
Journal of

Marine Science 
and Engineering

Article

Optimization of a Multiple Injection System in a
Marine Diesel Engine through a Multiple-Criteria
Decision-Making Approach

Maria Isabel Lamas 1,* , Laura Castro-Santos 1 and Carlos G. Rodriguez 2

1 Higher Polytechnic University College, University of Coruña, 15403 Ferrol, Spain; laura.castro.santos@udc.es
2 Norplan Engineering S.L., 15570 Naron, Spain; c.rodriguez.vidal@udc.es
* Correspondence: isabellamas@udc.es; Tel.: +34-881-013-896

Received: 25 October 2020; Accepted: 18 November 2020; Published: 20 November 2020 ����������
�������

Abstract: In this work, a numerical model was developed to analyze the performance and emissions of
a marine diesel engine, the Wärtsilä 6L 46. This model was validated using experimental measurements
and was employed to analyze several pre-injection parameters such as pre-injection rate, duration,
and starting instant. The modification of these parameters may lead to opposite effects on consumption
and/or emissions of nitrogen oxides (NOx), carbon monoxide (CO), and hydrocarbons (HC). According
to this, the main goal of the present work is to employ a multiple-criteria decision-making (MCDM)
approach to characterize the most appropriate injection pattern. Since determining the criteria
weights significantly influences the overall result of a MCDM problem, a subjective weighting
method was compared with four objective weighting methods: entropy, CRITIC (CRiteria Importance
Through Intercriteria Correlation), variance, and standard deviation. The results showed the
importance of subjectivism over objectivism in MCDM analyses. The CRITIC, variance, and standard
deviation methods assigned more importance to NOx emissions and provided similar results.
Nevertheless, the entropy method assigned more importance to consumption and provided a different
injection pattern.
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1. Introduction

Pollution levels in recent years have been reaching dangerous limits. Important contributors to
global pollution are diesel engines, which are efficient machines but emit important levels of particulate
matter (PM), NOx, CO2, CO, HC, SOx, etc. [1–5]. Between these, NOx and SOx are characteristic of
marine diesel engines [6–10]. According to the International Maritime Organization (IMO), NOx and
SOx from ships represent 5% and 13% of global NOx and SOx emissions, respectively [11]. IMO regulates
NOx and SOx in the shipping sector. Regarding SOx, since the sulfur content of the fuel is the reason
for SOx emission, IMO limits the sulfur content of fuels or requires the use of exhaust gas cleaning
systems to reduce sulfur emissions [12]. Regarding NOx, IMO imposes even increasing limitations.
According to this, several NOx reduction procedures have been developed in recent years. Some of
them, called primary measurements, operate on the engine performance, such as EGR, water injection,
modification of the injection parameters, etc. On the other hand, other NOx reduction procedures, called
secondary measurements, remove this pollutant from exhaust gases by downstream cleaning techniques,
such as selective catalytic reduction (SCR). The present work focuses on pre-injection systems. It is well
known that pilot injections reduce NOx noticeably [13–17], but sometimes pilot injections can increase
consumption and other pollutants such as smoke or hydrocarbons (HC) [18–22], mainly depending on
parameters such as injection time, duration, number of pre-injections, dwelling time, etc. Since these
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parameters provide conflicting results, a formal tool to establish the most appropriate injection pattern is
necessary. According to this, multiple-criteria decision-making (MCDM) approaches constitute a formal
tool for handling complex decision-making problems. MCDM methods are complex decision-making
tools for choosing the optimal option in cases where there are conflicting criteria. Since the start of the
MCDM methods in the 1960s, they were employed in many fields such as sustainability, supply chain
management, materials, quality management, GIS, construction and project management, safety and
risk management, manufacturing systems, technology, information management, soft computing,
tourism management, etc. [23]. One of the handicaps of MCDM methods is the determination of
the criteria weights, i.e., the degree of importance for each criterion. It is important to focus on the
criteria weights due to their influence on the overall result. According to this, several approaches to
define the criteria weights can be found in the literature. Briefly, these approaches can be divided into
subjective, i.e., based on the estimations of experts, and objective, i.e., calculated through mathematical
expressions. In practice, subjective weights are most commonly used [24]. Contrary to subjective
methods, the objective weights are based on mathematical methods and decision-makers have no
role in determining the relative importance of criteria. Common objective methods are entropy [25],
CRITIC [26], standard deviation [27], variance, mean weight, etc.

The present paper proposes a MCDM approach to select the most appropriate injection pattern
using a pilot injection in the marine diesel engine Wärtsilä 6L 46. The pre-injection rate, duration,
and starting instants were analyzed and the criteria were specific fuel consumption (SFC) and
NOx, CO, and HC emissions. These emissions and consumption were characterized through CFD
(Computational Fluid Dynamics) analyses. Due to the importance of the criteria weights on the overall
result, a comparison of several weighting methods was realized. A subjective criteria weighting
method was compared to four objective criteria weighting methods: entropy, CRITIC, variance,
and standard deviation.

2. Materials and Methods

The Wärtsilä 6L 46 is a four-stroke marine diesel engine, turbocharged and intercooled with
direct fuel injection. It has 6 in-line cylinders and each cylinder has 2 inlet and 2 exhaust valves.
The standard engine employed in the present work does not implement any NOx reduction system
such as water injection, EGR, SCR, etc. It incorporates a fast and efficient turbocharging system called
single pipe exhaust (SPEX). The cooling system is split into high-temperature and low-temperature
stages. Other specifications are provided in Table 1.

Table 1. Characteristics of the engine at 100% load.

Parameter Value

Output 5430 kW
Speed 500 rpm

Piston displacement 96.4 L/cyl
Bore 460 mm

Stroke 580 mm
Speed 500 rpm

Mean effective pressure 22.5 bar
Mean piston speed 9.7 m/s

A CFD analysis previously validated with experimental results [28–34] was carried out using
the open software OpenFOAM. The simulation was based on the equations of conservation of mass,
momentum, and energy and the numerical details are listed in Table 2.
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Table 2. Numerical details.

