
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 07/09 pp776–797
DOI: 10 .26599 /TST.2020 .9010004
Volume 25, Number 6, December 2020


C The author(s) 2020. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

An Architecture for Software Engineering Gamification

Oscar Pedreira�, Félix García, Mario Piattini, Alejandro Cortiñas, and Ana Cerdeira-Pena

Abstract: Gamification has been applied in software engineering to improve quality and results by increasing people’s

motivation and engagement. A systematic mapping has identified research gaps in the field, one of them being

the difficulty of creating an integrated gamified environment comprising all the tools of an organization, since most

existing gamified tools are custom developments or prototypes. In this paper, we propose a gamification software

architecture that allows us to transform the work environment of a software organization into an integrated gamified

environment, i.e., the organization can maintain its tools, and the rewards obtained by the users for their actions

in different tools will mount up. We developed a gamification engine based on our proposal, and we carried out

a case study in which we applied it in a real software development company. The case study shows that the

gamification engine has allowed the company to create a gamified workplace by integrating custom-developed tools

and off-the-shelf tools such as Redmine, TestLink, or JUnit, with the gamification engine. Two main advantages can

be highlighted: (i) our solution allows the organization to maintain its current tools, and (ii) the rewards for actions in

any tool accumulate in a centralized gamified environment.

Key words: gamification; software engineering; gamification architecture; gamification engine

1 Introduction

Gamification is usually defined as the application of
game elements and mechanics to non-game activities, in
order to improve people’s engagement, and motivation,
and therefore get better results[1–4]. Successful
applications of gamification can be found in many
domains, such as marketing, education, or mobile
applications, for example. Different types of game
mechanics taken from traditional games have been
used in gamification[1–3]. The most typical ones are

� Oscar Pedreira, Alejandro Cortiñas, and Ana Cerdeira-
Pena are with the Universidade da Coruña, Centro de
Investigación CITIC, Laboratorio de Bases de Datos, Facultade
de Informática, Elviña, A Coruña, 15071, Spain. E-mail:
opedreira@udc.es; alejandro.cortinas@udc.es; acerdeira@
udc.es.

� Félix Garcı́a and Mario Piattini are with the Universidad
de Castilla-La Mancha, Grupo Alarcos, Escuela Superior de
Informática, Paseo de la Universidad, 4, Ciudad Real, 13071,
Spain. E-mail: Felix.Garcia@uclm.es; Mario.Piattini@uclm.es.

�To whom correspondence should be addressed.
Manuscript received: 2019-07-22; revised: 2020-01-14;
accepted: 2020-01-16

direct rewards in the form of points, badges, or virtual
coins the users receive upon successfully completing
tasks. Other game mechanics look for exploiting
social relations and status, as in the case of levels,
leaderboards, or voting. Many gamification applications
also make use of feedback systems that provide the
users with continuous information on their performance
at a given task. The workplace is a very attractive
target for gamification. Making work funnier, more
motivating and/or more engaging could directly improve
the business results of companies and organizations[1–3].
However, gamification itself poses significant challenges.
One of them is that we must deeply know the users and
their main motivators, and design a gamification solution
able to address them and improve the results[5, 6]. In
many cases, there are also technical challenges, such
as obtaining data from the users’ work environment
and the tools they use, and to integrate our gamification
solution in that work environment.

Though more of a newcomer to the gamification
phenomenon, Software Engineering (SE) is no exception.
As a matter of fact, the application of gamification in



Oscar Pedreira et al.: An Architecture for Software Engineering Gamification 777

the SE field can have great significance for software
process improvement, given that the human factor is
the main asset; it is human motivation and engagement
that are the keys to success in software projects. In the
context of software projects, the engagement of software
engineers can be achieved, for instance, by organizing
projects as a set of challenges which can be ordered and
that need to be fulfilled, and for which some skills, and
mainly much collective effort, are required. Software
engineers are thus considered as “players” who carry
out activities in which they learn new skills, using and
combining them to achieve certain challenges, obtain
rewards or receive punishments, depending on success
or failure, respectively[7]. Gamification can therefore be
a very useful instrument to make some environments
become fun and attractive (and even addictive). This
applies especially to those that include routine and
tedious activities, as it is the case with a number of
software tasks, such as testing, for example.

Therefore, the field of software engineering has not
been unaware of the potential benefits of gamification,
and many pieces of research have explored this research
line[8]. One of the main gaps identified in existing
research derives from the fact that the automation of
gamification in software engineering has been achieved
so far by developing custom gamified tools (for example,
gamified custom tools for requirements analysis and
specification, or for software project management).
This approach is not feasible in real organizations
for two reasons. First, it is common for software
companies to use well-known off-the-shelf CASE tools
that provide them with a very good functionality
level. It may be impossible to incorporate gamification
directly into these tools if they are closed products,
and it may be also impossible to replace these tools
with custom, gamified ones, because of the difficulty
of meeting their functionality levels at a reasonable
cost. Second, the work environment of most software
companies is composed of an ecosystem of tools that
support different process areas, such as requirements,
project management, development, testing, etc. Even
if we could add gamification elements to each of
them, it would very difficult to come up with a
solution integrating all process areas into a common
gamification environment. Therefore, the nature of the
work environment of software companies can be a strong
barrier for the application of gamification in this domain.

In this paper, we focus on this issue, proposing
a software architecture for the gamification of SE

environments. As we will see throughout the paper,
this software architecture allows any SE organization
to incorporate gamification into its workplace without
needing to replace any of its current work tools
(something that would not be feasible in most cases).
Although the architecture will be described in detail in
the paper, its main features can be summarized as (1)
the core component of our proposal is a gamification
engine that will connect to the different work tools
of the company through a web service architecture,
(2) this gamification engine is based on an abstract
gamification metamodel, and allows the designers to
define rules to evaluate and reward the actions carried
out by each player in the work tools, and (3) the
work tools will communicate each player action to
the gamification engine, and those actions will be
evaluated according to the gamification rules defined
by the designer of the gamified environment. The
gamification engine therefore centralizes the logging
of the behaviors carried out by each user, along with
the evaluation of the game rules that associate the
corresponding achievements to those behaviors. The
business logic of gamification is thus taken out of the
gamified work tools of the organization, and centralized
in a gamification engine designed for that purpose.
The gamification architecture we present is generic and
therefore customizable to any SE organization with its
different particular needs and approaches. The software
architecture and the gamification engine we propose
allow the tools of the environment to be integrated easily
through a web service architecture, unifying most of the
game mechanics applied in SE in a single tool. This
makes for a different approach for gamification in SE,
a proposal whose aim is to fulfill the needs of a real
software development organization.

In addition to proposing the software architecture
and the gamification engine from an abstract point
of view, we have implemented a gamification engine
based on our proposal, and used it to carry out a case
study in a real company. The gamification software
architecture we present in this article was developed
in a technology transfer project participated by two
universities and four software development companies.
The gamification engine we developed based on the
architecture was used by these four companies, and
we were able to carry out a complete case study in
one of them. As will see in the description of the
case study (Section 5), this gamification engine has
allowed us to gamify the complete work environment of



778 Tsinghua Science and Technology, December 2020, 25(6): 776–797

a real company, integrating the gamification engine with
different work tools, from custom-developed tools of the
company, to off-the-shelf and well-known tools such as
Redmine, TestLink, and JUnit.

As we will see in the description of the gamification
engine, our implementation goes further than just a
data centralizer, and enhances the existing tools by
providing advanced functionalities, such as the analysis
of the graph resulting from interactions between the
different participants and sentiment analysis of the
texts they introduce into the system. Moreover, it
provides a flexible approach that enables the designers
to personalize the contents for players according
to their profiles, as well as a virtual assistant that
can assist the users in knowing how to use the
environment. Notice that the purpose of this work
is not to show that gamification can improve the
results of software engineering companies (that aspect
of gamification in SE has already been addressed in
previous research works focused on particular ways
to gamify particular software process areas), but to
present an integral solution for gamifying SE work
environments and therefore fill the motivation we have
presented above. The rest of the paper is structured as
follows. Next section presents related work. Section 3
describes the software architecture for gamification in
SE environments. Section 4 presents the gamification
engine we have implemented based on the architecture
described in Section 3. Section 5 gives details of a case
study of the application of the engine for the gamification
of a company work environment. Finally, Section 6
presents a discussion on our proposal, and in Section 7,
conclusion and future work are set out.

