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Abstract: The present work aims to provide insights on recent findings indicating the presence of
multiple equilibration mechanisms in physical aging of glasses. To this aim, we have investigated
a glass forming polyether, poly(1-4 cyclohexane di-methanol) (PCDM), by following the evolution
of the enthalpic state during physical aging by fast scanning calorimetry (FSC). The main results
of our study indicate that physical aging persists at temperatures way below the glass transition
temperature and, in a narrow temperature range, is characterized by a two steps evolution of the
enthalpic state. Altogether, our results indicate that the simple old-standing view of physical aging
as triggered by the α relaxation does not hold true when aging is carried out deep in the glassy state.

Keywords: calorimetry; physical aging; glasses

1. Introduction

A glass can be formed by several routes, all of them sharing the prerequisite of
allowing circumventing crystallization. Among them, that based on cooling through the
melting, TM, and the glass transition, Tg, temperatures is by far the most common [1].
The kinetic nature of the glass transition, well exemplified by the cooling rate dependence
of Tg [2,3], implies that glasses are thermodynamically in non-equilibrium. The slow
evolution of the thermodynamic state toward the metastable equilibrium state represented
by the supercooled liquid is generally addressed as structural recovery [4] or physical
aging [5–8]. This phenomenon induces a general time-dependent modification of the glass
properties and, therefore, is of utmost importance from both fundamental and technological
viewpoints. Indeed, volume shrinkage could be detrimental for the glass lifetime [9];
therefore, aging must be by glass manufacturers to avoid any undesired alteration of
properties over the course of time. Notable examples in this sense are those on the effect
of aging on gas transport properties [10–13] also in relation to mechanical properties [14].
The relation between gas transport properties and the thermodynamic state of the glass has
also been discussed [15]. Furthermore, knowledge of physical aging can provide insights
of utmost importance on dynamics and thermodynamics of glasses sitting at the bottom of
the energy landscape [16,17].

The conventional belief, based on the archetypal volume recovery experiments of
Kovacs [4] and later by a wealth of experiments [6,7], is that recovery of equilibrium takes
place with a monotonous sigmoidal-shaped evolution of the glass thermodynamic state
and that such evolution is triggered exclusively by the main relaxation process, generally
addressed as ”α relaxation”, exhibiting super-Arrhneius behavior and diverging not far
below Tg. The common features of studies showing this behavior is that physical aging is
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carried out either in proximity of Tg or, if aging temperatures considerably smaller than Tg
are considered, for aging times not long enough to allow attaining the final equilibrium.

Recently, experiments by differential scanning calorimetry (DSC)—where the evolu-
tion of the enthalpy of the glass is monitored—showed that, if physical aging is conducted
considerably below Tg and for aging times as long as about one year, two steps in the
approach to equilibrium of the enthalpy, each characterized by the attainment of a plateau,
are observed for different polymers [18]. This event was shown independently in other
glasses, including chalcogenides [19], a small molecule [20], metallic glasses [21,22], and
polysulfone [23]; and variously modeled according to different approaches [24–26]. Fur-
thermore, if aging is conducted far below Tg, prolonged aging results in the attainment
of partial recovery of equilibrium even though a plateau in the enthalpy is achieved [27].
The presence of multiple steps indicates that there exist different mechanisms of equilib-
rium recovery, whose existence is evidenced by the thermal response of glasses aged well
below Tg. Specifically, in these cases, specific heat scans show the presence of an excess
endotherm of the aged sample with respect to the unaged one. This outcome appears to be
general, as it was found in glasses of different nature [28,29], including polymers [27,30,31],
metallic glasses [29,32], and a plastic crystal [28]. Importantly, this behavior is magnified in
polymer glasses exhibiting large free interfacial area [33,34], as a result of the acceleration
of physical aging in these systems [35–39], which amplifies the separation among different
mechanisms of equilibrium recovery [36]. Despite the variety of experiments showing
these features, results showing several steps in isothermal conditions are relatively scarce.
The main reason is likely that, to observe this behavior, a wide interval of aging times is
required. The lower aging time bound attainable by standard calorimetric techniques is
typically of the order of minutes. Hence, to cover an aging time interval of several decades
(for instance, 5), time scales of months to years are required [18,19,27,29].

