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Abstract

Domestic cattle were brought to Spain by early settlers and agricultural societies. Due to

missing Neolithic sites in the Spanish region of Galicia, very little is known about this process

in this region. We sampled 18 cattle subfossils from different ages and different mountain

caves in Galicia, of which 11 were subject to sequencing of the mitochondrial genome and

phylogenetic analysis, to provide insight into the introduction of cattle to this region. We

detected high similarity between samples from different time periods and were able to com-

pare the time frame of the first domesticated cattle in Galicia to data from the connecting

region of Cantabria to show a plausible connection between the Neolithization of these two

regions. Our data shows a close relationship of the early domesticated cattle of Galicia and

modern cow breeds and gives a general insight into cattle phylogeny. We conclude that set-

tlers migrated to this region of Spain from Europe and introduced common European breeds

to Galicia.

Introduction

Neolithization is the transition of human societies from hunting and gathering to settlement

and agriculture [1]. During this process, which started around 10,500 BP in the Middle East,

selected plants and animals were domesticated by humans for food, clothing, or other

resources these species provided [2]. Genetic data of ancient and modern samples from

domestic cattle Bos taurus suggest that the domestication of its wild ancestor, the aurochs Bos
primigenius, also began in the Middle East [3]. Domestic cattle spread from the Middle East to

Anatolia, Europe and Africa, and local domestication or maternal interbreeding with B.
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primigenius seems to have had little effect on today’s gene pool [3, 4], although there is clear

evidence that it occasionally happened [5–12].

Nowadays, all domestic cattle belong to four major mitochondrial haplogroups, T, Q, R,

and I. Haplogroup Q originated together with T in the Middle East, while haplogroup R has so

far only been found in Italy; it has been argued to be either the product of maternal interbreed-

ing of European aurochs or to go back to a second independent domestication event [7, 13,

14]. However, a recent paleogenome study found an R haplotype in an almost 9,000 year old B.
primigenius sample from Morrocco [14], leaving its origin open to discussion. A separate

domestication event in southern Asia gave rise to zebu or indicine cattle, B. indicus, and this

group is assigned to haplogroup I [15, 16]. Based on mitochondrial DNA data, a founding pop-

ulation of 29 to 783 females has been estimated for the beginning of the taurine cattle domesti-

cation in the Middle East [4, 17]. Following this bottleneck at the onset of the Neolithic,

domestic stocks spread across East Africa, Anatolia, and Europe in co-migration with humans.

Most of these taurine cattle nowadays belong to six sub-haplogroups of the mitochondrial hap-

logroup T [3]. Sub-haplogroups T1, T2, and T3 are derived from ancestral haplogroup T, and

today sub-haplogroup T3 is dominant across the European mainland and Britain, while T1

mainly occurs in Africa [3]. T2 is currently common in Europe and the Middle East, but less

frequent than T3 in Europe. The remaining sub-haplogroups have a much more narrow distri-

bution, with T4 restricted to Asian breeds [6], T5 to Italian breeds [7], and T6 has only sur-

vived in a few Balkan breeds [9].

A region where the European mainland and Africa are in close proximity to each other is

the Iberian Peninsula, to which pioneering farmers may have arrived from both the African

and European coasts of the Mediterranean sea [18, 19]. Indeed, ancient domestic cattle are

thought to have reached Spain at two separate times and following two separate routes. From

the Near East, taurine cattle spread north-westward into Anatolia and south-westward into

North Africa [14, 20]. From Anatolia, the early domestic cattle expanded into Europe follow-

ing two different ways: One, associated with the LBK (Linearbandkeramik) culture and run-

ning along the Danube river, the other along the Mediterranean coast, associated with the

Cardial culture and likely involving a smaller number of individuals transported by boat. In

agreement with this hypothesis, there is a cline of genetic diversity from Eastern to Central-

Western Europe, with the Iberian and Southern French cattle being the ones showing the low-

est genetic diversity within Europe. Later on, African taurine cattle were probably introduced

into Iberia from the Maghreb, from where they expanded into Southern Europe with a subse-

quent increase of the African haplogroup T1 in these areas [21]. Although the Iberian Penin-

sula has been at the center of studies trying to elucidate the times and ways of expansion of the