2 Related Work

The field of gamification is a vast research area. One of
the most significant lines of research in gamification
has been the evidence about its usefulness, which
was initially evaluated by Hamari et al.[9] by means
of a literature review. This study concluded that
“gamification does work, but some caveats exist”, as
most papers report positive results from gamification
(with some empirical evidence), but some underlying
confounding factors were also present. Gamification in
web applications was analyzed in the literature review
of Xu[10]. This concluded that gamification was based
on superficial game mechanics (point, level, leaderboard,
and badges) and that more advanced aspects should be
considered, such as social interaction and mobility, by

supporting the ubiquitousness of mobile devices, as well
as analytics, which must be enhanced.

Much research work has considered the application
of gamification in SE, the goal being to improve
product quality and project results by increasing people’s
motivation and engagement[8]. Many software process
areas have been considered in previous research work.

For example, Ref. [11] presented a systematic
mapping on gamification applied to requirements
engineering, where they identified research studies on
applying gamification to elicitation, negotiation, and
prioritization of software requirements. In Ref. [12],
Fernandes et al. proposed a gamified tool, iThink, for
requirements management. Reference [13] presented
a systematic literature review on the gamification
applied to software project management processes.
One of their conclusions is that most research works
on this topic applied a basic point system reward
system, mainly in areas related to integration, resources,
and scoping. A good number of gamified tools exist
for gamified software project management, such as
RedCritter (http://www.redcritter.com), Jira Hero
(Atlassian, https://marketplace.atlassian.com/plugins/
com.madgnome.jira.plugins.jirachievements), or Scrum
Knowsy (http://www.scrumknowsy.com/), all of these
with the underlying idea of rewarding users as the
project progresses. Several projects, such as Master
Branch (https://masterbranch.com/) and CoderWall
(https://coderwall.com/), also considered software
development in some way, although they are not
for a particular software development organization,
but rather for communities of developers. Testing
has also been considered with proposals, such as
HALO[14, 15]. Reference [16] published a systematic
mapping on gamification applied to software testing,
concluding “the increasing interest for gamification has
the potential to lead to positive outcomes”. Reference
[17] proposed a game called “Code Defenders”,
where some developers play the role of attackers and
introduce errors in the system under testing, while other
developers play the role of defenders and have to write
test cases that detect those mutant versions of the system.
Reference [18] presented an approach for applying
gamification to software process improvement, with a
focus on small and medium development companies.
Reference [19] studied how gamification rules, such
as establishing a time limit for development tasks and
developers’ personal preferences, can affect coding
results, such as the working time. Reference [20]



Oscar Pedreira et al.: An Architecture for Software Engineering Gamification 779

proposed a framework for the gamification of enterprise
software systems, that is, instead of focusing on the
engineering processes that create the product, they focus
on the gamifying the system to improve aspects such
as user training, acceptance, and usage. Reference
[21] addressed an important aspect of gamification, the
trade-off between gamification and the participants’
privacy.

A more general systematic mapping on gamification
in software engineering[8], covering all works addressing
the application of gamification to software engineering in
any of its areas, found that the adoption of gamification
in SE is going more slowly than in other domains,
such as marketing, education, health, or banking. This
systematic mapping identified two main gaps in the
research on gamification in software engineering. One
of them is that there is an evident lack of methodological
support for the application of gamification elements in
software engineering organizations, an issue which was
addressed in our previous work[8]. Another important
problem in the adoption of gamification in software
engineering organizations is the lack of generic
architectures and tools for this purpose. Most previous
research on gamification in SE has worked with no
software support at all, or with custom-developed
gamified tools. We believe that this is a very significant
impediment. The adoption of software development
environments and tools in a real SE company is no small
undertaking, and it is by no means cheap. It is not very
probable that one of those tools would be changed for
another one just because the latter is gamified, since it
is highly unlikely that the new tool would provide the
same functionality level and set of features as one of the
existing, widely-used tools.

The software architecture for gamification proposed
in this paper aims to overcome the second set of
weaknesses identified in the systematic mapping,
by supporting the gamification of an existing SE
environment, without replacing any of its current work
tools, and centralizing all the gamification logic and
additional functionalities, which are described in the
next section.

3 A Software Architecture for the
Gamification of SE Environments

In this section, we present our software architecture for
the gamification of SE environments. The proposal has
two parts. First, we present the software architecture

and its main components: the gamification engine and
the software mechanisms to integrate the gamification
engine with the organization’s Computer-Assisted
Software Engineering (CASE) tools. Second, we present
the gamification model that has guided the design
and implementation of the gamification engine. This
gamification model defines the gamification concepts,
elements, and techniques supported by the gamification
engine, such as (1) behaviors (that represent people’s
actions in the work environment), (2) achievements (that
represent rewards such as points, badges, or resources),
and (3) the rules that establish the relationship between
behaviors and their corresponding achievements.

3.1 Software architecture

The purpose of the architecture is to make the task
of gamifying the complete tool suite of a company
easier. In order to do this, the business logic related
to gamification is moved from the CASE tools to a
gamification engine that centralizes and integrates it
for all the tools. The basic idea of the architecture is
the following: the gamified tools (SE tools covering
any software lifecycle activity, such as development,
requirements management, project management, or
testing, for example) only have to communicate the
actions (behaviors) carried out by their users to a central
gamification engine. When those behaviors are received
in the gamification engine, they are evaluated according
to a set of gamification rules defined by the designer
of the gamified environment. If a behavior is evaluated
as successful according to those rules, the engine will
generate the corresponding achievements for the user
responsible for that behavior.

Figure 1 shows a high-level view of the architecture.
As we can see in the diagram, the gamification engine
is the central element of the architecture, since it
receives all the behaviors carried out by the software
engineers, and evaluates them. The engine provides an
integration REST API that allows any other tools to
communicate with it. This integration API includes a
large list of operations that allow those tools to access
all the information from the gamified environment,
including those operations for communicating the
player’s behaviors. Another important part of the
architecture is the player’s site, which allows players to
visualize all the information of the gamified environment,
including the user’s actions and achievements, and also
other gamification elements, such as rankings or progress
charts.



780 Tsinghua Science and Technology, December 2020, 25(6): 776–797

Fig. 1 High level view of the software architecture for
gamification.

The main advantage of this architecture is that
many tools can be included in the same gamified
environment. For example, we could gamify tools,
such as Jira (https://atlassian.com/software/jira), Eclipse
(https://eclipse.org), Redmine (http://www.redmine.
org/), or TestLink (http://testlink.org/), the rewards
obtained by the players as a consequence of their
actions in one of these tools would be added onto
the rewards obtained from their actions in any of the
other tools. If these tools were gamified separately, it
would be difficult to integrate all the rewards obtained
by each player. In addition, the logic of gamification
would have to be repeated in all of them. However,
our gamification engine provides the designer of the
gamified environment with generic types of gamification
rules that are tool-independent, and which can therefore
fit all of them. This design choice simplifies greatly the
introduction of gamification in the tools used by the
software engineers.

3.2 Gamification model

The software architecture and the gamification engine
are based on a model composed of three main
elements: behaviors, achievements, and game rules.
The gamification engine will receive behaviors carried
out by the users in their respective tools, and will
evaluate these according to the game rules defined by a
designer (administrator), to assign the corresponding
achievements to those behaviors if the game rules
consider them successful.

This model is a central component of our architecture,
since it allows the designers of the gamified

environments to define behaviors, achievements, and
evaluation rules using concepts that are independent of
any particular SE work environment we would consider.
Although the details of the gamification engine we
have implemented are presented in Section 4, some
screenshots are included in this section, as they may
clarify how the designer can use the concepts of the
gamification model in a real case.

In this section we will use a simple guiding example.
For the sake of simplicity, let us assume that a generic
software development organization wants to gamify
its SE environment, focusing on the areas of project
management, requirements, and testing. Employee
actions receiving awards would include those, such as
finishing development tasks, registering requirements
in the system, commenting on existing requirements,
creating test cases, writing unit tests, or closing the
project.