In the present work, we employ the capabilities of fast scanning calorimetry (FSC) [40,41]
permitting to access heating/cooling rates of the order of several thousands kelvin per second
to study the physical aging behavior in an amorphous polyether. By reducing the time scale of
the experiments over orders of magnitude with respect to standard calorimetry, FSC allows ac-
cessing sub-second evolution of physical aging. Furthermore, samples heated at high rates are
less amenable to chemical degradation, since the time spent at high temperatures is very short.
This allows investigating phenomena, including glass transition [42,43], melting [44], and
polymer adsorption [45], otherwise impossible to study by standard calorimetry. The choice
of an amorphous polyether rests on his chemical difference with previously employed poly-
mers [18], which were either vinyl polymers or presenting an aromatic ring in the backbone.
We find that, similarly to other amorphous polymers with substantially different molecular
structure [18,23], physical aging exhibits two mechanisms of equilibration, which, in the case
of isothermal experiments, is indicated by the presence of two decays towards equilibrium.

2. Materials and Methods
2.1. Materials

Poly(1,4-cyclohexanedimethanol) (PCDM), whose chemical structure is reported in
Figure 1, was synthesized by polycondensation of 1,4-cyclohexanedimethanol (CHDM)
using the previously reported non-eutectic acid-base organocatalysts based on MSA and
TBD (3:1) [46,47]. It is worth noting that the employed CHDM contains a cis:trans isomer
mixture equal to 70:30, that strongly inhibits the crystallization of the material. In a typical
reaction, CHDM was polymerized in the presence of the catalyst (7.5 and 2.5 mol % of
MSA and TBD, respectively, with respect to the monomer) for 72 h with a gradual increase
of temperature from 130 to 200 ◦C under vacuum. The resulting product was purified
by precipitation in cold MeOH from a CHCl3 solution. This procedure was repeated
three times to yield the pure homopolymer that was characterized by 1H NMR (300 MHz,
CDCl3 δ): = 3.58–3.49 (1H), 3.31–3.10 (16H), 1.84 (16H), 1.5–1.3 (15H) 0.95 (13H). 13C NMR
(300 MHz, CDCl3 δ): = 77.9, 39.7, 30.7. GPC. (THF, 25 ◦C) Mn: 10 kDa, Ð= 1.8.
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Figure 1. Chemical structure of PCDM.

2.2. Methods

The kinetics of physical aging was studied following the evolution of the enthalpy by
fast scanning calorimetry. To this aim, the Flash DSC-1 by Mettler-Toledo (Nänikon, Switzer-
land), based on chip calorimetry technology, was employed, allowing heating/cooling
rates as large as more than 1000 K/s. Thanks to the fast temperature stabilization, such
high rate allows investigating aging from time scales in the sub-seconds range, i.e., way
below the time scales accessible by standard calorimetry. Measurements were carried out
under nitrogen gas flux with rate of 20 mL min−1 and the temperature was controlled by
a two stage intracooler, allowing for temperature control between −90 and 500 ◦. PCDM
samples were directly placed on the active area of the chip. The mass was, in all cases,
about 100 ng. For all samples, within the experimental uncertainty, we obtained identical
results, indicating that size effects, previously observed for samples smaller than 100 ng in
another polymer [48], were of no relevance for the relatively large samples of our study.

All measurements were set to begin at 50 ◦C, i.e., well above PCDM Tg (−6 ◦C on
cooling at 1000 K/s). Samples were subsequently cooled with 1000 K/s to the selected
aging temperature, tag, ranging from just below to far below Tg, i.e., from −10 ◦C to −70 ◦C
with intervals of 5 ◦C. Once stabilized at Tag, samples were aged for different aging times,
tag, ranging from the 0.1 to ∼105 s, which implies that our determination of the kinetics
of aging covered about 6 decades in time. After aging, samples were immediately cooled
to −90 ◦C and re-heated to 50 ◦C. In both cases, the heating rate was 1000 K/s. Before
and after the aging cycle, a reference scan was obtained by heating at 1000 K/s a sample
previously directly cooled from 50 to −90 ◦C. A scheme of the employed thermal protocol
is shown in Figure 2.

