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Abstract: This work presents EADMNC (Explainable Anomaly Detection on Mixed Numerical
and Categorical spaces), a novel approach to address explanation using an anomaly detection
algorithm, ADMNC, which provides accurate detections on mixed numerical and categorical input
spaces. Our improved algorithm leverages the formulation of the ADMNC model to offer pre-hoc
explainability based on CART (Classification and Regression Trees). The explanation is presented as a
segmentation of the input data into homogeneous groups that can be described with a few variables,
offering supervisors novel information for justifications. To prove scalability and interpretability, we
list experimental results on real-world large datasets focusing on network intrusion detection domain.
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1. Introduction

Anomaly Detection is an old discipline that has become relevant in situations in which datasets
are huge and contain unexpected events carrying important information. These methods have
found applications in fields such as network intrusion detection, and surveillance, among others.
Several machine learning models are available [1,2], but despite being capable of offering very
effective detection, most of these algorithms are unable to provide justifications about their outputs.
The lack of explanation is one of the most important shortcomings of Machine Learning at present [3].
The European Union cites XAI (Explainable Artificial Intelligence) in its Ethics Guidelines for
Trustworthy AI [4].

This work extends the ADMNC algorithm [5], an anomaly detection algorithm developed by our
research group, with a new layer that opens the ADMNC black box by offering pre-hoc explainability.
Regression decision trees are used to segment input data into homogeneous groups that can be
described with a few variables. The objective is to provide a helpful and intuitive description of
anomalous data, thus offering information to make informed decisions.

2. Methodology

The original ADMNC algorithm [5] is a method for large-scale offline learning to obtain a model
of normal data that is then used to detect anomalies. The model used to obtain the pre-hoc explanation
will consist of a grouping of the input patterns attending to their numerical variables. Clusters will
be defined as the leaf nodes of a shallow decision tree [6]. Each pattern will be assigned its ADMNC
estimator [5]. This estimator will then be approximated with a simple regression model, learned using
the Apache Spark MLLib implementation of CART. Variance gives us an idea about how homogeneous
the estimators for elements in a tree node are. Successive divisions turn nodes into more specific

Proceedings 2020, 54, 7; doi:10.3390/proceedings2020054007 www.mdpi.com/journal/proceedings

http://www.mdpi.com/journal/proceedings
http://www.mdpi.com/journal/proceedings
http://www.mdpi.com
https://orcid.org/0000-0002-7310-0702
https://orcid.org/0000-0001-6322-7593
https://orcid.org/0000-0003-0950-0012
http://www.mdpi.com/2504-3900/54/1/7?type=check_update&version=1
http://dx.doi.org/10.3390/proceedings2020054007
http://www.mdpi.com/journal/proceedings


Proceedings 2020, 54, 7 2 of 4

groups that contain similar elements. This balance between cluster homogeneity and explanation
quality, given by the depth of each path, allows us to choose the level of detail for explanations.

We define the clustering Cl(D) over dataset D as a set of m clusters Cli ∀i ∈ [1, m] that contains
every element in D. The weighted variance (WV) of a Cl(D) is defined as:

WV(Cl(D)) =

∑
i∈1..m

(σ2
Cli

)|Cli|

|D| . (1)

The weighted variance of a clustering measures how homogeneous its components are. This measure
is complemented with another measure that indicates the number of input variables employed to
characterize each cluster Cli. As a result, the quality, Q of a clustering is defined as:

Q(CL(D)) = −WV(Cl(D))− λ ∑
Cli∈Cl(D)

NV(Cli), (2)

where NV(Cli) represents the number of variables needed to describe cluster Cli and λ is a
hyperparameter that allows the supervisor to balance the accuracy and interpretability [6] of the whole
clustering. This quality measure is always negative and the goal of the algorithm is maximizing its
value to approach 0. Maximizing this measure will ensure that the groups obtained are as homogeneous
as possible and that they are explained using as few of the input variables as possible.

This method is carried out in two steps: (1) a full N level tree is built using the well-known
CART algorithm. (2) This full tree is pruned to optimize the quality measure. Those node splits that
decrease variance but also decrease quality are discarded, yielding a simpler tree that maximizes quality.
The main features that lead data to be anomalous can be obtained as the path to anomalous clusters.

3. Experimental Results

To assess the validity of our approach, we considered two large datasets focusing on the network
intrusion detection domain, KDDCup99 [5] and ISCXIDS 2012. For each resulting clustering, we
measured its quality Q and weighted variance. We also included the number of clusters and the
number of variables employed for both the full and pruned tree. These results are listed in Table 1.
We set hyperparameter λ accordingly with pruning effort. This value can be modified by the supervisor,
assigning more or less importance to interpretability in comparison to predictive power. Area under
ROC (Receiver Operating Characteristic) curve is provided as fitness measure for anomaly detection,
making five repetitions of each experiment. An example of explanatory tree is shown in Figure 1.

Table 1. Area under ROC curve (AUC) and explanatory tree metrics. Before pruning (Full, F) and after
pruning (Pruned, P), considering hyperparameter λ, OV (Overall variance),Q (quality), WV (weighted
variance), #Cl (number of clusters) and NV (number of variables to reach all clusters).