The rest of this section presents the details of the
gamification model.

3.2.1 Behaviours
Different types of behavior can occur in a software
development environment. Instead of trying to identify
and model all those particular and specific behaviors,
however, we have extracted the features they have in
common, and have aggregated them in three types of
behavior (summarized in the diagram shown in Fig. 2):

� Simple behaviors: This type of behavior is designed
for those behaviors where we are only interested in
knowing that they have actually happened, as well as
who has carried out the behavior, and when there is no
need for any other data about the action.

For example, we could define simple behaviors
for requirement management actions as being those
of registering a new requirement into the system,
commenting on an existing requirement to clarify
its description, changing its state, or labeling the
requirement as completed. These are simple behaviors if
we assume that we would not need other data from those
actions, apart from the fact that they have happened and
who carried them out.

� Task behaviors: They are those behaviors in which
we are also interested in parameters related to the
development and completion of typical tasks in an SE
environment, such as the effort, cost, quality, or the
completion date. More specifically, the task behaviors
currently include the following attributes:

– Planned completion date: completion date for the



Oscar Pedreira et al.: An Architecture for Software Engineering Gamification 781

Fig. 2 Behavior model.

task in the project plan.
– Real completion date: date on which the task was

actually completed.
– Estimated effort: estimated effort, in hours, to

complete the task.
– Real effort: real number of hours needed to

complete the task.
– Estimated work units: work units refer to tangible

results of the task, such as lines of code, classes, or
requirements, for example. This attribute corresponds to
the estimated number of work units for the task, if this
has been estimated.

– Real work units: real number of work units
completed during the task.

– Unit type: the name of the work units that are being
considered.

– Grade: this attribute, which takes values between 0
and 100, allows us to take into account the quality of the
results obtained during the task.

As we will see later, these attributes of a task behavior
can be used in the definition of the gamification rules.
For example, we could reward the finishing of a task
only if it has been completed by the planned completion
date, with the estimated effort, and with a given quality
level. None of these attributes is mandatory, so we can

use just those ones that are of interest in each particular
case.

Task behaviors are designed mainly for those tasks
that would appear in a project plan, or in a product
backlog, for example. The most obvious example for
task behaviors is development tasks. That is, when a
developer marks a task as completed, the system would
notify that action to the gamification engine, indicating
the estimated and real dates and effort. However, task
behaviors may also apply to other actions.

� Interaction behaviors: They represent actions
in which two people have collaborated in some way.
This type of behaviors is concerned with rewarding
the collaboration in the workplace. For example, we
could use it to record that two people have interacted
because one of them has created a task and has assigned
it to the other, or because one of them has registered
a requirement in the system, and the other person has
commented on that requirement.

As we will see in the next section, these classes of
behaviors will also allow us to derive an interaction
graph from which important information can be
extracted, such as the interaction network of each user,
relevant users that act as hubs or links, and the existence
of communities that can be automatically identified from



782 Tsinghua Science and Technology, December 2020, 25(6): 776–797

this information.
Figure 2 shows a class diagram summarizing the

behavior types. As we can see in the diagram, the
model also considers maintaining who has carried
out the task, the tool from which the behavior was
received, the project in which it has been carried out,
and the date and hour on which the action has taken
place. These attributes allow the gamification engine
to keep a persistent log of all the actions carried out
by team members in each project, which is a valuable
information.

Notice also that all behavior types include two more
attributes: artifactId and artifactName. Most tasks in an
SE environment give as a result a project artifact, such
as a document, or a task in the project plan, for example.
These attributes allow us to include in each behavior the
identifier and name of the resulting artifact. For example,
in the behavior “Task completed”, we could indicate the
identifier and name of the task. As we will see in the
presentation of the gamification rules, the attributes can
also be used in the definition of the rules, as well as
in the messages that will be shown to the user when
receiving a reward. These three types of behavior cover
most actions that could take place in an SE development
environment. Although the model currently considers
these types of behaviors, it could be easily extended to
support new ones, if we detected a kind of action that
does not fit in to these three types.

When configuring the gamified environment, the
administrator will start by defining the behaviors that
are subject to being evaluated and rewarded. For each
of them, the administrator will have to indicate for
each behavior only its identifier (a string), its type
(simple, task, or interaction behavior), its name, its
description, and its category. The identifier is a key
point, since it will be used by the gamified tools when

communicating behaviors to indicate what action they
are communicating.

Example: Figure 3 shows a screenshot of the behavior
definition screen in the gamification engine we have
implemented. In this example, we have defined just
four behaviors: create a task (GSE CREATE TASK),
complete a task (GSE TASK COMPLETED), detect an
error (GSE ERROR DETECTED), and comment on a
project requirement (GSE COMMENT REQ).

3.2.2 Achievements
When the rules of the game determine that a user has
successfully completed a behavior, the system will
reward that user with an achievement. The model
has been designed to provide a flexible range of
achievements. Three classes of achievements are
currently supported:

� Points (also called experience points): They are
the basic reward mechanism, with a role analogous to
what this type of achievement has in classic games.
The number of points is a measure of the amount
of successful behaviors completed by each user. In
addition, the experience points also determine the level
of the player.

The environment designer could even define more
than one type of points (in order to distinguish between
clearly different groups of behaviors). However, one of
them must be used as the basis for computing the level
of each player.

� Badges: They are a classical achievement type
in gamification. Badges are usually granted when a
significant milestone in the gamified environment is
reached.

The designer of the gamified environment can define
as many badges as needed. For example, we could grant
a badge on a developer’s first 100K line of code, or

Fig. 3 Screenshot of the behavior definition screen.



Oscar Pedreira et al.: An Architecture for Software Engineering Gamification 783

establish badges for the best analyst, best developer, and
best tester of the month. Other badges could be created,
depending on the design of the gamified environment.

� Resources: They meant to represent real-world
rewards for the players. For example, resources could be
used to reward the players with physical gifts, or time
packages they can devote to personal projects or training,
for example.

This set of achievements will allow us to apply the
most typical game mechanics used in gamification.
Experience points, badges, and resources are all direct
rewards, but we can also use them to implement levels,
leaderboards, social status, and even quests.

The diagram shown in Fig. 4 summarizes the
achievement classes currently considered in our
gamification model. The model allows the environment
designer to define as many achievement types as needed,
each of them belonging to one of the achievement
classes we have just established. That is, although the
gamification model currently provides the three types of
achievement we have presented, it allows the designer
of the gamified environment to define new types of
achievements, like currencies.

Levels: although levels are not a particular class
of achievement, they are directly derived from the
experience points of the players through an exponential
function that can be customized by the environment
administrator,

f .l/ D a � bl�c ;

where l is the level, and f .l/ returns the number of
experience points necessary to achieve level l . For
example, with values a D 1, b D 1:4, and c D 2, the
number of points necessary to achieve the first nine levels
are shown in Table 1.

In this way, the difficulty of getting to the next level
is completely customizable. It can be made linear, or

Table 1 Exponential function for levels.

Level Number of
points Level Number of

points Level Number of
points

1 1 4 14 7 111
2 3 5 28 8 217
3 7 6 56 9 426

exponential, as in our example, making it increasingly
difficult to get to the next level.

3.2.3 Gamification rules
The link between the user’s behaviors and the
achievements is established by the gamification rules.
The model provides a gamification rule system that
allows the environment designer to define a complete
set of rules in a flexible way. This is the most important
component of the model, since it removes the logic
of gamification from the gamified tools, and it allows
centralizing it in a gamification engine.

A game rule maps behaviors to achievements. Each
rule has a source type of behavior and many target types
of achievement. Every time a behavior from the source
type is received at the engine, all game rules with that
source type of behavior are activated and evaluated by
the gamification engine. Each rule is associated to its
types of achievement through an achievement modifier,
which represents the condition that uses the behavior’s
attributes to define the criteria determining whether the
achievement is granted or not.

Example: In the example we are using for presentation
of the gamification model, the organization could be
interested in defining a rule for the behavior “Task
completed”, which is a task behavior. On receiving
such a behavior, we would like to reward the user in
different ways depending on whether or not the task has
been completed within the parameters of estimated effort.
The definition of such a rule is shown in Table 2.