Neolithic into Europe [22–24], most of the efforts have focused on the Northeastern and Medi-

terranean regions, while less is known for the Northwest or Atlantic Spain [18]. In the Canta-

brian region, which includes the northern coast, Neolithization is dated to 8,000-4,000 BP, and

there it is the result of a complex mosaic process in which hunters and gatherers lived along

with settlers [25]. The first domestic animals of this region date to around 7,000 BP and were

mostly ovicaprines, which were later followed by pigs and cattle [1]. However, much less is

known about the region adjacent to Cantabria, Galicia, because no Neolithic sites have been

identified in this region yet [26]. The oldest genetic information for Galicia is from the Chalco-

lithic period. It dates to 5,950-5,050 years BP and therefore to a time period in which settlers

with domestic livestock were much more common than other forms of human societies [26].

To address this gap of knowledge and gain insights into the process of Neolithization in Gali-

cia, we analyzed the mitochondrial DNA from 18 samples of cattle mostly found in mountain

caves in this region, of which eleven yielded enough DNA for phylogenetic analysis. Their ages

range from before the Neolithic up to recent (last 60 years), and they include the domestic
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cattle B. taurus as well as its pre-Neolithic wild ancestor B. primigenius. We used these data to

retrace the genetic development of cattle in this area and compare them to their European,

African, middle Eastern, and Asian relatives.

Materials and methods

Bone samples were collected from nine sites in Galicia, which are shown in Fig 1. Two of them

were archaeological sites, but most of the bones were found in mountain caves, that were natu-

ral traps for the cattle. We tentatively assigned them to species based on their morphology and

determined the age of the bones by direct 14C dating or by 14C dating of other bones found in

the same cave (stratigraphic). All specimens are housed in the “Instituto Universitario de Xeo-

loxı́a, Universidade da Coruña”, the director of which is one of the co-authors (Aurora Maria

Grandal D’Anglade). Therefore, no permits were required. For all samples, DNA was extracted

from bone powder following a published protocol [27]. Genetic libraries were prepared from

Fig 1. Map of Galician mountain caves. A. The black rectangle shows the location of Galicia within the Iberian Peninsula. B. Map of Galicia,

corresponding to the black rectangle region in A. C. More detailed map of the region corresponding to the black rectangle in B); it shows the location of

caves in which bone samples described in this study were found; stars denote cave locations. (The map was originally created by author Aurora

Grandal-d’Anglade specifically for this study.).

https://doi.org/10.1371/journal.pone.0249537.g001
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10 μl (for the samples from Cobas, A Rocha Forte, Minas Rubiais, and A Tara) or 20 μl (for the

remaining samples) extract following a single-stranded library preparation protocol [28]. Ura-

cil-DNA glycosylase (UDG) was used to remove uracil. To enrich the resulting libraries for

mitochondrial DNA, hybridization capture was performed according to a solid-state capture

protocol, using the Agilent SureSelect 244k MicroArray. The baits on the array were designed

based on the complete mitochondrial genome from an aurochs (B. primigenius; GenBank Acc

Nr NC_013996.1) using 60 bp bait length and 3 bp tiling space. Hybridization capture was car-

ried out in two consecutive capture rounds according to a published protocol [29]. The result-

ing product was then sequenced on the Illumina NextSeq 500 platform using 75 bp paired-end

chemistry.

Sequence reads were adapter-trimmed and quality-filtered at a phred quality score cutoff of

28 using cutadapt-1.12 [30], forward and reverse reads were merged with flash-v-1.2.10 [31]

were possible, and reads below a length of 30 bp were excluded. Mapping of merged reads

against a B. taurus mitochondrial reference genome (GenBank Acc Nr.: AY526085) was done

with the program bwa-v0.7.8 aln with default parameters [32]. We filtered out all alignments

with a quality score below 30 using samtools-v0.1.19 (program: view) [33]. The same samtools

version was used to remove duplicates (program: rmdup) and to collect statistics about the

alignments (programs: index, idxstats, and depth). We used mapDamage 2.0.7 to assess dam-

age patterns of the ancient DNA samples [34] and computed consensus sequences based on a

minimum depth of 3 reads with angsd-v0.914 using the majority rule [35]. Consensus

sequences were checked manually. If possible, samples were assigned to haplogroups based on

diagnostic single nucleotide polymorphisms (SNPs) in the D-Loop region of the mitochondrial

genome of B. taurus as they are described in previous studies [3, 6, 9, 36].