Parameter Model

Turbulence model k-ε
Combustion kinetic scheme Ra and Reitz [35] (131 reactions and 41 species)

NOx formation kinetic scheme Yang et al. [36] (43 reactions and 20 species)
NOx reduction kinetic scheme Miller and Glarborg [37] (131 reactions and 24 species)

Fuel heat-up and evaporation model Dukowicz [38]
Fuel droplet breakup model Kelvin-Helmholtz and Rayleigh-Taylor [39]

A comparison between the numerical and experimental results is illustrated in Figure 1 and
Figure 2. Figure 1 shows the emissions and SFC obtained numerically and experimentally at several
loads, and Figure 2 shows the in-cylinder pressure and heat release rate obtained numerically and
experimentally at 100% load. As can be seen, both figures show a reasonable correspondence between
numerical and experimental results.
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Figure 1. Specific fuel consumption (SFC) and emissions numerically and experimentally obtained at
different loads.
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Figure 2. In-cylinder pressure numerically and experimentally obtained at 100% load.
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3. Results and Discussion

Once validated, this CFD model was used to provide the data for the MCDM approach.
The simulation calculation was carried out simply as a process and as sample results for applying the
optimal selection method of multiple injection conditions. The 125 cases illustrated in Figure 3 were
analyzed. As can be seen, five pre-injection rates (R): 5%, 10%, 15%, 20%, and 25%; five pre-injection
durations (D): 1º, 2º, 3º, 4º, and 5º crank angle (CA); and five pre-injection starting instants (S): −22º,
−21º, −20º, −19º, and −18º crank angle after top dead center (CA ATDC), were employed.
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Four criteria were analyzed: SFC, NOx, CO, and HC. It is worth mentioning that PM emissions
should be included in this model. They were not included because current numerical methods do
not provide enough accuracy regarding PM [40]. Nevertheless, continuous efforts are being made to
develop more models which will provide proper accuracy in the near future.

Table 3 outlines the pre-injection rate, duration, and starting instant, as well as the values of SFC,
NOx, CO, and HC provided by the CFD model for the 125 cases. According to this, the data matrix
is composed of 125 rows and 4 columns. In the remaining of the present work, each datum of the
decision matrix will be represented as Xij, where i is the case and j is the criteria considered.

Table 3. Data for the multiple-criteria decision-making (MCDM) problem.

Case (i) S
(ºCA ATDC)

R
(%)

D
(ºCA)

Criterion (j)

j = 1 j = 2 j = 3 j = 4
SFC (g/kWh) NOx (g/kWh) CO (g/kWh) HC (g/kWh)

1 −22 5 1 190.9 7.38 4.65 5.72
2 −22 5 2 189.0 7.83 4.67 5.73
3 −22 5 3 187.5 8.19 4.70 5.76
4 −22 5 4 186.6 8.43 4.74 5.80
5 −22 5 5 186.1 8.58 4.78 5.84
6 −22 10 1 196.4 6.01 4.70 5.78
7 −22 10 2 193.9 6.57 4.73 5.81
8 −22 10 3 192.1 7.00 4.77 5.84
9 −22 10 4 190.8 7.31 4.81 5.89

10 −22 10 5 190.2 7.49 4.86 5.94
11 −22 15 1 200.4 5.06 4.74 5.83
12 −22 15 2 197.5 5.70 4.77 5.86
13 −22 15 3 195.3 6.19 4.81 5.90
14 −22 15 4 193.9 6.53 4.86 5.95
15 −22 15 5 193.1 6.73 4.92 6.02
16 −22 20 1 203.6 4.32 4.77 5.87
17 −22 20 2 200.3 5.01 4.80 5.90
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Table 3. Cont.

Case (i) S
(ºCA ATDC)

R
(%)

D
(ºCA)

Criterion (j)

j = 1 j = 2 j = 3 j = 4
SFC (g/kWh) NOx (g/kWh) CO (g/kWh) HC (g/kWh)

18 −22 20 3 197.9 5.55 4.85 5.94
19 −22 20 4 196.3 5.92 4.91 6.00
20 −22 20 5 195.5 6.14 4.97 6.07
21 −22 25 1 206.3 3.70 4.79 5.90
22 −22 25 2 202.8 4.44 4.83 5.93
23 −22 25 3 200.2 5.01 4.88 5.98
24 −22 25 4 198.4 5.41 4.94 6.05
25 −22 25 5 197.5 5.65 5.02 6.13
26 −21 5 1 185.2 8.65 4.62 5.68
27 −21 5 2 183.3 9.11 4.65 5.70
28 −21 5 3 181.9 9.46 4.67 5.72
29 −21 5 4 180.9 9.71 4.71 5.76
30 −21 5 5 180.4 9.85 4.75 5.80
31 −21 10 1 189.1 7.57 4.67 5.73
32 −21 10 2 186.6 8.14 4.69 5.76
33 −21 10 3 184.7 8.57 4.73 5.79
34 −21 10 4 183.5 8.88 4.77 5.84
35 −21 10 5 182.9 9.05 4.83 5.89
36 −21 15 1 191.9 6.83 4.70 5.77
37 −21 15 2 189.0 7.47 4.73 5.80
38 −21 15 3 186.8 7.96 4.77 5.84
39 −21 15 4 185.4 8.31 4.82 5.89
40 −21 15 5 184.6 8.51 4.88 5.96
41 −21 20 1 194.1 6.25 4.72 5.81
42 −21 20 2 190.9 6.94 4.76 5.84
43 −21 20 3 188.5 7.48 4.80 5.88
44 −21 20 4 186.9 7.86 4.86 5.94
45 −21 20 5 186.1 8.07 4.93 6.01
46 −21 25 1 196.0 5.76 4.74 5.83
47 −21 25 2 192.5 6.50 4.78 5.87
48 −21 25 3 189.9 7.08 4.83 5.91
49 −21 25 4 188.1 7.48 4.89 5.98
50 −21 25 5 187.3 7.71 4.97 6.06
51 −20 5 1 181.2 9.61 4.60 5.65
52 −20 5 2 179.3 10.07 4.62 5.67
53 −20 5 3 177.9 10.42 4.65 5.69
54 −20 5 4 176.9 10.67 4.68 5.73
55 −20 5 5 176.4 10.81 4.73 5.77
56 −20 10 1 183.9 8.76 4.64 5.69
57 −20 10 2 181.4 9.32 4.66 5.72
58 −20 10 3 179.6 9.75 4.70 5.75
59 −20 10 4 178.3 10.06 4.74 5.80
60 −20 10 5 177.7 10.24 4.80 5.85
61 −20 15 1 185.9 8.17 4.66 5.73
62 −20 15 2 183.0 8.81 4.69 5.75
63 −20 15 3 180.8 9.30 4.74 5.79
64 −20 15 4 179.3 9.64 4.79 5.85
65 −20 15 5 178.6 9.84 4.85 5.91
66 −20 20 1 187.4 7.71 4.68 5.75
67 −20 20 2 184.2 8.40 4.72 5.78
68 −20 20 3 181.8 8.93 4.76 5.83
69 −20 20 4 180.2 9.31 4.82 5.89
70 −20 20 5 179.4 9.53 4.89 5.96
71 −20 25 1 188.8 7.32 4.70 5.78
72 −20 25 2 185.3 8.06 4.74 5.81
73 −20 25 3 182.6 8.63 4.79 5.86
74 −20 25 4 180.9 9.04 4.85 5.92
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Table 3. Cont.

