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Abstract: The pseudopotential Lattice Boltzmann Method has attracted much attention in the
recent years for the simulation of boiling heat transfer. Many studies have been published
recently for the simulation of the bubble cycle (nucleation, growth and departure from a
heated surface). This paper puts forward two-dimensional simulations of bubble nucleation,
growth and departure using an improved pseudopotential Lattice Boltzmann Model from the
literature at different reduced temperatures, Tr = 0.76 and Tr = 0.86. Two different models using the
Bhatnagar–Gross–Krook (BGK) and the Multiple-Relaxation-Time (MRT) collision operators with
appropriate forcing schemes are used. The results for pool boiling show that the bubbles exhibit
axial symmetry during growth and departure. Numerical results of departure diameter and release
period for pool boiling are compared against empirical correlations from the literature by varying the
gravitational acceleration. Reasonable agreement is observed. Nucleate boiling trends with heat flux
are also captured by the simulations. Numerical results of flow boiling simulations are compared
by varying the Reynolds number for both reduced temperatures with the MRT model. It was found
that the departure diamenter and release period decreases with the increase of the Reynolds number.
These results are a direct effect of the drag force. Proper conclusions are commented at the end of
the paper.

Keywords: Lattice Boltzmann Method; boiling heat transfer; bubble cycle; BGK collision operator;
MRT collision operator

1. Introduction

In the recent years, the pseudopotential Lattice Boltzmann Method (LBM) has emerged as a
powerful CFD tool, showing great potential and capabilities to handle complex two-phase flow
phenomena [1–5]. Among them, boiling heat transfer is very important in many industrial applications.
In regard to boiling heat transfer modes, nucleate boiling has been recognized as one of the
most effective, and has been used in different cooling applications, such as nuclear reactors [6],
computer chips [7] and electronic devices [8]. Regarding the bubble cycle, the bubble nucleation
happens when the liquid near the surface is heated until a certain superheating degree is achieved and
a bubble nucleus is formed. After the nucleation, the bubble starts the growth stage, due to inertial
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and heat transfer effects. Finally, the bubble departs due to the buoyancy effects. Regarding these
phenomena, a detailed comparison of the results of bubble departure diameter and release period
at reduced temperatures below 0.8 for pool boiling and flow boiling applications are still scarce.
Recent publications on boiling heat transfer also focused on fundamental aspects, such as the effect of
the surface roughness [9]. From the theoretical point of view, nucleate boiling is extremely complex,
involving processes of nucleation, growth, departure and coalescence of vapor bubbles. The concept
of symmetry is clearly seen during the bubble cycle, since the bubble exhibit axial symmetry during
growth and departure.

Several papers have been published, applying the pseudopotential LBM for the simulation of the
bubble cycle (nucleation, growth and departure from a heated surface), some of them with limitations
of the numerical model. For example, Zhang and Chen [10] developed a hybrid Lattice Boltzmann
Method based on the pseudopotential model to simulate boiling heat transfer. The LBM was applied
to solve for the density and velocity fields and the extended Lax-Wendroff scheme for the solution of
the temperature field. However, the authors disregarded the influence of pressure variation across
the interface. Later, Hazi and Markus [11] developed a method based on the pseudopotential method
to simulate nucleate boiling. The authors employed two particle distribution functions, one for the
density and velocity fields and another for the temperature field. However, the authors adopted an
artificial equation of state to couple the hydrodynamic and thermal models. This assumption made by
Hazi and Markus [11] might be not reliable to simulate a real physical system.

The study carried out by Gong and Cheng [12] proposed an improved phase-change LBM
based on a modification of the original Shan-Chen multiphase model. This new method directly
incorporates a non-ideal equation of state into the model. The thermodynamic consistency is ensured by
a modification of the calculation of the interparticle force. The authors solved the density, velocity and
temperature fields using the LBM, assuming two distribution functions. A validation of the numerical
scheme was performed by comparing the bubble departure diameter with the correlation proposed
by Fritz [13]. A reasonable agreement was observed. Later, the authors published studies using this
phase-change LBM to evaluate surface wettability, [14,15]. In a subsequent study, the authors used the
model to analyzed the influence of single and multi-cavities during the nucleation of a bubble [16,17].
However, in all these studies, the energy equation did not take into account the density variation
across the interface in the diffusive term [18]. Regarding the density variation across the interface,
Gong and Cheng [19] considered this effect. In their study, they evaluated the effect of the thermal
response of the heater over the simulation results. In all these studies, the Bhatnagar–Gross–Krook
(BGK) collision operator was used.

Li et al. [20] were pioneers to perform simulations of different boiling regimes at different
surface wettability conditions using the pseudopotential LBM. In their study, they developed an
improved pseudopotential Lattice Boltzmann Method for the simulation of boiling heat transfer.
The Multiple-Relaxation-Time (MRT) collision operator was used to simulate the density and velocity
fields and the temperature field was obtained using a Runge–Kutta scheme. An improved forcing
scheme was applied in order to achieve thermodynamic consistency. The numerical results were
presented for different wall superheat and different wettability conditions and agreed reasonably well
with the theoretical results.

Based on the previous developed research studies showed before, recent works focused on more
applications at different conditions. For example, Hu and Liu [21] studied boiling heat transfer using
the improved pseudopotential LBM proposed by Li et al. [20] with an innovative nucleation site
treatment on the wall. Then, the authors simulated the different boiling stages and were able to
reproduce the boiling curve and well as all stages of the bubble cycle were captured.

Chang et al. [22] performed numerical simulations pool boiling heat transfer enhancement on
structured surfaces with columns using the pseudopotential LBM proposed by Gong and Cheng [12].
The authors analyzed the effects of geometrical parameters of the structured surfaces over the boiling
curves. The main conclusion drawn by the authors was that, in general, two factors affect the enhanced
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heat transfer effect of pool boiling on the structured surfaces: the surface area and convection near
the bubble.