Dataset AUC Explanation

Name OV λ (µ± σ) Tree Q WV #Cl NV

ISCXIDS 2012 0.105 10−4 0.919 ± 0.02 F −0.062 0.048 29 142
P −0.051 0.049 7 25

KDDCup99 - FULL 0.049 10−3 0.758 ± 0.05 F −0.147 0.011 28 136
P −0.032 0.012 6 20

KDDCup99 - SMTP 2.846 10−3 0.980 ± 0.01 F −0.105 3.630 × 10−9 22 105
P −0.005 6.632 × 10−6 3 5

KDDCup99 - HTTP 0.843 10−3 0.992 ± 0.01 F −0.898 0.831 15 67
P −0.842 0.837 3 5

KDDCup99 - 10 2.454 10−3 0.966 ± 0.02 F −1.320 1.227 20 93
P −1.247 1.228 6 20
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100.00% - 26.57 - 15.79
 -0.73 +- 5.15
srv_rerror_rate

99.66% - 22.14 - 15.63
 -0.64 +- 4.71

hot

< 0.9750

0.34% - 608.42 - 62.75
 -27.69 +- 24.67

duration

> 0.9750

99.61% - 21.24 - 15.63
 -0.62 +- 4.61

rerror_rate

< 1.5000

0.05% - 63.51 - 12.21
 -42.17 +- 7.97

serror_rate

> 1.5000

99.54% - 19.81 - 15.51
 -0.59 +- 4.45

count

< 0.0020

0.07% - 212.36 - 177.67
 -42.50 +- 14.57

serror_rate

> 0.0020

98.44% - 14.48 - 12.78
 -0.45 +- 3.81

dst_host_srv_serror_rate

< 3.2882

1.10% - 325.55 - 260.49
 -13.61 +- 18.04

dst_bytes

> 3.2882

98.37% - 12.78
 -0.41 +- 3.58

< 0.4950

0.07% - 1.60
 -50.36 +- 1.27

> 0.4950

1.04% - 270.83
 -11.76 +- 16.46

< 332.5000

0.05% - 63.91
 -48.78 +- 7.99

> 332.5000

0.07% - 212.41 - 178.38
 -42.29 +- 14.57

count

< 0.2555

0.00% - 153.00
 -49.98 +- 12.37

> 0.2555

0.02% - 0.00
 -53.36 +- 0.04

< 1.5000

0.06% - 227.93
 -39.21 +- 15.10

> 1.5000

0.04% - 13.19
 -39.00 +- 3.63

< 0.0055

0.01% - 7.17
 -58.38 +- 2.68

> 0.0055

0.33% - 588.00 - 62.45
 -27.16 +- 24.25

hot

< 6.5000

0.00% - 373.36 - 87.31
 -70.71 +- 19.32

src_bytes

> 6.5000

0.33% - 581.00 - 62.84
 -26.90 +- 24.10
same_srv_rate

< 0.0010

0.00% - 0.00
 -68.33 +- 0.04

> 0.0010

0.19% - 127.18 - 108.94
 -7.60 +- 11.28

count

< 0.1550

0.14% - 0.01
 -53.20 +- 0.08

> 0.1550

0.00% - 0.00
 -48.34 +- 0.03

< 56.5000

0.19% - 110.14
 -7.15 +- 10.49

> 56.5000

0.00% - 116.42
 -60.94 +- 10.79

< 1255.5000

0.00% - 0.00
 -100.00 +- 0.00

> 1255.5000

RANGO DE ESTIMADORES

Sin normalizar [-21.689, 4.845]

Umbral de separacion de anomalias: -4.395 
Limite del estimador para datos normales: 4.845

Normalizado [-100, 0]

Rango anomalo normalizado
[-100, -34.825]

Rango normal normalizado
[-34.825, 0.0]

Figure 1. Explanatory tree after pruning (λ = 10−3) using the KDDCup99-SMTP dataset. Named
sequentially, reading from left to right, each node shows: the proportion of elements that it represents
regarding the full dataset (shown in blue), overall variance (shown in blue), the weighted variance w.r.t
children nodes (shown in dark blue) and mean and standard deviation for the subset of estimators.
Further experimental results are given through supplementary materials reference.

4. Discussion and Conclusions

XAI is necessary to provide transparency to model predictions. It is a growing field of study that
guarantees compliance with new European Union regulations. The proposed method allows us to
examine differences between normal and anomalous data, potentially allowing the identification of
generalization power, biases and formulation of hypothesis for abnormal data context.

In the future, we plan to add the categorical variables to the tree-based pre-hoc explanation.
This will paint a more accurate picture of the input dataset. Another possible future research line is to
improve explanations by introducing a previous dimensionality reduction step, as high dimensional
data present redundant and irrelevant variables that produce bias and generalization errors.

Supplementary Materials: Pre-hoc regression trees are available online at https://www.dropbox.com/sh/
m6lyn8zpss75sru/AADO_OFwzNwUTHD24vgJXhwma?dl=0
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