Case (i) S
(ºCA ATDC)

R
(%)

D
(ºCA)

Criterion (j)

j = 1 j = 2 j = 3 j = 4
SFC (g/kWh) NOx (g/kWh) CO (g/kWh) HC (g/kWh)

75 −20 25 5 180.0 9.27 4.93 6.00
76 −19 5 1 178.9 10.26 4.59 5.62
77 −19 5 2 177.0 10.71 4.61 5.64
78 −19 5 3 175.5 11.07 4.63 5.67
79 −19 5 4 174.6 11.32 4.67 5.70
80 −19 5 5 174.1 11.46 4.71 5.75
81 −19 10 1 180.9 9.55 4.62 5.66
82 −19 10 2 178.4 10.12 4.64 5.68
83 −19 10 3 176.5 10.55 4.68 5.72
84 −19 10 4 175.3 10.86 4.72 5.76
85 −19 10 5 174.7 11.03 4.78 5.82
86 −19 15 1 182.4 9.07 4.64 5.69
87 −19 15 2 179.5 9.71 4.67 5.72
88 −19 15 3 177.3 10.20 4.71 5.75
89 −19 15 4 175.8 10.54 4.76 5.81
90 −19 15 5 175.1 10.74 4.82 5.87
91 −19 20 1 183.5 8.69 4.66 5.71
92 −19 20 2 180.3 9.38 4.69 5.74
93 −19 20 3 177.9 9.92 4.74 5.78
94 −19 20 4 176.3 10.29 4.79 5.84
95 −19 20 5 175.5 10.51 4.86 5.92
96 −19 25 1 184.5 8.37 4.67 5.73
97 −19 25 2 181.0 9.11 4.71 5.76
98 −19 25 3 178.4 9.68 4.76 5.81
99 −19 25 4 176.6 10.08 4.82 5.87

100 −19 25 5 175.8 10.32 4.90 5.95
101 −18 5 1 178.2 10.59 4.57 5.60
102 −18 5 2 176.3 11.05 4.60 5.62
103 −18 5 3 174.8 11.40 4.62 5.65
104 −18 5 4 173.9 11.65 4.66 5.68
105 −18 5 5 173.4 11.79 4.70 5.73
106 −18 10 1 180.0 9.97 4.60 5.63
107 −18 10 2 177.5 10.53 4.63 5.66
108 −18 10 3 175.7 10.96 4.67 5.69
109 −18 10 4 174.4 11.27 4.71 5.74
110 −18 10 5 173.8 11.45 4.76 5.79
111 −18 15 1 181.3 9.53 4.62 5.66
112 −18 15 2 178.4 10.17 4.65 5.68
113 −18 15 3 176.2 10.66 4.70 5.72
114 −18 15 4 174.8 11.01 4.75 5.78
115 −18 15 5 174.1 11.21 4.81 5.84
116 −18 20 1 182.4 9.20 4.64 5.68
117 −18 20 2 179.1 9.89 4.67 5.71
118 −18 20 3 176.7 10.42 4.72 5.75
119 −18 20 4 175.1 10.80 4.78 5.81
120 −18 20 5 174.3 11.02 4.85 5.88
121 −18 25 1 183.3 8.91 4.65 5.69
122 −18 25 2 179.8 9.65 4.69 5.73
123 −18 25 3 177.1 10.22 4.74 5.77
124 −18 25 4 175.4 10.63 4.80 5.84
125 −18 25 5 174.5 10.86 4.88 5.92

Each indicator was transformed into its variation in per unit basis through Equation (1).

Vi j =
Xi j −X jre f

X jre f
(1)

where Xjref is the value corresponding to criterion j in the case without pre-injection.
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As indicated previously, an important step in a MCDM approach is to determine the criteria
weights, and this issue will be treated in Sections 3.1–3.5. Once determined, the adequacy index for
each i-th case, AIi, was calculated through the SAW (simple additive weighting) method, Equation (2).
Obviously, the most appropriate solution corresponds to the minimum value of AI.

AIi =
n∑

j=1

w jVi j (2)

where wj is the weight of the j-th criterion and n the number of criteria, i.e., four (SFC, NOx, CO,
and HC).

3.1. Subjective Weighting Method

In this method, the levels of importance were set by experts in the field. According to these experts,
the same importance was given to consumption (50%) and emissions (50%). Regarding emissions,

the importance was also distributed equally between NOx (33.
_

3%), CO (33.
_

3%), and HC (33.
_

3%).

According to this, the weights of SFC, NOx, CO, and HC result in w1 = 0.5, w2 = 0.1
_

6, w3 = 0.1
_

6,

and w4 = 0.1
_

6, respectively.

3.2. Entropy Weighting Method

This method measures the uncertainty in the information, and the criteria weights are given by
Equation (3).

w j =
1− E j

n∑
j=1

(1− E j)

(3)

In the equation above, 1—Ej represents the degree of diversity of the information related to the
j-th criterion and Ej is the entropy value of the j-th criterion, given by Equation (4). In this equation, pij
are the normalized data, Equation (5).

E j = −

m∑
i=1

pi j ln(pi j)

ln(m)
(4)

pi j =
Vi j

m∑
i=1

Vi j

(5)

According to the equations above, the range of the entropy value is 0–1. A low entropy value
indicates that the degree of disorder corresponding to criterion j is low and thus leads to a high weight.