Zhang et al. [23] studied the effects of wall superheat and surface wettability on nucleation site
interactions using the pseudopotential LBM proposed by Li et al. [20]. According to the authors,
most boiling heat transfer correlations assume that the nucleation and growth of bubbles at adjacent
nucleation sites are independent. However, the experimental results show some interactions between
adjacent nucleation sites, while, the experimental results have some divergence due to the complexity
of boiling [24–26]. Using numerical simulations, they were able to show that the wall superheat could
influence the nucleation site interactions by changing the relatively intensity of thermal interaction
and hydrodynamic interaction.

Despite all the aforementioned publications that focused on pseudopotential LBM application
for the simulation boiling heat transfer, to the best of authors’ knowledge, none of them evaluated
the influence of reduced temperature variation on bubble departure diameter and release period
results for pool and flow boiling conditions. Most publications only simulate conditions with reduced
temperature close to the critical point, which raises a question regarding the simulation of real
boiling process for medium to lower reduced temperatures (Tr ≤ 0.8), commonly used in several
experimental set-ups, as in Alvariño et al. [9], for example. Hence, the present paper focuses on
the use of pseudopotential LBM for simulating both, pool and flow, boiling heat transfer problems
investigating the influence of reduced temperature on boiling dynamics, presenting results that include
the bubble departure diameter and release period and the average heat flux from the heated surface.
Particularly, two thermodynamic conditions, namely Tr = 0.76 and Tr = 0.86, were employed in
order to investigate pool and flow boiling under influence of distinct values of gravitational and
inertial effects. It should be noted that the majority of the simulation results presented in the open
literature corresponds to reduced temperatures above Tr = 0.80. The simulations are performed
using the pseudopotential LBM with two improved forcing schemes from the literature to ensure
thermodynamic consistency, namely Li et al. [27] and Li et al. [28], along with the D2Q9 velocity scheme.
It is worth mentioning that both models obtained from the literature were developed using the BGK and
MRT collision operators, respectively. In order to differentiate these two models, they are mentioned
in the text as the BGK and MRT models.

Regarding the numerical results, at first, pool boiling results are presented. The bubble cycle
is studied and the results of departure diameter and release period are compared with empirical
correlations from the literature by varying the gravitational acceleration. The average heat flux is
shown for both reduced temperatures. Later, bubble cycle simulations under the influence of a
fully-developed flow are performed. In this case, besides the reduced temperature influence, inertial
effects on the departure diameter and release period are also investigated by varying the Reynolds
number, presenting also the average heat flux temporal variation.

2. Hydrodynamic Model: Improved Pseudopotential Lattice Boltzmann Method

The Boltzmann Equation describes the evolution of a distribution function, f (u, x, t), of a collection
of particles. This function represents the density of particles at a given time t, in a position given by
x = [x1, x2, x3], with particle velocity u = [u1, u2, u3], under the effect of an external force F:

∂ f (u, x, t)
∂t

+ u
∂ f (u, x, t)

∂x
+

F
m

∂ f (u, x, t)
∂u

= Ω( f , f eq) (1)

In Equation (1), f eq is the equilibrium distribution function, which describes the equilibrium
condition of the collection of particles. The right-hand side is the collision operator, which represents
the binary collision between particles. The Lattice Boltzmann Equation is a discrete form of the
Boltzmann equation for the density distribution function. The discretization is first based on the
introduction of a set of discrete velocities, namely ci, for the simulated particles, resulting in velocity
schemes, namely lattices, which are similar to a computational mesh. Later, the equation is discretized
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in the space and time. This last discretization step can be performed using either the method of
characteristics or the finite difference method [29]. In either case, the Lattice Boltzmann Equation
is obtained:

fi(x + ci∆t, t + ∆t) = fi(x, t) + ∆tΩ( fi, f eq
i ) + ∆tFi (2)

where the subscript i stands for the values related to each of the discretized value of velocity set ci,
and the lattice spacing, ∆x = |ci|∆t, and the timestep ∆t, are usually set to 1.

The most difficult step to solving the Lattice Boltzmann Equation is the collision operator.
The most popular approach is to consider the BGK collision operator [30], which considers the
collision of two simulated particles to be related only by one relaxation parameter, ∆t

τν
. In this case,

the discretized evolution equation with the BGK collision operator for the density distribution function
is represented by:

fi(x + ci∆t, t + ∆t) = fi(x, t)− ∆t
τν

( fi(x, t)− f eq
i ) + ∆tFi. (3)

The discretized equilibrium distribution function, f eq
i , is obtained by equalizing its continuum

form with the Hermite’s quadrature associated with some weighting coefficients, wi. It should
be mentioned that these weighting coefficients should satisfy specific conservation relations [29].
The discretized form of the equilibrium distribution function can be expressed as:

f eq
i = wiρ

(
1 +

ci.v
cs2 +

(ci.v)2

cs2 − |v|
2

2cs2

)
, (4)

where cs is a constant—namely, the speed of sound—which is a function of the chosen velocity scheme,
v is the fluid macroscopic velocity and ρ is the fluid density.

In this paper, the D2Q9 velocity scheme is employed to perform the two-dimensional
numerical simulations. A schematic representation of this scheme is shown in Figure 1:

Figure 1. Schematic representation of D2Q9 discrete velocity scheme.