As we can see in the example shown in Table 2,
the rule “Task completion” is activated when a “Task

Fig. 4 Achievement model.

Table 2 Example of a gamification rule. The rule name is “Task completion” and the source type of behaviour is “Task
completed”.

Achievement Condition Achievement result Modifier
1 realEffort<estimatedEffort Experience points estimatedEffort
2 realEffort > estimatedEffort Experience points estimatedEffort �(realEffort-estimatedEffort)
3 realEffort<(estimatedEffort/2) Star performer badge –



784 Tsinghua Science and Technology, December 2020, 25(6): 776–797

completed” behavior is received, and three possible
achievements are evaluated. In the first one, if the user
has completed the task with an effort less than the
estimated one, he or she is rewarded with as many
experience points as the effort estimation of the task.
In the second achievement, if the real effort is greater
than or equal to that estimated, the user is rewarded with
a number of points equal to what was estimated, minus a
penalization for the number of hours he/she has exceeded
the estimation. Finally, in the third achievement, if
the user has completed the task in less than half the
estimated effort, he is rewarded with an extra badge of
“Star performer”. It is important to notice that all the
conditions and modifiers used in this example can be
specified in the gamification engine using the behaviors
attributes.

The gamification engine could now receive “Task
completed” behaviors from any tool, such as Jira, or
Redmine, for example, which would communicate those
behaviors with the real attributes of how a user has

completed a task in that tool. Let us look now at what
would happen in the following three cases:

� Case 1: John completes a task with 20 estimated
hours in just 18. In this case, he is rewarded with the
Achievement 1; that is, 20 experience points.

� Case 2: John completes that task in 22 hours. In
this case he receives the Achievement 2, that is, 18
experience points (20 – (22 – 20)).

� Case 3: John completes the same task in just 8
hours. In this case, John will receive two Achievements,
the first and the third. For the first one he receives 20
experience points, and for the third one he receives a
“Star performer” badge, since he has completed the task
in less than half the estimated time.

Figure 5 shows a screenshot of the rule definition
screen in our gamification engine implementation, with
the same example we have just presented. As we can
see in the screenshot, this rule, “Task completion”,
will be activated when a “Task completed” behavior
is received, with three possible achievements for the

Fig. 5 Screenshot of the rule definition screen.



Oscar Pedreira et al.: An Architecture for Software Engineering Gamification 785

user who has completed the task. In Fig. 5, we can also
see that, in addition to the definition of the conditions
for each achievement, the administrator of the gamified
environment can introduce messages that will be shown
to the user who completed the task, when obtaining
each of the achievements. Notice that the messages like
“Congrats! You’ve completed a task! (Task #id, #name)”
can also use the attributes of the behavior that has been
evaluated. In this example, #id and #name correspond
to the attributes artifactId and artifactName of the task
behavior. When evaluating a particular behavior, the
message template would be transformed into a real
message, such as “Congrats! You’ve completed a
task! (Task 45, User authentication)”. These messages
can be shown on the player’s site or in the tools that
have communicated the behavior to the gamification
engine. The example shown in Fig. 5 demonstrates that
the designer also has the option of awarding a given
achievement to a type of behavior only the first time that
a behavior of that type is evaluated. This would allow us
to define a rule that, for example, awards a “First task
completed!” badge to a player only the first time he/she
carries out a task in the system. It is worth highlighting
that the conditions of the rules are established through
the graphical interface of the engine, that is, without
modifying its source code.

Although this example is simple, it shows the
flexibility of the rule system of the gamification model.
As we have just seen, the designer of the gamified
environment can establish any condition on the received
behaviors, and can also use its attributes when awarding
achievements. This provides us with a high degree of
flexibility in rule definition. We should also point out that
the tool in which the user carries out the behavior knows
nothing about how the action is gamified; it simply has
to communicate it to the engine. This allows us to
integrate and therefore to gamify as many heterogeneous
SE tools as required. The example we have just shown
considers the simplest type of rule supported by the
engine. Actually, we distinguish between three types of
rules:

� Simple rules: They are gamification rules that
evaluate just the condition of each achievement on the
received behaviors, determining if an achievement must
be awarded to the player.

� Repetitive rules: These rules award the
achievements only when the conditions are evaluated
successfully a given number of times; in other words, a
number of behaviors that fulfill the required condition

were received. Besides, it can be specified that the
behaviors must be received within a closed period of
time, defined by start and end dates.

� Interval repetitive rules: These are also repetitive
rules, but instead of defining start and end date, a generic
interval of time (i.e., week, month) is selected, so a
number of behaviors that fulfill the condition must be
received within this period.

These types of rules allow us to reward behaviors not
just when they happen, but when they happen repeatedly
in time. For example, we could reward a developer for
completing one hundred tasks, or for completing those
one hundred tasks in a month.

Figure 6 shows a class diagram summarizing the
design of the gamification rules in the model. Since
a complete gamified environment can have a large set of
rules; these can be grouped into games. In this context,
therefore, a game is defined as a set of related rules. The
designer can even configure that only some particular
games are played in a project.

Notice that although the examples we have used in the
description of the rules involved mainly task completion
time, the types of rules we have considered allow us to
reward behaviors more than just finishing on time or in
cost. In addition, that the TaskBehavior type of behavior
includes a grade attribute, intended to reflect the quality
of the work.

4 Gamification Engine for SE Environments

In addition to proposing the generic software architecture
and gamification model presented in the previous section,
we have also implemented a gamification engine based
on them. This implementation has allowed us to carry
out a case study on the gamification of the work
environment of a real software organization using
our proposal. In addition, we have incorporated to
our gamification engine functionalities that can be of
interest for a real organization, and that go beyond the
gamification architecture and model we have presented.
These functionalities include a social network for the
players, messaging, system notifications, challenges
between players, and a virtual assistant based on dialog-
generation technologies. It also contributes tools for the
analysis of the activities carried out by the users; in
particular, there is a tool for analyzing the interaction
of players, and community detection based on the
interactions of the users in the workplace, along with
a sentiment analysis module. This module enables
detection of positive and negative polarities in the texts



786 Tsinghua Science and Technology, December 2020, 25(6): 776–797

Fig. 6 Rules of the gamified environment.

introduced by the players.
In this section we present the details of the

implementation of the gamification engine, how it
supports the software architecture and gamification
model presented in the previous section, and the
additional advanced functionalities we have added.

4.1 System architecture and design

The gamification engine has been designed following
a three-layer architecture (see Fig. 7). The first layer is
devoted to data persistence, and has been implemented as
a relational database in PostgreSQL. The engine model
contains the data access layer and the business logic we
have described, comprising the management of users,
behaviors, achievements, and gamification rules. A third
layer provides two different interfaces.

� The administrator of the gamified environment
accesses the configuration of the engine through a
web application that provides an interface from which
the administrator can manage everything: users, tool
credentials, behaviors, achievements, game rules, etc.

� REST API provides a complete interface for all
the tools of the gamified environment. This interface
provides those tools with a large set of operations
that allows them to access all the information in the
gamified environment, and not just the communication
of behaviors. For example, the player’s site does not have
its own database, since it accesses all the information
stored in the engine through the API.

The engine has been developed in the Java EE
platform, using technologies such as Hibernate, Spring,
Spring MVC, and AngularJS.

Fig. 7 Engine architecture and design.



Oscar Pedreira et al.: An Architecture for Software Engineering Gamification 787

4.2 Integration

The REST API provides an interface for the rest of the
tools in the gamified environment. By implementing this
interface as a REST web service, we ensure that the
platform or technology will not be an impediment for
integrating any tool into the engine. In addition, since
many tools that could be integrated into the engine have
been developed in Java, we have created a client library
for the REST API; this simplifies its use.

The gamified tools cannot communicate freely with
the engine. If a tool has to communicate behaviors, it
must be registered in the engine with a tool ID and a
password that will be used in every transaction.

