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1 Introduction

In general, the simulation of physical phenomena through numerical methods tends to be a computa-
tionally intensive task, but this is particularly true in the field of acoustics. Due to the fast changing
derivatives and the innately second order formulation, a fine mesh needs to be used, and in order for
the time discretization to be well behaved, a small time step needs to be chosen as well. In addition to
this, the testing of acoustic propagation in a single domain is rarely of interest, since most applications
involve the design of acoustic barriers or transmitters, which means that most problems solved in the
field involve couplings. One of the coupled mediums is usually a fluid, and it is common for the other to
be a porous material since they are the most effective sound absorbers.
It is in fact because of this absorption that the porous models can get very complex. Time convolutions
are usually needed for the modeling of high frequency noise, which makes the simulation process very
costly. It becomes apparent that a reduced order method that is able to cut the computation time down
is a worthwhile tool to have. Among the reduced order methods (ROMs) the chosen one is a method
that is able to make predictions into the future from a reduced amount of snapshots.
Dynamic Mode Decomposition (DMD) is a technique developed in 2010 by Peter Schmid [47]. It is
based on a Singular Value Decomposition (SVD) into which dynamics are added, making it able to
not only reconstruct available data using a reduced order representation, but also able to expand the
dimensionality in the time dimension in order to make predictions about the future. This means that
a simulation spanning a shorter time can be run and the remaining sector of the time domain can be
predicted by DMD, which adds up to a significantly faster process.
DMD is a data-driven method, which means that no information about the dynamic model is needed, only
a series of snapshots are used. It has been used in the fluid dynamics community, where it originated, and
a number of fields including video processing [21, 14], epidemiology [41] and neuroscience [5]. A number
of acoustic models are developed in this work, and then, they are used to test the capabilities of DMD
in acoustic problems and to find its limitations.
The motivation of this problem arises from a collaboration between the Technological Institute for In-
dustrial Mathematics (ITMATI) and Microflown Technologies through the ROMSOC project. Together
they started a project that became Ashwin Nayak’s PhD thesis, in which the objective is to design a
multilayer windshield for an acoustic probe by modeling the acoustic field both inside and outside of the
windshield considering acoustic and other physical phenomena such as fluid, thermal and poro-elastic
effects in an unbounded domain. The present master thesis project reduces Nayak’s problem to a 1D
simplified problem and attempts to develop a method that could be, in the future, generalized to his
problem and reduce the computation time needed.
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2 Companies Involved

Several companies are involved, directly or indirectly, in this project. Although the problem is posed
solely by ITMATI, the motivations of this project lie on a PhD thesis that involves both ITMATI and
Microflown Technologies in a partnership that came to fruition through the European ROMSOC project.
For this reason, all three institutions will be presented.

2.1 ITMATI

The Technological Institute for Industrial Mathematics (ITMATI) [24] is an organization founded by
the three public Galician universities, namely University of A Coruña (UDC), University of Santiago
de Compostela (USC), and University of Vigo (UVigo). Its main goal is to further the research and
development of mathematical technology applied to an industrial setting. In order to meet this goal it is
frequent that ITMATI collaborates with companies in the production sector, often public companies.
ITMATI is composed of 41 affiliated researchers associated to either of the three universities mentioned
before, 7 collaborator researchers, and 23 people of their own staff, which includes 18 researchers, a
manager, 4 technicians and an administrative assistant [25].

2.2 Microflown Technologies

Microflown Technologies [33] is a company founded in 1998 in University of Twente, in the Netherlands,
by Hans-Elias de Bree and Alex Koers, and it was created after de Bree developed a particle velocity
sensor in 1994. Microflown is a company that specializes in sensors and acoustic measuring devices based
on MEMS (micro-electro-mechanical systems). They began their industrialization in 2001, and by 2003
they introduced the Microflown sensor, the first, and to date the only, sensor capable of measuring the
velocity of an acoustic wave, since conventional microphones measure the fluid’s pressure [32]. Combining
these two types of sensors they created the first device able to measure both the velocity and the pressure
of an acoustic wave, meaning that they are able to determine with ease and precision the source of a
sound, and with the help of an auxiliary software, also provided by Microflown Technologies, create a 3D
map of the sources and scape points of noise (Fig. 1). This allows for a more efficient acoustic confinement
in applications such as motor vehicles and industrial processes.

Figure 1: 3D map of the velocity and intensity of sound in a car door created by Scan&Paint 3D and
Microflown sensors [33].

The sensor is composed of two very thin platinum strings, placed one next to the other (Fig. 2). First the
strings are warmed by passing electrical current through them, and then, by measuring and comparing
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the temperature from each of them, it is possible to determine the direction and even the velocity of
the air surrounding them, and therefore, the acoustic wave’s velocity. The temperature is measured by
observing the change in electrical resistivity through the wire. It is possible to determine the particle
(acoustic) velocity of the air by measuring the temperature of the wire, because when an air current
passes through the first string it becomes colder as air takes part of the heat away. This means that by
the time the air reaches the second wire, it is warmer and it is therefore unable to extract as much heat.
This produces a gradient in temperature from one string to the next, which provides enough information
to determine the air particle velocity [34].

Figure 2: Microflown MEMS sensor [34].

As it can be expected from the explanation of the working principles, one of such sensors is only able
to determine the particle velocity of the sound wave in one axis, so the probes that only include one
of these plus a conventional microphone to measure pressure are known as Intensity Probes PU, while
probes that include three Microflown sensors and a conventional microphone are able to determine the
particle velocity in three-dimensional space and are known as Intensity Probes 3D or USP. Microflown
Technologies also offers variants of these probes that only measure velocities (not pressures) or even
custom solutions for particular applications.

Figure 3: Some of the probes produced by Microflown Technologies. From left to right: USP Regular,
PU Regular, PU Mini y PU Voyager [34].

In following years they have developed other systems and software packages that complement their sensors,
which include, for example, a sound localization software called Scan&Paint 3D, or contained measuring
units such as Voyager.

2.3 ROMSOC

As mentioned in the introduction, this problem arises from the inclusion of ITMATI and Microflown
Technologies in the ROMSOC project (Reduced Order Modeling, Simulation and Optimization of Coupled
Systems) [46], which is a project funded by the European Commission that joins academic institutions
such as ITMATI, and industrial companies such as Microflown Technologies. Its main goal is very in line
with that of ITMATI, which consists in supporting the industry from a mathematical perspective, but as
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a difference, ROMSOC chooses to do so in particular through reduced order methods applied to coupled
systems.
The project spans four years and joins 15 academic institutions and 11 companies in the PhD thesis of
11 early stage researchers. The challenges taken upon are multidisciplinary in nature and international.
They promote the collaboration between involved sectors, among other things, by making the researchers
divide their working time equally in academic institutions and industrial companies.

4



3 Preliminary Analysis

In this chapter the motivations that lead the development of this project will be explored, as well as the
approach taken when solving it and the tools used in order to achieve this.

3.1 Motivation of the Physical Setting

Since this project sprouts from Ashwin Nayak’s PhD thesis (currently, a work in progress), an introduction
to his project will open this section. The Microflown sensor is based on MEMS technology, which means
that the magnitudes used, for example measuring the change in resistance in the wires, are very small
and any perturbation is able to alter the measurement. It is therefore important that only the signal that
needs to be measured reaches the sensor. The exposure to winds and natural air currents would change
the temperature in the wire, and the system would interpret it as a sound wave even though it is not. For
this reason, Ashwin Nayak was tasked with the design of a multilayer windshield that ensures accurate
readings. He will need to model the acoustic field both inside and outside the windshield and couple in
the problem other physical phenomena such as fluid, thermal and poro-elastic effects in an unbounded
domain.

Figure 4: Schematic diagram of Nayak’s PhD proposal.

The goal of the present master project is to explore the use of a reduced order model (ROM) that is
able to simulate a fluid-porous media coupling that can be later applied to more sophisticated models
involving airflow. However, due to the complexity of the original problem of interest, a one-dimensional
variant of the coupled problem without flow will be implemented. With the objective of making the
project more useful and applicable, and as a way to justify the dimensionality chosen, the simulation of
an impedance-Kundt tube was proposed, which is able to test different materials through a parametric
sweep of the material’s properties. This allows to find an adequate material for the windshield, as well
as providing an accurate and fast model that could be generalized to three-dimensional scenarios.
Experimentally, an impedance-Kundt tube can be used in a number of different physical configurations
and using several measuring techniques. All measurements are performed on the fluid domain, since
including a microphone in the test sample would disrupt the measurement. Conventionally, two micro-
phones are used, one is used as a reference and the other is used to actually record the wave [8, 9].
This was necessary since at least two measuring points are needed in order to record the wave (acoustic)
velocity with pressure microphones. However, using the Microflown sensor, a single probe can be used in
order to extract the same information [53]. Yet another option available, is to mount the microphone on
a moving structure, so that the same microphone is able to take measurements at any point along the
tube [16, 48]. This last technique is typically used in experiments dealing with standing waves.
The objective of the different placements is to get quality reading in different situations, and from them
being able to determine the acoustic characteristics of the test sample. However, the project is focused on
running a numerical simulation, so no microphones are needed since all the measurements are available in
the entire domain, even within the sample without having to deal with the risk of spoiling the experiment
due to a bad microphone placement or by disrupting the wave. The measuring techniques illustrated in
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Figure 5: Example of an impedance-Kundt tube [6].

(a) Dual Microphone

(b) PU Probe

(c) Movable Microphone

Figure 6: Experimental measuring techniques in an impedance-Kundt tube.

Fig. 6 all use the same physical configuration, where a rigid plate closes the tube at the rightmost edge
and the sample is placed against it. Another configuration was used in this project too, one that is also
commonly used experimentally. This second configuration does not include the backing rigid plate and
instead the end of the tube is left open for waves to be radiated.

3.2 Methods

The project is divided in three phases: a) implementation of a 1D model with fluid-porous media cou-
pling, using linear models in the temporal domain; b) implementation of a ROM in order to reduce the
computational cost of solving the model developed in the previous phase; and c) analysis and testing of
material acoustic properties using different physical configurations.
It is common in acoustic problems to study the frequency domain since this simplifies greatly the com-
plexity of the equations used and ensures the model behaves properly during the resolution process.
However, such models fall short in that they are unable to reliably predict the acoustic transmission
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(a) With backing plate - Rigid boundary

(b) Without backing plate - Transparent boundary

Figure 7: Physical configurations used for the impedance-Kundt tube.

when short-duration impulse responses are needed, since frequency models rely on the wave’s periodicity
to make predictions, while a short-duration impulse lacks any kind of periodicity.
This problem is commonplace in the industry, specially when modeling collisions, sudden changes in pres-
sure (such as hydraulic shock in pipes) or the ultrasound pulses that are used for material testing. To get
around the limitations, normally a fluid-equivalent model is used, which provides a linear model that is
capable of correctly predicting short-duration impulses and at the same time providing good approxima-
tions for the acoustic impedance of the material in a wide range of frequencies. This is important because
the Microflown sensor is able to capture signals ranging 20 Hz to 10 kHz [34]. Once complete, this model
lays the foundation for the next phases, which focus on improving the efficiency and maintaining the
quality of the solution and the testing of materials. It also represents a good addition to the ROMSOC
project.
The biggest drawback of an acoustic model in the time domain, and specially of those that include a
porous media, is that in order to get proper results at high frequencies it is necessary to implement
convolutions in time for each element of the PDE, which results in a great amount of computation time
needed. It is therefore of utmost importance to reduce the computation time to be practical, also aiming
not to sacrifice too much accuracy in the process. This is possible through the use of ROMs. In particular
Dynamic Mode Decomposition (DMD) [47] is selected because, unlike other methods such as principal
component analysis (PCA) [27], this is a method that is intrinsically temporal and tends to reduce the
computation time greatly keeping the accuracy.
In the last phase of the project, which is again based upon previous work, the models and methods
developed are used to test different porous materials in different physical configurations. Since the goal
of the project is to find a material that can be used at some point in production, in any other case only
standardized materials would be tested. However in this case porous materials such as foams are being
used, and in practice, the production of such materials can be adjusted and designed to meet the specific
criteria needed. This can be done by modifying the rate at which the filler gas is injected, changing the
temperature profile, the base material or even through the introduction of impurities that change the
physical behavior of the foam. For this reason it is reasonable to justify a parametric sweep with a low
computational cost (using ROMs), which provides the parameters of a perfect material, and from this
result in production it will be possible to manufacture the ideal windshield making no sacrifices.