For this velocity scheme, the speed of sound is cs
2 = 1

3 and the weighting coefficients, wi and the
discrete velocities, ci, are given by, respectively [29]:

wi =


1
9 , for i = 1 : 4
1

36 , for i = 5 : 8
4
9 , for i = 9

(5)

ci =


(±1, 0), (0,±1) for i = 1 : 4

(±1, 1) for i = 5 : 8

(0, 0) for i = 9

(6)

During boiling heat transfer simulations in the mesoscopic scale, the following forces must
be included: the interparticle interaction force, Fint , which accounts for phase separation and the
gravitational force, Fg . The interaction force between the liquid and solid wall, which allows a tunable
wettability condition, is not considered in the present work.
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The interparticle interaction force model proposed by Shan and Chen [31], which is computed
based on the pseudopotential, ψ, is expressed as:

Fint = −Gψ(x)∑
i

w∗i ψ(x + ci∆t)ci∆t, (7)

where w∗i are the redefined weighting coefficients [21] and G is the interaction strength.
Following Yuan and Schaefer [32], the pseudopotential is computed from an Equation of State (EOS)
for real gases as follows:

ψ(x) =

√
2
(

p− ρ
3
)

|ci|G
, (8)

where p is the thermodynamic pressure, which can computed from an Equation of State (EOS) for
real gases. By using the previous definition for the pseudopotential, the parameter G no longer
represents the interaction strength, and it is used only to ensure that the square root is positive. In all
simulations performed in this paper, G = −1 is applied.

In this study, the Peng–Robinson EOS is adopted to compute the pressure, since it can handle
density ratio as high as 1000 and allows the simulation at conditions at lower reduced temperatures
(Tr ∼ 0.59):

p =
ρRT

1− bρ
−

aρ2
[
1 + (0.37464 + 1.54226ω− 0.2699ω2)

(
1−

√
T
Tc

)]2

1 + 2bρ− b2ρ2 . (9)

In Equation (9), Tc is the critical temperature and ω is the acentric factor. Parameters a = 0.45724R2T2
c

pc

and b = 0.0778RTc
pc

, in which pc is the pressure at the critical point and R is the universal gas constant.
The parameters of the Peng-Robinson EOS were chosen as proposed by Li et al. [20]: a = 3/49,
b = 2/21, R = 1 and ω = 0.344. Using these values, the critical temperature is given by Tc = 0.1094.
It should be mentioned that all quantities are presented in lattice units, as commonly performed in
the literature.

The gravitational force effect is included as follows:

Fg = g(ρ− ρ), (10)

where ρ is the average density computed in the computational domain, and g is the
gravitational acceleration.

Focusing on the model using the BGK collision operator, the previous forces are incorporated
into the numerical model using two different forcing schemes. For the interparticle force, the forcing
scheme proposed by Li et al. [27] is applied, in order to ensure the thermodynamic consistency:

Fi,1 =

(
1− 1

2τν

)
wi

(
ci − vnew

c2
s

+
ci · vnew

c4
s

ci

)
· Fint (11)

where the modified velocity, vnew , is given by:

vnew = v +
σBGKFint

(τν − 0.5)ψ2 (12)

In this case, the pressure tensor is changed and its new form is expressed as [27]:

P = Poriginal + 2G2|ci|4σBGK∇ψ∇ψ (13)

In Equation (13), Poriginal is the original pressure tensor and σBGK is a parameter to adjust the
mechanical stability condition in order to ensure the thermodynamic consistency. It should be noticed
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that when the forcing scheme proposed by Li et al. [27] is applied, only the anisotropic part of the
pressure tensor is changed.

For the gravitational force, the traditional forcing scheme proposed by Guo et al. [33] is applied:

Fi,2 =

(
1− 1

2τν

)
wi

(
ci − v

c2
s

+
ci · v

c4
s

ci

)
· Fg. (14)

The total external force to be implemented into the evolution equation for the particle distribution
function (see Equation (3)) is then Fi = Fi,1 + Fi,2. It should be noticed that the forcing scheme [27] will
reduce to the forcing scheme [33] when σBGK = 0.

From the Chapman–Enskog expansion for the LBM, the relation between the kinematic viscosity,
ν, and the relaxation parameter, τν, can be established [19] as follows:

ν = c2
s (τν − 0.5)∆t (15)

The BGK collision operator has been considered in the literature to simulate boiling heat
transfer [12,14–17,19], especially due to its simplicity. However, this collision operator suffers from
numerical instabilities as the Reynolds number increases. This collision operator is not suitable for
simulating lower reduced temperatures, since the spurious current near the interface may create
strong instabilities. In this sense, the MRT collision operator can be considered.

The MRT collision operator can be seen as an extension of the BGK collision operator, being
superior over the BGK formulation in terms of numerical stability. This is associated with possibility
to adjust the relaxation parameters individually, in order to achieve optimal stability conditions.

Using the standard MRT collision operator [34,35], the discretized evolution equation for the
density distribution function is given by:

fi(x + ci∆t, t + ∆t) = fi(x, t) + ∆t(M−1ΛM)( f j(x, t)− f eq
j ) + ∆tFi, (16)

where M = Mij is an orthogonal transformation matrix and Λ is a diagonal matrix, which includes all
the relaxation times.

The transformation matrix M for the D2Q9 model is given by:

M =



1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2
4 −2 −2 −2 −2 2 2 2 2
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1


(17)

Using this transformation matrix, the collision step in the moment space, which represents the
right-hand side of Equation (16) is performed as [36]:

m∗ = m−Λ(m−meq) +

(
I− Λ

2

)
S, (18)

where m = M f , meq = M f eq, I is the unitary tensor, S is the forcing term in the moment space with
(I− 0.5Λ)S = MF.
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The diagonal matrix Λ is given by Lallemand and Luo [37]:

Λ = diag(τ−1
e , τ−1

ζ , τ−1
j , τ−1

q , τ−1
j , τ−1

q , τ−1
ν , τ−1

ν , τ−1
ρ ), (19)

where τρ and τj are the relaxation parameters of conserved moments and are set to 1, τν determines
the dynamic viscosity (Equation (15)), τe is associated with the bulk viscosity and is set to 1.1, τ−1