Figure 2. Thermal protocol employed to study physical aging in PCDM.
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In non-equilibrium glasses, a common way to quantify the thermodynamic state
attained after a given thermal protocol relies on the concept of fictive temperature, Tf ,
defined as the temperature corresponding to the intercept of the extrapolated glass and
supercooled equilibrium enthalpic lines [49]. Operationally, considering that the first
derivative at constant pressure of the enthalpy equals the specific heat, Cp, Tf is obtained
via the method of the matching areas proposed by Moynihan and co-workers [50]:∫ T>>Tg

Tf

(Cpm − Cpg)dT =
∫ T>>Tg

T<<Tg
(Cp − Cpg)dT, (1)

where Cpm and Cpg are the supercooled melt and glass specific heats, respectively. FSC,
similarly to standard calorimetric techniques, delivers the heat flow rate, W, i.e., the
specific heat per sample mass, m, and applied heating/cooling rate, β: W = Cpmβ. Hence,
Equation (1) can be rewritten in terms of the heat flow rate:∫ T>>Tg

Tf

(Wm − Wg)dT =
∫ T>>Tg

T<<Tg
(W − Wg)dT, (2)

where Wm and Wg are the heat flow rates of the supercooled melt and the glass, respectively.
From a graphical viewpoint, the way Tf is obtained from specific heat scans is described in
the seminal work of Moynihan and co-workers [50] and redrawn in a recent review [2].

3. Results

The heat flow rate as a function of temperature at 1000 K/s for different aging times
and at some selected aging temperatures is shown in Figure 3. In all cases, aging induces
the development of an endothermic overshoot whose size increases with aging time.
Aging at temperatures not too far from Tg results in the standard behavior with a narrow
overshoot in proximity of the step of the glass transition. When the aging temperature
is decreased, the endothermic overshoot progressively shifts to lower temperature. At
−45 ◦C, for short aging times, the endothermic overshoot is well separated from the step
at the glass transition, whereas, for longer aging times, it progressively overlaps with such
step, similarly to aging at higher temperature. Aging at even lower temperatures shows
the endothermic overshoot resulting from physical aging at an even lower temperature
range, well separated from the step at the glass transition. In these cases, no signature of
aging is present in proximity of Tg.
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Figure 3. Heat flow rate scans at the indicated times and the following aging temperatures:
(a) −15 ◦C; (b) −26 ◦C; (c) −45 ◦C; (d) −60 ◦C; (e) −75 ◦C; (f) −90 ◦C.

A way to obtain insights on the physical aging behavior relies on the isochronal rep-
resentation, where the thermodynamic state in terms of Tf is shown as a function of the
aging temperature at a fixed aging time. This is shown in Figure 4 for two aging times,
where the difference of the polymer Tg to the Tf obtained after given aging conditions is
shown. This difference is zero in unaged samples. First inspection of the figure shows the
typical signature of physical aging, i.e., a maximum in the reduction of Tf , in line with pre-
vious reports [36,37,51,52]. This behavior is explained considering that the physical aging
depends on two counteracting factors: the molecular mobility triggering the evolution of
the thermodynamic state and the distance of the glass from equilibrium, i.e., the thermo-
dynamic driving force. Close to Tg, the former factor is large, being the glass at relatively
high temperature. Hence, the glass will rapidly evolve towards equilibrium. However, the
distance from equilibrium will be small; therefore, only limited reduction of Tf are allowed.
Decreasing the aging temperature entails an increase of the thermodynamic driving force,
which implies an increase of Tg − Tf to a maximum. For aging times of 10 and 1000 s (see
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Figure 4), this maximum is located at ∼ −15 ÷ −25 ◦C. The presence of a temperature
maximum in the amount of recovered enthalpy implies that there exists an optimum aging
temperature to maximize equilibrium recovery at fixed aging time [53]. At lower aging
temperatures, the slowing down of molecular mobility becomes dominant; therefore, the
reduction in Tf over limited aging time scales progressively decreases. Importantly, this
reduction takes place smoothly over a temperature range of dozens of degrees. In the case
of samples aged for 1000 s, a decrease in Tf persists even at Tag = Tg− ∼ 100 ◦C. As a
result, aging way far from Tg is not suppressed as one would expect if only the α relaxation,
whose time scale diverges below Tg, was considered.