3.3 Software

The implementation of the models and algorithms have been coded in Python using two different packages
to make the implementation more straightforward. FEniCS package was used for the finite element
method, and PyDMD, another Python library, was used to implement the DMD method.
FEniCS Project [17] is an open source package specially designed for the resolution of PDEs. It allows
for an easy transition between the mathematical model (in particular the variational formulation of the
model) and the algorithm. It provides interfaces both in Python and C++, but the first one is used since
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it is better aligned with the project’s objectives and the rest of the tools used. Its Python implementation
was chosen in particular because this language provides a more superficial and generalized approach than
the alternative, so it is easier to use.
PyDMD [13] is another open source Python package. It is an implementation of the DMD method
that, given a few snapshots of a solution, is able to reconstruct the solution in the range given and
even extrapolate further in time. Since the main DMD method was first introduced in 2010 [47] many
variants of the method have been developed. Each of the variants expand the capabilities of the DMD
in a certain way. For instance, multiresolution dynamic mode decomposition (mrDMD) [28] allows for
the decomposition of the system by the integration of different time-scale components. Or higher order
dynamic mode decomposition (HODMD) [30], which allows its use in problems with a great amount
of modes at different frequencies. PyDMD includes many of these variants, including the two already
mentioned, compressed dynamic mode decomposition (cDMD) [15], forward-backward dynamic mode
decomposition (fbDMD) [12], and dynamic mode decomposition with control (DMDc) [40]. In particular,
the standard version of DMD was used, as well as HODMD.
Another Python library was briefly employed in order to implement SVD. In particular, TruncatedSVD
from the sklearn.decomposition package from scikit-learn was used [49]. Other supporting software
was used, but it was not critical to the success of the project. It includes software such as ParaView, which
allowed for the visualization of the approximated discrete solutions and their troubleshooting, Docker, in
order to run the code in a Windows machine, and even MATLAB in a very limited way.

8



4 Models

In the course of this project a number of models of increasing complexity have been developed. The
step-wise progress from one model to the next has allowed to slowly build upon previous findings and
to perform tests in order to make sure that each step was not misguided. Because of this, the simplest
possible model available for acoustic waves in the time domain was the first: the wave equation where
both boundaries are rigid. Then, one of the boundaries was made transparent in order to be able to
simulate the impedance tube in its open configuration. Later, part of the domain was changed to a very
simple model of a rigid porous media, since the main goal of impedance tubes is to measure the acoustic
characteristics of such materials. Until then all models relied on the initial conditions in order to have
perturbations, so the next step was to add a speaker in the closed end. Taking the speaker into account,
it was possible to simulate regular simple experiments as performed in the laboratory. The final step was
to take this model one step further and improve on the complexity of the porous model. To this end, the
final porous model was based on the fluid-equivalent model developed by Umnova [52]. In the following
pages a description of each model is developed on detail. All the time-dependent mathematical models
described above will be stated in a bounded time interval [0, T ], where T is a positive constant. This
time interval will contain all the transient phenomena of interest.

4.1 Fluid Models

In this section only the models in which the only domain is fluid will be included. They are the simplest
and they served as a starting point in the development of the rest. By themselves, they are not very
useful, since in practice no experiment would be done on an empty impedance tube, but they allow to
perform some tests (which will be discussed in the validation chapter) that show that the model is correct
and properly working. They also serve as a stepping stone for the models to come.

4.1.1 Fluid Model with Rigid Boundaries

As it has been discussed, the first model developed was the simplest. Physically, this model is able to
simulate the wave dynamics inside a Kundt tube where both ends are closed and no test material is placed
inside. The evolution is also passive, since no speaker is included, so only the perturbations present at
the initial time can influence the behavior of the wave.

Figure 8: Diagram of the fluid model with rigid boundaries.

A fluid domain is defined within two rigid boundaries, as shown in Fig. 8. The domain equation is the
standard wave equation, whereas the boundaries are null Dirichlet conditions. Precisely, because of this
reason no signal dependent on time has been introduced, and therefore the simulation has to rely on the
initial conditions to introduce perturbations in the system. A formulation on displacements has been
chosen, although, as it can be observed in the described models written below, the transformation from
displacements to pressures and velocities is relatively straightforward, even in the most complex models
used here. In the first case, the differential model is given by{

ρf∂
2
t uf − ρfc

2
f ∂

2
xuf = f in (0, T )× Ωf ,

uf = 0 on (0, T )× (Γ0 ∪ Γ1),
(P ′1)

where uf is the displacement in the fluid media, ρf the density of the fluid, cf the speed of sound in the
fluid and f is any external force that acts upon the wave, although it was never used in simulations. For
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the application of the finite element method, it is required to write its variational form. Taking the fist
equation, multiplying it by test function w ∈ H1

0 (Ωf), and integrating it in the domain,∫
Ωf

ρf∂
2
t uf · w dx −

∫
Ωf

ρfc
2
f ∂

2
xuf · w dx =

∫
Ωf

f · w dx. (1)

After integrating the second term by parts, it holds∫
Ωf

ρf∂
2
t uf · w dx −

(
ρfc

2
f ∂xuf · w

∣∣
Γ1

+
(
ρfc

2
f ∂xuf · w

∣∣
Γ0

+

∫
Ωf

ρfc
2
f ∂xuf · ∂xw dx =

∫
Ωf

f · w dx, (2)

and then, substituting the second equation in (P ′1) in the second and third terms, the following variational
formulation is obtained: Given a source term f ∈ C([0, T ], L2(Ωf)) and the initial conditions for the
displacement and the velocity fields, u0

f and v0
f in H1

0 (Ωf) respectively, find uf ∈ C2((0, T ), L2(Ωf)) ∩
C1([0, T ], H1

0 (Ωf)) such that uf(0, ·) = u0
f , ∂tuf(0, ·) = v0

f , and it holds∫
Ωf

ρf∂
2
t uf · w dx +

∫
Ωf

ρfc
2
f ∂xuf · ∂xw dx =

∫
Ωf

f · w dx. (V1)

for all w ∈ H1
0 (Ωf).

In general, for the numerical method of time integration that will be used, which will be described further
on, there is a need to obtain a variational formulation with four parts: a mass term, which is dependent
on ∂2

t uf , a damping term, which is dependent on ∂tuf , a stiffness term, dependent on uf directly, and
finally an external force term, not dependent on uf at all. As shown, in this model it is possible to find
a mass term, the first, a stiffness term, the second, and an external forces term, the last. This is to show
that some of the terms can in fact be empty.

Figure 9: Diagram of the fluid model with speaker-rigid boundaries.

Seeking a more general model a speaker in one of the boundaries was introduced (see Fig. 9). This
only has the effect of changing one of the Dirichlet conditions from a null condition to a time-dependent
condition: 

ρf∂
2
t uf − ρfc

2
f ∂

2
xuf = f in (0, T )× Ωf ,

uf = g on (0, T )× Γ0,

uf = 0 on (0, T )× Γ1,

(P1)

where g ∈ C(0, T ) is a time-dependent function representing the displacement at the boundary point Γ0.
Since the term on Γ0 in (2) only includes ∂xuf , and in this case uf |Γ0

is only dependent on time, the

variational form of (P1) is identical to (V1), except that in this case, u0
f and v0

f in H1(Ωf) (which satisfy
the boundary conditions), uf ∈ C2((0, T ), L2(Ωf)) ∩ C1([0, T ], H1(Ωf)) (satisfying the Dirichlet boundary
conditions), and w ∈ H1

Γ1
(Ωf).

4.1.2 Fluid Model with Rigid-Transparent Boundaries

The following step is to develop an extremely simple model for the other physical configuration of an
impedance-Kundt tube, where one of the ends is open. Still, no test material is placed inside, so the
domain of the model remains entirely fluid and the wave equation is still used. The only change with
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respect to the previous model is that one of the Dirichlet conditions, in particular the one on the right
boundary, is changed to a transparent Sommerfeld condition.

ρf∂
2
t uf − ρfc

2
f ∂

2
xuf = f in (0, T )× Ωf ,

uf = 0 on (0, T )× Γ0,

∂tuf + cf∂xuf = 0 on (0, T )× Γ1.

(P ′2)

Figure 10: Diagram of the fluid model with rigid-transparent boundaries.

In the same fashion as before a transformation from the strong form into its variational form can be
performed, although this time w ∈ H1

Γ0
(Ωf) = {s ∈ H1(Ωf) : s|Γ0

= 0} since the boundary must be able
to move freely. It is to be noted that an additional term has appeared. This is precisely due to the need
to let the wave pass through the transparent boundary, which forces ∂tuf not to be zero on Γ1. The
new term forms in this case the damping part of the equation. The variational formulation is: Given a
source term f ∈ C([0, T ], L2(Ωf)) and the initial conditions for the displacement and the velocity fields, u0

f

and v0
f in H1

Γ0
(Ωf) respectively, find uf ∈ C2((0, T ), L2(Ωf)) ∩ C1([0, T ], H1

Γ0
(Ωf)) such that uf(0, ·) = u0

f ,
∂tuf(0, ·) = v0

f , and it holds∫
Ωf

ρf∂
2
t uf · w dx + (ρfcf∂tuf |Γ1

+

∫
Ωf

ρfc
2
f ∂xuf · ∂xw dx =

∫
Ωf

f · w dx, (V2)

for all w ∈ H1
Γ0

(Ωf).

Figure 11: Diagram of the fluid model with speaker-transparent boundaries.

As before, a variant of this model using a speaker in the left boundary (Fig. 11) can be described as
ρf∂

2
t uf − ρfc

2
f ∂

2
xuf = f in (0, T )× Ωf ,

uf = g on (0, T )× Γ0,

∂tuf + cf∂xuf = 0 on (0, T )× Γ1.

(P2)

For the same reason as before, and including the same modifications to the functional spaces, the varia-
tional formulation of this model corresponds to (V2).

4.2 Rigid Porous Models

In this section all the models that make use of a rigid porous model are grouped. This is the simplest
kind of porous media, so there are no thermal or viscous effects, but they can be useful in certain cases.
Even having a coupling between the porous media and the fluid media it is still possible to obtain some
exact solutions to validate them, so more complex models to come can be reliably based upon these.
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4.2.1 Fluid-Porous Coupled Model with Rigid Boundaries

Having developed models for the two different physical configurations of the impedance tube, the next
logical step is to start including porous media in the domain. At first, a simple rigid porous model is
used. Although more accurate models exist for poro-elastic materials, it also has its benefits. For one, it
is much faster to compute, specially given high-frequency signals, and it provides a baseline onto which
more complex models can be built. The first step, as before, is having two rigid boundaries, since this is
the simplest of the two. For this reason, the Dirichlet conditions are re-established at both ends. Now
the domain is split in two parts. Since the speaker, which will be included later, needs to be placed at
the opposite end than the open limit, and the right boundary was made transparent, the speaker will
be placed on the left. This means that the fluid domain must occupy this position, leaving the porous
domain at the right side. An interface boundary between the two media appears, so a coupling is needed
in this model: 

ρf∂
2
t uf − ρfc

2
f ∂

2
xuf = f in (0, T )× Ωf ,

ρp∂
2
t up −

ρpc
2
p

φγp
∂2
xup + σ∂tup = 0 in (0, T )× Ωp,

uf = φup on (0, T )× Γ,

ρfc
2
f ∂xuf =

ρpc
2
p

φγp
∂xup on (0, T )× Γ,

uf = 0 on (0, T )× Γ0,

up = 0 on (0, T )× Γ1,

(P ′3)

where, in addition to the variables defined before, up is the displacement in the porous media, ρp is the
density of the porous material, cp is the speed of sound in the porous media, φ is the porosity as the
fraction of the volume of voids over the total volume, γ is the adiabatic index as the ratio of the heat
capacity at constant pressure over the heat capacity at constant volume, and σ is the flux resistivity
tensor (in this case a scalar due to the dimensionality of the problem).

Figure 12: Diagram of the fluid-porous coupled model with rigid-rigid boundaries.

Since in the implementation only one displacement variable will be accepted, the following definition is
needed:

ũp = φup =⇒ uf = ũp on (0, T )× Γ. (3)

This makes the displacement variable continuous in the entire domain, which later on will allow choosing
a continuous test function. Substituting up = ũp/φ in (P ′3), a model dependent on a single continuous
displacement is obtained:

ρf∂
2
t uf − ρfc

2
f ∂

2
xuf = f in (0, T )× Ωf ,

ρp

φ
∂2
t ũp −

ρpc
2
p

φ2γp
∂2
xũp +

σ

φ
∂tũp = 0 in (0, T )× Ωp,

uf = ũp on (0, T )× Γ,

ρfc
2
f ∂xuf =

ρpc
2
p

φ2γp
∂xũp on (0, T )× Γ,

uf = 0 on (0, T )× Γ0,

ũp = 0 on (0, T )× Γ1.