3.3. CRITIC Weighting Method

In this method, the criteria weights are obtained by

w j =
C j

n∑
j=1

C j

(6)

where Cj, Equation (7), represents a measure of the conflict created by criterion j with respect to the
decision situation defined by the rest of the criteria. As the scores of the alternatives in criteria i and j
become more discordant, the value of lij is lowered. The higher the value Cj, the larger the amount
of information transmitted by the corresponding criterion and the higher the relative importance for
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the decision-making process. The objective weights are derived by normalizing these values to unity,
as indicated above through Equation (6).

C j = σ j

m∑
i=1

(1− li j) (7)

where σj is the standard deviation of the j-th criterion and lij is the correlation coefficient, Equation (8).
These correlation coefficients represent linear correlation coefficients between the criteria values in
the matrix.

li j =

m∑
k=1

(Vki −Vi)(Vkj −V j)√
m∑

k=1
(Vki −Vi)

2
√

m∑
k=1

(Vkj −V j)
2

(8)

3.4. Variance Weighting Method

The variance procedure method determines the criteria weights in terms of their statistical
variances, σj

2, through the following equation:

w j =
σ2

j
n∑

j=1
σ2

j

(9)

3.5. Standard Deviation Weighting Method

The standard deviation method determines the criteria weights in terms of their standard
deviations through the following equation:

w j =
σ j

n∑
j=1

σ j

(10)

To summarize, Table 4 summarizes the criteria weights obtained using these weighting methods.
As can be seen, the entropy method assigns an important weight to SFC, while the CRITIC, variance,
and standard deviation methods assign NOx as the most relevant criterion. Both variance and standard
deviation procedures measure the spread, i.e., the degree to which each sample is different from the
mean. As can be seen in Table 3 shown above, CO and HC emissions remain practically constant and
thus lead to low values of both variance and standard deviation. On the other hand, NOx and, to a
lesser extent, SFC present more spread and thus higher values of variance and standard deviation.
For this reason, the variance and standard deviation methods provide a significant weight to NOx and
low weights to CO and HC. Since the standard deviation is the square root of the variance, the variance
method assigns a higher weight to NOx than the standard deviation method. The CRITIC method
assigns high values of weights to those criteria with high standard deviation and low correlation with
other responses. According to this, the results obtained through the CRITIC method are very similar to
those obtained through the standard deviation method, but with less differences between the criteria
weights. The entropy method also takes into account the uncertainty in the information and thus
assigns low weights to CO and HC. Besides uncertainty, the entropy is based on the degree of disorder
and thus assigns an important weight to SFC.
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Table 4. Criteria weights according to the subjective, entropy, CRITIC, variance, and standard deviation
weighting methods.

Weighting Method
Criteria Weights, wj

SFC (j = 1) NOx (j = 2) CO (j = 3) HC (j = 4)

Subjective 0.50 0.1
_

6 0.1
_

6 0.1
_

6
Entropy 0.50 0.19 0.16 0.14
CRITIC 0.27 0.41 0.16 0.16
Variance 0.09 0.87 0.02 0.02

Standard deviation 0.20 0.62 0.09 0.09

Table 5 outlines the results of the 125 cases analyzed using these procedures. As can be seen,
the subjective weighting method provides case 91, with an adequacy index of AI91 = −0.122, as the
most appropriate injection pattern. This case corresponds to the −19º CA ATDC pre-injection starting
instant, 20% pre-injection rate, and 1º CA pre-injection duration. Since the subjective method assigns
an important weight to NOx, this 91st solution provides a significant NOx reduction with a low
increment of SFC, CO, and HC. This solution provides an important pre-injection rate, 20%, due to
its importance on NOx reduction. Retarding the pre-injection instant also reduces NOx noticeably
but at expenses of important increments on consumption. This reason leads to the CRITIC, variance,
and standard deviation weighting methods to provide case 105, corresponding to the −18º CA ATDC
pre-injection starting instant, 5% pre-injection rate, and 5º CA pre-injection duration, as the most
appropriate injection pattern, mainly due to the important weight of NOx over the other criteria and
lower weight of SFC in comparison with the subjective weighting method. A value of −18º CA ATDC
leads to important NOx reduction with a noticeable SFC penalty. Basically, the NOx reduction achieved
with a high pre-injection rate or by a late pre-injection rate is reached through a reduction in the
combustion temperature, since the high combustion temperatures reached in the combustion chamber
are responsible for most NOx emitted to the atmosphere [41,42]. On the other hand, the entropy
method provides case 25 as the most appropriate injection pattern, with a −22º CA ATDC pre-injection
starting instant, 25% pre-injection rate, and 5º CA pre-injection duration. Since the entropy method
assigns more weight to SFC and, to a lesser extent, to NOx, it provides an earlier pre-injection starting
instant, which leads to a reduction in SFC and a higher pre-injection rate, which leads to a reduction
in NOx.

Table 5. Adequacy index according to subjective, entropy, CRITIC, variance, and standard deviation
weighting methods.

Case (i) S
(ºCA ATDC)

R
(%)

D
(ºCA)

AIi

Subjective Entropy CRITIC Variance Standard Deviation

1 −22 5 1 −0.007 −0.020 −0.140 −0.376 −0.247
2 −22 5 2 −0.006 −0.017 −0.128 −0.347 −0.227
3 −22 5 3 −0.004 −0.015 −0.118 −0.325 −0.211
4 −22 5 4 −0.001 −0.012 −0.110 −0.309 −0.200
5 −22 5 5 0.002 −0.008 −0.103 −0.299 −0.192
6 −22 10 1 −0.004 −0.020 −0.170 −0.463 −0.302
7 −22 10 2 −0.003 −0.017 −0.155 −0.427 −0.278
8 −22 10 3 −0.001 −0.014 −0.143 −0.399 −0.259
9 −22 10 4 0.003 −0.011 −0.132 −0.380 −0.244

10 −22 10 5 0.007 −0.006 −0.124 −0.368 −0.235
11 −22 15 1 −0.002 −0.019 −0.190 −0.522 −0.340
12 −22 15 2 −0.001 −0.017 −0.173 −0.482 −0.313
13 −22 15 3 0.002 −0.014 −0.159 −0.451 −0.291
14 −22 15 4 0.006 −0.009 −0.148 −0.428 −0.274
15 −22 15 5 0.010 −0.005 −0.138 −0.415 −0.264
16 −22 20 1 0.000 −0.019 −0.206 −0.569 −0.369
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Table 5. Cont.