ζ is
related to energy square and is set to 1.1 and τ−1

q is related to the energy flux and is set to 1.1.
From meq = M f eq, the equilibrium momentum meq can be expressed as:

meq = ρ(1,−2 + 3|v|2, 1− 3|v|2, vx,−vx, vy,−vy, v2
x − v2

y, vx, vy)
T , (20)

where |v|2 = v2
x + v2

y.
The forcing scheme proposed by Li et al. [28] is applied in order to ensure the

thermodynamic consistency, by adjusting the mechanical stability condition. In this scheme, the forcing
term S is given by:

S =



0

6v · F + σMRT |Fint |2
ψ2(τe−0.5)

−6v · F + σMRT |Fint |2
ψ2(τe−0.5)

Fx

−Fx

Fy

−Fy

2(vxFx − vyFy)

vxFy + vyFx


(21)

where σMRT is a parameter used to tune the mechanical stability condition, |Fint|2 = F2
int,x + F2

int,y,

F = Fint + Fg is the total force, |F|2 = F2
x + F2

y , where Fx and Fy are the total force components,
vx and vy are the fluid velocity components.

Using this forcing scheme, the new form of the pressure tensor is given by:

P = Poriginal + 2G2|ci|4σMRT |∇ψ|2I. (22)

Similar to the forcing scheme proposed by Li et al. [27] for the model using the BGK
collision operator, in the scheme proposed by Li et al. [28], the mechanical stability condition is
slightly changed so that the thermodynamic consistency can be achieved. It should be noticed that
when this forcing scheme is applied, only the isotropic part of the pressure tensor is changed.

However, a major drawback of the traditional pseudopotential method is the impossibility to
adjust the surface tension independently of the density ratio. In order to overcome this limitation,
the new method proposed by Li and Luo [38] is employed to ensure a tunable surface tension while it
ensures that the density ratio is unchanged.

This approach is based on the addition of a new source term, C, to the collision step (Equation (18))
of the model using the MRT collision operator. According to the authors, the collision step in moment
space is modified as follows [38]:

m∗ = m−Λ(m−meq) +

(
I− Λ

2

)
S + ∆tC. (23)
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In the model proposed by Li and Luo [38], the additional source term C has the following form:

C =



1.5τ−1
e (Qxx + Qyy)

1.5τ−1
ζ (Qxx + Qyy)

0
0
0
0

τ−1
ν (Qxx −Qyy)

τ−1
ζ Qxy

0


(24)

where the terms Qxx , Qyy and Qxy are computed as described in Equation (25):

Q = κ
G
2

ψ(x)∑
i

w∗i [ψ(x + ci∆t)− ψ(x)]cici, (25)

where κ is a parameter that allows a tunable surface tension.
The solution of the Lattice Boltzmann Equation allows the computation of the macroscopic fields.

In this case, the density and velocity can be obtained directly from the density distribution function
using the following equations, respectively:

ρ = ∑
i

fi (26)

v =
∑i ci fi

ρ
+

Fint + Fg

2ρ
. (27)

3. Modeling the Energy Conservation Equation

The energy equation is obtained considering the diffuse-interface model [39] and can be expressed
as follows:

ρ

(
∂e
∂t

+ v · ∇e
)
= ∇ · (k∇T)− p∇ · v, (28)

where e is the internal energy, k is the thermal conductivity and T is the fluid temperature. It is
worth mentioning that viscous dissipation as well as the kinetic and potential energies were not taken
into account.

Using the well-known relation for a pure substance: de = cvdT + 1
ρ2

[
p− T

(
∂p
∂T

)
ρ

]
dρ,

an evolution equation for the temperature field can be obtained:

∂T
∂t

= −v · ∇T +
∇ · (k∇T)

ρcv
− T

ρcv

(
∂p
∂T

)
ρ

∇ · v. (29)

It should be noticed that in Equation (29), the coupling between the hydrodynamic and thermal
models is presented in the last term, where cv is the constant volume specific heat.

The energy equation is solved using the fourth-order Runge–Kutta method. The resulting discrete
evolution equation for the temperature is given by:

Tt+∆t = T +
∆t
6
(h1 + 2h2 + 2h3 + h4), (30)
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where the functions h1, h2, h3 and h4 are given by:

h1 =

[
−v · ∇T +

∇ · (k∇T)
ρcv

− T
ρcv

(
∂p
∂T

)
ρ

∇ · v
]

Tt

(31)

h2 =

[
−v · ∇T +

∇ · (k∇T)
ρcv

− T
ρcv

(
∂p
∂T

)
ρ

∇ · v
]

Tt+∆t h1
2

(32)

h3 =

[
−v · ∇T +

∇ · (k∇T)
ρcv

− T
ρcv

(
∂p
∂T

)
ρ

∇ · v
]

Tt+∆t h2
2

(33)

h4 =

[
−v · ∇T +

∇ · (k∇T)
ρcv

− T
ρcv

(
∂p
∂T

)
ρ

∇ · v
]

Tt+∆th3

, (34)

in which Tt is the temperature field computed at instant t. In order to compute the spatial discretization
of the specific quantities, the isotropic schemes proposed by Lee and Lin [40] are employed.

4. Results and Discussion

In this section, the simulation results are presented. In a first moment, the simulation results
obtained for the reduced temperature equal to Tr = Tsat/Tc = 0.76 are presented. After that, a detailed
discussion and comparison of with those obtained for Tr = 0.86. The differences between the results
obtained using the BGK and MRT collision operators are carefully addressed. The parameters to
ensure the thermodynamic consistency for the models using the BGK and MRT collision operators
are chosen as σBGK = 0.105 [27] and σMRT = 0.1 [28], respectively. Further details about the forcing
schemes can be seen in the mentioned references.