(P ′′3 )
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In order to transform this formulation to the variational form, it is possible to multiply the first equation
in (P ′′3 ) by a test function w in H1

0 (Ω), where Ω is the interior of Ωf ∪ Ωp, and integrate over the fluid
domain to get ∫

Ωf

ρf∂
2
t uf · w dx −

∫
Ωf

ρfc
2
f ∂

2
xuf · w dx =

∫
Ωf

f · w dx. (4)

Integrating the second term by parts and substituting the fourth and fifth equations in (P ′′3 ),∫
Ωf

ρf∂
2
t uf · w dx −

(
ρpc

2
p

φ2γp
∂xũp · w

∣∣∣∣∣
Γ

+

∫
Ωf

ρfc
2
f ∂xuf · ∂xw dx =

∫
Ωf

f · w dx. (5)

Turning now to the porous media equation. Multiplying the second equation in (P ′′3 ) by test function w
and integrating over the porous domain,∫

Ωp

ρp

φ
∂2
t ũp · w dx −

∫
Ωp

ρpc
2
p

φ2γp
∂2
xũp · w dx +

∫
Ωp

σ

φ
∂tũp · w dx = 0. (6)

Integrate by parts the second term and apply the sixth equation in (P ′′3 ),∫
Ωp

ρp

φ
∂2
t ũp · w dx +

(
ρpc

2
p

φ2γp
∂xũp · w

∣∣∣∣∣
Γ

−
∫

Ωp

ρpc
2
p

φ2γp
∂xũp · ∂xw dx +

∫
Ωp

σ

φ
∂tũp · w dx = 0. (7)

Adding (5) and (7) together, the terms on Γ can be canceled out and the variational formulation is
reached, which will be used in the implementation: Given a source term f ∈ C([0, T ], L2(Ωf)) and
the initial conditions for the displacement and the velocity fields, u0

f and v0
f in H1

Γ0
(Ωf), and u0

p and
v0

p in H1
Γ1

(Ωp) respectively (and satisfying the coupling conditions u0
f = u0

p and v0
f = v0

p), find uf ∈
C2((0, T ), L2(Ωf))∩C1([0, T ], H1

Γ0
(Ωf)) and ũp ∈ C2((0, T ), L2(Ωp))∩C1([0, T ], H1

Γ1
(Ωp)) such that uf = ũp

on (0, T )× Γ, uf(0, ·) = u0
f , ∂tuf(0, ·) = v0

f , ũp(0, ·) = u0
p, ∂tũp(0, ·) = v0

p, and it holds∫
Ωf

ρf∂
2
t uf · w dx +

∫
Ωp

ρp

φ
∂2
t ũp · w dx +

∫
Ωp

σ

φ
∂tũp · w dx

+

∫
Ωf

ρfc
2
f ∂xuf · ∂xw dx +

∫
Ωp

ρpc
2
p

φ2γp
∂xũp · ∂xw dx =

∫
Ωf

f · w dx,
(V3)

for all w ∈ H1
0 (Ω). In this case, the first two terms constitute the mass part, the third term is the damping

part, the fourth and fifth are the stiffness terms and the last is the external forces term. As shown here
the effects of the coupling are implied in the domain terms, and since both external boundaries are rigid,
no boundary term appears.

Figure 13: Diagram of the fluid-porous coupled model with speaker-rigid boundaries.

13



As before, a more general version of this model is introduced when the speaker is included (see Fig. 13):

ρf∂
2
t uf − ρfc

2
f ∂

2
xuf = f in (0, T )× Ωf ,

ρp∂
2
t up −

ρpc
2
p

φγp
∂2
xup + σ∂tup = 0 in (0, T )× Ωp,

uf = φup on (0, T )× Γ,

ρfc
2
f ∂xuf =

ρpc
2
p

φγp
∂xup on (0, T )× Γ,

uf = g on (0, T )× Γ0,

up = 0 on (0, T )× Γ1.

(P3)

Again, the integral terms of the variational formulation are unchanged by the introduction of the speaker,
except that in this case, the solution should satisfy uf = g on (0, T )×Γ0 and the initial conditions in the
fluid domain should be compatible with this boundary condition, this is, u0

f = g(0) and v0
f = g′(0) on Γ0.

4.2.2 Fluid-Porous Coupled Model with Rigid-Transparent Boundaries

The next step is to develop a model in which a porous media is included and one of the ends of the
tube is open. On the open right end of the tube the Dirichlet boundary condition from the previous
model is substituted, but the condition must not be perfectly transparent like in the fluid case. In spite
of the modeling domain ending at the end of the porous domain it is important to consider what comes
beyond, since the condition there is clearly not rigid. When performing an experiment with the objective
of characterizing the acoustic properties of a porous material, a sample of the material is placed at the
end of the tube, and beyond the limit, it is open to the fluid again. For this reason the fluid domain
beyond the boundary Γ1 is extended (see Fig. 14).

Figure 14: Diagram of the fluid-porous coupled model with rigid-transparent boundaries.

In the boundary between two mediums, two acoustic phenomena occur. The incoming wave is both
reflected back to the original media and also refracted into the new one. After this process the energy of
each of the rays is less than that of the original wave. This happens on the interface Γ, and like so, the
coupling equations are added to the system like in the previous model, but it also happens in the new
coupled boundary created at the end of the tube. For this reason, this model has two coupled boundaries,
one interior coupled boundary in Γ and one exterior coupled boundary in Γ1:

ρf∂
2
t uf − ρfc

2
f ∂

2
xuf = f in (0, T )× Ωf ,

ρp∂
2
t up −

ρpc
2
p

φγp
∂2
xup + σ∂tup = 0 in (0, T )× Ωp,

uf = φup on (0, T )× Γ,

ρfc
2
f ∂xuf =

ρpc
2
p

φγp
∂xup on (0, T )× Γ,

uf = 0 on (0, T )× Γ0,

uf = φup on (0, T )× Γ1,

ρfc
2
f ∂xuf =

ρpc
2
p

φγp
∂xup on (0, T )× Γ1,

∂tuf + cf∂xuf = 0 on (0, T )× Γ1.

(8)
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The three equations on Γ1 can be combined in order to simplify the model. Consider the three equations
on Γ1. 

uf = φup on (0, T )× Γ1,

ρfc
2
f ∂xuf =

ρpc
2
p

φγp
∂xup on (0, T )× Γ1,

∂tuf + cf∂xuf = 0 on (0, T )× Γ1.

(9)

Differentiating the first and rearranging the second,
∂tuf = φ∂tup on (0, T )× Γ1,

∂xuf =
ρpc

2
p

ρfc2f φγp
∂xup on (0, T )× Γ1,

∂tuf + cf∂xuf = 0 on (0, T )× Γ1,

(10)

which can then be substituted in the third:

φ∂tup +
ρpc

2
p

ρfcfφγp
∂xup = 0 on (0, T )× Γ1. (11)

Substituting the three original equations with (11) yields the following differential model:

ρf∂
2
t uf − ρfc

2
f ∂

2
xuf = f in (0, T )× Ωf ,

ρp∂
2
t up −

ρpc
2
p

φγp
∂2
xup + σ∂tup = 0 in (0, T )× Ωp,

uf = φup on (0, T )× Γ,

ρfc
2
f ∂xuf =

ρpc
2
p

φγp
∂xup on (0, T )× Γ,

uf = 0 on (0, T )× Γ0,

φ∂tup +
ρpc

2
p

ρfcfφγp
∂xup = 0 on (0, T )× Γ1.

(P ′4)

In a similar fashion to model (P ′3), a derivation of its variational formulation is straightforward. However,
in the process of substituting the transparent boundary condition an additional term that was canceled
before emerges. The variational formulation is the following: Given a source term f ∈ C([0, T ], L2(Ωf))
and the initial conditions for the displacement and the velocity fields, u0

f and v0
f in H1

Γ0
(Ωf), and u0

p

and v0
p in H1(Ωp) respectively (and satisfying the coupling conditions u0

f = u0
p and v0

f = v0
p), find

uf ∈ C2((0, T ), L2(Ωf)) ∩ C1([0, T ], H1
Γ0

(Ωf)) and ũp ∈ C2((0, T ), L2(Ωp)) ∩ C1([0, T ], H1(Ωp)) such that
uf = ũp on (0, T )× Γ, uf(0, ·) = u0

f , ∂tuf(0, ·) = v0
f , ũp(0, ·) = u0

p, ∂tũp(0, ·) = v0
p, and it holds∫

Ωf

ρf∂
2
t uf · w dx +

∫
Ωp

ρp

φ
∂2
t ũp · w dx +

∫
Ωp

σ

φ
∂tũp · w dx + (ρfcf∂tũp · w|Γ1

+

∫
Ωf

ρfc
2
f ∂xuf · ∂xw dx +

∫
Ωp

ρpc
2
p

φ2γp
∂xũp · ∂xw dx =

∫
Ωf

f · w dx.
(V4)

for all w ∈ H1(Ω). Here it is shown that the additional term is added to the damping part, the fourth
term. Finally, the speaker is included to get a more general model (see Fig. 15). As before, the Dirichlet
boundary condition on the left is changed but the integral terms of the variational formulation remains
identical to (V4).
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Figure 15: Diagram of the fluid-porous coupled model with speaker-transparent boundaries.



ρf∂
2
t uf − ρfc

2
f ∂

2
xuf = f in (0, T )× Ωf ,

ρp∂
2
t up −

ρpc
2
p

φγp
∂2
xup + σ∂tup = 0 in (0, T )× Ωp,

uf = φup on (0, T )× Γ,

ρfc
2
f ∂xuf =

ρpc
2
p

φ2γp
∂xup on (0, T )× Γ,

uf = g on (0, T )× Γ0,

φ∂tup +
ρpc

2
p

ρfcfφγp
∂xup = 0 on (0, T )× Γ1.

(P4)

4.3 Poro-elastic Models

This section is home to the most complex models used in this project. The models included here represent
the behavior of poro-elastic materials, where many factors come into play, such as thermal and viscous
effects that were not previously modeled in simpler formulations.

4.3.1 Umnova’s Low Frequency Approximation on Porous Media

Following the Umnova’s lead, the first model of this kind is an unbounded porous model. In the paper,
the following two equations are proposed as low frequency approximations of the fluid-equivalent model
used for poro-elastic materials (Eq. (11) and (14) in [52]). Thanks to the low frequency approximation,
the time convolutions are avoided and the model is approximated as follows:ρfα∞∂tv +

ρfα∞
τ1

v = −∂xp,

γp∂tp = −ρfc
2
f ∂xv,

(12)

where v and p are the velocity and the pressure field, respectively, and α∞ is the tortuosity. Additionally,
coefficient τ1 is defined by

τ1 =
α∞ρf

φσ
.

Figure 16: Diagram of the coupled problem involving Umnova’s porous model.

It is important to note that these equations are formulated in terms of pressures and velocities while
this project has been working with displacements. For this reason the first thing that must be done is
to transform it to the kind of formulation that has appeared throughout the project. Taking the time
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derivative of the first equation in (12) and the spatial derivative of the second equation in (12), and
adding them together,

ρfα∞∂
2
t v +

ρfα∞
τ1

∂tv −
ρfc

2
f

γp
∂2
xv = −∂txp+ ∂xtp. (13)

Assuming that fields v and p are smooth, then ∂txp = ∂xtp. Substituting τ1 too it is possible to eliminate
p from the formulation. Consider that v = ∂tup, so the expression becomes

ρfα∞∂
3
t up + φσ∂2

t up −
ρfc

2
f

γp
∂xxtup = 0. (14)

Integrating in time the equation can be transformed back to a second order (in time) partial differential
equation:

ρfα∞∂
2
t up + φσ∂tup −

ρfc
2
f

γp
∂2
xup = 0. (15)

Boundary conditions are needed in order to model this configuration of the impedance tube. Since one
of the requirements is to control the displacement of the left boundary through a function of pressure, as
is done in [52], a relationship between the two must be established. Substituting v = ∂tup in the second
equation in (12) and integrating on time, it holds

p = −ρfc
2
f

γp
∂xup. (16)

This can be used in the speaker boundary in order to input a pressure function. The other condition
must be a transparent condition, whose form is not clear. For this reason, a different strategy is used in
order to find the differential model. The strategy followed here involves formulating the problem in the
harmonic frequency domain, where it is easier to define the equations, and then transforming it back to
the time domain. Now, it is possible to transform (15) and write in at the frequency domain. Assuming
that up(t, x) = Re(Up(x)e−iωt) being ω the angular frequency and Up the complex-valued harmonic
displacement field, it holds

−(ω2ρfα∞ + iωφσ)Up −
ρfc

2
f

γp
∂2
xUp = 0. (17)

Solving the characteristic polynomial yields the wave number,

kp =

√
γp

ρfc2f
(ω2ρfα∞ + iωφσ). (18)

The problem is that in order to be able to use this wave number, it needs to be real, while this expression
is complex. So an approximation of its value using a first order Taylor approximation is used. Higher
orders would result in not meeting the order of the Newmark method that is being employed to solve the
models. Defining

kp = ωk̄(r) = ω

√
C1 +

C2

r
, (19)

where

C1 =
γpα∞
c2f

∈ R+, C2 =
φγpσ

ρfc2f
∈ R+, r = −iω.

