113402	690	0,9	1,150157417	13	0,088473647	1	1	1/3x1
CALENTADOR	1	-	60	1	60	60	690	0,9	55,7826347	67	0,832576637	16	1	1/3x16
POTABILIZADORA	1	-	3	1	3	3	690	0,9	2,789131735	13	0,214548595	1	1	1/3x1
PLANTA TAR	1	-	3,3	1	3,3	3,3	690	0,9	3,068044909	13	0,236003455	1	1	1/3x1
SERVICIO CONTRAINCENDIOS	1	<u> </u>		ı			ı		ı	· · · · · · · · · · · · · · · · · · ·				
BOMBA CI	3	-	55	0,983	55,9511699	167,8535097	690	0,9	156,0551836	205	0,761244798	95	1	1/3x95
BOMBA CI EMERGENCIA	1	-	13,8	0,965	14,3005181	14,30051813	690	0,9	13,29534299	67	0,198437955	16	1	1/3x16
SISTEMA DE ELEVACIÓN														
GRUPO HIDRÁULICO	1	-	-	-	3280	3280	6600	0,9	318,8062092	205	1,55515224	95	2	2/3x95
SERVICIO DE VENTILACIÓN DE CÁMARA DE MÁQUINAS Y AIRE AC														
VENTILADORES CM	2	-	75	1	75	150	690	0,9	139,4565868	169	0,825186904	70	1	1/3x70
SERVICIO AC	1	-	215	1	215	215	690	0,9	199,8877744	110	1,817161585	16	2	2/3x16
EQUIPOS DE CUBIERTA														
CHIGRES	6		60	1	60	360	690	0,9	334,6958082	137	2,443035097	50	3	3/3x50
MOLINETES	2		75	1	75	150	690	0,9	139,4565868	169	0,825186904	70	1	1/3x70

SERVICIO	CARACTI	CARACTERÍSTICAS			ARACTERÍSTIC	AS					CARLES			
		P. Ca.	P_UNITARIA			P_total	CABLES							
	№ INTALADO		ÚTIL	η	P_abs	N*P_abs	TENSIÓN	F.D.P	CORRIENTE (A)	CURRENT RATING (3-4 CORE)	CORRIENTE/CURRENT RATING	SECCIÓN (mm^2)	Nº CABLES	NOMENCLATURA
EQUIPOS DE FONDA Y HOTEL														
COCINA	4	-	-	-	2	8	230	0,9	22,31305388	28	0,796894781	4	1	1/3x4
HORNO	4	=	-	-	2,2	8,8	230	0,9	24,54435927	28	0,87658426	4	1	1/3x4
LAVAPLATOS	2	-	-	-	2,2	4,4	230	0,9	12,27217963	16	0,767011227	1,5	1	1/3x1,5
MICROONDAS	2	=	-	-	1,5	3	230	0,9	8,367395206	13	0,643645785	1	1	1/3x1
CAFETERA	6	=	-	-	3	18	230	0,9	50,20437123	67	0,749318974	16	1	1/3x16
FREIDORA	2	=	-	-	5	10	230	0,9	27,89131735	28	0,996118477	4	1	1/3x4
FRIGORÍFICO	4	=	-	-	0,35	1,4	230	0,9	3,904784429	13	0,300368033	1	1	1/3x1
PLANCHA	2	=	-	-	5	10	230	0,9	27,89131735	28	0,996118477	4	1	1/3x4
GRUPO DE PLANCHADO Y DOBLADO	2	-	-	-	5	10	230	0,9	27,89131735	28	0,996118477	4	1	1/3x4
PELAPATATAS	1	=	-	-	1,1	1,1	230	0,9	3,068044909	13	0,236003455	1	1	1/3x1
PARRILLA	1	-	-	-	2	2	230	0,9	5,57826347	13	0,42909719	1	1	1/3x1
BATIDORA	3	=	-	-	1,85	5,55	230	0,9	15,47968113	16	0,967480071	1,5	1	1/3×1,5
MÁQUINA DE HIELO	2	=	-	-	2	4	230	0,9	11,15652694	13	0,85819438	1	1	1/3x1
AMASADORAS	1	-	-	-	1,1	1,1	230	0,9	3,068044909	13	0,236003455	1	1	1/3x1
MONTAPLATOS	1	=	-	-	0,287	0,287	230	0,9	0,800480808	13	0,061575447	1	1	1/3x1
ASCENSOR	1	-	-	-	25	25	230	0,9	69,72829338	89	0,783463971	25	1	1/3x25
TELEVISOR	100	-	-	-	0,4	40	230	0,9	111,5652694	137	0,814345032	50	1	1/3x50
LAVADORA	8	-	-	-	2,2	17,6	230	0,9	49,08871854	50	0,981774371	10	1	1/3x10
SECADORA	4	-	-	-	0,6	2,4	230	0,9	6,693916165	13	0,514916628	1	1	1/3x1
														1

8 OTROS COMPONENTES

Para la planta eléctrica de un buque son necesarios más elementos de los mencionados previamente, de modo que se necesitarán los siguientes elementos:

8.1 Transformadores

Los transformadores son utilizados para aquellos sistemas en los que la tensión de funcionamiento es menor que la nominal de la instalación de fuerza.

La instalación del buque ha sido diseñada para 50 Hz, en caso de añadir algún aparato que solo pueda trabajar a 60 Hz, se tendrá que disponer de un convertidor de frecuencia para poder trabajar.