For all simulations, the initial velocity field is considered equal to zero. Using the density and
velocity fields, the initialization of the particle distribution function is performed using the equilibrium
distribution function (see Equation (4)).

4.1. Computation of the Surface Tension: Young–Laplace Test

In order to obtain the surface tension in the LBM, the Young–Laplace test is performed. In this case,
the pressure difference, ∆p, across the interface of a droplet with a radius Rd in equilibrium within the
vapor phase is related to the surface tension, γ, as:

γ =
∆p
Rd

. (35)

At the defined reduced temperature, Tr, the equilibrium densities are obtained from the chosen
EOS using the Maxwell Construction Rule [29]. In this case, the thermodynamic coexistence is ensured
according to the following relation:

ρl∫
ρv

(p0 − p)
1
ρ2 dρ = 0. (36)

where p is the pressure computed by the non-ideal EOS and p0 = p(ρl) = p(ρv) [28]. It should be
highlighted that all the parameters are set in lattice units, as well as the computed equilibrium densities.

At Tr = 0.86, the liquid and vapor equilibrium densities are ρl = 6.50 and ρv = 0.38, respectively.
The kinematic viscosity of the liquid is taken as νl = 0.1 and used to compute the relaxation time,
following Li et al. [18]. In this case, the computed relaxation time (see Equation (15)) assumes a
constant value over the whole computational domain: τν = 0.8.
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A similar procedure is applied at Tr = 0.76. In this case, the equilibrium densities are obtained:
ρl = 7.59 and ρv = 0.12. However, a more refined set of parameters is applied for each phase for the
simulations at this temperature: νl = 0.2 and νv = 0.01, respectively. Using these values, a distribution
of the kinematic viscosity inside the computational domain can be computed using the following
interpolation scheme [12]:

ν =
ρ− ρv

ρl − ρv
νl +

ρl − ρ

ρl − ρv
νv. (37)

In this case, the computed relaxation time will vary in the computational domain according to the
kinematic viscosity, as shown in Equation (15). The computed values for the relaxation time for the
liquid and vapor are equal to 1.1 and 0.53, respectively. This is the range of the relaxation time for the
simulations performed at Tr = 0.76.

The static droplet is obtained using the following density distribution [41]:

ρ(x, y) =
ρl + ρv

2
+

(
ρl − ρv

2

)
tanh

[
2 (R(x, y)− Rd)

W

]
, (38)

where R(x, y) =
√
(x− x0)2 + (y− y0)2, (x0, y0) is the coordinate of the center of the droplet, W is the

interface width and Rd is the droplet radius. In the present work, W = 5 and Rd = 50. The simulation
is performed until the density field achieves equilibrium, considering a relative tolerance of 10−10

between two consecutive iterations. The computation domain is 200 × 200. Periodic boundary
conditions are set at all boundaries.

Figure 2 presents the results of the density field obtained from simulations with the models using
the BGK and MRT collision operators at Tr = 0.76. In this case, the computed surface tension obtained
are equal to 0.382 and 0.177, respectively, using the models with the BGK and MRT collision operators.
At Tr = 0.86, the density field was obtained by the same procedure. The computed surface tension are
equal to 0.1881 and 0.0858, respectively.

These surface tension results reveal an interesting feature of the improved forcing schemes
proposed by Li et al. [27] and Li et al. [28], regarding the models that are based on the BGK and MRT
collision operators, respectively. Since the authors proposed different methodologies to approximately
achieve thermodynamic consistency by modifying the pressure tensor, the computed surface tension
is not the same for the same reduced temperature. Hence, the method proposed by Li and Luo [38]
is used to adjust the surface tension computed by the MRT based model, in order to obtain the same
value obtained by the BGK based model.

Figure 2. Density fields for the Young–Laplace test at Tr = 0.76: (a) Bhatnagar–Gross–Krook (BGK)
and (b) Multiple-Relaxation-Time (MRT).
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By performing numerical simulations considering different values of the parameter κ

(see Equation (25)) for the MRT model, relations between this parameter and the surface tension
are obtained considering the different reduced temperatures. These relations are presented in details in
Figure 3. Using these results, the surface tension of the MRT collision operator is adjusted to match the
one obtained by the BGK model. At Tr = 0.86, the parameter is set to κ = −1.165 and the computed
surface tension for the MRT model is 0.1881. Similarly, at Tr = 0.76, when κ = −1.126, the computed
surface tension is 0.382. At this point, a consistent comparison between the numerical results obtained
by the BGK and MRT models can be performed.

The surface tension is higher for Tr = 0.76, due to a lower saturation pressure. These differences
in the surface tension lead to bubbles with a higher departure diameter.

Figure 3. Relation between the parameter κ and the surface tension at Tr = 0.76 and Tr = 0.86.

4.2. Single Bubble Nucleation: Bubble Departure Diameter and Release Period versus
Gravitational Acceleration

For the simulation of the bubble cycle, the computational domain is initialized with a
liquid-vapor distribution, considering the same occupied area for each phase [18], as shown in Figure 4.

Figure 4. Schematic representation of the computational domain.
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The upper and lower surfaces are modeled as walls using the scheme proposed
by Zou and He [42]. This scheme allows the computation of the unknown density distribution
functions at the solid walls. After the streaming step at the upper surface, the unknown density
distribution functions are f4 , f7 and f8. For the lower surface, the unknown density distribution
functions are f2, f5 and f6. The forces acting at these boundary surfaces are included following a
methodology introduced by Krüger et al. [29]. For the upper boundary, the following equations
comprise the no-slip boundary condition:

f4 = f2 +
Fy

6
(39)

f7 = f5 +
1
2
( f1 − f3) +

Fx

4
+

Fy

6
(40)

f8 = f6 −
1
2
( f1 − f3)−

Fx

4
+

Fy

6
(41)

Similarly, for the lower boundary, the following equations are applied:

f2 = f4 −
Fy

6
(42)

f5 = f7 −
1
2
( f1 − f3)−

Fx

4
−

Fy

6
(43)

f6 = f8 +
1
2
( f1 − f3) +

Fx

4
−

Fy

6
. (44)

Periodic boundary conditions are specified at the lateral boundaries for the density distribution
function. The implementation of this boundary condition is straightforward in the LBM [29]. For the
temperature field, periodic boundary conditions are also specified at the lateral boundaries. As for the
heated surface, constant temperature is used for the pool boiling simulations.