So far, we have focused on the data sent by the
working tools to the gamification engine for the purpose
of registering the player’s actions and evaluating them
according to the gamification rules. However, data
flow in the opposite direction is also possible, since
the REST API allows all gamified tools to access all
the data related to players, their actions, rewards and,
in general, all gamification information (even the rules
of the game). In this way, the gamified tools could
also show the results of the gamification live to the
players. For example, a programmer could see the result
of a just completed development task in the Integrated
Development Enviroment (IDE) he/she is using.

4.3 Other functionalities

The engine completes the basic gamification model
we have described with other functionalities present in
classic games that are also used in gamified applications.

� Social networks: Most collaborative games allow
players to communicate with their friends, or to even
have an explicit social network. The engine supports this
concept by providing a social network among the players,
who can explicitly create friendship relationships.

This allows us to, for example, show different
rankings to the users, as rankings comparing their results
with that of the rest of the players, or as a ranking
comparing the results obtained by one user with those of
their friends. Although the gamification engine currently
provides its own social network, the data about the
player’s relationships could be obtained from an external
social network if the company is already using one.

� Messaging: This is a feature present in most
collaborative games, allowing the players to
communicate with their peers instantly.

� Profile information and rankings: One of the
important game elements used in gamification is

continuous feedback on the actions of a user; that
is, the users can immediately see the results of their
actions in the games. The engine covers this need in
two ways. First, the achievements assigned to each
received behavior are returned to the application that
communicated the behavior, so they can be immediately
shown to the user. Secondly, the engine provides all
the tools with the whole set of information making up
the user profile (personal data, level, and achievements
obtained to date), also giving rankings that allow users to
compare their performance in the gamified environment
with the performance of the rest of the users (all users,
or only their friends).

� Quests: Quests allow users to challenge other users
to achieve a certain goal in a given period. That goal can
be expressed as a certain number of points or badges of
a given type.

4.4 Support of game mechanics and elements

A popular question in gamification is what game
mechanics we can apply in gamified environments in
order to foster motivation and engagement in the users.
In our previous systematic mapping about gamification
in software engineering[8], the game mechanics and
elements which have been considered previously were
identified. Table 3 shows that list of game mechanics,
and how they are supported in our gamification engine.
As we can see in Table 3, only one, namely “betting”, is
not currently supported.

4.5 Player’s site

A fundamental part of the gamification engine is
the player’s site, which allows them to see all their

Table 3 Game mechanics support in the engine.
Game mechanic Support in the gamification engine

Experience point
Points Configurable points (currencies,

karma, etc.)
Badges Badges

Levels
Computed from experience points, and
configurable

Continuous
feedback

Player’s site provides real-time data on
achievements

Game dialogs Virtual assistant
Quests Challenges created by users

Rankings Presented on the player’s site

Social network
Supported in the engine, and shown on
the player’s site

Voting Can be supported through task behaviors
Betting Not supported



788 Tsinghua Science and Technology, December 2020, 25(6): 776–797

activities in the gamified environment. Figure 8 displays
a screenshot of the home page of the player’s site in a
real setting of the engine (real logos have been removed
from the head of the page). This application allows the
players to see all the information about their activity
in the gamified environment. The home page shows
them their profile information, the experience points
they have accumulated, the level, the percentage of
points obtained until the next level is reached, a chart
for experience points, a list of the badges obtained, and
two rankings, one of them considering all the players,
and the other one taking into account only the players
immediately above and below the player. The site also
allows the players to access other information, such
as a map with their locations, the projects they are
involved in, social networks (“Friends” option in the
menu), messages, notifications, challenges, and access
to the virtual assistant.

The players can thus access all the information of the
gamified environment in a single place. Of course, this
does not prevent us from showing information about
rewards in the gamified tools.

4.6 Advanced functionalities

In this section, we describe other advanced
functionalities of the engine, such as the support
for customization and a virtual assistant that can provide
help to the users using natural language; we also give a
description of functionalities for sentiment analysis and

interaction network analysis.

4.6.1 Customization
This module supports the inclusion of personalization
rules in the system. The administrator can define
variables with an associated condition. That condition is
an arithmetic-logic predicate that can use the attributes
of the user’s profile. In this way, when evaluated for
a particular user, each variable will return a true/false
value. This would allow us to show some parts of the
environment to one group of users, and not to others.

The expression elements we can currently include in
the definition of customization rules are listed in Table 4.

Example: Using the customization variables presented,
we could define the following customization rules
(shown in Table 5): the first rule would tell us to search
for, and suggest friends for, those people who have not

Table 4 List of variables available for customization rules.
Expression Meaning
Date(date) A given date

Date Today’s date
firstBehaviorDate Date of the first behavior of the player

Points Accumulated points of the player
Level Level of the player

Followers
In-degree of the player in the interaction
graph

Following
Out-degree of the player in the interaction
graph

Polarity
Average sentiment polarity of texts of the last
five days (takes values between �1 and 1).

Fig. 8 Screenshot of the player’s site home page.



Oscar Pedreira et al.: An Architecture for Software Engineering Gamification 789

Table 5 Example of customization rules.
Customization variable Condition
SUGGEST FRIENDS Level <5 & Following <20

SYSTEM TOUR Level <2

reached Level 5, and who have fewer than 20 friends. In
the second case, the rule would tell us to show a system
tour for rookies, that is, for users that have not reached
even Level 2.

4.6.2 Virtual assistant
We have included a virtual assistant in the engine, based
on natural language generation technologies. Its purpose
is to provide help about the work environment, not with
static pages, but with generated dialogues, which is
closer to what happens in real videogames.

This assistant has been implemented as a chatbot
using Alice (i.e., Artificial Linguistic Internet Computer
Entity)[22], a natural language chatterbot that generates
dialogues by applying heuristic pattern-matching rules
to the texts introduced by people. The dialogues the
virtual assistant can process are expressed in AIML (i.e.,
Artificial Intelligence Mark-up Language)[23] files, based
on categories, patterns, and templates. We do not provide
more details on how to write the AIML files, since this
would be outside the scope of this paper.

Leaving the internal details of dialogue writing aside,
this functionality allows us to provide the players with
an interface with the system in natural language. This
virtual assistant can give, for example, information about
the different tools and processes the organization applies
in the SE environment, as well as about how to progress
in the gamified environment.

4.6.3 Interaction network analysis
When used in an organization with many people working
together with different gamified tools, the gamification
engine will receive and generate a lot of information
about the behavior of the users, the results they achieve
with their work, and how they interact and collaborate.
This is especially important in software projects, which
has motivated us to incorporate additional components
into the engine, aiming to provide the administrator with
tools to analyze information that would be difficult to
obtain without the use of the engine.

An interaction graph can be derived from the set of
interaction behaviors received by the engine. The set of
users of the gamified environment is the set of nodes of
the graph, and the set of interaction behaviors is the set
of edges. Notice that the edges are labeled, since the

administrator can define different types of interaction
behavior. For example, we could create an interaction
behavior Collaborate, with the semantics registering that
two users have collaborated in the completion of a task;
that is, they have worked together to carry it out. In
addition, we could create a second type of interaction
behavior Helps to represent that a user has helped
another user in his/her work (by providing information
or knowledge, for example).

This interaction graph is a valuable information asset
to see the behavior of all the members of an organization
and how they interact. The engine thus does not only
provide a way of gamifying a workplace, but also
a system with which to gather and analyze relevant
information on the organization’s dynamics. This graph
may allow us to identify flows of information in the
company, relevant users that act as hubs (that is, they
are central to the connection of many people), and
even to detect communities inferred from interaction
information.

Figure 9 shows a screenshot of the community
detection module. In this example we can see that two
communities have been identified (the nodes of each
community are shown in purple and green, respectively).
This module provides different algorithms for the
detection of communities, namely Edmonds-Karp[24],
Girvan-Newman[25], Tarjan[26], and Louvain[27]. The
example seen in Fig. 9 has been created from a sample
of the interaction graph obtained in the application case
study we present in the next section.

4.6.4 Sentiment analysis
The social network included in the engine will contain a
lot of information as messages exchanged between the
users. This happens with messaging or chatting, or with
the gamification engine, as is the case of a chat with the
virtual assistant. Between users, this information will
usually reflect more personal communications, with a
different register from those texts written by the users in
work tools, such as Redmine, for example. These social
network texts can therefore show a more biased content,
and so be subjected to sentiment analysis.