Se dispondrá de 4 transformadores de 6600V/690V a 50 Hz situados en la cámara de azimutales. Teniendo en sus proximidades los azimutales y la grúa principal.

Se dispondrán de 4 transformadores en la cámara de cuadros eléctricos situados a proa de las cámaras de máquinas. Dos de estos transformadores serán de 6600V/690V a 50Hz para los sistemas del buque, y otros dos transformadores de 690V/230V a 50 Hz que serán para los aparatos electrónicos que se puedan utilizar en la habilitación.

Se dispondrá de rectificadores para convertir la corriente alterna en continua y también, convertidores que transformen la corriente continua en alterna.

Los trasformadores serán de tipo marino, protegidos contra el goteo y salpicaduras.

8.2 Cuadros de Distribución

El sistema eléctrico tendrá dos cuadros principales de 6600V(uno por cámara de máquinas) y se dispondrá de otro cuadro de baja tensión de 690V. Se dispondrá de un cuadro de emergencia.

El cuadro principal de 6600V es el que recibe la potencia directamente de los generadores, y puede acoplarlos haciendo que estos funcionen en paralelo.

El generador de emergencia como se ha explicado previamente irá situado en la cubierta principal alojado en un local de emergencia en la superestructura. El accionamiento de los circuitos se podrá realizar desde el cuadro principal, pero siempre pasando por el de emergencia.

Aquellos cables que sean para emergencia situados fuera del espacio de maquinaria no deberán pasar por las cámaras de máquinas.

Se instalarán tomas de corrientes para permitir la conexión del buque a tierra, con un panel de emergencia a cada banda.

Los cuadros de distribución trabajarán a 50 Hz, y sus tensiones serán de 6600V, 690V y 230V.

8.3 Protecciones de la Planta Eléctrica

En una planta eléctrica es necesario asegurar la protección tanto de los equipos como de las personas en caso de fallos. Para estas protecciones se utilizan dispositivos de protección y relés.

El sistema de protección y sus parámetros dependen de la configuración de la planta y los requisitos de operación. Es necesario que todos los dispositivos de selectividad y protección tengan una coordinación con el fin de obtener un buen ajuste de los parámetros y poder actuar de la manera más adecuado en cada tipo de fallo.

Los motores generadores, como se ha indicado previamente, tendrán un poder de corte de 30kA, y se deberá incluir una protección contra cortocircuitos, sobrecargas, bajo voltaje...

El alternador también deberá estar dotado de diversas protecciones, como pueden ser:

- Sobrecargas
- Sobre voltaje
- Bajo voltaje
- Potencia inversa
- Etc.

Según en la zona en la que se sitúen los elementos, deberán tener unos grados de protección IP, estos grados de protección vienen especificados en la sociedad de clasificación:

DNV Part 4 Charter 8 Section 10

Table 1 Enclosure types in relation to location

Location	cation		Luminaries	Rotating machines	Heating appliances	Socket outlets	Miscellaneous such as switches and connection boxes	Instrumentation and communication components
Engine and boiler rooms	Above the floor ¹⁾	IP 22	IP 22	IP 22	IP 22	IP 44	IP 44	IP 44
15)	Below the floor	N	IP 44	IP 44	IP 44	N	IP 44	IP 55
Dry control ro switchboard re		IP 20	IP 20	IP 20	IP 20	IP 20	IP 20	IP 20
Navigation bri room, control		IP 2X	IP 2X	IP 2X	IP 2X	IP 2X	IP 2X	IP 2X
Closed compa fuel oil and lul separators		IP 44	IP 44	IP 44	IP 44	N	IP 44	IP 44
Fuel oil tanks	2)	N	N	N	N	N	N	IP 68
Ballast and ot bilge wells ²⁾	her water tanks,	N	N	IP 68	IP 68	N	N	IP 68
Ventilation du	cts ¹³⁾	N	N ¹³⁾	IP 44 ¹³⁾	N	N	N	13)
Deckhouses, f spaces, steeri compartments spaces	ng gear	IP 22 ³⁾	IP 22	IP 22 ³⁾	IP 22	IP 44	IP 44	IP44
below main de	similar rooms	IP 44 ¹⁴⁾	IP 34	IP 44 ¹⁴⁾	IP 44	IP 55 ⁵⁾	IP 55 ⁵⁾	IP 55 ⁵⁾
Cargo holds, l tunnels ⁴⁾	keel ducts, pipe	IP 55 N	IP 55	IP 55	N	IP 55 ⁵⁾	IP 55 ⁵⁾	IP 56 ⁵⁾
Open deck, ke	eel ducts	IP 56	IP 55	IP 56 ⁶⁾	IP 56	IP 56 ⁵⁾	IP 56 ⁵⁾	IP 56
welding gas b areas that ma	s, paint stores, ottle stores or y be hazardous go or processes	EX ¹²⁾	EX ¹²⁾	EX ¹²⁾	EX ¹²⁾	EX ¹²⁾	EX ¹²⁾	EX ¹²⁾
Dry accommo	dation spaces	IP 20	IP 20	IP 20	IP 20	IP 20	IP 20 ⁸⁾	IP 20
Bath rooms ar	nd showers	N	IP 34 ¹¹⁾	N	IP 44	IP 55 N ⁹⁾	IP 55 ¹¹⁾	IP 55 ¹¹⁾
Galleys, laund rooms ¹⁰⁾	lries and similar	IP 44	IP 34	IP 44	IP 44	IP 44	IP 44	IP 55

9 DIAGRAMA UNIFILAR

En el diagrama unifilar se muestran los generadores y los diferentes equipos que irán instalados en el buque.