The departure diameter and the release period play an important role on boiling heat transfer.
These quantities are chosen to assess the results of the numerical model. The numerical results are
compared with the empirical correlations proposed by Fritz [13] and Zuber [43], which are given,
respectively, by:

Db = 0.0208 θ

[
γ

(ρl − ρv)g

]0.5
(45)

Tb =
Db

0.59

[
γ(ρl − ρv)g

ρ2
l

]−0.25

, (46)

where θ is the contact angle and g is the value of the gravitational acceleration. From Equations (45)
and (46), it can be noticed that Db ∝ g−0.5 and Tb ∝ g−0.75, respectively.

For the initial conditions we had the velocity field, v, with zero value, and the density field
was initialized as liquid density ρl for the lower half of the computational domain, and gas density
ρv for the upper half. For the simulations performed at Tr = 0.86, the thermal parameters were
taken from Li et al. [18]. In this case, cv = 5.0 and the thermal conductivity is related to the density
field according to k = αρcv. The thermal diffusivity is taken as a constant value: α = 0.06. For the
simulations performed at Tr = 0.76, the following parameters were chosen: cv,l = 6.98, cv,v = 5.26,
αl = 0.05 and αv = 0.1. Using these values, distributions of cv and α were obtained using Equation (37).
The computational mesh was chosen as 300 × 151. The heated surface is considered to be located
at the center node of the lower surface and at its immediate two neighbor nodes. At these nodes,
the temperature was set to Tb = 1.25Tc . Hence, the wall superheat was ∆T = Tb − Tsat = 0.0427 at
Tr = 0.86 and ∆T = 0.053 at Tr = 0.76.
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The numerical results of the bubble departure diameter and the release period versus the
gravitational acceleration are presented in Figure 5. It should be mentioned that these quantities
are presented only for the first bubble. Following Krüger et al. [29], the interface was defined as
the region which has the average density computed using liquid and vapor densities. At both
reduced temperatures, it can be seen that the bubble departure diameter predicted by the BGK
model agreed very well with the ones predicted by the MRT model. From the release period results
shown in Figure 5, a reasonable agreement is also observed. The highest discrepancy was noticed
at Tr = 0.76 at the lowest gravitational acceleration, namely g = 3.125× 10−5. In this case, it can
be noticed that the release period predicted by the BGK model is smaller than the one obtained by
the MRT model. At Tr = 0.86, a reasonable agreement is observed for the release period, despite the
discrepancy observed also at g = 3.125× 10−5. In this case, the BGK model predicted a slightly
higher release period. The difference between the results might suggest an influence of the forcing
scheme, as showed by Li et al. [44]. The forcing scheme introduced by Gong and Cheng [12] introduces
a modified velocity vnew (see Equation (12)), in which the additional terms serve as an approximation
for ψ∇ψ. Hence, at large density ratios, the coexistence densities will be affected by the kinematic
viscosity and consequently by the single relaxation time. For the MRT model operator, the influence
of the viscosity at large density ratios are reduced significantly, since only τv changes with viscosity
(see Equations (17) and (18)). Hence, the BGK model with the forcing scheme proposed by Li et al. [27]
may be not suitable for simulations at lower reduced temperatures. It should be noticed that the
simulations with this operator were performed considering a variable relaxation time, since the
kinematic viscosity varies in the computational domain.

Considering the correlations given by Equations (45) and (46), fitted curves are also shown for
each model at a given temperature. For the departure diameter at Tr = 0.86, the exponent matches
exactly with the theoretical results from literature [13]. On the other hand, at Tr = 0.76, the exponent is
quite close to the one predicted by the correlation. For the release period, the obtained exponents are
in reasonable agreement with the ones given by the empirical correlations proposed by Fritz [13] and
Zuber [43], respectively.

Now, comparing the results between the two simulated reduced temperatures, it can be noticed
that the bubble diameter is higher at small reduced temperature for all simulations. This is an
expected behavior, because at lower saturation temperatures, the surface tension is higher. This also
leads to higher release periods, because the required values of the buoyancy force are higher for the
bubble detachment.

Figure 5. (a) Bubble departure diameter and (b) release period versus the gravitational acceleration.

Some snapshots of bubble nucleation, growth and departure from the heated surface for different
time-steps are presented for both reduced temperatures in Figure 6 (Tr = 0.76) and Figure 7 (Tr = 0.86).
The gravitational acceleration was set to g = 1 × 10−5 and g = 2.5 × 10−5 , for Tr = 0.76 and
Tr = 0.86, respectively. At this point, it should be mentioned that the gravitational acceleration plays
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an important role on the stability of the simulation. A higher value of this quantity (e.g., 2.5× 10−5)
at Tr = 0.76 resulted in instabilities in the simulation, even for the MRT model. The effect of the
gravitational acceleration over the stability of the simulation is not the focus of the present study and
will be addressed in details in a future research work. The results shown in the Figure 6 clearly show
that, at Tr = 0.76, the BGK model predicted a smaller release period when compared with the MRT
model. In Figure 7, it can be noticed that the release period is very similar for both models, as shown
in Figure 5b.