With the consensus sequences, we generated three multiple sequence alignments using

MAFFT v7.310 and its FFT-NS-i algorithm with 1000 iterations [37]. All alignments were

checked by eye for any obvious misalignments. First, we generated a multiple sequence align-

ment that contained data from most common cattle haplogroups and included all of our sam-

ples. As references, we used mitochondrial genome sequences of the species Bos taurus, Bos
indicus, Bos grunniens and Bos primigenius from a published study [38]. The complete dataset

then covered five cattle haplogroups (T, R, I, P, Q) and five sub-haplogroups of T (T1, T2, T3,

T4, T5). The resulting alignment was used for a Bayesian phylogenetic analysis with the pro-

gram BEAST v1.10.4 [39]. For this, we transferred the annotation of the reference mitochon-

drial genome EU177854 to our alignment, and starts and ends of the features were moved

according to gaps in the alignment. Then, we predicted the best models of molecular evolution

for each of the features in the annotation with the program partitionfinder-2.1.1 [40]. The

analysis with BEAST was done using the best model predicted for each partition, a strict

molecular clock, and a coalescent model, assuming a constant population size. It ran with a

chain length of 100 million and a sampling every 1,000 generations. 10% of the generations

were used as a burn-in, and the convergence of the analysis was checked using Tracer v1.7.1

[41].

Next, two species-specific alignments were generated. For B. taurus, we included our eight

newly sequenced B. taurus samples and all publicly available sequences for which we could

determine the haplotype based on the same eight diagnostic SNPs used to assign our samples.

The B. primigenius-specific alignment contained our samples as well as all publicly available

sequences of European wild aurochs. A full list of public data used in our study is given in S3

Table. The two species-specific multiple sequence alignments were used to generate statistical

parsimony networks using the R-script TempNet [42]. Networks we generated were not tem-

porally separated, instead they separated our samples from publicly available data.
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Results

We were able to generate consensus sequences from 11 (out of the 18) bone samples that were

based on a coverage between 3.34x and 72.93x. Those 11 were all found in caves. The remain-

ing seven samples were discarded due to low mapping coverage and sequencing quality. The

11 consensus sequences covered between 44.88% (7,333 bp) and 99.99% (16,337 bp) of the cat-

tle reference mitochondrial genome (GenBank accession number: AY526085.1). An overview

over dating, mapping and SNP analysis is shown in Table 1. More detailed dating and mapping

results, as well as a figure containing SNP positions are in S1 and S2 Tables, and in S1 Fig,

respectively. All raw sequencing data is deposited in the NCBI SRA under BioProject ID

PRJNA705960. Addtionally, the partial mitochondrial genomes are made public in NCBI Gen-

Bank under accession numbers MW689247-MW689255, except mitochondrial genomes of

samples Bt_MR_(3736BP) and Bt_CO_(60BP), which cannot be made available at NCBI

GenBank, since they do not meet the GenBank submission criteria (less than 50% ambiguous

characters). The analysis of ancient DNA patterns using mapDamage [34] shows terminal

transitions indicating cytosine deamination ranged from 0.25 to 0.67% in mean per sample.

These numbers are reduced due to UDG-treatment of the libraries. Mean fragment lengths

ranged from 48.05 to 53.23 bp, consistent with an ancient origin of the sequences.

Based on eight diagnostic SNP positions, the three B. taurus samples Bt_AR_(1200BP),

Bt_AR_(2460BP), and Bt_SA_(1290BP)_2 could unambiguously be assigned to European hap-

logroup T3. The samples (Bt_SA_(1200BP)_1, Bt_AT_(3370BP), Bt_AT_(1600BP), and

Bt_CO_(60BP)) displayed 3-6 SNPs characteristic for T3 but were missing data at the remain-

ing diagnostic positions. The final sample Bt_MR_(3736BP) could not be assigned to a hap-

logroup with any confidence due to missing data at seven diagnostic positions. We did not

detect evidence for any T1 (African descendant) haplogroups in our data. Haplogroup assign-

ments based on the SNP analysis, results of dating, and further information about the samples

are given in Table 1.