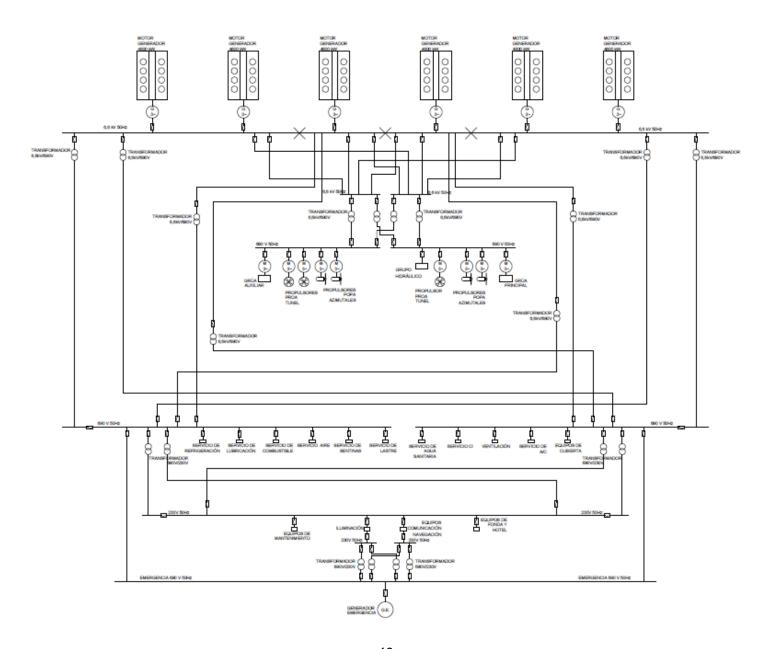
En el buque se diferencian los siguientes servicios, en cuanto a su importancia:

- Servicios Esenciales: Son aquellos servicios esenciales para la propulsión. Estos servicios tienen preferencia al resto y estarán alimentados directamente desde los bornes de los generadores, sin situar ningún interruptor automático.
- Servicios NO Esenciales: Son aquellos que su funcionamiento no afecta al sistema propulsivo, de manera que un fallo en estos equipos no afectaría en la navegabilidad del buque.
- Servicios de Emergencia: Son los servicios necesarios en caso de emergencia, algunos de esos servicios han sido explicados previamente. Pueden ser alimentados tanto por el generador de emergencia, como por los generadores principales con un conmutador instantáneo.

En el esquema se diferencian las tensiones que se han mencionado previamente:

- 6600V; Para consumidores como los motores eléctricos principales y equipos del buque.
- 690V; Equipos restantes del buque.
- 230; Equipos como son el alumbrado, comunicaciones, navegación...

La distribución deberá garantizar la continuidad de servicio con etapas de potencias segregadas. Los generadores están repartidos en secciones y cada sección dispone con un embarrado y posibilidad de ser interconectadas ambas secciones si fuera necesario, esto quiere decir, que el suministro es redundante.


9.1 Descripción del Diagrama

Los generadores producen energía eléctrica a un 6600V y 50Hz, esta energía eléctrica es llevada hasta los cuadros principales de 6600V, y de este cuadro se llevará a los consumidores. En este caso, los cuadros principales suministran la energía eléctrica hasta los transformadores que convertirán los 6600V a 690V para que puedan funcionar los diferentes sistemas del buque, estos sistemas estarán indicados en el diagrama.

Grandes consumidores de potencia, como pueden ser los propulsores de popa, la grúa auxiliar... llevarán transformadores en sus proximidades para poder suministrar esta potencia sin tener secciones de cable excesivamente grandes, puesto que, al disminuir la tensión de suministro, se aumentará la sección del cable, y con ello, las pérdidas.

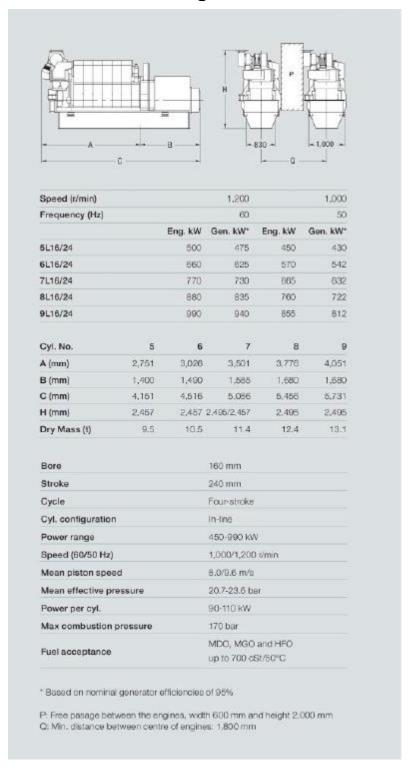
Se dispondrá de otros transformadores para pasar de 690V a 230V, con el fin de alimentar la fonda y hotel, la iluminación, equipos de navegación y comunicaciones y los equipos de mantenimiento.