Case (i) S
(ºCA ATDC)

R
(%)

D
(ºCA)

AIi

Subjective Entropy CRITIC Variance Standard Deviation

17 −22 20 2 0.002 −0.016 −0.188 −0.525 −0.340
18 −22 20 3 0.004 −0.013 −0.172 −0.491 −0.316
19 −22 20 4 0.008 −0.008 −0.159 −0.467 −0.298
20 −22 20 5 0.014 −0.003 −0.149 −0.452 −0.286
21 −22 25 1 0.002 −0.018 −0.219 −0.608 −0.394
22 −22 25 2 0.004 −0.016 −0.199 −0.561 −0.362
23 −22 25 3 0.006 −0.012 −0.183 −0.525 −0.337
24 −22 25 4 0.011 −0.007 −0.169 −0.499 −0.318
25 −22 25 5 0.016 −0.001 −0.158 −0.483 −0.305
26 −21 5 1 −0.010 −0.020 −0.112 −0.296 −0.195
27 −21 5 2 −0.008 −0.017 −0.100 −0.267 −0.176
28 −21 5 3 −0.006 −0.015 −0.090 −0.245 −0.160
29 −21 5 4 −0.004 −0.012 −0.082 −0.229 −0.148
30 −21 5 5 0.000 −0.008 −0.075 −0.219 −0.141
31 −21 10 1 −0.009 −0.021 −0.136 −0.364 −0.239
32 −21 10 2 −0.007 −0.018 −0.121 −0.329 −0.215
33 −21 10 3 −0.005 −0.015 −0.109 −0.301 −0.196
34 −21 10 4 −0.002 −0.012 −0.098 −0.281 −0.181
35 −21 10 5 0.002 −0.008 −0.090 −0.270 −0.172
36 −21 15 1 −0.008 −0.021 −0.152 −0.411 −0.269
37 −21 15 2 −0.006 −0.019 −0.136 −0.371 −0.242
38 −21 15 3 −0.004 −0.016 −0.121 −0.339 −0.220
39 −21 15 4 0.000 −0.011 −0.110 −0.317 −0.204
40 −21 15 5 0.005 −0.007 −0.101 −0.304 −0.193
41 −21 20 1 −0.007 −0.022 −0.165 −0.448 −0.293
42 −21 20 2 −0.005 −0.019 −0.147 −0.404 −0.263
43 −21 20 3 −0.002 −0.015 −0.131 −0.370 −0.239
44 −21 20 4 0.001 −0.011 −0.118 −0.346 −0.221
45 −21 20 5 0.007 −0.006 −0.109 −0.331 −0.210
46 −21 25 1 −0.006 −0.022 −0.175 −0.479 −0.312
47 −21 25 2 −0.004 −0.019 −0.156 −0.432 −0.280
48 −21 25 3 −0.001 −0.015 −0.139 −0.395 −0.255
49 −21 25 4 0.003 −0.011 −0.126 −0.369 −0.236
50 −21 25 5 0.008 −0.005 −0.115 −0.354 −0.224
51 −20 5 1 −0.011 −0.019 −0.091 −0.236 −0.156
52 −20 5 2 −0.010 −0.017 −0.079 −0.207 −0.137
53 −20 5 3 −0.008 −0.014 −0.068 −0.184 −0.121
54 −20 5 4 −0.005 −0.011 −0.060 −0.168 −0.109
55 −20 5 5 −0.002 −0.008 −0.054 −0.159 −0.102
56 −20 10 1 −0.011 −0.021 −0.110 −0.290 −0.191
57 −20 10 2 −0.010 −0.018 −0.095 −0.254 −0.167
58 −20 10 3 −0.007 −0.015 −0.083 −0.226 −0.148
59 −20 10 4 −0.004 −0.012 −0.072 −0.207 −0.134
60 −20 10 5 0.000 −0.008 −0.064 −0.195 −0.124
61 −20 15 1 −0.011 −0.022 −0.123 −0.327 −0.215
62 −20 15 2 −0.010 −0.019 −0.107 −0.287 −0.188
63 −20 15 3 −0.007 −0.016 −0.092 −0.256 −0.166
64 −20 15 4 −0.003 −0.012 −0.081 −0.233 −0.150
65 −20 15 5 0.001 −0.007 −0.072 −0.220 −0.139
66 −20 20 1 −0.011 −0.023 −0.134 −0.356 −0.234
67 −20 20 2 −0.009 −0.020 −0.115 −0.312 −0.205
68 −20 20 3 −0.007 −0.016 −0.100 −0.278 −0.181
69 −20 20 4 −0.003 −0.012 −0.087 −0.254 −0.163
70 −20 20 5 0.003 −0.007 −0.077 −0.240 −0.151
71 −20 25 1 −0.010 −0.023 −0.142 −0.381 −0.250
72 −20 25 2 −0.009 −0.021 −0.123 −0.334 −0.218
73 −20 25 3 −0.006 −0.017 −0.106 −0.298 −0.193
74 −20 25 4 −0.002 −0.012 −0.093 −0.272 −0.174
75 −20 25 5 0.004 −0.006 −0.082 −0.256 −0.161
76 −19 5 1 −0.011 −0.018 −0.076 −0.195 −0.130
77 −19 5 2 −0.010 −0.015 −0.064 −0.166 −0.110
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Table 5. Cont.