Figure 4. Evolution of Tf , taken as the distance from Tg, with the aging temperature for PCDM aged
at the indicated aging times.

A different viewpoint of the aging behavior can be drawn from the isothermal repre-
sentation, which consists of monitoring the time evolution of Tf at different temperatures.
This is shown in Figure 5 for different selected aging temperatures. Close to Tg, aging
exhibits the standard behavior consisting of a monotonous decay toward equilibrium,
which is marked by the condition Tf = Tag. However, at lower temperatures, specifically
−22 and −26 ◦C in Figure 5, aging takes place with an intermediate plateau with Tf > Tag.
Furthermore, in the case of Tag = −22 ◦C, beside the first step, the complete recovery of
equilibrium with a second decay can be observed.

To obtain a typical time scale for physical aging, a model-independent route consists
of considering the aging time needed to attain each plateau in Tf . This is shown by arrows
in Figure 5. In the conditions shown in this figure, only one time scale is obtained at the
highest investigated aging temperatures. At −22 ◦C, two time scales can be detected,
whereas, at lower temperatures, either only the time scale of the fast process of equilibrium
recovery or no time scale at all can be detected. An overview of the kinetics of equilibrium
recovery, in terms of time scale to reach equilibrium, τeq, is shown in Figure 6. At high
temperatures, i.e., close to Tg, only one time scale, associated to the monotonous decay
to equilibrium, can be observed. Lower aging temperatures entail a split into two time
scales: (i) the slow one, associated to the α relaxation, with τeq increasing in a super-
Arrhenius fashion with decreasing temperature, thereby becoming to large to be observed
not far below Tg; and (ii) a fast time scale exhibiting milder temperature dependence and
seemingly decreasing activation energy with decreasing temperature.
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Figure 5. Evolution of Tf taken as the distance from Tg with the aging time for PCDM aged at the
indicated aging temperatures. The arrows indicate the time scale to reach the plateau.

Figure 6. Activation plot showing the temperature evolution of the two time scales to
reach equilibrium.
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4. Discussion

The paradigmatic view of physical aging describing it as triggered by the α relaxation,
in which typical time scale increases to unfeasible values not too far below Tg as a result
of its super-Arrhenius temperature dependence, has conditioned experimental activity
over long time [6]. Such view is generally accurate enough to describe physical aging in
proximity of Tg. However, a number of experimental observations dating back several
decades ago already pointed towards the incompatibility of this view with the persistence
of physical aging when carried out way below Tg [5,54–56]. Our isochoric experiments (see
Figure 4) are in line with those previous reports, as they show that, even at Tg− ∼ 90◦C,
mild conditions of aging, in the case of Figure 4, tag = 103 s, result in a significant drop of
Tf . In calorimetry, this effect is generally associated with a low temperature endothermic
overshoot [27,30,57,58], in ways analogous to what it is shown in Figure 3. The latter
underlines a devitrification step taking place at temperatures at which the α relaxation,
increasing to extremely large time scales at temperatures not far below Tg, is of no relevance.
In contrast, as shown in the kinetic plot of Figure 6, a finite time scale associated to the fast
mechanism of equilibrium recovery persists even far below Tg, thereby triggering early
devitrification of glasses aged via such mechanism.