Figure 6. Snapshots of bubble nucleation, growth and departure from the heated surface at Tr = 0.76
obtained using the: (a) BGK model and (b) MRT model.
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Figure 7. Snapshots of bubble nucleation, growth and departure from the heated surface at Tr = 0.86
obtained using the: (a) BGK model and (b) MRT model.

Following the presented snapshots of the bubble cycle at Tr = 0.76 and Tr = 0.86, now the
dynamics of the bubble diameter and the stages associated with the vapor bubble growth, namely
expansion and rewetting, are investigated in detail. In Figure 8, the dynamics of the bubble diameter
and the space-averaged heat flux are presented for both reduced temperatures. The space-averaged
heat flux is computed on the fluid side, considering the length of the heater (see Figure 4).

These results are presented at the same conditions to the ones shown in Figure 7 using the MRT
model. The stages can be identified by analyzing the local heat flux and the space-averaged heat flux,
which can be computed by, respectively:

q
′′
= −k

(
∂T
∂y

)
y=0

(47)

q′′ =

∫ Lx
0 q

′′
dx

Lx
, (48)

where q
′′

and q′′ are the local and space-averaged heat flux, respectively, Lx is the length of the channel,
and k is thermal conductivity.
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As shown in Figure 8 for both reduced temperatures, the heat flux reduces during
the expansion stage. In the rewetting stage, the liquid surrounding the bubble moves toward the heated
surface, increasing the heat flux. During both stages, the bubble diameter increases at approximately
the same rate. The peak heat flux is obtained at the time of the bubble departure. As expected the
surface averaged, and consequently the local, heat fluxes are higher for the lower reduced temperature.
This is related to the latent heat of vaporization, as well as the thermal conductivity of the liquid,
which are higher at Tr = 0.76.

Figure 8. Space-averaged heat flux versus time obtained for the MRT model at : (a) Tr = 0.76 and
(b) Tr = 0.86.

4.3. Single Bubble Nucleation under Forced Convection

In this sub-section, simulations of the bubble cycle under forced convection conditions are
performed at different Reynolds number. In this case, the bubble cycle is affected by a constant
pressure gradient driven flow. This kind of problem is very important, since it is similar to the flow
boiling inside a channel. Hence, the results can be used, at least in the qualitative point of view,
to understand the phenomena that are associated with the real flow boiling problem. A schematic view
of the simulated problem is shown in Figure 9. It should be mentioned that the problem was simulated
using the same set-up as the pool boiling, with the assumption of fully-developed flow. This means
that the domain is initialized with a liquid–vapor distribution with period boundary conditions at the
inlet and outlet of the channel. At the walls, constant temperatures were considered.

Figure 9. Schematic representation of the simulated problem.

First, the isothermal flow is simulated and compared with the dimensionless form of the
well-known analytical solution for fully developed flow [45]. For simplicity, the relaxation time
is taken as 1. The simulation was performed at Re = 100. The computational mesh was 20 × 20.
The Reynolds number was computed using the maximum flow velocity. The chosen convergence
criteria was that velocity field remains unchanged under a 10−6 tolerance between two consecutive
iterations. Both collision operators were considered in the simulations. The results of the dimensionless
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velocity field at the outlet are presented in Figure 10. It can be noticed that the LBM simulation with
the models with the BGK and MRT collision operators correctly predicts this flow, exactly matching
with the analytical solution.

Figure 10. Comparison between numerical and analytical results for the isothermal fully developed flow.

Now, a small heater was considered at the position xsource = 50. The length of the small heater
was Lsource = 3, expressed in lattice units. A constant temperature was imposed to represent the heater
(see Figure 9). The same parameters used in the simulations which provided the results shown in
Figures 6 and 7 are considered. In order to simulate a geometry more similar to a channel, the following
computational mesh was considered: 300 × 151. The Reynolds number, defined as Re = umax Hc

νl
,

was used to characterize the flow, where Hc is the channel height. Before the study of the bubble
cycle under forced convection conditions, the isothermal flow was simulated until the equilibrium
is reached. Then, the effect of the small heater was included in the simulation. The same parameters
and thermophysical properties used in the previous section were considered in the simulations.

The results are presented only for the model using the MRT collision operator. The results for both
reduced temperatures are presented together in order to better demonstrate the differences related to
this property. The influence of the Reynolds number over the departure diameter and release period
was explored.

In Figure 11, numerical results of the density field for the bubble cycle at Tr = 0.76 and Tr = 0.86
are presented for Re = 100. It can be seen that the advection effects promote an earlier departure of the
bubble from the heated surface. This is associated with the effect of the drag force. The temperature
fields are shown in Figure 12, for both reduced temperatures. The temperature field is also affected by
the advection influence of the main flow. In Figure 13, the results of the density field are presented
for a higher Reynolds number, namely Re = 500. As the Reynolds number is increased, the drag
force resulting from the flow advection effects promote the bubble departure from the heated surface.
Hence, a smaller departure diameter is noticed when the Reynolds number is increased. This is
observed for both reduced temperatures. In Figure 14, the temperature fields are shown for the
same ondition. In this case, the higher advection effects resulted in a lower growth rate of the bubble.
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Figure 11. Numerical results of the density field during bubble nucleation, growth and departure
under forced convection conditions with the MRT collision operator model for Re = 100 at: (a) Tr = 0.76
and (b) Tr = 0.86.

Figure 12. Numerical results of the temperature field during bubble nucleation, growth and departure
under forced convection conditions with the MRT collision operator model for Re = 100 at: (a) Tr = 0.76
and (b) Tr = 0.86.
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Figure 13. Numerical results of the density field during bubble nucleation, growth and departure
under forced convection conditions with the MRT collision operator model for Re = 500 at: (a) Tr = 0.76
and (b) Tr = 0.86.