Se dispone de un cuadro de emergencia al que irá conectado el generador de emergencia, a 690V, con un transformador que será el encargado de pasar de esos 690V a 230V, y a esta tensión, irán conectados los servicios esenciales exigidos por la norma explicada previamente. El cuadro de emergencia va conectado al cuadro de 690V como se verá en el diagrama expuesto a continuación:

10 ANEXO

10.1 Cálculo de Coeficientes

Cuaderno 11: Planta Eléctrica y Distribución Antonio Melo Bello-OFFSHORE JACK-UP INSTALLATION VESSEL-Proyecto 1929-28


	самастийског	as .	CARACTERÍSTICA	II.		PURTO AMERIANDO CAMICTORÍO			PURITO CARGANDO			navención			BUNICÓN			MONTAIN RETALACIÓN			CAMGA. III	N ALTA MAN CARACTERÍSTICA			- IMPAGES	ica.
MANGO	NEROMANO	F.Ga.	η P,664	F366	NF ON	(hose) P_sensos is	le le	AFON Albert	e) P_service %	w w	NYON	Nhasa Pjevala	bs by bur	N/ CN	Niheraci P_sension	is is is	MF ON	Alberta) P. sevene 1	is in he	NTON	N(hote) P.o			MON	Albania) P_service	in is in
ADMITTALES DE POPIS. ROW TARRIS, THREATIES.	1		- 200		1	4 260 0,3666 4 6425 0,3666	E7 0,2 QUINNER E7 1 Q3666667	0 0	0 0	0 0	4	34 K000	1 1 1	3	26 8000 26 6625	1 1 1	0	0 0	0 0 0	0	0	0 0	0 0	0	0 0	0 0
IN TEAM, DE REFRICIALICÓN BOMBA DE ACCIDAMMENTO MECÁNICO LT			- -	-		24					-	26 -			26 -		-	24 -			36				26 -	
ROMBA DE ACCIONAMENTO MECÂNICO H. T ROMBA DE ACUA SALADA		26.5	965 30,000,709	200,0003376		36 4 130,00000 0,38600	er quanter quanti	2 0	90,000009 0	d'mmm a	4	36 335,040040	1 C,00000007 C,000000		24 -	1 1 1	-	24 - 24 336,00080	1 C-00000007 C-0000000	e 4	36 130)	 page 1 0			0 0	0 0
SENICIO DE SUBRICACIÓN SOMBA DE CERADO DE ACETE SEPARADOR DE ACETE	6 2	- 1,8 (1 12	8,60% 26	4 2	4 5,675 0,3866 4 36 0,3866	E7 QMMMME7 Q11111111 E7 1 Q1666667	2 0 2 0	2,8125 0	4,mmm 0	4 2	н 1,425	1 Comment Commen	2 4	24 A,60%	1 1 1	4	24 1,625	1 C,0000007 C,000000	er 4	26 1		QMMMMET QMMMMET		0 0	0 0
MENOCO DE COMMUNTAMIA BOMBA DE TRANSCO DE COMMUNTAMIA						4 0 0,1466		0 0				8 11,29613N	C.3333333 C.0000007 C.22222		x 0	0,000000 0 0		s 0 0,00	MMM 0 0			o 0,00000	0 0	۰		
BOMBA DE ALMENTACIÓN		- 47	DACES OF SEC.	26/6012/607 4/6012/6073	4	4 1,2902395 0,38660	RT CAMMENT CITITIE	3 0	1,6470589 0		4	34 1,29022765	1 COMMENT COMME	4	24 ANGEMER	1 1 1	4	24 1,291176	2 C-00000007 C-0000000	4	26 1,29	NOINE 1 C	AMMONET CHARGE	0		4 4
COMPRESSION ARE	2		1 6	**	0	0 0 0	0 0	0 8	0 0,333333	0 0	2	4 10	0,3000007 3 0,300000	2	4 90	0,000007 1 0,000	0	0 0	0 0 0		0	0 0	0 0	0	0 0	0 0
ROMBA DE MATEMAS	4	- 10	Ler 14,5826289	76,000,046	2	4 99,270177 0,38669	87 Q.S. Q.SERIES	2 0	39,376,2077 0	6,5 0	2	24 36,175,0577	1 43 43	4	24 70,000,200	1 1 1	2	24 39,1752577	1 0,1 0,1		26 36,2	193877 1	0,0 0,0	0	0 0	0 0
REVICCO DE AGUA DE LASTRE BICAMA DE LASTRE	2	- 45 0	995 81,490075	18,0000	3	30 180/604EN 0,43868	er i quasser	0 10	0 0,6300000	0 0	1	10 61,410075	C-CLAMMET C, S C, 2000 CO	0	0 0	0 0 0		0 0			0	0 0	0 0	1	16 110,4164	125 6,75 1
GREEK PRINCH AL. GREEK ADRIGUES	1 1		- 400	400 740		0 0 0			4000 1 790 1		0	0 0	0 0 0	0	0 0	0 0 0	1	24 4000	1 1 1	1	26 4		1 1		0 0	a a
DUAPOLOS MINITOR MAINTO TRAJOSO	2			2	۰	2 0 6,0000		2 8	2 0,00000	1 0,000			6.11.1111 1 6.111111		x 0	0,000000 0 0		* 1 0,000	13333 O,5 C,200000	er 1		1 0,00000	4,5 Q,369869ET		0 0	
GRUPO DE ICILEACIMA. TORNO RECEPICACIMA	2		- 43 - 43 - 1	7	0 0	2 0 0,00000 2 0 0,00000 2 0 0,00000	11 0 0 11 0 0	2 8	2 0,00000 7 0,00000 2 0,00000	1 Q,000,000 1 Q,000,000 1 Q,000,000	2	8 7	Q.H.HIRES 2 Q.H.HIRES 2 Q.H.HIRES 2 Q.H.HIRES 2 Q.H.HIRES 2 Q.H.HIRES 2		x 0 x 0	0,0000000000000000000000000000000000000		8 43 6,00 8 43 6,00 8 1 6,00	12222 O.S. C.2000000 122222 O.S. C.2000000	07 1 07 1		re d'ammin	4,5 0,36666627 4,5 0,36666627 4,5 0,36666627		0 0	a a a
JORESHO ČN. JORA SIN. CUR PRINCIPAL													1 1 1		24 22,087			24 22,007 24 100,00000	_		ш		1 1			a a a
