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This is a post-peer-review, pre-copyedit version of an article published in Journal of Computational and

Nonlinear Dynamics. The final authenticated version is available online at: https://doi.org/10.1115/

1.4035410.

This document is licensed under a CC-BY license.

Abstract

Formulating the dynamics equations of a mechanical system following a multibody dy-

namics approach often leads to a set of highly nonlinear Differential Algebraic Equations

(DAEs). While this form of the equations of motion is suitable for a wide range of practical

applications, in some cases it is necessary to have access to the linearized system dynamics.

This is the case when stability and modal analyses are to be carried out; the definition of

plant and system models for certain control algorithms and state estimators also requires a

linear expression of the dynamics.

A number of methods for the linearization of multibody dynamics can be found in the

literature. They differ in both the approach that they follow to handle the equations of motion

and the way in which they deliver their results, which in turn are determined by the selection

of the generalized coordinates used to describe the mechanical system. This selection is

closely related to the way in which the kinematic constraints of the system are treated.

Three major approaches can be distinguished and used to categorize most of the linearization

methods published so far. In this work, we demonstrate the properties of each approach in

the linearization of systems in static equilibrium, illustrating them with the study of two

representative examples.
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1 Introduction

Multibody system (MBS) dynamics has experienced a significant growth over the last decades,

boosted by advances in computer architecture and software. One of the most attractive fea-

tures of MBS dynamics is the wide variety of modeling and formulation approaches from which

researchers and analysts can choose when dealing with a particular problem [2]. Generally

speaking, the system can be modeled with a set of independent generalized coordinates, which

leads to a system of Ordinary Differential Equations (ODEs), or using dependent coordinates

whose motion is related by one or more kinematic constraints. In the latter case the dynamics

equations are expressed with a set of DAEs, which must be handled with appropriate algorithms,

e.g., [21, 22]. New formulations and methods are proposed and developed by the MBS research

community, making it necessary to benchmark their performance and characterize their fea-

tures. The ultimate goal of this effort is to provide guidelines that help the analyst select the

most appropriate formalisms when dealing with a particular problem.

Such guidelines are also necessary to select linearization methods for those applications that

require a linear approximation of the equations of motion. This is the case of certain classical

control algorithms, which need to represent the plant to be controlled with linear models [29],

and some state and input estimators, like Kalman filters [12]. Even when a linear expression of

the dynamics is not strictly required, its availability can make it simpler to gain insight into the

system behavior. Using reduced order models, extracted from the linearization of the original

differential-algebraic equations of motion, simplifies the analysis of structural and aeroelastic

problems [31]; linearized models are also useful in stability analysis [6, 25, 26]. Modal anal-

ysis and the determination of natural frequencies and vibration modes of a system are other

important applications of linearized dynamics [23].

Several methods have been proposed in the multibody literature to arrive at linearized forms

of the dynamics equations. They present different features, depending mainly on the selection

of the coordinates with which they describe the mechanical system. Some of them are recursive

algorithms for robotic systems [8], others are built on Maggi-Kane’s coordinates [30]. Lagrange

multipliers are a popular way to represent constrained systems and methods to linearize the

resulting equations exist as well [31, 23, 28]. This paper categorizes linearization methods for

multibody dynamics into three main groups, defined by the selection of generalized coordi-

nates. Their properties are demonstrated in the linearization of the dynamics of mechanical
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systems in static equilibrium, for which Linear Time Invariant (LTI) problems are guaranteed to

be obtained. Representative methods of each category were applied to the linearization of test

problems and compared in terms of efficiency, ease of use, and accuracy. Moreover, in [11] two

types of linearization problems were identified: heavily constrained systems in which the num-

ber of degrees of freedom is much lower than the number of kinematic variables, and systems

(typically flexible mechanisms) in which both numbers are of similar magnitude. The behavior

of the linearization methods was studied with an example of each type. Practical guidelines for

the selection of the most appropriate technique for each case are presented to the reader as

conclusions.