The first order Taylor approximation centered at r = r0 results in

k̄(r) ≈ A0 +A1r, (20)
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where

A0 =
2r0C1 + 3C2

2r0k̄(r0)
,

A1 =
−C2

2r2
0k̄(r0)

.

Substituting r = −iω in (20) and then kp ≈ ωk̄ in the Sommerfeld transparent condition in the frequency
domain,

−ikpUp + ∂xUp = 0, (21)

the following expression is obtained,

−iω (A0 − iωA1)Up + ∂xUp = 0, (22)

which can be transformed back to the time domain.

A1∂
2
t up +A0∂tup + ∂xup = 0. (23)

Collecting the domain equation (15) and the boundary conditions (16) and (22), a differential model
on displacements that approximates that of Umnova’s [52] low frequency approximation on unbounded
poro-elastic materials is obtained,

ρfα∞
φ

∂2
t up + σ∂tup −

ρfc
2
f

φγp
∂2
xup = 0 on (0, T )× Ωp,

−ρfc
2
f

γp
∂xup = g on (0, T )× Γ0,

A1∂
2
t up +A0∂tup + ∂xup = 0 on (0, T )× Γ1,

(P5)

being g ∈ C([0, T ]) any time-dependent (spatially-constant) function that describes the pressure at the
left boundary. Multiplying the first equation by a test function w ∈ H1(Ωp), integrating it over the
porous domain, integrating by parts, and substituting the boundary conditions, yields the variational
formulation: Given a boundary term g ∈ C([0, T ]) and the initial conditions for the displacement and the
velocity fields, u0

p and v0
p in H1(Ωp) respectively (satisfying the boundary conditions u0

p = g(0) on Γ0

and v0
p = g′(0)), find up ∈ C2((0, T ), L2(Ωp))∩ C1([0, T ], H1(Ωp)) such that up(0, ·) = u0

p, ∂tup(0, ·) = v0
p,

and it holds ∫
Ωp

ρfα∞
φ

∂2
t up · w dx +

(
A1

ρfc
2
f

φγp
∂2
t up · w

∣∣∣∣
Γ1

+

∫
Ωp

σ∂tup · w dx

+

(
A0

ρfc
2
f

φγp
∂tup · w

∣∣∣∣
Γ1

+

∫
Ωp

ρfc
2
f

φγp
∂xup · ∂xw dx =

(
1

φ
g · w

∣∣∣∣
Γ0

,

(V5)

for all w ∈ H1(Ωp). Due to the low-order Taylor approximation used, this model is imperfect in the way
the sound waves are transmitted on the transparent boundary. This is something to keep in mind, but a
simple solution to the problem is to elongate the domain beyond what is needed so that the dissipation
caused by the poro-elastic material corrects and minimizes the defects present in the formulation. This
will be explored with greater detail in the validation of the model.

4.3.2 Umnova’s Low Frequency Approximation on Fluid-Porous Coupled Media with Speaker-
Rigid Boundaries

Having a working fluid-porous coupled model with rigid boundaries on one side (model (P3)) and a better
porous model on the other (model (P5)), it becomes a matter of joining them together in order to improve
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the first and expand its capabilities to poro-elastic media. As in the previous model, upon which this one
is based on, this is a low frequency approximation:

ρf∂
2
t uf − ρfc

2
f ∂

2
xuf = 0 in (0, T )× Ωf ,

ρfα∞
φ

∂2
t up + σ∂tup −

ρfc
2
f

φγp
∂2
xup = 0 in (0, T )× Ωp,

uf = φup on (0, T )× Γ,

φγp∂xuf = ∂xup on (0, T )× Γ,

−ρfc
2
f

γ
∂xup = g on (0, T )× Γ0,

up = 0 on (0, T )× Γ1.

(P6)

Figure 17: Diagram of Umnova’s low model involving a fluid-porous coupled media with speaker-rigid
boundaries.

This model includes both the wave equation for the fluid domain Ωf , Umnova’s low frequency approx-
imation [52] for the porous domain Ωp, a coupling between the domains in the interface Γ, a pressure
controlled boundary Γ0 and a rigid null boundary Γ1. Substituting the boundary condition on Γ0 with a
simple Dirichlet condition gives a model controlled by displacements instead of by pressures. In the same
fashion as it has been done until now, the variational formulation is found to be the following: Given a
boundary term g ∈ C([0, T ]) and the initial conditions for the displacement and the velocity fields, u0

f and
v0

f in H1(Ωf), and u0
p and v0

p in H1
Γ1

(Ωp) respectively (and satisfying the coupling conditions u0
f = u0

p and
v0

f = v0
p), find uf ∈ C2((0, T ), L2(Ωf))∩C1([0, T ], H1(Ωf)) and ũp ∈ C2((0, T ), L2(Ωp))∩C1([0, T ], H1

Γ1
(Ωp))

such that uf = ũp on (0, T )× Γ, uf(0, ·) = u0
f , ∂tuf(0, ·) = v0

f , ũp(0, ·) = u0
p, ∂tũp(0, ·) = v0

p, and it holds∫
Ωf

ρf∂
2
t uf · w dx +

∫
Ωp

ρfα∞
φ2

∂2
t ũp · w dx+

∫
Ωp

σ

φ
∂tũp · w dx

+

∫
Ωf

ρfc
2
f ∂xuf · ∂xw dx +

∫
Ωp

ρfc
2
f

φ2γp
∂xũp · ∂xw dx = (γpg · w|Γ0

,

(V6)

for all w ∈ H1(Ω).
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5 Discretization Algorithms

A few algorithms were used throughout the development of this project. Each of them meets one function
and they rely on each other to achieve the results that are seek. Considering the described models it is
apparent that finding an exact solution is not a viable option. For this reason, the logical next step that
is needed in order to find a solution is to resort to numerical methods. Two different methods are needed
for the two necessary discretizations. In the spatial domain the discretization is performed through a
finite element method (FEM), whereas the Newmark-beta integration method is used in the time domain
discretization. Both methods are widely used in acoustics.

5.1 Finite Element Method

The finite element method (FEM) is by far the most widespread technique used when solving mathe-
matical models, from structural mechanics [39, 57] to fluid flow[58, 35]. It works by subdividing the
computational domain into smaller parts (mesh) with some special features. Since the developed models
only have a single spatial dimension, the selection of the kind of elements and the discretization itself
is greatly simplified. Furthermore, since only a baseline working model is needed, the simplest kind of
elements were selected: P1-approximations are used for each element in the mesh.

Figure 18: Diagram of the linear P1-elements. The exact solution (blue line) is approximated by the
numerical solution (red line) as a linear combination of the basis functions (green lines). In the picture,
the red line represents the interpolation function into the FEM discrete space.

Although in practice this method was applied internally within the FEniCS library, meaning it was not
needed to manually assemble the required matrices, some examples on how to find them are shown, one
for a fluid model and another for a coupled model. Firstly, the FEM discrete space is introduced for fluid
model (P1). Given a mesh T = {Tj}Nj=1 of N elements, the discrete space is defined by

Vh = {w ∈ H1
0 (Ωf) : w|Tj

∈ P1, j = 1, . . . , N}.

Hence, the discrete variational formulation of the fluid model with rigid boundaries is written as follows:
Given a source term f ∈ C([0, T ],Vh) and the initial conditions for the displacement and the velocity
fields, u0

f and v0
f in Vh respectively, find uh ∈ C2([0, T ],Vh) such that uh(0, ·) = u0

f , ∂tu
h(0, ·) = v0

f , and
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it holds ∫
Ωf

ρf∂
2
t u

h · wh dx +

∫
Ωf

ρfc
2
f ∂xu

h · ∂xwh dx =

∫
Ωf

f · wh dx, (Vh1 )

for all wh ∈ Vh. Seeking the discretization of this expression, N+1 equally spaced nodes with coordinates
x0, x1, . . . , xN are introduced in the spatial domain, separated by a distance ∆x, that carry associated
with them the set of basis functions {ψ0, ψ1, . . . , ψN}. The discrete variable uh is used to approximate
uf , and wh is used to approximate test function w. The basis function ψi, located on the interior node
x = xi, is defined as

ψi(x) =


x− xi−1

∆x
in xi−1 < x ≤ xi,

−x− xi+1

∆x
in xi < x ≤ xi+1,

0 elsewhere ,

(24)

for i = 1, . . . , N − 1, whereas the basis functions on the boundaries are

ψ0(x) =

−
x− x1

∆x
in x0 < x ≤ x1,

0 elsewhere ,
(25)

ψN (x) =


x− xN−1

∆x
in xN−1 < x ≤ xN ,

0 elsewhere .
(26)

Based on this, it is possible to define the FEM solution

uh(t, x) =

N∑
i=0

uhi (t)ψi(x), (27)

and the test functions

wh(x) =

N∑
i=0

whi ψi(x). (28)

Using these discrete approximations in the variational formulation (Vh1 ) and setting the test function
w = ψj , it yields

ρf

∫
Ωf

N∑
i=0

(
∂2
t u

h
i ψi · ψj

)
dx + ρfc

2
f

∫
Ωf

N∑
i=0

(
uhi ∂xψi · ∂xψj

)
dx =

∫
Ωf

f · ψj dx, (29)

for all 0 ≤ i, j ≤ N . Considering the linearity of the expression it can be written as

N∑
i=0

Mj,iü
h
i +

N∑
i=0

Kj,iu
h
i = fj , (30)

where

Mi,j = Mj,i =

∫
Ωf

ρfψi · ψj dx,

Ki,j = Kj,i =

∫
Ωf

ρfc
2
f ∂xψi · ∂xψj dx,

fj =

∫
Ωf

f · ψj dx,
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for all 0 ≤ i, j ≤ N . Realize that the basis functions are equal to zero on most of the domain, so these
expressions can be simplified by splitting the integral in each of the non-zero elements and taking into
account that the mass matrix M and the stiffness matrix K are symmetric:

Mi,i =

∫ xi

xi−1

ρfψ
2
i dx+

∫ xi+1

xi

ρfψ
2
i dx = ρf

∆x

3
,

Mi,i−1 =

∫ xi

xi−1

ρfψiψi−1 dx = ρf
∆x

6
,

Ki,i =

∫ xi

xi−1

ρfc
2
f (∂xψi)

2
dx+

∫ xi+1

xi

ρfc
2
f (∂xψi)

2
dx = ρfc

2
f

2

∆x
,

Ki,i−1 =

∫ xi

xi−1

ρfc
2
f ∂xψi · ∂xψi−1 dx = −ρfc

2
f

1

∆x
,

for all 1 ≤ i ≤ N . The rest of the overlaps in the lower part (and therefore the rest of the entries of lower
part of both matrices) are equal to zero due to the product between the basis functions. This however
does not apply to the vector f , where there is no product because of its global character.
The second example discretization that will be shown is that of the coupled model (P4). In this case,
consider that uh represents either a discrete approximation of uf or ũp depending on the subdomain in
which it is found, and consequently the discrete space is defined by

Vh = {w ∈ H1
Γ0

(Ω) : w|Tj ∈ P1, j = 1, . . . , N},

where the mesh T = {Tj}Nj=1 is compatible with the coupling boundary Γ. Its discrete variational
formulation is described as follows: Given a source term f ∈ C([0, T ],Vh) and suitable initial conditions for
the displacement and the velocity fields, u0 and v0 in Vh, find uh ∈ C2([0, T ],Vh) such that uh(0, ·) = u0,
∂tu

h(0, ·) = v0, and it holds∫
Ωf

ρf∂
2
t u

h · wh dx +

∫
Ωp

ρp

φ
∂2
t u

h · wh dx +

∫
Ωp

σ

φ
∂tu

h · wh dx

+
(
ρfcf∂tu

h · wh
∣∣
Γ1

+

∫
Ωf

ρfc
2
f ∂xu

h · ∂xwh dx +

∫
Ωp

ρpc
2
p

φ2γp
∂xu

h · ∂xwh dx =

∫
Ωf

f · wh dx,
(Vh4 )

for all wh ∈ Vh. The same basis functions will be used (see (24), (25) and (26)), so the FEM solution
and test functions are still (27) and (28). Introducing the discrete approximations in the variational
formulation of the problem yields∫

Ωf

N∑
i=0

(
ρf∂

2
t u

h
i ψi · ψj

)
dx +

∫
Ωp

N∑
i=0

(
ρp

φ
∂2
t u

h
i ψi · ψj

)
dx

+

∫
Ωp

N∑
i=0

(
σ

φ
∂tu

h
i ψi · ψj

)
dx +

(
N∑
i=0

(
ρfcf∂tu

h
i ψi · ψj

)∣∣∣∣∣
Γ1

+

∫
Ωf

N∑
i=0

(
ρfc

2
f u
h
i ∂xψi · ∂xψj

)
dx +

∫
Ωp

N∑
i=0

(
ρpc

2
p

φ2γp
uhi ∂xψi · ∂xψj

)
dx

=

∫
Ωf

f · ψj dx.