2014 DE CUE PERIODAL ECTEROR HAMILITACIÓN NAVIGACIÓN	1 1 1	22,66179	1 20,00000 1 20,00000 1 20,1	22,66179	1	26 22,007 1 26 20,0000 1 26 22,465% 1 26 26,1 1	1 1	1 26	23,687 1 0 1 22,663% 1			24 22,64076	1 1 1	1	26 22,66176	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		24 20,0000 24 20,0000 24 20,1	1 1 1	1	36 304, 36 33)	ACCTS 1			0 0	a a a
INSTANCION INSTANCIONI	1	- 476	1 0,75	0,75		36 0 1 0 0 0	0 0	0 36	0 1	0 0	0	24 0	1 0 0	1	26 0,75	1 1 1		24 0,75 0 0	1 1 1	3		0,76 1	1 1	0	0 0	0 0
EQUIPOS DE NAVISLACIÓN, COMANICACIONES Y ELECTRÓNICA. SOCIAPOS DE RACIO SOCIAPOS DE RACIO	1		1 1	1	1	26 S S 26 S S 26 S S	1 1	1 20	3 3	1 1	1	21 1	3 3 3 3 3 3 3 3 3	1	26 S	1 1 1	1	24 5 26 6 24 5	1 1 1	1	26	5 1	1 1	1	26 5	6,75 1 6,75 1 6,75 1
ARTOMATIKACIÓN	1				1	26 5 1	1 1	0 0	0 0	0 0					26 5	1 1 1					36	1	1 1	1	38 5	475 1
ROMBA DE CIRCULACIÓN A.P ROMBA DE CIRCULACIÓN A.P ROMBA DE CIRCULACIÓN A.C	1 1	- 23 ((812 24,0466206 2,47712868 2,47712868	13,100003 2,1770000 3,18710003 60	1 1	26 14,296030 1 26 2,3776399 1 26 1,377236 1	1 1	1 26	10,388812 1 2,0712888 1 1,277138 1	1 1	1	31 34,0940000 31 3,1775090 31 3,375331	1 48 48 1 1 1 1 1 1	1 1	24 2,57702000 24 1,2071184	1 65 6 1 1 1 1 1 1		24 16,086206 24 2,07712808 24 3,2871284	1 0,8 0,8 1 1 1 1 1 1	1	26 26,0 26 237 26 1,2	7752809 1			0 0	0 0
CASINFACOR POTABLUADORA PLANTA TUR	1 1	. 40	1 10	1 1,1	1	36 60 1 36 8 1 36 8,8 1	1 1	1 20	0 1		1	N 1	1 1 1 1 1 1	1 1	34 63	1 1 1	1	24 80 24 3 24 3,3	1 1 1	1	36	60 1 8 1	1 1 1 1		0 0	a a a
MACO CONTRACCINOS				20,0000											0											
ROBBACI IMPROPACIA	1	. 20,8	(ME) 24,000072	34,00800.737	0	0 0 0	0 0	0 0	0 0	0 0	a		0 0 0	0	0 0	0 0 0	0	a a .			0	0 0	0 0		0 0	0 0
окино накибилсо	1		. 330	200	0	0 0 0	0 0	0 0	0 0	0 0	0		0 0 0	1	26 3290	1 1 1	0	0 0	0 0 0		0	0 0	0 0	۰	0 0	0 0
VENTEADORS CM SERVICIO AC	4,	· 76	1 75	100	3	38 290 1 36 235 1	43 43 43	2 24 1 24	235 1	d'mmm d'mmm	1	21 75 21 225	1 0,0 0,0 1 0,00000 0,0000	4	26 800 26 285	1 1 1 1 0,000 0,000	2.	24 255 24 255	1 0,5 0,5 1 0,000000 0,000000	2 1	26 :	230 1	d'a d'a	0	0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CHORES CHORES		· 40	1 60	360		4 30 0,1666	E7 0,5 Q-0000000	0 0	0 0	a a	a			0	0 0	0 0 0		0 0			0	0 0	0 0	0	0 0	
MOUNTES.	2												0 0 0													
COCINAL HORNO LAVAPA YOR	4 4		- 2 - 13 - 13	4,4	2	38 0 1 38 0 1 38 44 1	0 0	0 26	4 1	0 0	2	26 4,6	1 1 1 1 1 1		36 0	1 0 0			1 0,1 0,1	1	36	4.4 1 2.3 1	4, 4, 4, 4,	0	0 0	a a a
MCMORALIS CAPITISMA PRICIONA	6 2		- 13 - 3	3 30 30	2 0	36 0 1 36 6 1 36 0 1	o o	4 26 0 26	3 1 12 1 0 1	Q.60000007 Q.60000007	2	н н	1 1 1	0	36 0 36 0	1 0 0	1	24 3 24 32 24 5	1 0,5 0,5	1	36 36 36	12 1 0		0		a a
PARIONA GRUPOSE PLANOAGOY DOBLADO	2 2		- 6,8 - 3	1,4 20 20	1	26 1,4 1 26 5 1 26 5 1	0,5 0,5 0,5 0,5	2 20	3,4 1 30 1 30 1	1 1	2	N 10	3 3 3 3 3 3 3 3 3	0	36 3,4 36 0 36 30	1 0 0	1	24 5	1 0,8 0,8	1	36 36	5 1 5 1	0,5 0,5	0	0 0	0 0
PREPARENA PARRILA BARRODRA	1 1 2		- 1,1 - 2 - 1,86	1,1 2 1,88	0	36 0 1 36 0 1 36 0 1	0 0	0 24	0 1 0 1 0 1	0 0	1	34 2 34 3,7	3 3 3 3 3 3	0 0	36 0 36 0	1 0 0 1 0 0 1 0 0	1	24 2 24 3,85	1 1 1 1 1 1 1 0,0000000 0,0000000	1 1	36 36 36 3	2 1 1,85 1 0	1 1 1 1		0 0	a a a a a a a a
MIĞQURA DE HELD AMMADOMAN MONTAPLATOR	1		- 2 - 1,1 - 0,387	4 3,1 0,007	0	36 2 1 36 1,1 1 36 0 1	0 0	1 20	0 1 0,807 1	1 1	1	34 1,1 34 0,367	3 3 3 3 3 3 3 3 3	0	26 6 26 0	1 0 0	1	24 4 13 24 24 25 24 25	1 1 1	1	36 36 4	1,1 1	1 1 1 1		0 0	0 0
ASCRAGA TESTIFICA LEVISORA	1 200 8		- 26 - 0,6 - 1,2		4	36 28 1 36 162 1 26 8,8 1	4,H 4,H	1 26 10 26 4 26	26 1 20 1 8,8 1	1 1 03 03 03 03	1 m	34 36,4 34 31,4	1 1 1 1 08 08 1 085 085	4	34 0 34 16,3 34 8,8	1 0,88 0,8 1 0,88 0,9	1 11	N 102	1 03 03	11		10.2 1 30.8 1	1 1 q.n q.n q,1 qs		0 0	0 0
SECRODIA	4		- 0,6	2,4	1	34 1,3 1	0,8 0,8	3 36	32 1	es es	1	36 1,6	1 97 97	3	31 3,3	1 46 4		24 1,2	3 03 03	1	36	U I	4,1 4,1	٠		a a
L							لـــــــــــــــــــــــــــــــــــــ																			