2 Coordinates Selection

A multibody system can be described with a set of n generalized coordinates q = {q1, . . . , qn}T

related bym kinematic constraints Φ(q, t) = 0. For the purposes of this paper, these are assumed

to be holonomic and linearly independent; accordingly, the m × n Jacobian matrix of the con-

straints Φq can be assumed to have full row rank m. The equations of motion can be expressed

as a nonlinear system of DAEs as

Mq̈ = f + fc (1a)

Φ (q, t) = 0 (1b)

where M (q) is the n × n mass matrix, f is the array of generalized applied and velocity-

dependent forces, and fc are the reaction forces introduced by the kinematic constraints. Equa-

tions (1) are often cast into one of the multibody formulations that exist in the literature, which

can be classified into three main groups [11]:

1. Minimal Coordinate Set (MCS), in which the formulation has as many coordinates as

degrees of freedom the system has, n−m;

2. Redundant Coordinate Set (RCS), consisting of the n coordinates and a set of m Lagrange

multipliers; and

3. Unconstrained Coordinate Set (UCS), in which the system is modeled with the original n

coordinates of the unconstrained problem and the constraints are embedded in the formu-
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F. González et al.

lation.

Velocity projection techniques, in which the system velocities are projected onto the subspace of

admissible motion [33], fall into the MCS category. Graph-theory-based [13, 14] and Transfer

Matrix [32] multibody algorithms could also be included in this category. If a Lagrangian ap-

proach is followed, the constraint reactions are expressed in terms of the constraints Jacobian

matrix as fc = −ΦT
qλ, where λ contains m Lagrange multipliers. Using Baumgarte stabilization

to remove constraints drift [3] one would directly arrive at a RCS method. Alternatively, elim-

inating the constraints delivers a UCS approach. UCS methods can also be obtained through

penalty formulations [4] or with the force projection approach in [24].

As mentioned, selecting one approach or another determines the output of the linearization

methods, their efficiency and the way in which they convey information about the mechanical

system. MCS formulations result in a linear problem with the exact spectrum of the constrained

system; the eigenanalysis of this problem directly yields the 2 (n−m) eigenvalues of the original

system. RCS and UCS approaches may give rise to spurious or approximate eigenvalues; on

the other hand, their use can be convenient for the sake of efficiency or ease of use. In the

subsequent sections, representatives of each category will be compared in terms of effectiveness

and efficiency, and their main features will be discussed. Two main factors, namely how easy it

is to discriminate spurious eigenvalues and the simplicity of the linearized equations, also from

the computational point of view, will be considered in the discussion.

3 Linearization Methods

In this section three methods to linearize Eqs. (1) are introduced. The first one is a MCS formu-

lation obtained via velocity projections [15]. The second directly linearizes a RCS description

of the dynamics [31]. The last one is a UCS formulation obtained replacing the kinematic con-

straints with penalty systems [4].
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3.1 MCS Formulation: Velocity Projection

The system dynamics can be expressed in terms of a set of n−m independent velocities ż using

the transformation

q̇ = Rż (2)

where R (q) is an n× (n−m) velocity transformation matrix that verifies RTΦT
q = 0. Matrix R

can be determined via several methods: e.g., coordinate selection (splitting q into independent

and dependent variables), the zero eigenvalue theorem [16], Singular Value Decomposition

(SVD) [35, 20], QR decomposition [17], and Gram-Schmidt orthonormalization [19, 1]. All

these methods determine the subspace R of the velocities that complies with the constraints

through operations on the Jacobian Φq. Applying the transformation in Eq. (2), the system

dynamics become a system of (n−m) ODEs

H1 = RTMRz̈−RT
(
f −MṘż

)
= 0 (3)

If the inputs are represented by u, the system can be linearized about an equilibrium configura-

tion z0, ż0, z̈0, u0 as follows

H1 (z0 + δz, ż0 + δż, z̈0 + δz̈,u0 + δu) ∼=

∂H1

∂z

∣∣∣∣
0

δz +
∂H1

∂ż

∣∣∣∣
0

δż +
∂H1

∂z̈

∣∣∣∣
0

δz̈ +
∂H1

∂u

∣∣∣∣
0

δu
(4)

The terms in Eq. (4) take the form

∂H1

∂z
= Kr =

(
∂RT

∂z
MR + RT∂M

∂z
R + RTM

∂R

∂z

)
z̈

− ∂RT

∂z

(
f −MṘż

)
−RT

(
∂f

∂z
− ∂M

∂z
Ṙż−M

∂Ṙż

∂z

)

∂H1

∂ż
= Cr = −RT

(
∂f

∂ż
−M

∂Ṙż

∂ż

)
(5)

∂H1

∂z̈
= Mr = RTMR

∂H1

∂u
= −Fr = −RT ∂f

∂u
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The expressions for the numerical evaluation of the partial derivatives of R are detailed in [5].