The goal of a sentiment analysis classifier is to
take a given text and classify the polarity of that text
automatically into positive, negative, or neutral[28]. The
engine includes a sentiment analysis module that allows
the texts written by the users to be analyzed; it can then
tell us their polarity. This module has been implemented
using a machine learning approach[28] with Support



790 Tsinghua Science and Technology, December 2020, 25(6): 776–797

Fig. 9 Screenshot of the visualization of community detection.

Vector Machines (SVM), which is a supervised machine
learning method. The training set (a collection of texts
that have already been classified by a human) for this
classifier includes an ad-hoc dataset created for the
project from the database of work tools of a real company.
It could, nonetheless, be easily enriched with data from
other companies. The classifier currently reports text
polarity with a precision of around 80%, which is
consistent with the current results of the state of the
art in this field.

This component allows us to analyze every text
introduced by the user, and to detect situations in which
a user clearly shows a negative trend in his/her latest
messages. These data complement the user profiles with
information that goes beyond their personal data, and
beyond the log of their actions at work. The output
of this component is stored in the database of the
gamification engine as a list of classified texts for each
author. In addition, as we said earlier, the output of
the sentiment analysis component can be used in the
personalization component as well. This would allow
us to detect users with a negative tendency, show them
personalized contents, or suggest that they talk to their
friends (who are also kept in the gamification engine).
The operations for sentiment analysis are also accessible
from the gamified tools through the integration API.

5 Case Study: Application of the
Gamification Engine in a Real Company

In this section, we present a case study on the application

of our proposal in a real company. We have used the case-
study method, following the template for case studies
presented in Ref. [29], and the guidelines proposed in
Ref. [30]. We present the background, design, subjects
and analysis units, field procedure and data collection,
intervention, and an analysis of the results obtained in
the case study.

5.1 Description of the organization and its tool
suite

The case study took place in a small software
development company. We will refer to this company as
SC throughout the paper. SC focuses mainly on software
development, and it currently offers products sold as
off-the-shelf packages, as well as custom development
services for its customers. The firm currently employees
25 people, 18 of them devoted to software development.
Its areas of expertise include software for business
management, education, digital contents, electronic
commerce, and geographic information systems.

SC has certified quality management systems for
software development, under ISO 15504/ISO 12207
(SPICE)[31, 32], and information security management,
under ISO 27001[33]. It also has experience on software
product certification under ISO 25 000[34].

The software engineering environment of SC
comprises many tools. SC has, importantly, developed a
custom tool for project and requirements management,
which we will call SC-Manage. This tool allows
project managers to register the project plans and
requirement books, to assign tasks to people, and



Oscar Pedreira et al.: An Architecture for Software Engineering Gamification 791

to perform project monitoring. The tool is fed with
the effort reports registered by the team members. It
therefore has complete information about the project
management and the requirements of the project. SC
also uses complementary tools, such as Redmine for
issue management, TestLink for test plans, JUnit for unit
testing, and SVN/GIT for version control.

5.2 Design

According to the approach presented by Ref. [35], the
design type of the case study is single case — holistic,
since we have focused on the single case of SC. The
object of the case study is the gamification engine
we have presented in Section 4. The main research
question of the case study was: is the gamification engine
a suitable tool for creating integrated and multi-tool
gamified software engineering environments? Table 6
presents the Main Research Questions (MRQ) and
Secondary Research Questions (SRQ) of the case study.

Our main research question directly addresses the
motivation of this work, presented in the introduction
of the paper. That is, with this case study we want to
validate if our gamification engine would allow us to
implement a gamified work environment in real software
companies. Therefore, we want to validate that (1)
it must be able to integrate and accommodate a wide
range of CASE tools, either off-the-shelf or custom
developed, without needing to replace them (SRQ 1); (2)
the set of behaviors, achievements, and rules provided
by the gamification engine must meet the needs of the
designer of the gamified environment; and (3) the effort
required to integrate the organization’s CASE tools in
our framework must be reasonable, that is, it should be
by far smaller than that the effort required to replace the
organization’s tools or to develop a custom gamification

Table 6 Research questions of the case study.
Research
question Description

MRQ
Is the gamification engine a suitable tool for
creating integrated and multi-tool gamified software
engineering environments?

SRQ 1

Is it feasible to integrate different SE tools, including
COTS from different providers, in a single and
centralized gamification environment using the
gamification engine?

SRQ 2
Does the gamification model of the engine (behaviors,
achievements, and rules) support a real gamified
environment?

SRQ 3
Does the engine allow us to create a gamified
environment with a reasonable development effort?

software.
As it is described in the rest of this section: (1) the

case study was conducted in a real company that works
with both well-known off-the-shelf (such as TestLink,
Redmine, and JUnit) and custom tools (such as the
one used in project management); (2) the implemented
gamified environment integrates all these tools and
makes use of a wide range of game mechanics similar
to those already used in previous works on gamification
in SE; and (3) the effort required to implement this
environment can be considered really small if compared
to the effort required to replace any of the company’s
tools or to develop a gamification software from scratch.

5.3 Subjects and analysis units

The company SC has already been presented in Section
5.1. Along with other companies, SC participated in a
broader research project focused on the application of
gamification in software engineering environments. The
analysis unit of the case study is the gamification engine,
including the integration API and the player’s site.

5.4 Field procedure and data collection

The execution of the case study comprised the activities
of scope and solution definition, analysis and design
of the gamified environment, and development of the
gamified platform. The authors of this work took part
in the execution of the case study, providing support
in the design of the gamified environment, the use
of the gamification engine, and the integration of the
SE tools. Data related to the design and development
of the gamified environment were kept in the form
of documents. Data were also obtained from direct
interviews with the team members. Finally, data about
development efforts also came from the records of the
project management tools of SC.

5.5 Intervention

This subsection summarizes the main aspects of the
execution of each phase of the business case.

5.5.1 Scope and solution definition
As we explained in the background to the case study,
the tool suite of SC is composed of many tools, as
shown in Table 7. The most important one is SC-Manage,
which supports project management and requirements
management, and which is a custom development of SC.
However, SC also uses Redmine for issue management,
TestLink for test plans, and JUnit for unit testing.

In this project, the goal of SC was not to gamify just



792 Tsinghua Science and Technology, December 2020, 25(6): 776–797

Table 7 List of behaviors communicated from each tool.
Tool Behavior

Create task
Assign a task to people
Report task effort
Complete a task
Open requirements book
Create requirement section
Register requirement
Update requirement state
Add attachment to requirement
Add attachment to requirement

SC-Manage

Close requirements book
Serious bug in development
Serious bug in production
Minor bug in development
Minor bug in production

Redmine

Close issue
Create test plan

TestLink
Create a test case

JUnit Run unit tests

one single tool, but to include all of them in the same
gamified environment. This meant that all the tools we
have mentioned were taken into account within the scope
of the case study. Table 7 shows the list of behaviors
considered in the design of the gamified environment,
along with the particular tool where the employees carry
out those behaviors.

All of the behaviors included in the list were simple
behaviors, except for “Report task effort”, “Complete
a task”, and “Run unit tests”, which were considered
task behaviors. In the first two behaviors, the use of
the attributes is directly related to the task. In the effort
report, only the “Real effort” attribute is used, with the
value of the reported work hours. For “Complete a task”,
all the attributes of the behavior have been used, as in
the examples we have presented in the description of
the engine. In the case of “Run unit tests”, the attribute
“Grade” was used to indicate the percentage of unit tests
that were run without errors.

The rule shown in Table 2 as an example was actually
taken from the case study, that is, it is a real gamification
rule used by SWComp. We do not show the details of all
the rules since they do not add much to the description
of the case study.

5.5.2 Analysis and design of the gamified
environment

One of the challenging aspects of the case study was
the integration of the different tools of the company

with the gamification engine, since it includes custom
developments, along with COTS tools, such as TestLink,
Redmine, and JUnit. Of these last three tools, JUnit
presents an even more special case, since TestLink and
Redmine are tools that run continuously, while JUnit is
run on demand.