10.2 Cálculo potencia por condición

Cuaderno 11: Planta Eléctrica y Distribución Antonio Melo Bello-OFFSHORE JACK-UP INSTALLATION VESSEL-Proyecto 1929-28

CEDINA NORMO NORMO LIMINATION LIMINATION CAPTRIA PRECIONA P	BRATO MEDICALED BRATO MEDICALED WENTALEDORI DE CAMARI DE MINICIPARE E MEDICALED WENTALEDORI DE BRATOL DORI BRATOL DO ORBERT ANDRESS MODRESS	PARENCIA COM PARENCIA COM PARENCIA COM ROMBA CI ROMBA CI ROMBA CI SHIRINGIANCIA	ANTOMATONICON BOURA DE DIAMPITRO ROMA DE DIAMPITRO ROMA DE DIAMPITRO ROMA DE CINCILACIÓN A F ROMA DE CINCILACIÓN A C CAMPITRODO POTRESIDADOR	HARLINGON ANNEGADON INSTALACIÓN INSTALACIÓ	TELÉRIO GRAPOSI IGLIADAM 15080 NICTPICADOM ZOMA INI CLIA PROCEPIA. DOTINGOI	ROMB OF LETTE ORGA PRICIPAL ORGA ARRICANA	COMPRISON DE AME COMPRISON DE AME BOMBA DE MATRIMA BOMBA DE MATRIMA BOMBA DE MATRIMA	MP ANADON DE ACEPT MELATRICA BOMBA DE TRANSPOS DE COMBUSTERIA BOMBA DE ALMENTICIÓN BER ANABAGUE	ROMBA DE ACCIDAMENTO SELÁNDOL Y ROMBA DE ACCIDAMENTO SELÁNDOL Y ROMBA DE ACCIDAMENTO MUCÍNICO R.Y ROMBA DE AGUA SALADA ROMBA DE AGUA SALADA	MENICO CONTROL ADMITISTE DI POMI RON TARRE DI POMITIEI
4 4 2 2 4 4 2 2 4 4 1 1 1 1 1 1 1 1 1 1	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 3	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	4	a a	6 6	ANT INTALADO
		- 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	. 5 2 5 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	. 22,40% 3 22,40% 22,40	1 2	. 0.0 0,000 00,000000	- 65 1 65 10 - 13 6,67 10,0664 54,6031	- LIN 6.0 LININ 6.00 12 1 12 3 - AA 5,00 5,000 5,0000 5,0000 - 07 0,00 0,0000 (40130)	79,3 0,868 80,6007 560,6000	P_DOTERNA P_MAN OTS 7
**************************************	2 431 43 43 11 11 11 11 11 11 11 11 11 11 11 11 11	1 1 1 1 1 1,0 100% 70,000009	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 101 0 4 0 0 0 0 0 0 0 0 0 0 100 1 1 1 1 1 1 1 1	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 Q3NEN094 Q8888887 Q33333311 33,879884 T0082 33,879884	4 00000 1 00000
	2 2 4 4 4 4 4 4 4 4	** * * * * * * * * *	0 0 0 0 0 0 0 70166 S	1 1 1 1 2 24000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1,0000 1 1,0000 1,00000 1 1 1,0000 1,0000 1 1,	3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-	V DI
## 1	\$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\$ 1 1 1 20000 1 1 1 1 1 20000 2 0 0 0 0 0 2 0 0 0 0 TOTAL 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 (100000 1 1000000 1 10000000 2 1 10000000 1 10000000 1 10000000 1 1000000	1 (200000 0.1 (200000 12,005000 1 (2005000 1 (2005000 1 (2005000 1 (200500 1	2 (3000007) (300007) 1000. 1 (300007) 2 (4,7) (5 (5 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		COPPICIATION P_ANCISIANA
	1700. 1200 4 3 3 3 500 1 0,000000 3 0,000000 71,0000007 1700. 1700.	0 0 0 0 0 0 0 0 0 100 100 100 100 100 1	3 3 3 5 70554 38	1 1 1 1 1 2 2 24mm 1 1 1 1 1 2 23 1 1 1 1 1 1 2 23 1 1 1 1 1 1 2 2 24 2 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	935ML 0	101AL 25	2 1 3 3 3 38 TOTAL SAGES 0 0 0 0 0 0 6 3 3 1 4 6003M71 TOTAL ARCHART	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	### REPLICATION