The linearized dynamics can then be written as

Mrδz̈ + Crδż + Krδz = Frδu (6)

Equation (6) has 2 (n−m) eigenvalues that represent the exact spectrum of the problem. More-

over, its leading matrix Mr is symmetric and positive-definite. As a consequence, Eq. (6) can be

used in the solution of forward-dynamics problems with explicit integration schemes.

3.2 RCS Formulation: Generalized Eigenanalysis

Following a Lagrangian approach, the dynamics equations (1) can be expressed in the form

H2 =

 Mq̈ + ΦT
qλ− f

Φ (q, t)

 = 0 (7)

which can be linearized directly and cast in descriptor form

Eqδẏ = Aqδy + Bqδu (8)

where δy =

{
δqT δq̇T δλT

}
T, Bq =

[
0 (∂f/∂u)T 0

]
T, and

Eq =


I 0 0

0 Mq 0

0 0 0

 ; Aq =


0 I 0

−Kq −Cq −ΦT
q

−Φq 0 0

 (9)

with

Mq = M ; Cq = −
∂f

∂q̇
; Kq =

∂M

∂q
q̈ +

∂ΦT
q

∂q
λ− ∂f

∂q
(10)

It must be noted that the evaluation of Kq requires the computation of the Lagrange multipliers

λ at equilibrium. Besides the 2 (n−m) eigenvalues in the spectrum of the constrained problem,

the generalized eigenanalysis of the (2n+m) linearized equations (8) introduces 3m spurious

eigenvalues, related to the constrained kinematic variables and the Lagrange multipliers. These
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are easily identifiable because their value is either infinity [31] or zero, if either or both Φq and

ΦT
q are transferred from Aq to Eq. Because Eq. (7) represents a differential-algebraic problem,

matrix Eq is structurally singular. Therefore, Eq. (8) cannot be used in forward-dynamics prob-

lems with explicit numerical integrators. It is possible though to overcome this issue applying a

QZ decomposition to matrices Eq and Aq [27]. The details of this method are discussed in [31].

3.3 UCS Formulation: Penalty Method

Penalty-based relaxation of the constraints can be used to transform the system of DAEs in

Eq. (1) into a set of n ODEs [4]. This approach makes the Lagrange multipliers λ proportional

to the constraints violation at the configuration, velocity, and acceleration levels

λ = Ξ
(
Φ̈ + ΘΦ̇ + ΩΦ

)
(11)

where Ξ is an n×n matrix that contains the penalty factors; Θ and Ω are also n×n terms with

stabilization parameters that have a similar function to those used in Baumgarte stabilization

[10]. The derivatives of the constraints with respect to time are Φ̇ = Φqq̇ + Φt and Φ̈ =

Φqq̈ + Φ̇qq̇ + Φ̇t, where Φt = ∂Φ/∂t. This approach is equivalent to replacing the constraints

with mass-spring-damper systems. The resulting dynamics equations are

H3 = Mq̈ + ΦT
qΞ
(
Φ̈ + ΘΦ̇ + ΩΦ

)
− f = 0 (12)

It must be noted that the equilibrium configuration of Eq. (12) is not completely equivalent to

that of Eq. (1). In most cases a certain violation of the kinematic constraints Φ = 0 will be

required to balance the applied forces f . The linearized dynamics can be expressed as

H3 (q0 + δq, q̇0 + δq̇, q̈0 + δq̈,u0 + δu) ∼=

∂H3

∂q

∣∣∣∣
0

δq +
∂H3

∂q̇

∣∣∣∣
0

δq̇ +
∂H3

∂q̈

∣∣∣∣
0

δq̈ +
∂H3

∂u

∣∣∣∣
0

δu

(13)

or in the more compact form

Mpδq̈ + Cpδq̇ + Kpδq = Fpδu (14)
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using the terms