(31)

Applying linearity it is possible to extract the terms that are dependent on uhi to get

N∑
i=0

Mj,iü
h
i +

N∑
i=0

Cj,iu̇
h
i +

N∑
i=0

Kj,iu
h
i = fj . (32)
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where

Mi,j =

∫
Ωf

ρfψiψj dx +

∫
Ωp

ρp

φ
ψiψj dx ,

Ci,j =

∫
Ωp

σ

φ
ψiψj dx + (ρfcfψiψj |Γ1

,

Ki,j =

∫
Ωf

ρfc
2
f ∂xψi · ∂xψj dx +

∫
Ωp

ρpc
2
p

φ2γp
∂xψi · ∂xψj dx,

fi =

∫
Ωf

fψj dx.

Considering the overlap of the basis functions as before,

Mi,i =

∫
Ωf

ρfψ
2
i dx +

∫
Ωp

ρp

φ
ψ2
i dx ,

Mi,i−1 =

∫
Ωf

ρfψiψi−1 dx +

∫
Ωp

ρp

φ
ψiψi−1 dx ,

Ci,i =

∫
Ωp

σ

φ
ψ2
i dx +

(
ρfcfψ

2
i

∣∣
Γ1
,

Ci,i−1 =

∫
Ωp

σ

φ
ψiψi−1 dx + (ρfcfψiψi−1|Γ1

,

Ki,i =

∫
Ωf

ρfc
2
f (∂xψi)

2
dx +

∫
Ωp

ρpc
2
p

φ2γp
(∂xψi)

2
dx ,

Ki,i−1 =

∫
Ωf

ρfc
2
f ∂xψi · ∂xψi−1 dx +

∫
Ωp

ρpc
2
p

φ2γp
∂xψi · ∂xψi−1 dx,

which is dependent on where the domains are placed and must be calculated for each problem. The rest
of the entries will be empty. These matrices are the ones that will be later used in the Newmark scheme.
It is to be noted that the structure of the resulting ordinary differential equation is that of the Newmark
method since this is its source. However, due to the simplicity of the model, in the first example no
damping matrix appears, only the mass and the stiffness matrices, as well as the external forces vector
are present. This corresponds to what was commented in the previous chapter, when the models were
developed.

5.2 Newmark-Beta Method

In the same way that FEM was used to subdivide the spatial dimension, so is done for the time dimension
with this method. Newmark-beta method [36] is a numerical integration scheme commonly used to solve
differential equations in dynamic response systems, usually in association with FEM, as done here. It
offers a semi-discretized structural equation of second order, that combined with FEM reduces the PDE
to an ODE,

Mü+ Cu̇+Ku = f, (33)

where M represents the mass matrix, C is the damping matrix, K is the stiffness matrix and F are the
external forces. This aligns very well with the terms seen in the variational formulations of the models
and the FEM, which simplifies the implementation. The discrete form of the method can be written as

un+1 = un + ∆tu̇n +

(
1

2
− β

)
∆t2ün + β∆t2ün+1,

u̇n+1 = u̇n + (1− γ) ∆tün + γ∆tün+1,

Mün+1 + Cu̇n+1 +Kun+1 = fn+1,

(34)
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where γ and β represent the method’s parameters, n is the current time step of the method and ∆t the
time step size. In this case γ = 0.5 and β = 0.25 were used, which corresponds to the middle point rule.
These parameters were chosen because using them the method becomes unconditionally stable, whereas
with other configurations is only conditionally stable. In practice the implementation of the method is
divided in three parts. It begins with an initialization, in which the problem matrix A is created:

A =
1

β∆t2
M +

γ

β∆t
C +K,

u0 = u0,

u̇0 = v0,

ü0 = M−1
(
f0 − Cu̇0 −Ku0

)
,

(35)

where u0 and v0 are the initial conditions of the problem. In each time loop, the method then establishes
some explicit prediction values for the displacement and the velocity,un+1

pr = un + ∆tu̇n +

(
1

2
− β

)
∆t2ün,

u̇n+1
pr = u̇n + (1− γ) ∆tün.

(36)

These predictions are then used to obtain the final values of each variable for each iteration of the method
as follows: 

Fn+1 = fn+1 +
1

β∆t2
Mun+1

pr +

(
γ

β∆t
un+1
pr − u̇n+1

pr

)
C,

un+1 = A−1Fn+1,

u̇n+1 = u̇n+1
pr +

γ

β∆t

(
un+1 − un+1

pr

)
,

ün+1 =
1

β∆t2
(
un+1 − un+1

pr

)
.

(37)

Although the method is unconditionally stable, it is important to choose a correct time step size in order
to increase the success at lower resolutions. The Courant-Friedrich-Lewy (CFL) condition establishes that
the time step must be smaller than a certain size in order for the numerical solution to be convergent. In
particular for the one-dimensional case,

C =
∆t

∆x
u̇ ≤ Cmax. (38)

The exact value of Cmax depends on the method, but, for explicit methods such as this project’s, it is
common to use Cmax = 1. This in essence, and in order to minimize the execution time, means that the
mesh speed must be the same as the speed of propagation of sound:

∆x

∆t
= cf . (39)

The effects of not choosing the correct ratio will be showcased later, but for now it is important to note
that using this condition only one of the increments must be chosen, while the other can be calculated.
Generally the mesh size was chosen and the time step calculated.
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6 Reduced Order Methods

The discretization methods are able to solve the models numerically and it is thanks to them that the
simulations are run. The results of the simulations are a series of snapshots that describe the displacement
(or the velocity, acceleration and pressure if needed) in each of the discrete spatial points at each of the
discrete times. The second part of the project consists in applying a reduced order method (ROM), in
particular dynamic mode decomposition (DMD), to be able to speed up the computation of a solution
by making predictions and performing reconstructions of the snapshots. Since DMD relies heavily in a
more classical ROM, the singular value decomposition (SVD), and since a comparison between them is
performed later in this report, both methods will be described next.

6.1 Singular Value Decomposition

The singular value decomposition (SVD) is a matrix factorization algorithm that is able to decompose a
n×m matrix much in the same way the eigendecomposition decomposes square diagonalizable matrices.
It is a data-driven method that has been widely used in a variety of fields. Given a matrix A ∈ Rn×m,
SVD is able to factorize it as

A = UΣV T , (40)

where V T denotes the conjugate transpose of V , and U ∈ Rn×n,Σ ∈ Rn×m, V ∈ Rm×m. In addition, U
and V form orthonormal bases, meaning that UTU = In and V TV = Im. The matrix U is comprised of
the left singular vectors as columns, Σ contains in its diagonal the singular values ordered in a decreasing
sequence, and V T is composed of the right singular vectors as rows. Calculating the decomposition
is a very straight forward process. The left singular vectors are simply the eigenvectors of AAT , the
right singular vectors are the eigenvectors of ATA, and the singular values are the square roots of the
eigenvalues of either AAT or ATA. The matrix AAT will be a symmetric and semidefinite positive matrix,
meaning the eigenvalues will be real and non-negative, and so will the singular values be:

A =

 u1 u2 . . . un


n×n


σ1

σ2

. . .

σmin(n,m)


n×m


v1

v2

...
vm


m×m

, (41)

where ui are the left singular vectors, σi =
√
λi are the singular values (being λi the eigenvalues), and

vi are the right singular vectors. Notice that Σ is not necessarily a square matrix, so only Σii entries
are populated, the rest are filled with zeros. This means that the matrix Σ (and therefore A) is of rank
k ≤ min (n,m). For this reason, the matrix A can also be expressed as the sum of its modes:

A =

k∑
i=1

σiuiv
T
i . (42)

This decomposition is lossless, meaning that by multiplying UΣV T (or by adding all the modes) the
original matrix is obtained. This extracts some useful information codified in the resulting matrices, but
it is not a reduced order method. The truncated SVD method however, is. It consists in keeping the
most relevant SVD modes. Since the singular values are ordered (σ1 > σ2 > · · · > σk > 0), it is possible
to choose a rank r < k such that only {u1, . . . , ur}, {σ1, . . . , σr} and {v1, . . . , vr} are kept, which are the
r most representative modes of the decomposition:

A ≈ UrΣrV Tr , (43)
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where Ur ∈ Rn×r,Σr ∈ Rr×r, Vr ∈ Rr×m,

A =

 u1 u2 . . . ur


n×r


σ1

σ2

. . .

σr


r×r


v1

v2

...
vr


r×m

. (44)

Using the proportion of variance explained it is possible to get a measure of the compression loss produced
by the truncated SVD,

var =

∑r
i=1 σ

2
i∑k

i=1 σ
2
i

. (45)

6.2 Dynamic Mode Decomposition

The dynamic mode decomposition (DMD) algorithm [47] is a dimensionality reduction algorithm similar
to singular value decomposition (SVD), and in fact, it is used within the DMD algorithm. The main
difference between other order reduction methods and DMD is that DMD is dynamic, which means that
is able to consider variations in the mode through time, whereas the others rely on static modes. Its
main advantage is that it is a data-driven method, so there is no need for the algorithm to have any
knowledge of the underlying equations, which enables it to function on experimental data of un-modeled
phenomena, not only on simulation results. Its main use is to extract the most relevant spatial modes
and their dynamics (i.e. how they develop in time) and to make predictions about its future development.
Essentially, the given data is first spatially decomposed through SVD and then a Fourier transform is
applied in order to get the time dynamics.
The input to the algorithm is a data matrix formed by a number of equally spaced in time snapshots
(although there are newer methods that allow for the use of uneven time steps [51]). There are m
snapshots, denominated x1, x2, . . . , xm, and each of them is a vector composed by n spatial points. Two
matrices are formed from the given snapshots:

X =

 x1 x2 . . . xm−1

 , (46)

X ′ =

 x2 x3 . . . xm

 , (47)

The algorithm starts by decomposing X through a truncated SVD of rank r (see (43)),

X ≈ UΣV T , (48)

where V T denotes the conjugate transpose of V , and U ∈ Rn×r,Σ ∈ Rr×r, V ∈ Rm×r. Next, the matrix
A as a pseudo-inverse of X is calculated,

A = X ′Σ−1UT . (49)

While the formulation using matrix A is mathematically correct, the implementation proves to be ill-
conditioned in that it is often unable to find any mode except the very most relevant ones, specially if
the input data is noisy. For this reason, a more robust approach is to choose a projection of A onto the
SVD basis (see [47]),

Ã = UTX ′V Σ−1. (50)
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Then, the eigenvalues (λk, contained in the diagonal of Λ, where i ∈ {1, . . . , r}) and eigenvectors (con-
tained as columns in W ) of Ã are computed,

Ã = WΛW−1. (51)

Finally, the data is reconstructed back to the original space,

X ≈ ΦΛ, (52)

where Φ are the eigenvectors of A, also named DMD modes, and can be calculated as shown below:

Φ = X ′V Σ−1W. (53)

This reconstruction can be useful in terms of denoising and extracting principal components, but in order
to predict future values (which is the main concern of this project since that would cut the computation
time greatly when compared to having to simulate the entire time domain) it is imperative that the time
dimension of the reconstruction is expanded. It can be extended to any desired future time as follows,

x(t) ≈
r∑

k=1

φke
ωktbk = ΦeΩtb, (54)

where bk is the initial amplitude of each mode, b the vector that contains them, φk is each of the modes
from Φ, and Ω = diag(ωk), where ωk = log(λk)/∆t are the continuous time eigenvalues. The vector b
can be obtained by

b = Φ∗x1, (55)

where Φ∗ denotes the Moore-Penrose pseudoinverse of Φ. In this prediction, Φ represents the spatial
modes, and eΩtb represents the dynamics. All of this and much more is explained in more detail in [29].
The implementation of this method, as well as of all the variants tested were implemented through the
pyDMD package [13].
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7 Validation

In this chapter the tests performed in order to troubleshoot the models and to make sure that each of them
were behaving correctly are explored. In some occasions an exact solution for certain cases is available,
so a comparison between the exact solution and the results of the simulations is used as validation. In
others, comparisons to published data or trends in error reduction were used.