Tentative morphological identification of three of our samples as B. primigenius was con-

firmed by phylogenetic analysis: As shown in Fig 2, Bp_CL_(9100BP)_1, Bp_CL_(9100BP)_2,

and Bp_CL_(9100BP)_3 grouped within the clade containing known B. primigenius mitochon-

drial genomes. The B. primigenius clade is a sister to a clade containing B. taurus haplogroups

T and Q. This phylogeny also confirms all preliminary species assignments for our B. taurus

Table 1. Summarized dating and mapping results for 11 samples of Galician cattle subfossils. Samples are referred to by their sample code in the text, which includes

information about the name of the cave in which the subfossil was found, the dating, and the species assignment. Context refers to the historical context based on dating;

results of subfossil dating are based on carbon dating and calibration. Mapping depth and and the percentage of the reference genome covered give an overview of the map-

ping results. Species assignments are based on morphological and genetic data. The haplotype was defined based on SNP analysis.

Sample Cave Context Age cal BP (2-sigma) Mapping depth % of reference genome covered Species Haplotype

Bt_SA_(1200BP)_1 Saballeiros High Middle Age 1125 ± 119 18.39 93.08 Bos taurus T3

Bt_SA_(1290BP)_2 Saballeiros High Middle Age 1233 ± 59 72.93 99.99 Bos taurus (T3)

Bt_MR_(3736BP) Mina Rubiais Chalcolithic 4082 ± 63 6.49 44.88 Bos taurus ?

Bt_AR_(1200BP) Arcoia High Middle Age 1143 ± 88 30.95 98.75 Bos taurus T3

Bt_AR_(2460BP) Arcoia Iron Age 2535 ± 175 33.36 99.68 Bos taurus T3

Bp_CL_(9100BP)_1 Chan do Lindeiro Mesolithic 9295 ± 170 10.07 66.89 Bos primigenius P

Bp_CL_(9100BP)_2 Chan do Lindeiro Mesolithic 9299 ± 167 41.34 99.51 Bos primigenius P

Bp_CL_(9100BP)_3 Chan do Lindeiro Mesolithic 9216 ± 185 8.81 68.19 Bos primigenius P

Bt_CO_(60BP) Chan do Lindeiro Recent 100% modern C 7.24 45.99 Bos taurus (T3)

Bt_AT_(3370BP) A Tara Bronze Age 3592 ± 101 17.78 94.83 Bos taurus (T3)

Bt_AT_(1600BP) A Tara Suevic kingdom 1481 ± 87 8.98 63.25 Bos taurus (T3)

https://doi.org/10.1371/journal.pone.0249537.t001
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Fig 2. Phylogenetic tree of mitochondrial genomes of different cattle species and haplogroups. Result of a Bayesian analysis of mitochondrial

genomes from five common cattle mitochondrial haplogroups (T,Q,P,R,I), which include the species Bos taurus (T,Q,R), Bos indicus (I), and Bos
primigenius (P), and five subhaplogroups of T (T1,T2,T3,T4,T5). Reference mitochondrial genomes are coloured according to their haplogorup.

Genomes generated in this study are denoted by their sample name. Squares on the nodes of the phylogeny mark a posterior probability larger

than 0.7.

https://doi.org/10.1371/journal.pone.0249537.g002
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bone samples that were based on morphology. In the phylogeny, our B. taurus samples are

assigned to a large and poorly resolved haplogroup T-specific clade that contains all sub-hap-

logroups that were included in this analysis, T1-T5. The samples from Arcoia are found within

the T3 subclade of the large T clade, while all other samples are found either basal to the T3/4

clade or even basal to a clade of T3/4 and T1. Overall, this T clade shows only high support val-

ues at the branches that seperate T5 and T2 from the remaining T sub-haplogroups. The clade

containing all B. taurus haplogroup R sequences is sister to a large clade containing the hap-

logroups T, Q, and P.

The statistical parsimony network that was computed from the B. taurus-specific alignment

(Fig 3) shows a central hub representing mitochondrial genomes of different haplogroups.