Figure 14. Numerical results of the temperature field during bubble nucleation, growth and departure
under forced convection conditions with the MRT collision operator model for Re = 500 at: (a) Tr = 0.76
and (b) Tr = 0.86.
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The results of the departure diameter and the release period for the first bubble are presented
in Figure 15. As shown before, the departure diameter decreases with the increase of the Reynolds
number. It can be noticed that the decrease rate is more pronounced at Tr = 0.76. In fact, the departure
diameter at Tr = 0.76 is lower than the one obtained at Tr = 0.86, when Re = 500. From the results
shown Figure 15a, it can be noticed that the bubble is actually removed earlier from the heated surface
due to higher advection effects. The release period for the first bubble follow also reduces when the
Reynolds number is increased. This is also due to the effect of the drag force. It should be noticed
that, due to this effect, the released period is lower at Tr = 0.76 than Tr = 0.86. From the experimental
point of view, the effect of the Reynolds number over the departure diameter and release period can
be seen in Tibiriçá and Ribatski [46]. In their study, the authors presented an experimental analysis
of the departure bubble diameters and release frequencies of R134a and R245 f a refrigerants for flow
boiling in microscale channels. The obtained experimental results show a decrease of the departure
bubble diameter with the Re augmentation for both refrigerants. This behavior is qualitatively the
same shown in Figure 15a, for both reduced temperatures, confirming the observed trends of the
present simulation results.

Figure 15. Results of: (a) bubble departure diameter and (b) release period versus Reynolds number
for the first bubble cycle.

Similarly to the analysis of the results performed for the pool boiling simulations,
the space-averaged heat flux is computed for each Reynolds number. The space-averaged heat flux
is computed at each timestep, considering the full length of the heater (see Figure 9). The displayed
results in Figure 16 confirm the results presented in Figure 15b. The heat flux peak is associated with
the bubble release period. Hence, the release period of the subsequent bubbles can also be determined
using these results. At Tr = 0.76, it can be noticed that the heat flux peak occurs first for Re = 500 than
Re = 300, and Re = 100 as expected. The same behavior is noticed at Tr = 0.86.

Another interesting observation is related to the time-averaged heat flux over the heated surface
domain obtained for the two reduced temperatures as a function of Reynolds number, which are
presented in Figure 17. The time-averaged heat flux is computed for the time interval show in Figure 16.
At Tr = 0.86, it can be noticed that the heat flux actually increases slightly as the Reynolds number
increases. This can be explained by the effect of the drag force, with removes the bubble from the
surface, allowing the cooled liquid to reach the heated surface. At Tr = 0.76, the heat flux increased
from Re = 100 to Re = 300 and decreased from Re = 300 to Re = 500. The last can be explained by the
strong effect of the advection effects over the nucleation process, as also shown in Figure 16a. The heat
flux peak value at Re = 500 is lower than at Re = 300. Hence, the computed time-averaged heat flux
is lower, for the considered time interval.
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Figure 16. Average heat flux versus time at: (a) Tr = 0.76 and (b) Tr = 0.86.

Figure 17. Results of the time-averaged heat flux versus Reynolds number.

5. Conclusions

In this paper, the bubble cycle was simulated using an improved pseudopotential Lattice
Boltzmann Method from the literature at different saturation temperatures, namely Tr = 0.76 and
Tr = 0.86, using two models which used the BGK and MRT collision operators. The implementation
of these models considers the application of appropriate forcing schemes for each model in order to
ensure thermodynamic consistency [27,28]. A detailed comparison of the numerical results under
different conditions was performed and the following conclusions can be drawn:

1. The comparison between the results for different reduced temperatures revealed that the decrease
of the reduced temperature results in bubbles with higher departure diameter and higher release
period for the pool boiling case. This behavior is in accordance with boiling heat transfer theory.
In the case of flow boiling, the departure diameter, reduces as the Reynolds number is increased,
indicating that this quantity is a strong function of the drag force.

2. In the pool boiling simulations, at both reduced temperatures, Tr = 0.86 and Tr = 0.76,
a reasonable agreement is observed for the departure diameter regarding the results obtained
with both simulation models. The release period also showed good agreement, presenting some
discrepancies for the lowest gravitational acceleration, namely g = 3.125× 10−5. This might
suggest an influence of the forcing scheme used for the model with the BGK collision operator
over the numerical results. This observation is based on the fact that models with the BGK
collision operator use a single relaxation time related to the assumed kinematic viscosity.
For the considered forcing scheme, this affects in more extend the coexistence densities at large
densities ratios. It is a fact that even in single-phase flow simulations models with the BGK
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collision operator present less numerical stability than those with the models with the MRT
collision operator [29].

3. For pool boiling and flow boiling simulations, the space-averaged heat flux is an
important quantity. for the pool boiling simulations, the expansion and rewetting stages can be
identified. For the flow boiling, the release period of the departure bubbles can be identified
by the heat flux peak. For flow boiling simulations at both reduced temperature, the periodic
behavior of the heat flux is observed for all simulated Reynolds number. At Tr = 0.76 and
Tr = 0.86, the effect of the Reynolds number is to anticipate the bubble departure.

4. The pool boiling results showed that the gravitational acceleration plays a very important role on
the LBM numerical stability for medium to lower reduced temperatures. The same behavior can
be attributed to the flow boiling problem. This behavior is present even when the MRT model
is used. In order to avoid these numerical instabilities, small values of gravitational acceleration
should be used. This introduces a question regarding the simulation of real boiling process for
medium to lower reduced temperatures (Tr ≤ 0.8). The use of very small values of gravitational
acceleration can produce difficulties in fitting the LBM simulations into the desired limits of
dimensionless numbers necessary to simulate a particular heat transfer phase-change process,
i.e., the Grashof and Bond numbers. Further investigations are under development to address
this issue.
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