∂H3

∂q
= Kp =

∂M

∂q
q̈ +

∂ΦT
q

∂q
Ξ
(
Φ̈ + ΘΦ̇ + ΩΦ

)
+ ΦT

qΞ

(
ΩΦq +

∂Φq

∂q
(q̈ + Θq̇) +

∂Φ̇q

∂q
q̇

)
+ ΦT

qΞ

(
Θ
∂Φt

∂q
+
∂Φ̇t

∂q

)
− ∂f

∂q

∂H3

∂q̇
= Cp = ΦT

qΞ

(
∂Φ̇q

∂q̇
q̇ +

∂Φ̇t

∂q̇
+ Φ̇q + ΘΦq

)
− ∂f

∂q̇

∂H3

∂q̈
= Mp = M + ΦT

qΞΦq

∂H3

∂u
= −Fp = −

∂f

∂u

(15)

Equation (14) is a system of n ODEs. The method delivers an approximation of the 2 (n−m)

true system eigenvalues, together with 2m spurious eigenvalues related to the constrained coor-

dinates. True and spurious eigenvalues can be told apart by checking if their associated eigen-

vectors v verify the velocity-level kinematic constraints Φ̇ = 0. The violation of such constraints

remains close to zero for true eigenvalues, while it is not negligible for the spurious ones.

As it happened in Section 3.1, if the penalty matrix Ξ is correctly chosen, Mp is symmetric

and positive-definite, so Eq. (14) can be directly used in forward-dynamics applications.

4 Numerical Examples

The methods described in Section 3 were applied to the linearization of mechanical systems

about static equilibrium configurations. Two examples were selected: the first was an N -loop

four-bar linkage with spring elements along the diagonals. The second was a flexible double

pendulum. The four-bar linkage is heavily constrained and only has one degree of freedom; it is

representative of mechanical systems in which the number of kinematic constraints is similar to

the number of generalized coordinates (n−m� n). The double pendulum, on the other hand,

includes degrees of freedom associated with flexibility among the generalized coordinates q. In

this case, n−m ≈ n.
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4.1 Multiple Loop Four-Bar Linkage

Figure 1 shows an N -loop four-bar linkage made up of equal rods of length lf = 1 m and

uniformly distributed mass mf = 1 kg. It moves under gravity effects with g = 9.81 m/s2. Each

loop i in the linkage has a spring connecting points Bi and Ai−1 of stiffness kf = 25 N/m and

natural length lf0 =
√
2 m. If N = 1, the system is equivalent to the test case discussed in [11].

x

y

A0

B0 B1

A1

k, l0



k, l0

Loop 1 Loop N
g

AN-1

BN-1 BN

AN

Figure 1: An N -loop four-bar linkage with spring elements

The linkage is modeled with the x and y coordinates of points B0–BN as variables plus the

ϕ angle from the global x-axis to the rod that connects points AN and BN (n = 2N + 3). The

kinematic constraints term Φ is composed by equations that enforce that the distances between

the tips of each rod remain constant during motion, plus one extra equation that relates the

value of ϕ to xN and yN (m = 2N + 2).

4.2 Flexible Double Pendulum

Figure 2 shows a planar flexible double pendulum. It is composed of two links with length lp = 4

m and uniformly distributed mass mp, density ρ = 1500 kg/m3, and Young modulus E = 108

N/m2. The rods have a circular section with radius rp = 0.15 m. Rod flexibility is modeled

following the finite element approach described in [34]. Each link has a tangent floating frame

of reference attached to its first articulation, point O for the first link and point P1 for the second

one, and is discretized with np finite elements.

The motion of each link is represented through coordinates x, y, and θ, which describe the

translation and rotation of the body-fixed reference frame with respect to the global one, and

nodal coordinates qifx, qify, and qifθ, which represent the elastic deformations at node i, as shown

in Fig. 3. The total number of generalized coordinates is n = 6np + 12.
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x

y

O

P1

P2

g

x1

y1

x2

y2

Figure 2: A flexible double pendulum

Figure 3: Coordinates used to describe the motion of each link

Regarding kinematic constraints, four equations are used to fix point O to the ground and

to ensure that both links remain connected at point P1 during motion. Three more constraints

per link enforce that the body-fixed reference frame remains attached to the first node of the

rod and tangent to its center line, by making q1fx = q1fy = q1fθ = 0. Thus, the total number of

constraint equations is m = 10.