7.1 Error Control Through Space and Time Step Size

The first test performed was a test on the implementation of the basic Python program, including the
FEM and the Newmark method contained within. Model (P1) and exact solution (68) were used to
perform these tests, since it was the first model available and the results are model independent. The
discretization methods were supposed to be of order two, both in time and space, meaning that error ε
in the last snapshot of the simulation must hold

ε ≤ Cx∆x2 + Ct∆t
2, (56)

where Cx and Ct are positive constants. Neglecting of the terms in the right-hand side, it is possible to
take the logarithm of (56), X being either log ∆x or log ∆t and Y being the logarithm of the error, and
adjust a linear model of the shape

log ε = Y = a+ bX, (57)

a and b being some constants. Since the methods are of order two, b ≈ 2 in both cases. At first, as can
be seen in Fig. 19, a ∆x is fixed and the ∆t is changed, or conversely, ∆t is fixed and the ∆x is changed.
Specially in the second case it is easy to appreciate that the slope of the fitted line, understanding that
the plot is in logarithmic scale, is far from the desired. The reason for this discrepancy between the theory
and the practice is that by keeping constant one of the step sizes, the CFL ratio was not proper, which
causes the numerical results not to be accurate as expected. The physical parameters used in Fig. 19 and
Fig. 20 are shown in Tab. 1.

Sound speed in fluid cf 343 m/s

Fluid density ρf 1.21 kg/m
3

Table 1: Physical parameters.

(a) Static ∆x.
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(b) Static ∆t.

Figure 19: Error reduction trends keeping one of the step sizes static. The CFL ratio is not regarded.

In Fig. 20 both ∆x and ∆t are varied so that the CFL condition is met. It shows that the slope of the
linear fit is in fact equal to two, both in space and in time, as expected, since

∆t = cf∆x. (58)

(a) Error reduction on ∆x.

(b) Error reduction on ∆t.

Figure 20: Error reduction trends choosing the step sizes in accordance to the CFL condition.
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7.2 Exact Result Using d’Alembert’s Solution

In cases where the evolution of the sound wave through a fluid is not forced by an external impulse, like
that of a speaker, there exists an exact solution called d’Alembert’s Solution [11]. Given initial conditions
uf(0, x) = u0

f (x) and ∂tuf(0, x) = v0
f (x), the exact solution to the wave equation in a open domain is

uf(t, x) =
1

2

(
u0

f (x− cft) + u0
f (x+ cft)

)
+

1

2cf

∫ x+cf t

x−cf t
v0

f (ξ) dξ. (59)

This formula provides the solution for an initial condition but is not able to model rigid boundaries.
With the purpose of simulating them, the virtual images principle was used. It consists on placing a
symmetrical and of opposite sign initial condition beyond the rigid boundary, so that as both travel
towards it, they meet and cancel each other precisely where it is needed, and then the virtual solution
takes the place of the original within the domain. This method was used to verify fluid models before
the introduction of a speaker, that is (P ′1) and (P ′2).

7.2.1 Fluid Model with Rigid Boundaries

Recall that the model (P ′1) has rigid boundaries at both ends of the domain, which, since there is
no dissipation in the fluid media and the rigid boundaries are perfectly rigid, means that the waves will
bounce infinitely within the domain, so infinitely many virtual images are needed to get the exact solution
at any point in time. However, since the objective of this validation is to test the simulation, only enough
reflections to fill the time domain chosen are needed. Two reflections were used.
A diagram of the virtual images used for this model is shown in Fig. 21. In green, the original wave,
and since the exact solution is fundamentally unbounded, it passes through both boundaries, Γ0 and
Γ1. However, the waves represented in red, which have an opposite amplitude than the original and are
only propagated towards the domain Ωf , destructively interact with the principal solution, effectively
canceling out the displacement at the boundaries. This process is repeated as many times as reflections
want to be simulated, two in this case.
Choosing Ωf = [0, 1] and initial conditions

uf(x, 0) =

exp

(
2exp( −0.2

|x−0.5| )
|x−0.5|

0.2 −1

)
on |x− 0.5| < 0.2,

0 elsewhere ,
(60)

∂tuf(x, 0) = 0, (61)

it is possible to simulate two reflections of the inert wave. The fist reflection is shown in Fig. 22. As
observed, the simulated result, calculated using ∆x = 2× 10−3 and ∆t = 5.83× 10−6, is almost identical
to the exact solution, representing a successful test. The physical parameters used in this test case are
shown in Tab. 1.

7.2.2 Fluid Model with Rigid-Transparent Boundaries

The case of model (P ′2) is simpler in this regard, since only one of the boundaries is rigid, while the other
is transparent, so only left-going waves must be reflected, which means that only one reflection is needed,
since the only source of waves in this model is the initial condition. Therefore, in order to compare the
model to its exact solution the principle of virtual images is still available, but since only one of the
boundaries emit reflections, only one image is needed.
As seen in Fig. 24, taking the same initial conditions and parameters and applying it to model (P ′2) yields
a solution that is very similar in quality to the one observed in the previous case. However it shows clearly
how at the right boundary the wave is not reflected but just passes through the transparent boundary.
The physical parameters used in this test case are shown in Tab. 1.
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Figure 21: Diagram of the virtual images used in the exact solution of (P ′1).

7.3 Exact Result Using Harmonic Solution

Calculating the exact solution through d’Alembert’s formula is only possible when no perturbations are
applied to the wave and the domain is a perfect fluid. This means that this method does not work on
coupled systems, so another method is needed to check the implementation. Using rigid porous media
it is possible however to find the exact harmonic solution, as well as in the fluid domain, and it is
also possible to couple them together using a harmonic multilayer scheme. Because of this reason, the
harmonic solution was used to test models (P3), (P4), (P3) and (P4).

7.3.1 Fluid Model with Rigid Boundaries

Firstly, the simplest case is introduced: the harmonic solution in a fluid domain with rigid boundaries,
(P3). Since the speaker is placed on the left boundary, this will be free to move, while the right boundary
will be perfectly still. The displacement function used on Γ0 to test this model was

g(t) = Re
(
e−iωt

)
= cos (ωt) , (62)

where ω is the frequency of the harmonic wave. Introducing this function in (P1), the time-domain model
can then be taken to the frequency domain (assuming uf(t, x) = Re(e−iωtUf(x)) with Uf a complex-valued
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(a) Initial condition. (b) Incoming reflection.

(c) Outgoing reflection. (d) Recombination.

Figure 22: Development of the first complete reflection given the initial conditions (60) and (61) on model
(P ′1). In red, the simulated solution, in green the exact d’Alembert’s solution.

Figure 23: Diagram of the virtual images used in the exact solution of (P ′2).

function), which results in the following Helmholtz equation:
−ω2ρfUf − ρfc

2
f ∂

2
xUf = 0 in Ωf ,

Uf = 1 on Γ0,

Uf = 0 on Γ1.

(63)
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(a) Initial condition.
(b) Incoming reflection and start of the transmis-
sion.

(c) Outgoing reflection and ending of the transmis-
sion.

(d) Completed reflection.

Figure 24: Development of the first complete reflection given the initial conditions (60) and (61) on model
(P ′2). In red, the simulated solution, in green the exact d’Alembert’s solution.

By solving the characteristic polynomial of the first equation, the wave number kf is obtained:

−ρfc
2
f λ

2 − ω2ρf = 0 =⇒ λ = ±i

√
ω2

c2f
= ±ikf . (64)

Using this λ the general harmonic solution is formed, which solves the Helmholtz equation:

Uf(x) = Aeλ1x +Beλ2x = Ae−ikfx +Beikfx. (65)

Substitute this expression in the second and third equations in (63) in order to find the coefficients A
and B. Defining for simplicity x|Γ0

= L0 and x|Γ1
= L1,{

Uf |Γ0
= Ae−ikfL0 +BeikfL0 = 1,

Uf |Γ1
= Ae−ikfL1 +BeikfL1 = 0,

(66)

which yields 
A =

1

e−ikfL0 − e−ikf (2L1−L0)
,

B =
1

eikfL0 − eikf (2L1−L0)
.

(67)

This gives the harmonic solution, which can be transformed back to the time domain to get the exact
solution needed:

uf(t, x) = Re
(
e−iωtUf(x)

)
= Re

(
e−iωt

(
e−ikfx

e−ikfL0 − e−ikf (2L1−L0)
+

eikfx

eikfL0 − eikf (2L1−L0)

))
. (68)

Therefore, the initial conditions for the simulation will be

uf(x, 0) = Re

(
e−ikfx

e−ikfL0 − e−ikf (2L1−L0)
+

eikfx

eikfL0 − eikf (2L1−L0)

)
, (69)

∂tuf(x, 0) = Re

(
−iω

(
e−ikfx

e−ikfL0 − e−ikf (2L1−L0)
+

eikfx

eikfL0 − eikf (2L1−L0)

))
. (70)
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Compare this solution to the simulated solution to see (in Fig. 25). The results are highly accurate. As
a result of the harmonic motion and the rigid boundary, a standing wave is generated. The physical
parameters used in this test case are shown in Tab. 1.

(a) Initial condition. (b) Start of the oscillation.

(c) Continuation of the oscillation. (d) Half of a wave cycle.

Figure 25: Development of the first half of a wave cycle of the standing wave given by the initial conditions
(69) and (70) on model (P1). In red, the simulated solution, in green the exact harmonic solution.

7.3.2 Fluid Model with Rigid-Transparent Boundaries

The same process can be performed on model (P2). Using the same boundary function (62), the time
domain model can be transformed into the following frequency domain model, which uses the frequency
domain version of the Sommerfeld transparent condition:

−ω2ρfUf − ρfc
2
f ∂

2
xUf = 0 in Ωf ,

Uf = 1 on Γ0,

lim
x→∞

(∂xUf − ikfUf) = 0 on Γ1.

(71)

Since the domain equation is unchanged, so is the wave number kf . The general harmonic solution is
also the same, but upon substituting the values of the boundary conditions of (71) the values of A and
B change: {

Uf |Γ0
= Ae−ikfL0 +BeikfL0 = 1,

lim
x→∞

(
∂x Uf |Γ1

− ikf Uf |Γ1

)
= 0,

(72)

which yields {
A = 0,

B = e−ikfL0 .
(73)

Using these values it is possible to transform the solution in the frequency domain back to the time
domain:

uf(t, x) = Re
(
e−iωtUf(x)

)
= Re

(
e−iωte−ikfL0eikfx

)
. (74)

The initial conditions for the simulation will be

uf(x, 0) = Re
(
e−ikfL0eikfx

)
, (75)

∂tuf(x, 0) = Re
(
−iωe−ikfL0eikfx

)
. (76)
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The results of the simulation are shown in Fig. 26, and are once again highly matching. On this occasion,
since the right boundary is transparent, it is no longer a standing wave, but instead it travels towards
the open end. It still maintains its periodicity, since it is a harmonic solution. The physical parameters
used in this test case are shown in Tab. 1.

(a) Initial condition. (b) 1/4 of the wave cycle.

(c) 1/2 of the wave cycle. (d) 3/4 of the wave cycle.

Figure 26: Development of the first wave cycle of the transporting wave given by the initial conditions
(75) and (76) on model (P2). In red, the simulated solution, in green the exact harmonic solution.

7.3.3 Fluid-Porous Coupled Model with Rigid Boundaries

Next the coupled models are validated. In fluid models, since the variational formulation of disturbed and
undisturbed models where the same (compare (P ′1) with (P1) or (P ′2) with (P2)) the harmonic solution
was not a critical test. However, it is in coupled models, since it is the easiest way to test them. Taking
model (P3), which has a rigid boundary on Γ1 and both fluid and rigid porous media, it is possible to
impose the same boundary time function as before, (62), and transform it into the frequency domain:

−ω2ρfUf − ρfc
2
f ∂

2
xUf = 0 in Ωf ,

−
(
ω2ρp + iωσ

)
Ũp −

ρpc
2
p

φγp
∂2
xŨp = 0 in Ωp,

Uf = Ũp on Γ,

ρfc
2
f ∂xUf =

ρpc
2
p

φ2γp
∂xŨp on Γ,

Uf = 1 on Γ0,

Ũp = 0 on Γ1.

(77)

The characteristic polynomial, as well as the wave number, in the fluid domain is the same as in previous
cases, but it is not equal in the porous domain. Solving the characteristic polynomial of the second
equation in (77) yileds the porous wave number kp.

−
ρpc

2
p

φγp
λ2 −

(
ω2ρp + iωσ

)
= 0 =⇒ λ = ±i

√
φγp

ρpc2p
(ω2ρp + iωσ) = ±ikp. (78)
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Taking the general solution, {
Uf(x) = Afe

−ikfx +Bfe
ikfx in Ωf ,

Ũp(x) = Ape
−ikpx +Bpe

ikpx in Ωp,
(79)

and substituting it in the boundary conditions of the Helmholtz problem (77) a linear system is obtained,
which can be solved in order to get the parameters. Recalling that x|Γ0

= L0, x|Γ1
= L1 and defining

x|Γ = L, 
e−ikfL eikfL −e−ikpL −eikpL
−r1e

−ikfL r1e
ikfL r2e

−ikpL −r2e
ikpL

e−ikfL0 eikfL0 0 0
0 0 e−ikpL1 eikpL1



Af

Bf

Ap

Bp

 =


0
0
1
0

 , (80)

where

r1 = ikfρfc
2
f ,

r2 = ikp

ρpc
2
p

φ2γp
.