Case (i) S
(ºCA ATDC)

R
(%)

D
(ºCA)

AIi

Subjective Entropy CRITIC Variance Standard Deviation

78 −19 5 3 −0.008 −0.013 −0.054 −0.143 −0.094
79 −19 5 4 −0.005 −0.010 −0.045 −0.127 −0.083
80 −19 5 5 −0.002 −0.007 −0.039 −0.118 −0.075
81 −19 10 1 −0.012 −0.020 −0.092 −0.239 −0.159
82 −19 10 2 −0.010 −0.017 −0.077 −0.204 −0.135
83 −19 10 3 −0.008 −0.014 −0.065 −0.176 −0.115
84 −19 10 4 −0.005 −0.011 −0.054 −0.156 −0.101
85 −19 10 5 −0.001 −0.006 −0.046 −0.145 −0.091
86 −19 15 1 −0.012 −0.021 −0.103 −0.270 −0.179
87 −19 15 2 −0.011 −0.019 −0.086 −0.230 −0.152
88 −19 15 3 −0.008 −0.015 −0.072 −0.199 −0.130
89 −19 15 4 −0.004 −0.011 −0.061 −0.176 −0.114
90 −19 15 5 0.000 −0.006 −0.052 −0.163 −0.103
91 −19 20 1 −0.012 −0.022 −0.112 −0.294 −0.194
92 −19 20 2 −0.011 −0.019 −0.094 −0.251 −0.165
93 −19 20 3 −0.008 −0.016 −0.078 −0.216 −0.141
94 −19 20 4 −0.004 −0.011 −0.065 −0.192 −0.123
95 −19 20 5 0.001 −0.006 −0.056 −0.178 −0.112
96 −19 25 1 −0.012 −0.023 −0.119 −0.315 −0.207
97 −19 25 2 −0.011 −0.020 −0.100 −0.268 −0.176
98 −19 25 3 −0.008 −0.016 −0.083 −0.231 −0.151
99 −19 25 4 −0.004 −0.012 −0.069 −0.205 −0.132

100 −19 25 5 0.002 −0.006 −0.059 −0.190 −0.119
101 −18 5 1 −0.010 −0.016 −0.068 −0.173 −0.116
102 −18 5 2 −0.009 −0.014 −0.056 −0.144 −0.096
103 −18 5 3 −0.007 −0.011 −0.045 −0.122 −0.080
104 −18 5 4 −0.004 −0.008 −0.037 −0.106 −0.068
105 −18 5 5 −0.001 −0.005 −0.031 −0.096 −0.061
106 −18 10 1 −0.011 −0.018 −0.082 −0.213 −0.141
107 −18 10 2 −0.009 −0.015 −0.067 −0.177 −0.117
108 −18 10 3 −0.007 −0.012 −0.055 −0.150 −0.098
109 −18 10 4 −0.004 −0.009 −0.044 −0.130 −0.084
110 −18 10 5 0.001 −0.004 −0.036 −0.118 −0.074
111 −18 15 1 −0.011 −0.019 −0.092 −0.241 −0.159
112 −18 15 2 −0.009 −0.016 −0.075 −0.200 −0.132
113 −18 15 3 −0.007 −0.013 −0.061 −0.169 −0.110
114 −18 15 4 −0.003 −0.009 −0.049 −0.147 −0.094
115 −18 15 5 0.002 −0.004 −0.040 −0.134 −0.083
116 −18 20 1 −0.011 −0.020 −0.100 −0.262 −0.173
117 −18 20 2 −0.009 −0.017 −0.081 −0.218 −0.143
118 −18 20 3 −0.007 −0.013 −0.066 −0.184 −0.120
119 −18 20 4 −0.003 −0.009 −0.053 −0.160 −0.102
120 −18 20 5 0.003 −0.004 −0.043 −0.146 −0.090
121 −18 25 1 −0.011 −0.020 −0.106 −0.280 −0.185
122 −18 25 2 −0.009 −0.017 −0.087 −0.233 −0.153
123 −18 25 3 −0.007 −0.014 −0.070 −0.197 −0.128
124 −18 25 4 −0.002 −0.009 −0.057 −0.171 −0.109
125 −18 25 5 0.003 −0.003 −0.046 −0.156 −0.096

4. Conclusions

The main goal of the present paper is to characterize the most appropriate pre-injection pattern
in a marine diesel engine, the Wärtsilä 6L 46, in order to optimize the pilot injection process. A CFD
model previously validated with experimental results was employed to obtain data corresponding
to a set of 125 injection patterns using pilot injection. The pre-injection rate, duration, and starting
instant were varied in the ranges of 5% to 25%, 1º to 5º CA, and −22º to −18º CA ATDC, respectively.
Since the manipulation of these parameters has conflicting results on consumption and emissions of
NOx, CO, and HC, a MCDM approach was employed to select the most appropriate injection pattern.
Due to the importance of criteria weights on the overall result, several criteria weighting methods were
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compared. In particular, a subjective weighting method was compared with four objective weighting
methods: entropy, CRITIC, variance, and standard deviation. The CRITIC, variance, and standard
deviation methods led to the same injection pattern: −19º CA pre-injection starting angle, 20% pre-
injection rate, and 5º CA pre-injection duration. Nevertheless, the entropy method provided a −22º CA
pre-injection starting angle, 25% pre-injection rate, and 5º CA pre-injection duration as the most
appropriate injection pattern, and the subjective method determined this as a −19º CA pre-injection
starting angle, 20% pre-injection rate, and 1º CA pre-injection duration. The main contribution of
the present work consists in emphasizing the differences between the results obtained using various
methods for the determination of the criteria weights, showing the advantage of subjectivism over
objectivism. Based on the overall results, the subjective method is recommended since the criteria
weights are defined by experts in the field. In fact, in practical applications, subjective methods are
more frequently employed than objective ones. Objective methods are only recommended when
the objectivity of the research is too important or when there is no agreement between the weights
proposed by the experts.
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Nomenclature

AI Adequacy index
C Measure of the conflict
E Entropy value
i Case
j Criterion
m Number of cases analyzed
n Number of criteria
p Normalized data
σ Standard deviation
σ2 Statistical variance
V Value in per unit basis
w Criterion weight
X Value

Abbreviations

ATDC After top dead center
CRITIC Criteria importance through intercriteria correlation
CA Crank angle
CFD Computational fluid dynamics
CO Carbon monoxide
CO2 Carbon dioxide
D Pre-injection duration
HC Hydrocarbons
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www.technicalcourses.net


J. Mar. Sci. Eng. 2020, 8, 946 13 of 14

References

1. Sinay, J.; Puskar, M.; Kopas, M. Reduction of the NOx emissions in vehicle diesel engine in order to fulfill
future rules concerning emissions released into air. Sci. Total Environ. 2018, 624, 1421–1428. [CrossRef]
[PubMed]

2. Sui, S.; de Vos, P.; Stapersma, D.; Visser, K.; Ding, Y. Fuel consumption and emissions of ocean-going cargo
ship with hybrid propulsion and different fuels over voyage. J. Mar. Sci. Eng. 2020, 8, 588. [CrossRef]