5 Results and Discussion

The linearization of the examples in Section 4 takes place about static equilibrium configura-

tions, in which q̇ = 0 and q̈ = 0. Under these conditions, terms in Eqs. (5), (10), and (15) adopt
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simpler expressions. The terms required by the velocity projection become

Kr = −
∂RT

∂z
f −RT ∂f

∂z
; Cr = −RT ∂f

∂ż

Mr = RTMR ; Fr = RT ∂f

∂u

(16)

The terms for the linearization of the Lagrangian formulation in Section 3.2 are

Mq = M ; Cq = −
∂f

∂q̇
; Kq =

∂ΦT
q

∂q
λ− ∂f

∂q
(17)

The terms required by the penalty formulation in Section 3.3 become

Kp =
∂ΦT

q

∂q
ΞΩΦ + ΦT

qΞΩΦq −
∂f

∂q

Cp = ΦT
qΞΘΦq −

∂f

∂q̇

Mp = M + ΦT
qΞΦq ; Fp =

∂f

∂u

(18)

The linearization methods were implemented in MATLAB; the computation times reported

in the following were obtained running the code in an Intel i7-4790K processor at 4.0 GHz

with 8 GB RAM under Windows 10 Pro. These times include the evaluation of the linearization

terms in Eqs. (16)–(18) and the solution of the corresponding eigenvalue problem, but not the

computation of the equilibrium configuration. In the case of the penalty formulation, they also

include the time elapsed in the discrimination of the spurious eigenvalues.

In all the numerical experiments reported in this section, the penalty and stabilization terms

required by the penalty formulation were diagonal matrices, proportional to a single scalar

value: Ξ = αI, Θ = 2ξωI, and Ω = ω2I, where I is the n× n identity matrix.

5.1 Multiple Loop Four-Bar Linkage

Regardless of N , the exact spectrum of the problem is composed of a double complex eigenvalue

s1. Angle ϕ was selected as independent coordinate with the velocity transformation method.

The values selected for the parameters of the penalty method were α = 106, ξ = 1, and ω =

11
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10. The MCS and RCS methods delivered the exact value of s1, while the penalty formulation

introduced some error in its value as a consequence of the modification of the original system.

Table 1 shows the system properties and the time elapsed in linearization with each method.

Table 1: Properties and spectrum of the N -loop four-bar linkage, and elapsed times in lineariza-
tion, for different values of N

elapsed (ms)
N n ϕ0 s1 MCS RCS UCS
1 5 2.2343 ±2.1477 i 0.115 0.108 0.185
5 13 1.8922 ±1.5455 i 0.188 0.356 0.548
10 23 1.8454 ±1.4352 i 0.313 0.954 1.684
15 33 1.8296 ±1.3955 i 0.556 1.872 3.612
20 43 1.8217 ±1.3750 i 0.752 4.517 6.152

In order to evaluate the suitability of the methods when dealing with systems with dissipative

elements, dampers with cf = 1 Ns/m were introduced alongside the four-bar springs in a second

set of numerical simulations. All the methods correctly evaluated the system eigenvalues for the

damped case, shown in Table 2; the elapsed times were similar to those reported in Table 1.

Table 2: Eigenvalues of the damped N -loop four-bar linkage with cf = 1 Ns/m

N s1

1 −0.2424± 2.1340 i

5 −0.2350± 1.5276 i

10 −0.2325± 1.4162 i

15 −0.2316± 1.3761 i

20 −0.2312± 1.3554 i

In all cases the error in the eigenvalues introduced by the penalty formulation remained

below 3 ·10−6 rad/s. This error depends on the value of the penalty factor α and the stabilization

parameters ω and ξ [11].