Given a particular solution to this system, the time domain solution is

u(t, x) =

{
Re
(
e−iωt

(
Afe
−ikfx +Bfe

ikfx
))

in Ωf ,

Re
(
e−iωt

(
Ape

−ikpx +Bpe
ikpx

))
in Ωp,

(81)

which means that the initial conditions are

u(x, 0) =

{
Re
(
Afe
−ikfx +Bfe

ikfx
)

in Ωf ,

Re
(
Ape

−ikpx +Bpe
ikpx

)
in Ωp,

(82)

∂tu(x, 0) =

{
Re
(
−iω

(
Afe
−ikfx +Bfe

ikfx
))

in Ωf ,

Re
(
−iω

(
Ape

−ikpx +Bpe
ikpx

))
in Ωp,

(83)

The results of the simulation are shown in Fig. 27. Since the rigid boundary has been reinstated, the
resulting wave is once again a standing wave. The physical parameters used here are shown in Tab. 2.

Sound speed in fluid cf 343 m/s

Fluid density ρf 1.21 kg/m
3

Sound speed in porous cp 350 m/s

Porous density ρf 1.5 kg/m
3

Porosity φ 0.5
Specific heat capacity ratio γp 1.4

Flux resistivity σ 100 N s/m
4

Table 2: Physical parameters.

7.3.4 Fluid-Porous Coupled Model with Rigid-Transparent Boundaries

The last model that is able to be checked against an exact solution is the open configuration of the
fluid-porous coupling. Much in the same way that for the previous case, using the harmonic solution is
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(a) Initial condition. (b) First quarter of the oscillation.

(c) Second quarter of the oscillation. (d) Half of a wave cycle.

Figure 27: Development of the first wave cycle of the standing wave given by the initial conditions (82)
and (83) on model (P3). In red, the simulated solution, in green the exact harmonic solution. The
dashed vertical line marks the interface between the fluid domain (to the left) and the porous media (to
the right).

the best way to test this model. As has done before, model (P4) can be taken to the frequency domain
using (62) as boundary displacement function:

−ω2ρfUf − ρfc
2
f ∂

2
xUf = 0 in Ωf ,

−
(
ω2ρp + iωσ

)
Ũp −

ρpc
2
p

φγp
∂2
xŨp = 0 in Ωp,

Uf = Ũp on Γ,

ρfc
2
f ∂xUf =

ρpc
2
p

φγp
∂xŨp on Γ,

Uf = 1 on Γ0,

−iωŨp +
ρpc

2
p

ρfcfφ2γp
∂xŨp on Γ1.

(84)

Both wave numbers, kf and kp, are the same wave numbers that were found earlier, so it is possible to
directly substitute the general solution (79) into the boundary conditions of (84) to formulate the linear
system. That allows finding the general solution’s parameters given by

e−ikfL eikfL −e−ikpL −eikpL
−r1e

−ikfL r1e
ikfL r2e

−ikpL −r2e
ikpL

e−ikfL0 eikfL0 0 0
0 0 −i (r3 + ω) e−ikpL1 −i (r3 − ω) eikpL1



Af

Bf

Ap

Bp

 =


0
0
1
0

 , (85)

where r1 and r2 are identical to the coefficients defined previously, and

r3 = kp

ρpc
2
p

ρfc2f φ
2γp

.

Although the values of the coefficients differ, the solution of this system in the time domain corresponds
to (81) using the solution of (85) as coefficients, and in the same fashion, (82) and (83) will be the initial
conditions for the simulation. The results of the test can be observed in Fig. 28. The behavior of this
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wave is difficult to describe, but it involves both traveling and shrinking, although never reaching the
zero displacement in the entire spatial domain at the same time. A phase shift is observed between the
fluid and the porous media. This complex behavior is the result of partial reflections, since as viewed
from the porous material, the incoming wave is partially reflected and partially refracted, and the second
part is reflected and refracted again at the right boundary, unlike in the previous model where it was
perfectly reflected and no energy was lost. It could be said that this behavior is a mixture between a
standing and a traveling wave. It is of course still periodic. The physical parameters used in Fig. 28 are
shown in Tab. 2.

(a) Initial condition. (b) Shrinking in Ωf and expansion in Ωp.

(c) Travel. (d) Expansion in Ωf and shrinking in Ωp.

Figure 28: Development of the first half of a wave cycle of the standing wave given by the initial conditions
(82) and (83) on model (P4). In red, the simulated solution, in green the exact harmonic solution. The
dashed vertical line marks the interface between the fluid domain (to the left) and the porous media (to
the right).

7.4 Umnova’s Low Frequency Approximation Comparison

For the first time in the development of the project it appears a model that is too complex to be able to
offer an exact solution to, even for a simple particular case. The difficulty arises from the fact that porous
model is no longer rigid but poro-elastic, meaning that thermal and elastic losses must be considered.
Instead, the validation of the model is performed through the data included in Umnova’s paper (see Fig.
1 in [52]). First, the data is extracted from the graph, and then, using the same acoustic source, the
“Mexican Hat” defined by (86), the simulation of model (P5) is run. Finally the results are compared.
Recall that the entire domain is porous, and in order to lessen the effects of the approximation discussed
in section 4.3.1, Ωp = [0, 3] is chosen, although the furthest sampling point is x = 1. The “Mexican Hat”
equation is

g(t) =
(

1− ω2 (t− t0)
2
)

exp

(
−ω

2 (t− t0)
2

2

)
, (86)

with the parameters used in the paper as well, ω = 50, and t0 = 0.1. In order to transform the
displacements to pressures so that a comparison between the simulation’s results and the available data
is viable, the relation between pressures and displacements given by the model, (16), is used. The result
of the comparison is shown in Fig. 29. The physical parameters of the solution are taken from the paper
and are the ones reflected in Tab. 3.
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Sound speed in fluid cf 343 m/s

Fluid density ρf 1.21 kg/m
3

Porosity φ 0.36
Specific heat capacity ratio γp 1.4

Flux resistivity σ 27888 N s/m
4

Tortuosity α∞ 1.89

Table 3: Physical parameters for the low frequency model.

Figure 29: Comparison of the simulated results by model (P5) (in solid lines), with the data presented
in Umnova 2009 [52] (in dashed lines). Red lines are sampled at x = 0.2, blue lines at x = 0.5 and black
lines are sampled at x = 1.
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8 Numerical Results

After developing and validating the models, the goal is to find out if DMD is an effective predictor of
such models, or in which cases it is. The advantage of using DMD in regards to the computation time is
tremendous, specially in more complex models, since they radically increase the simulation time but DMD
is not affected by the complexity of the model running underneath the data. In the following pages the
conclusions extracted from numerous tests are presented. The particular results shown are representative
of the behavior exhibited by other models of the same characteristics as well, and the remaining results
have not been included in the interest of clarity.

8.1 Harmonic Reconstruction

Firstly, the simplest case is introduced. The DMD method is specially well behaved in periodic data, so
the first step will be simply to reconstructing harmonic solutions. Using an truncation rank of 2 (r = 2),
it is possible to reconstruct the solutions with a very small error, as shown in Fig. 31. Note the color
scale of the error. In Fig. 30 it is clearly shown that the DMD modes, defined in (53), properly capture
the porous domain, which is manifested by the reduced amplitude on the rightmost half-wave, or by the
“unfocused” vertical band on the right of the reconstructions of Fig. 31 and Fig. 33. The dynamics are
given by eΩtb in (54). Compare the modes with the actual wave form in Fig. 27 to see the similarities.
In these graphs, the horizontal axis represents the spatial dimension x, the vertical axis the temporal
dimension t, and the color axis represents the displacement u. The parameters used are shown in Tab. 4
and Tab. 5.

Sound speed in fluid cf 343 m/s

Fluid density ρf 1.21 kg/m
3

Sound speed in porous cp 350 m/s

Porous density ρf 1.5 kg/m
3

Porosity φ 0.5
Specific heat capacity ratio γp 1.4

Flux resistivity σ 100 N s/m
4

Table 4: Physical parameters.

Time step ∆t 1.46× 10−5 s
Space step ∆x 5× 10−3 m
Truncation rank r 2
d parameter in HODMD d 5

Table 5: Discretization and ROM parameters.
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Figure 30: Two overlapping DMD modes (to the left) and dynamics (to the right) of the reconstruction
shown in Fig. 31.

Figure 31: Reconstruction of simulated harmonic solution of model (P3).

The same can be done with model (P4), where there exists a transparent boundary on the right. In
Fig. 33 it becomes apparent the traveling and shrinking in the fluid domain discussed in the validation
section.
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Figure 32: Two overlapping DMD modes (to the left) and dynamics (to the right) of the reconstruction
shown in Fig. 33.

Figure 33: Reconstruction of simulated harmonic solution of model (P4).

These reconstructions show that DMD is able to extract modes and reconstruct an approximated data
set in the original dimension, but that is nothing special since other methods such as SVD are already
capable of that and in fact are slightly more efficient at it. The capability needed from DMD is that it
is also able to predict the evolution of the data further into the future.

8.2 Harmonic Predictions

Using the same source data, only a fraction of it will be fed to the method. DMD will reconstruct it and
then the absolute error will be found by comparing the prediction to the ground truth. A decrease in
the amount of snapshots given to the method will be used in order to showcase the limits for this kind of
problem. The results for the rigid boundary model are shown in Fig. 34. Similar results can be obtained
for models with transparent Γ1 as well as fluid models, but the harmonic solution used in the validation
of model (P3) will be used as an example.
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8.2.1 Effects of the Number of Snapshots Given

The error seems to be going down as the number of snapshots is limited. This is due to the noise of
the data, that becomes greater as the simulation advances, which can, on occasions, throw the dynamics
off track. The mesh used in this particular simulation was quite thick, with ∆x = 5 × 10−3 and ∆t =
1.46 × 10−5. Nonetheless, note that DMD is able to reconstruct 100 snapshots with a maximum error
of about 0.8% from just three snapshots. However, it is not able to infer the dynamics from only two
snapshots. The physical parameters from Tab. 4 were used, and the discretization and ROM parameters
are shown in Tab. 7. The truncation rank was decided autonomously by the software, and since d = 1, a
standard DMD was performed.

Time step ∆t 1.46× 10−5 s
Space step ∆x 5× 10−3 m
Truncation rank r auto
d parameter in HODMD d 1

Table 6: Discretization and ROM parameters.

(a) 50 snapshots.

(b) 10 snapshots.
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(c) 3 snapshots.

(d) 2 snapshots.

Figure 34: Effects of reducing the given snapshots in the reconstruction of harmonic data modeled by
(P3).

8.2.2 Effects of the Discretization Size

The error can be reduced if the mesh used is finer or if instead of the numerical data the exact solution
is used, even if the mesh size is kept the same. In Fig. 35 a discretization of ∆x = 2.5 × 10−3 and
∆t = 7.29 × 10−6 is used, and although only three snapshots are given too, which means that the
collected data covers a much smaller time space (4.38 × 10−5 versus 2.19 × 10−5, exactly half), the
maximum error goes down to about 0.2%. In Fig. 36 although the mesh is as rough as before, since the
numerical noise is non-existent, the error drops to basically zero.
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Figure 35: Reconstruction of harmonic data modeled by (P3) using a finer mesh.

Figure 36: Reconstruction of the exact harmonic data modeled by (P3). Note the color scale.

Keeping the sampling time static and varying the mesh size has a similar effect, the smaller finer the
mesh the better the reconstruction. In Fig. 37 the sampling time has been fixed in t ∈

[
0, 2× 10−3

]
.

The physical parameters used are the ones shown in Tab. 4. The DMD truncation rank was decided
autonomously by the software, the parameter d was set to d = 5, and the discretization step sizes are
shown for each case.
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(a) ∆x = 1 × 10−2 and ∆t = 2.96 × 10−5.

(b) ∆x = 5 × 10−3 and ∆t = 1.46 × 10−5.
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(c) ∆x = 2.5 × 10−3 and ∆t = 7.29 × 10−6.

Figure 37: Effects of reducing the size of the discretization in the reconstruction of harmonic data modeled
by (P3) with fixed time sampling period.

8.3 DMD vs. HODMD

There exist a number of variations of the standard DMD. One of them, HODMD, deals with higher order
data by decomposing it into d spatio-temporal structures. The standard DMD can be understood as a
particularization of HODMD where d = 1. Choosing a correct value of this parameter can determine the
success of the prediction or reconstruction. For instance, observing Fig. 38, if the parameter is too small
and a simple DMD is performed, the error can be reduced, but if it is too big the coherence might be
lost and the results might be even worse. For this reason it is important to choose a correct parameter
for each case. The ideal value depends on the underlying dynamics of the system, but typically it should
not be too close to either 1 or the number of snapshots. In this case 14 snapshots were used, and both
d = 1 and d = 13 yield a poor result, while d = 7 performs much better, as expected. Further discussion
can be found in [30]. The parameters used are reflected in Tab. 4 and Tab. 5 with the exception of d,
which is varied and defined for each figure individually.