While studies showing the presence of aging well above Tg and/or its associated
low temperature endothermic overshoot are numerous, those where the two step decays
of enthalpy or equivalently Tf in bulk glasses are relatively scarce [18,21,23]. The reason
becomes immediately clear observing the kinetic plot of Figure 6. If an aging temperature
close to Tg is chosen, only one equilibration step associated to the α relaxation is present.
Aging at lower temperatures allows splitting the fast mechanism of equilibrium recovery
from that of the α relaxation. However, the possibility of identifying the two steps of
equilibration rapidly fades away on further cooling as a result of the rapidity of increase of
equilibration time associated to the α relaxation. With these premises in mind, in our study
we show, for the first time by FSC on a bulk polymeric glass former, that the presence of
multiple equilibrium recovery steps can be identified in a tiny aging temperature range, in
this case between −22 and −26 ◦C. Lower aging temperatures entail a slowing down to
unfeasible time scales of the mechanism associated to the α relaxation. However, Figure 5
shows that aging persists on time scales shorter than 105 s at temperatures well below
Tg. A wealth of studies on a wide variety of polymeric glass formers showed that longer
aging times result in the attainment of a plateau with Tf > Tag, i.e., with partial recovery of
equilibrium [27,59–64]. In one of these studies [63], experiments conducted within the so-
called “asymmetry of approach” thermal protocol indicated that such plateau corresponds
to a relative minimum in the free energy, whose access is triggered by the fast mechanism
of equilibration.

Importantly, the presence of a fast mechanism of equilibrium recovery is found in
PCDM, i.e., a polymer with relatively simple chemical structure (see Figure 1). This
result suggests that the origin of complex aging behavior must be based on a framework
disregarding the chemical details of the glass. Indeed, the presence of a fast mechanism
of equilibrium recovery has been encountered on the base of a variety of observations in
a wide range of system, including bulk metallic glasses [21,22,29,32,65–67], phase change
materials [68], a plastic crystal [28], chalcogenide glasses [19], and a low molecular weight
glass former [20]. Although glass-former specific approaches are of interests [25], these
results calls for a universal description. Among the different approaches aiming to describe
the presence of different mechanisms of equilibration, some rely on pure phenomenological
description [26,69]. On more theoretical grounds, the shear transformation zone theory [70],
the concept of marginal glass [71], and the random first order transition (RFOT) [24] of the
glass transition provide a picture in which there exist multiple states in the glass and/or
the presence of zones with enhanced mobility. The possibility to incorporate the presence
of multiple mechanisms of equilibration within the Adam-Gibbs framework [72], where
different cooperative length scale would be associated to each mechanism, could also
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deserve attention [73]. In this sense, experimental advances in the search of the molecular
mechanism responsible for aging way below Tg are warranted.

Finally, it is worthy pointing out that the presence of multiple mechanisms of equili-
bration could be of relevance to describe a wide range of non-equilibrium phenomena in
amorphous polymers [74]. This has been, for instance, put forward in the shape recovery
kinetics of shape memory polymers (SMP) [75]. Other examples where the kinetic of
equilibration may be triggered by either the α relaxation or another mechanisms with
milder activation energy are polymers adsorbed on an substrate [45,76] and polymer films
dewetting [77].

5. Conclusions

The vast majority of physical aging experiments are conducted in proximity of Tg,
where approach to equilibrium is triggered by the primary α relaxation. Our study takes
inspiration by recent findings showing the existence of other mechanisms of equilibrium
recovery deep in the glassy. To this aim, we have studied the physical aging behavior of a
glassy polyether, PCDM, by fast scanning calorimetry, which allow characterizing the time
dependent evolution of the thermodynamic states in terms of Tf . Our results indicates
that physical aging persists at temperatures way below Tg and, at these low temperatures,
manifests with a low temperature endothermic overshoot. Furthermore, we show that, in a
narrow temperature range, somewhat below Tg, two steps in the approach to equilibrium
can be detected. Altogether, our results provide compelling evidence for the presence,
beyond the α relaxation, of a second mechanism of equilibrium recovery. The nature of this
mechanism can be described invoking different theoretical approaches, while, at the same
time, efforts in the identification of its molecular nature are warranted.
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