A particular case of the static equilibrium of the four-bar linkage takes place when kf = 0

and gravity acts along the global x-axis. In this scenario, the equilibrium configuration occurs at

ϕ = 0, as illustrated in Fig. 4 forN = 1. This is a singular configuration at which the Jacobian Φq

instantaneously loses rank, leading to the sudden introduction of one extra degree of freedom

[9].
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x

y

A0

B1A1, B0

g

Figure 4: A singular static equilibrium configuration for the one-loop four-bar linkage with kf =
0

The penalty formulation did not experience any problems in the singular configuration and

correctly identified the two double eigenvalues s1 = ±3.4310 i and s2 = ±4.4294 i of the system

without any special provisions. The generalized eigenanalysis in Section 3.2 also found the

correct eigenvalues. The determination of the static solution required pseudo-inversion, since

Φq is no longer full-rank. Indeed, the multipliers λ are now underdetermined; nonetheless,

the solution remains determined. The MCS formulation, however, failed unless a new selection

of independent coordinates was carried out at the singular configuration. The increase in the

degree of freedom means that two independent velocities instead of one are necessary to fully

define the system motion at this point.

5.2 Flexible Double Pendulum

In the flexible double pendulum example, the number of eigenvalues that composes the spec-

trum of the problem increases with the number of finite elements np used in the discretization.

The dynamics of this system was linearized at the equilibrium configuration in which both rods

were aligned along the negative y-axis, i.e., θ1 = θ2 = −π/2. Table 3 shows the first four system

eigenvalues computed using the MCS method.

Table 3: First eigenvalues of the flexible double pendulum discretized with np = 50

s1 s2 s3 s4

±1.3357 i ±3.5244 i ±9.4175 i ±22.4054 i

The RCS and UCS methods introduced some deviations from the eigenvalues reported in

Table 3; both yielded eigenvalues with a small real component. The values of the parameters of

the penalty method were α = 107, ξ = 1, and ω = 10. Tables 4 and 5 show the elapsed times in
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the linearization of the dynamics and the maximum differences between the first four eigenval-

ues computed with the MCS approach (si) and the other methods (s∗i ). It should be mentioned

that, while the differences yielded by the UCS method are a consequence of the modification of

the original system, the RCS should deliver exact eigenvalues. The errors reported in Table 5 are

quite small and likely the result of numerical tolerances in the QZ algorithm used by MATLAB

to carry out the eigenanalysis, and in the determination of λ required by Eq. (17).

Table 4: Linearization of the flexible double pendulum: elapsed times (s)

np 10 25 50 75 100
MCS 0.015 0.185 1.338 6.411 17.940
RCS 0.020 0.176 1.229 5.800 16.072
UCS 0.019 0.170 1.219 5.388 14.228

Table 5: Flexible double pendulum: maximum differences with respect to the eigenvalues eval-
uated with the MCS method

max ‖Re (si)− Re (s∗i )‖ max ‖Im (si)− Im (s∗i )‖
np RCS UCS RCS UCS
10 7.6 · 10−11 1.4 · 10−4 6.7 · 10−11 3.6 · 10−5

25 4.0 · 10−9 1.4 · 10−4 3.9 · 10−9 3.6 · 10−5

50 5.6 · 10−8 1.4 · 10−4 8.2 · 10−9 3.6 · 10−5

75 9.6 · 10−8 1.4 · 10−4 9.9 · 10−7 3.7 · 10−5

100 1.5 · 10−7 1.4 · 10−4 2.5 · 10−6 3.8 · 10−5

5.3 Methods Assessment

The study of the two examples in Sections 5.1 and 5.2 highlighted the features of the three

linearization approaches considered in this research.

The MCS velocity projection approach in Section 3.1 delivered the exact spectrum of the

problems. This method requires selecting a set of independent velocities ż and the evaluation

of the transformation matrix R, which in the general case is accomplished numerically. In prob-

lems with n ≈ m like the N -loop four-bar linkage, composed mostly of rigid links, the method

significantly reduces the number of coordinates and is computationally advantageous. However,

if n � m, as in the case of the flexible pendulum, the reduction in problem size is not so sig-
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Figure 5: Sparsity pattern of the mass matrix of the flexible double pendulum with np = 5

nificant and may be outweighed by the evaluation of R. The method will fail if the selection of

independent velocities does not remain valid during the whole motion, as in the case of systems

with singular configurations.