(a) d = 1 (standard DMD).
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(b) d = 7.

(c) d = 13.

Figure 38: Effects of the parameter d in the HODMD method in a solution modeled by (P3).

8.4 Periodic Impulses

As stated before, DMD shines on periodic models. In general impulse responses are not periodic, but
under certain circumstances they can become periodic (see the validation of model (P ′1)). By gradually
decreasing the number of snapshots available to the method it becomes evident that having data over
an entire period is critical to the success of the method in this situation (Fig. 39), unlike in harmonic
oscillations, where a minimal amount of snapshots were sufficient. The physical parameters are shown in
Tab. 4, and the discretization and ROM parameters are reflected in Tab. 7.

Time step ∆t 5.83× 10−6 s
Space step ∆x 2× 10−3 m
Truncation rank r 100
d parameter in HODMD d 5

Table 7: Discretization and ROM parameters.
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(a) Over a period.

(b) One period.

(c) Slightly under a period.
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(d) Under a period.

Figure 39: Effects of the number of snapshots given in periodic impulses in a solution modeled by (P ′1).

8.4.1 Effects of the DMD Rank

One of the main characteristics of the DMD method is that it is a reduced order method, which means
that it solves a simplified version of the problem. In particular, the rank of the method defines how
simplified the reduced problem is. It represents the amount of modes used in the reconstruction or
prediction, so changing it can have great effects on the result. If the rank is too low the reconstruction
will not capture all the modes, and if the rank is too high it will capture a greater degree of numerical
noise, which although it reduces the error, it might not align well with a given objective.
Having a high truncation rank r is especially important in solutions to impulses, since a translating wave
theoretically can only be recreated perfectly by infinitely many modes (or as many modes as spatial
sample points in practice), whereas harmonic solutions can be perfectly captured by just two modes.
Fig. 40 shows that the spatial modes (53) elapse the entire domain while the temporal dynamics (eΩtb in
equation (54)) are a lot more organized.

Figure 40: DMD modes (to the left) and dynamics (to the right) of the reconstruction shown in Fig. 41.
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Figure 41: Reconstruction of an impulse response modeled by (P ′1).

All of these modes together, 50 in this case, are able to approximate the solution, but in fact the lack of
sufficient modes can become very noticeable, as shown in Fig. 42. The higher the rank goes the smaller
the error becomes. This is not necessarily true for solutions with a finite amount of true modes like the
harmonic solutions that were tested before. The physical parameters used are shown in Tab. 4, and the
discretization and ROM parameters are recorded in Tab. 8. The truncation rank r is shown for each
figure individually.

Time step ∆t 5.83× 10−6 s
Space step ∆x 2× 10−3 m
d parameter in HODMD d 30

Table 8: Discretization and ROM parameters.

(a) r = 5.
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(b) r = 10.

(c) r = 50.
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(d) r = 100.

Figure 42: Effects of the DMD rank in periodic impulses in a solution modeled by (P ′1).

8.5 Non-Periodic Impulses

It has been found that the DMD method works very well with periodic data of any kind, as long as basic
requirements for each case are met, but the interest of the project lies in finding out if this success can be
extended to non-periodic data. It has been found that it is possible to reconstruct any given data, since
this is easily achieved by the internal SVD, but it is completely unable to make any kind of prediction
about the future. This is evident in Fig. 43, where high frequency data is used, and in Fig. 44 where
low frequency data is utilized. Changing the method’s parameters does not seem to have any effect on
the success of the prediction. The physical parameters used for the high and low frequency responses
are shown in Tab. 4 and Tab. 9 respectively, and the discretization and ROM parameters are shown in
Tab. 10 and Tab. 11, high and low frequency respectively.

Sound speed in fluid cf 343 m/s

Fluid density ρf 1.21 kg/m
3

Porosity φ 0.36
Specific heat capacity ratio γp 1.4

Flux resistivity σ 27888 N s/m
4

Tortuosity α∞ 1.89

Table 9: Physical parameters for the low frequency model.

Time step ∆t 7.29× 10−6 s
Space step ∆x 2.5× 10−3 m
Truncation rank r 100
d parameter in HODMD d 5

Table 10: Discretization and ROM parameters for the high frequency model.

53



Time step ∆t 5.83× 10−5 s
Space step ∆x 2× 10−2 m
Truncation rank r 100
d parameter in HODMD d 5

Table 11: Discretization and ROM parameters for the low frequency model.

(a) Reconstruction.

(b) Prediction.

Figure 43: High frequency non-periodic impulses modeled by (P3).
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(a) Reconstruction.

(b) Prediction.

Figure 44: Low frequency non-periodic impulses modeled by (P6).

8.6 Simulation Mixing

There was also an attempt to mix similar simulation results in order to improve predictions. The idea
was that a slight parameter variation in the simulations, something like a slight change in fluid density
or the speed of sound, would retain the qualities of the solution, so by running a complete simulation
with a set of base parameters and then mixing its final snapshots with the first snapshots of the other
simulation better predictions would be obtained than with the few snapshots of the second model alone.
It turns out that this is not the case, and due to the abrupt change the method is unable to make any
kind of predictions. In Fig. 45, Model 2 uses the physical parameters shown in Tab. 4 and Model 1 uses
the same except that cf = 300. The discretization and ROM parameters used for Model 1 and 2 are
displayed in Tab. 12 and Tab. 13 respectively.
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Time step ∆t 8.33× 10−6 s
Space step ∆x 2.5× 10−3 m
Truncation rank r 5
d parameter in HODMD d 5

Table 12: Discretization and ROM parameters of Model 1.

Time step ∆t 7.29× 10−6 s
Space step ∆x 2.5× 10−3 m
Truncation rank r 5
d parameter in HODMD d 5

Table 13: Discretization and ROM parameters of Model 2.

(a) Model 1 data.

(b) Model 2 data.
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(c) Mixed models.

Figure 45: Mixed model reconstruction modeled by (P1).

8.7 Comparison to SVD

Finally, it seems reasonable to compare DMD to SVD, so that it can be determined how much of the
success can be attributed to either of the methods. For starters it is important to understand that SVD
runs within DMD, so DMD should be able to do anything SVD can. This includes of course reconstruction
of periodic data, as seen in Fig. 46 or non-periodic data, as showcased in Fig. 47. In the harmonic case
a truncation rank of r = 2 was chosen for both cases (see (43) for SVD and (48) for DMD), since this is
the true number of modes of the exact solution. In the impulse reconstruction a SVD truncation rank
of r = 50 was chosen and a DMD truncation rank of r = 100 was selected in order to show that in
reconstructions where the true rank (k) is greater than the truncation rank (r), a SVD mode actually
corresponds to two DMD modes, meaning that in order to obtain a comparable error only half of the SVD
modes are necessary. This is due to the existence of dynamics in DMD (eΩtb in (54)), which introduces
a new degree of freedom, so more data is needed to completely determine the state. In Fig. 46 the
parameters used are those reflected in Tab. 4 and Tab. 5, adding a SVD truncation rank of 2, while for
Fig. 47, the parameters are shown in Tab. 4 and Tab. 10 with SVD truncation rank of 50, as stated
before.

(a) SVD.
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(b) DMD.

Figure 46: Reconstruction of periodic data modeled by (P3).

(a) SVD.
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(b) DMD.

Figure 47: Reconstruction of non-periodic data modeled by (P3).

When it comes to predictions however, there is no clear method in which SVD can directly make a
prediction, since its aim is to reconstruct and extract modes, not to extend the dimensionality. For this
reason, SVD is not a valid method for this project, since there is no need to reconstruct the available
data, the interest of this project lies in predicting future behavior.
The closest thing that this project was able to achieve that resembles a dimensionality expansion using
SVD involved calculating two SVDs, one on the data and one on a sample matrix of the goal dimensions.
Then, the second was reconstructed using the data’s modes. This implied that the dynamics from the
sample matrix were kept, so the result did not resemble the target data. The results of that test can be
seen in Fig. 48 Implementing methods of extrapolation in order to extend the dynamics beyond the given
dimensions would result in a method that is very similar in function, if not identical, to DMD.

Figure 48: Predictions made by SVD using a sample matrix of ones (truncation rank of 50). Solution
modeled by (P3).

8.8 Shifted DMD

Rudimentary efforts were made trying to develop a method by which the data matrix of an impulse
is transformed into a matrix in which the propagation path is aligned with the vertical. Had it been
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successful it would have been possible to transform the data into the shifted space, perform DMD, and
then transform it back in order to easily predict the future behavior of traveling waves, which would
ideally work on non-periodic impulses. An example of one of the most basic (yet unsuccessful) cases is
shown in Fig. 49. More information about this method can be found in [50] and [45]. The parameters
used in the attempt of Fig. 49 correspond to those presented in Tab. 4 and Tab. 10.

Figure 49: Shifted DMD attempt. The original data is that of Fig. 47.
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9 Conclusions

In this project a number of acoustical models in the time domain that implement different materials
with distinct characteristics were developed. These models are able to simulate acoustic propagation
inside an impedance-Kundt tube. The project was started with a fluid model, and later a fluid-porous
coupled model was added. At first the porous material used a rigid porous model, but it was later
improved to a poro-elastic model. Most of the models have two variations that correspond with the
physical configurations of a Kundt tube, one with a closed rigid boundary on the right, and one with a
transparent boundary.
Each of the models have been validated. The first validation tested the capabilities and convergence of
the numerical methods used (FEM and Newmark). Then, the fluid models were tested using d’Alembert’s
solution and the principle of virtual images, and both fluid and fluid-porous models (in its rigid variant)
were tested against an exact harmonic solution. The poro-elastic model was tested against published
data.
Then, applications of the DMD algorithm where explored, which allowed to make predictions from a
reduced number of snapshots of the numerical simulation, which reduces the computational time signifi-
cantly. In particular the findings include that DMD excels at predicting pure harmonic motion, reducing
the simulation’s computational time to an insignificant amount since only three snapshots are really nec-
essary. With regards to non-harmonic periodic signals it seems that DMD is able to make predictions
as long as a complete wave cycle is provided. Evidence was found that points to the fact that DMD,
in its standard formulation or its generalized higher order form, HODMD, is ineffective in predicting
non-periodic data.
There are a number of directions future work might head to, which include tasks that were not able to
be completed due to time constraints, or new approaches to certain issues found. For starters, the use
of DMD is most effective when the time required to run the simulation is high, and in no case this is
more evident than in a high frequency approximation of poro-elastic dynamics, or directly in the case
of the bare fluid-equivalent model, both of which include temporal convolutions that severely affect the
execution time of the simulation.
Focusing on DMD, there exist a number of variations of the method, and while the focus of this project
lied both in the standard version and in the higher order version, it is possible that other variations
offer other advantages. For instance, MrDMD (multi-resolution DMD), which is able to better capture
transient data and discontinuities, was lightly tested. No further exploration was performed because at
this point its implementation in pyDMD lacked predictive capabilities, but the original formulation [28]
allows it, and in fact, as stated in [1], the developers are working on it.
Another interesting approach would be to develop more intricate models and transformations in order to
be able to apply a shifted DMD that would erase DMD’s biggest flaw and allow it to make predictions
about non-periodic impulse responses.
Finally, there are some interesting applications of this work. It has already been demonstrated that using
DMD can be very advantageous when modeling 1D harmonic data. An extension of this work to higher
dimensions can be critical, since simulation time increases dramatically when dimensionality is increased.
With such an efficient model it makes it possible to execute parametric sweeps that were prohibitively
expensive before in projects such as Nayak’s. In the meantime, the 1D version can still be used to replace
experimental testing in impedance-Kundt tubes or similar situations.
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[20] Gabard, Gwénaël ; Brambley, Ed ; Cosnefroy, Matthias ; Dazel, Olivier: Time-domain
representation of acoustic impedance surfaces with flow, 2017. – LAUM, Université du Maine, Le
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[21] Grosek, J. ; Kutz, J. N.: Dynamic mode decomposition for real-time background/foreground
separation in video. (2014)

[22] Holmarc Opto-Mechatronics Pvt. Ltd.: Impedance Tube Apparatus. https://holmarc.com/
impedance_tube_apparatus_a.php

[23] Horoshenkov, Kirill V.: A Review of Acoustical Methods for Porous Material Characterisation.
In: International Journal of Acoustics and Vibration 22 (2017), Nr. 1, S. 92–103. http://dx.doi.

org/10.20855/ijav.2017.22.1455. – DOI 10.20855/ijav.2017.22.1455
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