3. Perez, J.R.; Reusser, C.A. Optimization of the emissions profile of a marine propulsion system using a shaft
generator with optimum tracking-based control scheme. J. Mar. Sci. Eng. 2020, 8, 221. [CrossRef]

4. Shen, H.; Zhang, J.; Yang, B.; Jia, B. Development of a marine two-stroke diesel engine MVEM with in-cylinder
pressure trace predictive capability and a novel compressor model. J. Mar. Sci. Eng. 2020, 8, 204. [CrossRef]

5. Sencic, T.; Mrzljak, V.; Blecich, P.; Bonefacic, I. 2D CFD simulation of water injection strategies in a large
marine engine. J. Mar. Sci. Eng. 2019, 7, 296. [CrossRef]

6. Puskar, M.; Kopas, M.; Sabadka, D.; Kliment, M.; Marieta Soltesova, M. Reduction of the gaseous emissions
in the marine diesel engine using biodiesel mixtures. J. Mar. Sci. Eng. 2020, 8, 330. [CrossRef]

7. Pistek, V.; Kucera, P.; Fomin, O.; Alyona, A. Effective mistuning identification method of integrated bladed
discs of marine engine turbochargers. J. Mar. Sci. Eng. 2020, 8, 379. [CrossRef]

8. Witkowski, K. Research of the effectiveness of selected methods of reducing toxic exhaust emissions of
marine diesel engines. J. Mar. Sci. Eng. 2020, 8, 452. [CrossRef]

9. Seddiek, I.S.; El Gohary, M.M.; Ammar, N.R. The hydrogen-fuelled internal combustion engines for marine
applications with a case study. Brodogradnja 2015, 66, 23–38.

10. El Gohary, M.M.; Ammar, N.R.; Seddiek, I.S. Steam and SOFC based reforming options of PEM fuel cells for
marine applications. Brodogradnja 2015, 66, 61–76.

11. International Maritime Organization (IMO). Third IMO GHG Study 2014. Executive Summary and Final Report,
MEPC 67/6/INF.3, June 2014; International Maritime Organization: London, UK, 2014.

12. Winnes, H.; Fridell, E.; Moldanova, J. Effects of marine exhaust gas scrubbers on gas and particle emissions.
J. Mar. Sci. Eng. 2020, 8, 299. [CrossRef]

13. Nehmer, D.A.; Reitz, R.D. Measurement of Effect of Injection Rate and Split Injections on Diesel Engine, Soot and
NOx Emissions; SAE Technical Paper 940668; SAE International: Warrendale, PA, USA, 1998. [CrossRef]

14. Han, Z.; Uludogan, A.; Hampson, G.; Reitz, R. Mechanism of Soot and NOx Emission Reduction Using
Multiple-Injection in a Diesel Engine; SAE Technical Paper 960633; SAE International: Warrendale, PA, USA, 1996.
[CrossRef]

15. Ikegami, M.; Nakatani, K.; Tanaka, S.; Yamane, K. Fuel Injection Rate Shaping and Its Effect on Exhaust Emissions
in A Direct-Injection Diesel Engine Using a Spool Acceleration Type Injection System; SAE Techical Paper 970347;
SAE International: Warrendale, PA, USA, 1997. [CrossRef]

16. Carlucci, A.P.; Ficarella, A.; Laforgia, D. Control of the combustion behaviour in a diesel engine using early
injection and gas addition. Appl. Therm. Eng. 2006, 26, 2279–2286. [CrossRef]

17. Mohan, B.; Yang, W.; Chou, S.K. Fuel injection strategies for performance improvement and emissions
reduction in compression ignition engines. A review. Renew. Sustain. Energy Rev. 2013, 28, 664–676.
[CrossRef]

18. Chen, S.K. Simultaneous Reduction of NOx and Particulate Emissions by Using Multiple Injections in A Small
Diesel Engine; SAE Technical Paper 2000-01-3084; SAE International: Warrendale, PA, USA, 2000. [CrossRef]

19. Fang, T.; Coverdill, R.; Lee, C.F.; White, R.A. Effects of injection angles on combustion process using multiple
injection strategies in an HSDI diesel engine. Fuel 2008, 87, 3232–3239. [CrossRef]

20. Chen, G.; Wang, K.; Yang, J.; Zhang, W.; Xu, J.; Luo, J. Effects of fuel injection strategy with EGR on diesel
engine combustion process and CDPF regeneration performance. Chin. Intern. Combust. Engine Eng. 2017,
38, 131–141. [CrossRef]

21. Cha, J.; Yang, S.H.; Naser, N.; Ichim, A.I.; Chung, S.H. High Pressure and Split Injection Strategies for Fuel Efficiency
and Emissions in Diesel Engine; SAE Technical Paper 127084; SAE International: Warrendale, PA, USA, 2015.
[CrossRef]

22. Shi, J.; Wang, T.; Zhao, Z.; Yang, T.; Zhang, Z. Experimental study of injection parameters on the performance
of a diesel engine with Fischer–Tropsch fuel synthesized from coal. Energies 2018, 11, 3280. [CrossRef]

http://dx.doi.org/10.1016/j.scitotenv.2017.12.266
http://www.ncbi.nlm.nih.gov/pubmed/29929253
http://dx.doi.org/10.3390/jmse8080588
http://dx.doi.org/10.3390/jmse8030221
http://dx.doi.org/10.3390/jmse8030204
http://dx.doi.org/10.3390/jmse7090296
http://dx.doi.org/10.3390/jmse8050330
http://dx.doi.org/10.3390/jmse8050379
http://dx.doi.org/10.3390/jmse8060452
http://dx.doi.org/10.3390/jmse8040299
http://dx.doi.org/10.4271/940668
http://dx.doi.org/10.4271/960633
http://dx.doi.org/10.4271/970347
http://dx.doi.org/10.1016/j.applthermaleng.2006.03.016
http://dx.doi.org/10.1016/j.rser.2013.08.051
http://dx.doi.org/10.4271/2000-01-3084
http://dx.doi.org/10.1016/j.fuel.2008.05.012
http://dx.doi.org/10.13949/j.cnki.nrjgc.2017.03.021
http://dx.doi.org/10.4271/2015-01-1823
http://dx.doi.org/10.3390/en11123280