Most of these belong to T3, but all other haplogroups are present as well. Surrounding this cen-

tral hub, nodes separate into haplogroup-specific satellite groups for T1, T3, and T. Where

haplgroup T here refers to the sub-haplogroup T described in Troy et al., 2001 [3] and not to

the general haplgroup. The samples Bt_AR_(2460BP), Bt_SA_(1290BP)_2, and Bt_AR_

(1200BP) are deep within the T3 group. All other samples are closer to the central hub. Inter-

estingly, our oldest B. taurus sample Bt_MR_(3736BP) was inferred as the central node of the

central hub. However, the large amount of missing data in the sequence of this samples mito-

chondrial genome might influence its positioning in the network. The samples Bt_AT_

(3370BP) and Bt_CO_(60BP) protrude into the sub-haplogroup T satellite group, and the

remaining samples Bt_AT_(1600BP) and Bt_SA_(1200BP)_1 are in the outer ring of the cen-

tral hub.

Compared to the B. taurus data, the statistical parsimony network of the B. primigenius
samples shown in Fig 4 appears rather different. Sequences are separated in the network by

overall more mutations than the B. taurus sequences. Our samples are older than published

data and differ from other B. primigenius by at least ten mutations. This level of sequence

divergence is comparable to that found in published data. Our sample Bp_CL_(9100BP)_1

appears as the the central node of the network, while all other nodes are surrounding this sam-

ple. The two other samples of this study are directly connected to the central sample, but sepa-

rated from it by 15 and 22 mutations.

Discussion

Ancient DNA analyses of domestic animals provide not only information about the history of

these lineages and species, but also about the people who kept these animals. Along with the

domestication of animals, there was a change in human societies to settlement and agriculture

[2]. Applying phylogenetic analysis to mitochondrial genomes recovered from eleven cattle

subfossil bones, we were able to confirm our tentative species assignments based on morphol-

ogy. Samples identified as B. taurus group together with other, mainly modern, B. taurus sam-

ples, while our three B. primigenius samples form a clade with available mitochondrial

genomes of other B. primigenius. Furthermore, the 14C dating of our samples shows greater

ages of the B. primigenius remains than for those of B. taurus, which is consistent with observa-

tions for other parts of Europe, where B. primigenius populations declined with the growth of

human societies until their extinction in 1627 in Poland [43].

Results of our analyses allow insights into the time frame of Neolithization in Galicia. The

samples that were identified as individuals of the wild aurochs B. primigenius were dated to

around 9,000 BP (Table 1). Insight into the historic context of the age of these samples is given

by comparison with the neighboring region Cantabria. The age of the B. primigenius samples

dates to a period when the Mesolithic, the period before the Neolithic, just became common in

Cantabria [25], and therefore to a time before the large transition to agricultural societies had
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occurred. Unfortunately, our data set contains a large temporal gap, as the earliest B. taurus
samples of this study date to 4082 ± 63, which, in the Cantabrian regions, is at the end of the

Megalithic, the latest time period of the Neolithic [25]. Thus, based on our data we can con-

clude that by about 4000 BP, domestic cattle had arrived in the north of Spain, while 9,000

Fig 3. Statistical parsimony network of Bos taurus mitochondrial genomes. Statistical parsimony network of 243 Bos taurus haplogroup T

mitochondrial genomes, including the four sub-haplogroups T, T1, T2, and T3. Circle sizes are proportional to the number of identical mitochondrial

genomes in the node, and numbers inside nodes are exact numbers of mitochondrial genomes. Marks on the edges represent the number of mutations

by which mitochondrial genomes differ from each other. Nodes that represent samples of this study are described according to their names shown in

Table 1 and are colored in the upper panel (A) of the figure. The lower panel (B) shows colors for publicly available data. Colors correspond to

haplogroups as determined by SNP analysis. Nodes corresponding to sequence data of the present study are colored as T3, although haplogroup

assignment based on SNP is not certain for all of them (see text and Table 1 for details).

https://doi.org/10.1371/journal.pone.0249537.g003
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years ago, aurochs were still roaming the region. Determining when exactly in the intervening

5,000 years cattle were introduced and aurochs went extinct will have to await further archaeo-

logical findings.