1	2 439 43 43 79 3 4390000 1 43900002 74,666602 144,666602	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 00000 43 00000 0.000000 1 00000 50 00000 0.00000 1 00000 50 00000 1 00000 50 00000 1 00000 50 00000 0 00000 0 0 00000 0 00000 0 0 00000 1 1 1 1 0 00000 1 1 1 0 00000	100E 0	9 0 0 0 0 0 0 1 1994 2 2 427 53 53 53 135542897 11994 2 2 255555 2 255555 2 25555 2 25555 2 25555 2 25555 2 255555 2 25555 2 255555 2 255555 2 25555 2	1006 27/5		MONTAIN PRINCIPON P_MONTAIN
***	1		1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	1	1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 1 1 1 1 1 1 1 1 1		CONTROL CONT

10.3 Generador de Emergencia

10.4 Lista de Equipos

Cuaderno 11: Planta Eléctrica y Distribución Antonio Melo Bello-OFFSHORE JACK-UP INSTALLATION VESSEL-Proyecto 1929-28

			DISPOSICIÓN				SELE	CCIÓN		FLUJO				DATOS TÉRMICOS		POTENCIA	A MECANICA	POTER	ICIA ELÉCTRICA	
GRUPO	SERVICIO	NUMERO	ELEMENTO	CANTIDAD	MARCAS	CLASE	TIPO	MARCA Y MODELO (NOTA 3)	CAUDAL	ALTURA ELEVACIÓN	FLUIDO	DENSIDAD	POTENCIA CALEFACCION	POTENCIA REFRIGERACIÓN	FUENTE TERMICA	RENDIMIENTO MECÁNICO	POTENCIA MECÁNICA	RENDIMIENTO ELÉCTRICO	POTENCIA ELÉCTRICA UNITARIA	COMENTAR
								(NOTA 3)	m3/h	mca		kg/m3	KW	KW	TIPO		KW		Kwe	105
	PROPULSION POPA	26	Motor propulsor	4		Motor AC	Síncrono	ABB HIGH SPEED DRIVE 500 @900RPM				-					-	-	2050	
PROPULSION y GENERACION	PROPULSIÓN PROA	35	Motor propulsor	3		Motor AC	Síncrono	Wartsila WTT-16 1650kW				-					1650	0,95	1737	
	GENERACION	1	Grupo generador	6		Grupo generador	Diesel AC 50Hz	ROLLS-ROYCE BERGEN B33:45L7P 4200kW @720/750RPM		-	-		=		-	=	4800	0,97	4656	
		24	Bomba agua salada	6		Bomba	Centrífuga	MEGACPK 150-500 @ 960RPM	252,75	30	AGUA SALADA	1025				-	29,5	0,983	30,01	
	REFRIGERACION		Bomba agua dulce HT	6		Bomba	Mecánica	PROPIA DE LOS GENERADORES	84		AGUA DULCE	1000	-							
			Bomba agua dulce LT	6		Bomba	Mecánica	PROPIA DE LOS GENERADORES	55-99		AGUA DULCE	1000	-							4
																				4——
		2	Bomba lubricación	8		Bomba	Centrífuga	MegaCPK 040-25-160 @ 2900RPM	0,0024	40	ACEITE LUBRICANTE	900	-		-	-	1,1	0,97	1,35	
	3. LUBRICACION	3	Separador de aceite	3		Bomba	Centrifuga	ALFA LAVAL MAB 206	2,8	50	ACEITE LUBRICANTE	900		-			12,0	0,95	12,6	
		4	Filtro Dúplex	4		Filtro	Dúplex	AETON DWF 3005	113		ACEITE LUBRICANTE	900				-			0	
AUXILIARES DE LA	4. COMBUSTIBLE	5	Bombas trasiego combustible	6		Bomba	Engranajes	IMO ACE 3 032N @3550RPM	5,784	50	MDO	850	-	-		-	2,4	0,95	2,5	
PROPULSION		6	Bombas alimentación de combustible	8		Bomba	Engranajes	IMO ACE 3 032L @1770RPM	1,74	50	MDO	850					0,7	0,9	0,8	
																				4
																				4
																				-
																				_
																				$\overline{}$
	5. AIRE COMPRIMIDO	7	Compresor de aire de arranque	2		Compresor	Alternativo	BAUER KOMPRESSOREN 25,4-45 30BAR	171	500	Aire	=	=		=	=			45	
		8	Botella aire de arranque	4		Botella	2000 litros				Aire								-	