Figure 10 shows a diagram with the architecture of the
gamified environment. There are two central elements in
it: SC-Manage and the gamification engine. Since SC-
Manage is a custom development, it was easy to modify
this software to communicate directly with the engine.
An integration component was developed, and used to
carry out the communication of those behaviors related
to project management and requirements management.

As regards TestLink and Redmine, there were two
design choices. Because they are both open source tools,
they could be modified to communicate directly with
the engine. However, they also provide APIs that allow
the information they manage to be reached. In the case
study the second choice was preferred. As we can see
in the diagram, SC-Manage integrates the information
managed by TestLink and Redmine, and communicates
it to the gamification engine when it detects that some
of the behaviors considered have happened.

The case of JUnit was trickier since, as we have
mentioned, this tool is run on demand, and does not
store the results of its executions in a database. In order
to integrate this tool with the engine, a wrapper was
developed on JUnit. This wrapper runs the unit tests,
gets the results, and communicates them to the engine.

5.6 Analysis of results from the case study

In this section, we analyze the results and conclusions

Fig. 10 Design of the gamified environment.



Oscar Pedreira et al.: An Architecture for Software Engineering Gamification 793

we can extract from the case study, following the
secondary research questions of the case study.

5.6.1 Tool integration
Although the case study focused on the case of one
single company, the tool suite we considered presented
a representative example of what we can find in most
software development organizations. This suite mixes
custom developments with COTS tools, and it presented
a case as particular as the gamification of JUnit.

The conclusion we extract from the execution of the
case study is that the REST API provided by the engine
is feasible for integrating the variety of tools that can
be used in a real company. As regards the engine, its
REST API does not force them to use any particular
technology. With respect to the SE tools, most of them
also provide some API that allows us to access their
information. Even if they did not provide such an API,
we could develop a mediator that would obtain their
information by directly accessing their databases.

So far, we have focused on the integration of gamified
tools with the gamification engine for the purpose of
data gathering in the engine, mainly because SWComp
made the decision of showing all gamification data
to employee in a central player’s site. However,
gamification data could also flow in the opposite
direction, that is, the tools could get data from the engine
(such as results, rewards, etc.) to show them directly
to the players. For example, this would have been
interesting in the project management tool, or in the
development IDE.

5.6.2 Support of gamification
Regarding the second research question, from this case
study we conclude that the gamification abstraction on
which the engine is based would support the gamification
mechanisms of most companies. Actually, in the case of
SC, the behaviors and rules defined did not even require
all the features provided by the engine.

5.6.3 Integration effort
The integration of the SE tools into the gamified
environment proceeded following the design and
development of the engine we have just presented. The
integration took 141.5 work hours. Figure 11 shows the
distribution of this effort in the three areas considered
in the case study. Project management was the first
one to be developed, and therefore needed a greater
effort because it includes the integration component of
SC-Manage. Once that component was developed, the
effort for integrating the other areas was significantly

Fig. 11 Distribution of development efforts.

smaller. The effort required by the testing area (which
includes JUnit, Redmine, and TestLink) is greater than
that required by the requirements management area,
because of the integration of SC-Manage with the testing
tools.

From these results, and although we cannot estimate
the effort of gamifying those tools separately, we
can conclude that the effort required to integrate the
ecosystem of SE tools into the gamified environment was
low. We could also point out that, once these tools have
been integrated with the gamification engine, it would
be easy to add new tools to the gamified environment,
since the integration component of SC-Manage is already
developed and complete.

5.7 Validity threats and limitations of the case
study

In order to address potential threats to the validity of the
case study, we considered the following:

� Construct validity: Before starting the execution
of the business case, training sessions were held
with employees of SC in charge of the design and
development of the gamified environment, to avoid
misunderstandings about the goals or scope of the
project, or about the functioning of the gamification
engine.

� Internal validity: To avoid other factors affecting
the results of the case study, the training sessions
included general knowledge about gamification; the
authors of this work participated in the execution of the
case study, providing support both in gamification design
and in the use and configuration of the gamification
engine.

� External validity: Although the results might be
different in other companies, we have chosen an
organization with a typical and varied tool suite that
could prove how the gamification engine can support



794 Tsinghua Science and Technology, December 2020, 25(6): 776–797

most tools present in software development companies.
� Reliability: The use of the gamification engine

depends on its technical design and features, so its
application in other settings should not be affected by
the particular researcher applying it.

6 Discussion

The software architecture for gamification we present
in this paper provides a valuable tool for incorporating
gamification in SE workplaces composed of many tools
that support different software process areas. As we
explained in the previous section, the goal of the case
study was to validate if our proposal is suitable for
that purpose, that is, if it is able to support a wide
range of tools, if the game elements it provides are able
to support the gamification mechanics usually applied
in software engineering, and if the gamification of a
software organization’s workplace can be done at a
reasonable cost.

As we have seen in the presentation of the case study,
the company in which we conducted it makes use of well-
known off-the-shelf tools, such as Redmine, TestLink,
and JUnit, and also custom developed tools. The
integration of these tools into the gamification engine
was not only possible but easy in all cases. Moreover,
SWComp decided to develop a single interface for its
employees to see the results of their actions in the
gamification environment (a web called the player’s
portal), but these results could have also been integrated
into work tools. For example, a development IDE,
such as Eclipse, could have been integrated with our
gamification engine, but that same IDE could also show
gamification results live to the developers, since our
engine not only gathers data about the tasks being
completed, but it also responds with the results of
evaluating those tasks and allows any tool to access all
the information it manages.

The gamification elements provided by the
gamification engine cover most of the general-
purpose gamification elements. That is, it allows
the company to implement a direct reward system
in the form of points and badges. But this reward
system is combined with the engine’s social network
to implement other gamification mechanics, such as
levels and leaderboards. These gamification elements
also allow us to incorporate other game mechanics, such
as quests in which players can challenge other players,
and even themselves. In addition, it serves as a basis

for a continuous feedback system, since the player’s
portal shows SWComp employees real-time information
on how the company is evaluating the performance
they obtained in each completed task. In addition, the
gamification engine provides advanced gamification
mechanics, such as the virtual assistant.

The effort (and therefore the cost) of gamifying a
work environment should not be forgotten due to its
importance for real organizations. As we have seen in
the results of the case study we conducted, the effort was
really small, especially if we compare that effort with
the effort of developing a custom-gamified tool for just
one of the process areas we considered.

Although not initially posed as a research question of
the case study, other important result can be extracted
from the case study we have presented. The design
of behaviors, achievements, and gamification rules
provided by the framework makes the gamified work
environment of SWComp very flexible. Since all the
gamification logic is captured by the gamification rules,
any change to the game mechanics would only require a
modification of those rules through the designer’s web
interface, without needing to touch a line of code either
on the CASE tools or in the gamification framework. We
think this is a very valuable characteristic of our solution.

In addition to the core gamification aspects provided
by the framework, the additional analysis functionalities
it provides can be very useful. The social network
analysis gives us an insight on how the players relate
with each other, the weight of their relationships, and
the existence of clearly defined communities. The
sentiment analysis module allows us to detect problems
in the motivation and happiness of the players from
the messages they introduce in the system, or simply
negative sentiments towards the gamified environment
we have designed.

7 Conclusion and Future Work

In this paper, we have presented a software architecture,
a gamification model, and a gamification engine for
the gamification of software engineering environments.
The main feature of our proposal is centralizing the
logging of the behaviors of the people taking part
in that environment, as well as the definition of the
game rules that evaluate those behaviors and assign the
corresponding achievements to them. All the business
logic related to gamification is thus centralized in our
engine. This allows any organization to gamify its tool



Oscar Pedreira et al.: An Architecture for Software Engineering Gamification 795

suite by using the gamification engine and by carrying
out easy modifications of their tools. This is an important
difference compared to previous proposals, which forced
the organization to either replace some of their tools with
gamified tools for the same purpose, or to modify their
current tools to integrate gamification into them.

The gamification is simple and general, so it can fit
the work environments of most software development
companies. In addition, it is easily extensible, that is,
the model can accommodate any other needed type of
behavior, achievement, or game rule. Another of the
main benefits of using our proposals for the gamification
of the tool suite of a company is that it allows us to
integrate all the tools of that suite into a centralized and
integrated gamified environment; that is, the rewards
obtained in any of those tools add up to one total sum.
An important difference our proposal has in comparison
to previous approaches in gamification in SE is that it
does not force the organization to replace its tools with
custom-developed gamified tools.