Our results also provide insights into cattle populations from historical times. The study

area was quite populated during the Iron Age, through a network of small fortified settlements

Fig 4. Statistical parsimony network of Bos primigenius mitochondrial genomes. Statistical parsimony network of seven B. primigenius
mitochondrial genomes. Marks on the edges represent number of mutations by which mitochondrial genomes differ from each other. This figure

includes three samples sequenced for this study, they are described by their names according to Table 1, and four published sequences, indicated by

their NCBI accession number. Consistent with Fig 3, colors are used for the new samples of the current study in panel A and for publicly available data

in panel B.

https://doi.org/10.1371/journal.pone.0249537.g004
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(castros) that were still active during the Roman conquest and settlement in the 1st century

AD [44]. The Roman settlement in the Sierra was likely important for the empire as well as

substantial, as evidenced by intensive exploitation of numerous gold mines in the area [45, 46].

Therefore, we would expect to find contributions from foreign livestock into the existing pop-

ulation. In many regions across Europe, the Roman occupation was followed by an increase in

cattle size, a phenomenon that has been attributed to both the introduction of more robust ani-

mals and specific livestock management [47–49]. In Roman Galicia, an increase in the size of

cattle has also been described [50]. If this increase in size was due to the introduction of foreign

livestock, either the introduced animals were genetically indistinguishable from the local live-

stock, or only males were introduced, as we did not find any evidence of a genetic turnover of

the mitochondrial lineages in the area. Further introductions of foreign livestock could have

occurred during the period of migration (4th to 6th centuries), when successive Germanic

peoples settled in ancient Roman Hispania: first the Suevi (409-585 AD), followed by the Visi-

goths, until the arrival of the Muslims at the beginning of the 8th century [51]. These peoples

had been moving around the declining Roman Empire for more than a century. However, it is

unlikely that they carried herds of cattle with them. Even less contribution is be expected from

the Muslims conquerors of the Iberian Peninsula, as they never settled in Galicia [52]. Thus, it

is not surprising that the cows of the Middle Ages studied here also do not reveal any genetic

turnover compared to previous periods. However, those that are complete enough to be inves-

tigated with respect to their morphology (from A Tara cave) show a small size and dentition

with strong mesowear, probably as a result of their life in the highlands [53]. Thus, it seems

that it is the environmental conditions and the type of feeding that determined the size of his-

torical Galician cattle, rather than any specific genetic lineage.

Maternal haplogroups of B. taurus provide information about cattle origin and migration,

and they were historically defined based only a few diagnostic positions within the D-loop

region of the mitochondrial genome [3, 6, 9, 36]. The network and Bayesian analysis of our

study show that also whole mitochondrial genomes of this species group roughly according to

those defined haplogroups (Figs 2 and 3). Our network analysis shows a very detailed picture

of well resolved haplogroup clusters but also of an additional group of mitochondrial genomes

in the center of the network that contains all different haplogroups and not only our ancient

samples but also modern ones. Troy et al. describe the structure of haplogroups in this species

as star-like, where the haplogroups T1-3 surround the haplogroup T, suggesting all other hap-

logroups coalesced from T [3]. Although the network analysis of this study shows a similar pic-

ture of haplogroups T1-3 surrounding a central group, that central group here contains a

mixed of all haplogroups, with T forming a derived group from that. Our analysis, therefore,

hints towards a more complicated origin and history of B. taurus.
For the samples sequenced in this study, the assigned haplogroups and the knowledge

about their origin can be used to infer a possible descendance and migration of the cattle

remains found in Galicia. In the SNP analysis, we detected only SNPs typical for sub-hap-

logroup T3 in our Bos taurus samples, which is common in Europe and Britain [3], although

four of them have missing data in some of the diagnostic positions. A look at the analyses of

their full mitochondrial genomes supports the hypothesis of their Europoean descent for the

two samples from Arcoia and the sample Bt_SA_(1290BP)_2. In the phylogeny resulting from

the Bayesian analysis they group clearly within in the T3 clade, which is also supported by the

network analysis. In the our phylogeny, the sample Bt_SA_(1200BP)_1 is placed in the T3