J. Mar. Sci. Eng. 2020, 8, 946 14 of 14

23. Mardani, A.; Jusoh, A.; Zavadskas, E.K.; Cavallaro, F.; Khalifah, Z. Sustainable and renewable energy–an
overview of the application of multiple criteria decision-making techniques and approaches. Sustainability
2015, 7, 13947–13984. [CrossRef]

24. Vinogradova, I.; Podvezko, V.; Zavadskas, E.K. The recalculation of the weights of criteria in MCDM methods
using the Bayes approach. Symmetry 2018, 10, 205. [CrossRef]

25. Deng, H.; Yeh, C.H.; Willis, R.J. Inter-company comparison using modified TOPSIS with objective weights.
Comput. Oper Res. 2000, 27, 963–973. [CrossRef]

26. Diakoulaki, D.; Mavrotas, G.; Papayannakis, L. Determining objective weights in multiple criteria problems:
The critic method. Comput. Oper. Res. 1995, 22, 763–770. [CrossRef]

27. Jahan, A.; Mustapha, F.; Sapuan, S.M.; Ismail, M.Y.; Bahraminasab, M. A framework for weighting of criteria
in ranking stage of material selection process. Int. J. Adv. Manuf. Tech. 2012, 58, 411–420. [CrossRef]

28. Lamas, M.I.; Rodríguez, C.G.; Rebollido, J.M. Numerical model to study the valve overlap period in the
Wärtsilä 6L46 four-stroke marine engine. Pol. Marit. Res. 2012, 1, 31–37. [CrossRef]

29. Lamas, M.I.; Rodríguez, C.G. Numerical model to study the combustion process and emissions in the
Wärtsilä 6L 46 four-stroke marine engine. Pol. Marit. Res. 2013, 20, 61–66. [CrossRef]

30. Lamas, M.I.; Rodriguez, C.G.; Rodriguez, J.D.; Telmo, J. Internal modifications to reduce pollutant emissions
from marine engines. A numerical approach. Int. J. Nav. Archit. Mar. Eng. 2013, 5, 493–501. [CrossRef]

31. Lamas, M.I.; Rodriguez, C.G.; Telmo, J.; Rodriguez, J.D. Numerical analysis emissions from marine engines
using alternative fuels. Pol. Marit. Res. 2015, 22, 48–52. [CrossRef]

32. Lamas, M.I.; Rodríguez, J.d.; Castro-Santos, L.; Carral, L.M. Effect of multiple injection strategies on emissions
and performance in the Wärtsilä 6L 46 marine engine. A numerical approach. J. Clean. Prod. 2019, 206, 1–10.
[CrossRef]

33. Galdo, M.I.L.; Castro-Santos, L.; Carlos, G.R.V. Selection of an appropriate pre-injection pattern in a marine
diesel engine through a multiple-criteria decision making approach. Appl. Sci. 2020, 10, 2482. [CrossRef]

34. Galdo, M.I.L.; Castro-Santos, L.; Vidal, C.G.R. Numerical analysis of NOx reduction using ammonia injection
and comparison with water injection. J. Mar. Sci. Eng. 2020, 8, 109. [CrossRef]

35. Ra, Y.; Reitz, R. A reduced chemical kinetic model for IC engine combustion simulations with primary
reference fuels. Combust. Flame 2008, 155, 713–738. [CrossRef]

36. Yang, H.; Krishnan, S.R.; Srinivasan, K.K.; Midkiff, K.C. Modeling of NOx emissions using a superextended
Zeldovich mechanism. In Proceedings of the ICEF03 2003 Fall Technical Conference of the ASME Internal
Combustion Engine Division, Erie, PA, USA, 7–10 September 2003.

37. Miller, J.A.; Glarborg, P. Modeling the formation of N2O and NO2 in the thermal DeNOx process. Springer Ser.
Chem. Phys. 1996, 61, 318–333.

38. Dukowicz, J.K. A particle-fluid numerical model for liquid sprays. J. Comput. Phys. 1980, 35, 229–253.
[CrossRef]

39. Ricart, L.M.; Xin, J.; Bower, G.R.; Reitz, R.D. In-Cylinder Measurement and Modeling of Liquid Fuel Spray
Penetration in A Heavy-Duty Diesel Engine; SAE Technical Paper 971591; SAE International: Warrendale,
PA, USA, 1997. [CrossRef]

40. Gao, J.; Kuo, T.W. Toward the accurate prediction of soot in engine applications. Int. J. Engine Res. 2018, 20, 706–717.
[CrossRef]

41. Lamas, M.I.; Rodriguez, C.G. NOx reduction in diesel-hydrogen engines using different strategies of ammonia
injection. Energies 2019, 12, 1255. [CrossRef]

42. Lamas, M.I.; Rodriguez, C.G. Numerical model to analyze NOx reduction by ammonia injection in
diesel-hydrogen engines. Int. J. Hydrogen Energy 2017, 42, 26132–26141. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/su71013947
http://dx.doi.org/10.3390/sym10060205
http://dx.doi.org/10.1016/S0305-0548(99)00069-6
http://dx.doi.org/10.1016/0305-0548(94)00059-H
http://dx.doi.org/10.1007/s00170-011-3366-7
http://dx.doi.org/10.2478/v10012-012-0004-8
http://dx.doi.org/10.2478/pomr-2013-0017
http://dx.doi.org/10.2478/IJNAOE-2013-0148
http://dx.doi.org/10.1515/pomr-2015-0070
http://dx.doi.org/10.1016/j.jclepro.2018.09.165
http://dx.doi.org/10.3390/app10072482
http://dx.doi.org/10.3390/jmse8020109
http://dx.doi.org/10.1016/j.combustflame.2008.05.002
http://dx.doi.org/10.1016/0021-9991(80)90087-X
http://dx.doi.org/10.4271/971591
http://dx.doi.org/10.1177/1468087418773937
http://dx.doi.org/10.3390/en12071255
http://dx.doi.org/10.1016/j.ijhydene.2017.08.090
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Results and Discussion 
	Subjective Weighting Method 
	Entropy Weighting Method 
	CRITIC Weighting Method 
	Variance Weighting Method 
	Standard Deviation Weighting Method 

	Conclusions 
	References