Cuaderno 11: Planta Eléctrica y Distribución Antonio Melo Bello-OFFSHORE JACK-UP INSTALLATION VESSEL-Proyecto 1929-28

	6. SENTINAS	9	Bomba de sentinas	4		Bomba	Centrifuga	MegaCPK 80-160 @2900RPM	152,65	30	AGUA SALADA	1025					19,0	0,97	19,6	
	7. LASTRE	10	Bomba de lastre	2		Bomba	Centrifuga	MegaCPK 150-400 @1450RPM	548.9	30	AGUA SALADA	1025	-				65,0	0.993	65.5	
	8. CONTRAINCENDIOS	20	Bomba de CI	3		Bomba Bomba	Centrifuga Centrifuga	MegaCPK 200-150-500 @1450RPM MegaCPK 65-40-250 @2900RPM	136 43.44	70 70	AGUA DULCE	1000					55,0 13.8	0,983 0.965	56,0 14.3	
		11	Bomba de CI Emergencia Bomba suministro	2		Bomba	Centrifuga	MegaCPK 65-40-250 @ 2900RPM MegaCPK 32-250 @ 2900RPM	43,44 32,47	70 69,1	AGUA DULCE	1000	-				13,8	0,965	14,3	
		12	 	1				MegaCPK 40-315 @ 1450RPM	4,4	26	AGUA DULCE		-			-	2,5	0,932	2,6	
			Bomba A.Fría			Bomba	Centrifuga					1000							-	-
	9. AGUA SANITARIA	13	Bomba A.Caliente	1		Bomba	Centrifuga	MegaCPK 25-160@ 2900RPM	2,1	26,2	AGUA DULCE	1000				-	1,2	0,97	1,2	.
		14	Calentador	1		Calentador	Eléctrico, acumulador		5,4		AGUA DULCE	1000			Electrica			1	60	
		16	Generador	1		Generador AD	Ósmosis inversa		10 t/día		AGUA DULCE	1000							3,3	
		15 22	Planta TAR Ventilador CM	1 4		Planta TAR Ventilador	Bioreactor Axial	DELTA STPN 2100 STIAVELLI	90 pax 180000		AGUAS NEGRAS AIRE	1000 1013							3,3 75,0	
	10. VENTILACIÓN Y AIRE	27	AC Y EXTACCIÓN	1		-	-	-	85500		AIRE	1013							215,0	
	ACONDICIONADO												-				-			
		28	Chigres	6															60	
	11. CUBIERTA	29	Molinetes	2															75	.
		30,1	COCINA	4															2	
		30,2	HORNO	4	-			-											2,2	
		30,3	LAVAPLATOS	2	-			-											2,2	
		30,4	MIRCOONDAS	2	-			-											1,5	
		30,5	CAFETERA	6	•			-											3	
		30,6	FREIDORA	2	-			-											5	
	12. HOTELY FONDA (30)	30,7	FRIGORÍFICO	2	•														0,35	
		30,8	PLANCHADO Y DOBLADO	2	-														5	
		30,10	PELAPATATAS	1	-			-											1,1	
AUXILIARES DEL BUQUE		30,11	PARRILLA	1	-														2	
		30,12	BATIDORA	3	-			-											1,85	
		30,13	MÁQUINA DE HIELO	2	-			-											2	
		30,14	AMASADORAS	1	-			-											1,1	
		30,15	MONTAPLATOS	1	-			-											0,287	
		30,16	ASCENSOR	1	-			-											25	
		30,17	TELEVISOR LAVADORA	100	-														2,2	
		30,18	SECADORA	4	-														0,6	
																			**	
		31,1	TALADRO	2															1	
	13. MANTENIMIENTO Y	31,2	GRUPO DE SOLDADURA	2															8,5	
	TALLERES (31)	31,3	TORNO	2															3,5	
		31,4	RECTIFICADORA	2															1	
	14. MANEJO DE LA CARGA	32 33	Grúa Principal Grúa Auxiliar	1				LIEBHERR MTC 78000 LIEBHERR MTC 2600-100						-		-			4000,0 750,0	
		34,1	EQUIPOS DE RADIO	1				SEPHENN MIL ZOUF 100											5,0	
	17. NAVEGACION, COMUNICACIONES Y ELECTRÓNICA (34)	34,2	EQUIPOS DE NAVEGACIÓN	1															6,0	
	ELECTRÓNICA (34)	34,3	AUTOMATIZACIÓN	1															5	
									Į		l .									