clade as well, but the network analysis placed it in the mixed group from which the hap-

logroups descend in a star-like formation. A European origin of this sample is, therefore, still

likely but not as clear as for the samples mentioned previously. A more complicated picture

becomes evident for the remaining samples. In the Bayesian analysis they are found to be basal
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to the T3/4 clade, with one of them even basal to a T3/4 and T1 clade. However, the support of

these branches is weak. In the network, the samples Bt_CO_(60BP) and Bt_AT_(3370BP)

seem to be more closely related to genomes of the haplogroup T, which is the primarily domes-

ticated haplogroup, and from which all others were derived, but which was was propagated

into modern cattle [3]. This might be in accordance with the Bayesian analysis, in which this

haplogroup is missing but must be assumed to be basal to the overall T clade. This is plausible

for the older sample from A Tara, but not necessarily for the very young sample from Chan do

Lindeiro. Its placement in the network, however, might be due to missing data in determining

regions of the mitochondrial genome due to its low mapping coverage. Our sample Bt_MR_

(3736BP) is displayed in the very center of the network. Carbon dating identified it as the old-

est of our samples, and it therefore might be more closely related to the founder population

than to modern samples. However, the lack of all diagnostic SNPs and the overall lower cover-

age of this sample make an inference of the haplotype impossible and question its placement

in the network. Regions in its mitochondrial genome which we could not characterize in this

study can have a large impact on the results of all our analyses for this sample.

Our cattle haplogroup assignments are in agreement with ancient DNA data of human

remains from Spain, which showed that the transition from Mesolithic to Neolithic societies

was mediated by demographic processes, involving admixture with pioneering farmers of

Near Eastern origin [23, 24, 54, 55]. This genetic signal of Neolithic immigration in humans is

consistent with the first appearance of cattle carrying the T3 haplotype, likely introduced by

the incoming farmers. Noticeable, although recent studies have shown prehistoric gene flow

between human population from African and southern/central Iberia around the Middle Neo-

lithic/Bronze Age [24, 56], we found no evidence of African diversity in the domestic cattle

analyzed in this study, as none of them was related to the African haplogroup T1.

This study presents the oldest available sequenced mitochondrial genomes of B. primigenius
to date. In the network analysis, one of our samples that is around 9100 years old is placed in

the center of the network, from which not only the other two samples of this study connect,

but also published samples (Fig 4). In light of the age difference between our samples and the

oldest of the publicly available samples (6700 BP), this seems plausible. The statistical parsi-

mony network of B. primigenius shows that individual mitochondrial genomes separate into

distinct nodes that are separated by many mutational steps of samples of very different ages

but also samples of similar age. Even the number of mutations separating the Galician samples

is not very different from numbers of mutations between other samples. This suggests an over-

all higher genetic variability of B. primigenius mitochondrial genomes, which is likely because

the domestication of B. taurus can be seen as a bottleneck through which this species went,

caused by the initial domestication process, breeding, and selection by humans. Such a process

did not happen in the naturally occurring population of wild aurochs, which spread across

Europe and other continents. However, in comparison to B. taurus, there are very few

sequenced mitochondrial genomes available for B. primigenius. Therefore, further sequencing

and research of this lineage is necessary in order to resolve the historical population structure

of B. primigenius.

Conclusion

This study identified and characterized remains of 11 different Galician cattle roaming this

region throughout different ages. Altogether, this adds to the picture of the history of different

cattle species in Galicia, but, due to the close relationship of domesticated cattle with human,

also to the history of human colonization and migration in that area. In accordance with

human studies, we presented evidence that people with livestock migrated to that region from
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the European mainland. Over centuries and many other human migrations, domesticated cat-

tle in this region seem to have remained of European descent. The analyses of full mitochon-

drial genomes of cattle also gave insight in to the evolution of these animals in general. We

showed that haplogroups defined based on only a small part of the mitochondrial genome

were confirmed in analysis results of the full sequences. Additionally, these analyses confirmed

the species assignment of the so far oldest sequenced mitochondrial genome of the extinct wild

aurochs.
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51. Noble TFX, editor. From Roman provinces to Medieval kingdoms. Rewriting histories. New York: Rout-

ledge; 2006.
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