The RCS and UCS methods added spurious eigenvalues to the problems spectra. The direct

linearization described in Section 3.2 is much simpler than evaluating the terms required by the

penalty and velocity transformation methods in Eqs. (5) and (15). Moreover, the spurious terms

are easily identifiable. However, the linearized dynamics obtained this way cannot be directly

used in explicit time-integration schemes. The decomposition process required to circumvent

this drawback can be computationally expensive, although subspace methods, e.g., the Implic-

itly Restarted Arnoldi Method in ARPACK [18], can be used to alleviate this issue. Indeed, in

practical applications only a subspace of the entire eigenspace is usually needed. Furthermore,

without even considering the spurious eigenvalues, computing the entire spectrum in practical

problems with thousands to millions degrees of freedom would be too computationally expen-

sive and of little use, if at all feasible.

The penalty method in Section 3.3 delivers approximated eigenvalues, as a consequence

of relaxing the original kinematic constraints and replacing them with penalty systems, thus

modifying the equilibrium point of the system. It also introduces spurious eigenvalues in the

spectrum. The parameters of the method must be adjusted [9, 7] to ensure that the linearized

dynamics in Eq. (14) can be considered an adequate approximation of the constrained system’s

exact one.
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Each approach also affects the sparsity pattern of the system matrices in a different manner.

The sparsity patterns of matrices Mr, Mq, and Mp in the double pendulum example with np = 5

are compared in Fig. 5, both in their original form and after a Cholesky factorization. Direct eige-

nanalysis preserves matrix sparsity. The velocity transformation of the MCS method reduces the

system size, but at the cost of increasing the fill-in of the system matrix after factorization. The

penalty method introduces some additional structural non-zeros, but its effect on sparsity is less

severe. In practice, both the RCS and the UCS approaches preserve the structure of the mass

matrix in terms of separation between the inertia coefficients of each structural component. As

a consequence, the Cholesky factors of Figs. 5d and 5f produce a characteristic block-diagonal

structure. It must be noted that in systems with a more complicated, non open-loop topology, the

constraints responsible for loop closure would introduce some coupling terms off the main block

diagonal in matrix ΦT
qΞΦq and, consequently, in matrix Mp. On the contrary, the MCS struc-

turally couples the degrees of freedom of the components, thus completely filling the Cholesky

factor of Fig. 5b.

Table 6: Summary of method properties

Feature MCS RCS UCS
Efficiency (n ≈ m)
Efficiency (n� m)

Forward dynamics
with explicit integration

Yes No Yes

Exact eigenvalues Yes Yes No
Spurious eigenvalues No Yes Yes

Handles
singular configurations

No Yes Yes

Degrades sparsity Yes No Moderately

The features of each method are summarized in Table 6.

6 Conclusions

When dependent coordinates are used to model a multibody system, kinematic constraints can

be handled with a wide variety of methods, which can be grouped into three major categories:

Minimal Coordinate Set (MCS) methods, in which the dynamics are expressed in terms of a
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set of independent velocities; Redundant Coordinate Set (RCS) methods, in which the set of

coordinates is enlarged with as many Lagrange multipliers as constraints the system has; and

Unconstrained Coordinate Set (UCS) methods, which embed the constraints in the dynamics

equations. This work assessed the properties of each family of methods in the linearization

of two examples in static equilibrium configurations: an N -loop four-bar linkage with spring

elements and a flexible double pendulum modeled with finite elements.

Results confirmed that the method choice affects the linearization process in terms of the

way in which information about the linearized system behavior is delivered, accuracy, and com-

putational efficiency. While MCS methods obtained the exact problem spectrum, RCS and UCS

introduced spurious eigenvalues in the spectra that needed to be properly identified and dealt

with. The RCS approach featured a simple expression of the linearization terms, while the re-

sultant descriptor form equations required additional processing before they could be used in

forward-dynamics settings with explicit integration. MCS and UCS methods, on the other hand,

provided compact expressions that could be readily used to this end. Regarding efficiency, the

MCS method proved to be advantageous in the linearization of heavily constrained problems.

Conversely, if the number of constraints was small compared to the total number of variables

used in the modeling, RCS and UCS methods showed a superior performance. As a consequence,

the linearization method selection must be carried out taking into consideration the character-

istics of the mechanical system and the intended use of the linearized equations of motion.
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