In addition to proposing a software architecture and a
gamification model from an abstract point of view, we
have implemented a real gamification engine based on
them. The engine not only supports the basic elements of
the architecture and gamification model, but it provides
advanced functionalities for gamification, such as the
analysis of the interaction network derived from the
collaboration of the users, which allows us to identify
hub users and communities, for example. It facilitates the
sentiment analysis of the texts, which can let us identify
positive and negative trends in the texts the employees
produce. It gives personalization support, permitting us
to customize contents and functionalities in terms of the
user’s profile and evolution in the gamified engine, and
it supplies a virtual assistant that will provide the users
with help in an interactive way, using natural language,
as happens in videogames, for example.

In the paper we have also presented a case study on
the application of our proposal in a real organization,
gamifying its whole tool suite, which includes tools
common to many software development companies,
such as Redmine, TestLink, or JUnit. Although we
have presented our engine as a tool for the gamification
of SE environments, it could easily be used in the
gamification of software tools in different domains. The
only limitation we find to this is given by the behavior
classes currently supported by the engine. It would
nonetheless be very easy to extend the behavior classes
supported so that they fit new application domains.

With regard to future work, further developments are
planned. Firstly, as the database of the engine contains a
detailed log of all the actions carried out by developers
in the SE environment, these data could be the basis
for an analysis tool which extracts relevant information
about the actions of the users, as well as about their
performance. The engine might also be extended with
a visualization component to show, for instance, user
performance and rankings. Appropriate visualizations
metaphors could be used (such as, for example, fish
tanks with different fish species according to users’
performance rates).

Acknowledgment

This work was supported by: For Felix Garcia and
Mario Piattini: BIZDEVOPS-Global (RTI2018-098309-B-
C31), Ministerio de Economı́a, Industria y Competitividad
(MINECO) and Fondo Europeo de Desarrollo Regional
(FEDER); G3Soft (SBPLY/17/180501/000150, Model
Engineering for Government and Management of Global
Software Development) and GEMA (Generation and
Evaluation of Models for dAta Quality), Consejerı́a de
Educación y Ciencia, Junta de Comunidades de Castilla-
La Mancha. For Oscar Pedreira, Alejandro Cortiñas,
and Ana Cerdeira-Pena: BIZDEVOPS-Global (RTI2018-
098309-B-C32), Ministerio de Economı́a, Industria y
Competitividad (MINECO) and Fondo Europeo de
Desarrollo Regional (FEDER); Datos 4.0 (TIN2016-
78011-c4-1-R) and ETOME-RDF3D3 (TIN2015-69951-
R), Ministerio de Economı́a, Industria y Competitividad
(MINECO) and Fondo Europeo de Desarrollo Regional
(FEDER); and Centros singulares de investigacin’fogn de
Galicia (ED431G/01), Grupo de Referencia Competitiva
(ED431C 2017/58), and ConectaPEME GEMA (IN852A
2018/14), Xunta de Galicia and Fondo Europeo de
Desarrollo Regional (FEDER).

References

[1] G. Zicherman and C. Cunningham, Gamification by Design.
Sebastobol, CA, USA: O’Reilly Media Inc., 2011.

[2] M. Hugos, Enterprise Games: Using Game Mechanics to
Build a Better Business. Sebastobol, CA, USA: O’Reilly
Media Inc., 2012.

[3] K. Werbach and D. Hunter, For the Win: How Game
Thinking Can Revolutionize Your business. Philadephia, PA,
USA: Wharton School Press, 2012.

[4] S. Deterding, D. Dixon, R. Khaled, and L. Nacke,
From game design elements to gamefulness: Defining
gamification, in Proceedings of the 15th International
Academic MindTrek Conference: Envisioning Future Media
Environments, New York, NY, USA, pp. 9–15, 2011.

[5] T. Reiners and L. C. Wood, Gamification in Education and
Business. Berlin, Germany: Springer International



796 Tsinghua Science and Technology, December 2020, 25(6): 776–797

Publishing, 2015.
[6] G. Richter, D. R. Raban, and S. Rafaeli, Studying

gamification: The effect of rewards and incentives on
motivation, in Gamification in Education and Business.
Berlin, Germany: Springer International Publishing, 2015,
pp. 21–46.

[7] E. B. Passos, D. B. Medeiros, P. A. S. Neto, and E. W.
G. Clua, Turning real-world software development into a
game, in Proc. of 2011 Brazilian Symposium on Games and
Digital Entertainment, Salvador, Brazil, 2011, pp. 260–269.

[8] O. Pedreira, F. Garcı́a, N. Brisaboa, and M. Piattini,
Gamification in software engineering—A systematic
mapping, Information and Software Technology, vol. 57, pp.
157–168, 2015.

[9] J. Hamari, J. Koivisto, and H. Sarsa, Does gamification
work?—A literature review of empirical studies on
gamification, in Proc. of the 47th Hawaii International
Conference on System Sciences, Waikoloa, HI, USA, 2014,
pp. 3025–3034.

[10] Y. Xu, Literature review on web application gamification
and analytics, http://csdl. ics. hawaii. edu/techreports/11-
05/11-05. pdf, 2012.

[11] R. Cursino, D. Ferreira, M. Lencastre, R. Fagundes,
and J. Pimentel, Gamification in requirements
engineering: A systematic review, in Proc. of the
11th International Conference on the Quality of
Information and Communications Technology , Coimbra,
Portugal, 2018, pp. 119–125.

[12] J. Fernandes, D. Duarte, C. Ribeiro, C. Farinha, J. M.
Pereira, and M. M. da Silva, iThink: A game-based
approach towards improving collaboration and participation
in requirement elicitation, Procedia Computer Science, vol.
15, pp. 66–77, 2012.

[13] L. Machuca-Villegas and G. P. Gasca-Hurtado,
Gamification for improving software project management
processes: A systematic literature review, in Proc.
of International Conference on Software Process
Improvement, Guadalajara, Mexico, 2018, pp. 41–54.

[14] S. Sheth, J. Bell, and G. Kaiser, HALO (highly addictive,
socially optimized) software engineering, in Proceedings
of the 1st International Workshop on Games and Software
Engineering, Honolulu, HI, USA, 2011, pp. 29–32.

[15] J. Bell, S. Sheth, and G. Kaiser, Secret ninja testing
with HALO software engineering, in Proc. of the 4th
International Workshop on Social Software Engineering,
Szeged, Hungary, 2011, pp. 43–47.

[16] G. M. de Jesus, F. C. Ferrari, D. de P. Porto, and S. C. P. F.
Fabbri, Gamification in software testing: A characterization
study, in Proceedings of the III Brazilian Symposium on
Systematic and Automated Software Testing, Sao Carlos,
Brazil, pp. 39–48, 2018.

[17] J. M. Rojas and G. Fraser, Code defenders: A mutation
testing game, in Proc. of IEEE Ninth International
Conference on Software Testing, Verification and Validation
Workshops, Chicago, IL, USA, 2016, pp. 162–167.

[18] E. Herranz, J. G. Guzmán, A. de Amescua-Seco, and X.
Larrucea, Gamification for software process improvement:
A practical approach, IET Software, vol. 13, no. 2, pp. 112–

121, 2018.

[19] M. Tsunoda, T. Hayashi, S. Sasaki, K. Yoshigami, H.
Uwano, and K. Matsumoto, How do gamification rules
and personal preferences affect coding? in Proc. of the 9th
International Workshop on Empirical Software Engineering
in Practice, Nara, Japan, 2018, pp. 13–18.

[20] F. F. Nah, B. Eschenbrenner, C. C. Claybaugh, and P. B.
Koob, Gamification of enterprise eystems, Systems, vol. 7,
no. 1, p. 13, 2019.

[21] A.-G. Mavroeidi, A. Kitsiou, C. Kalloniatis, and S. Gritzalis,
Gamification vs. privacy: Identifying and analysing the
major concerns, Future Internet, vol. 11, no. 3, p. 67, 2019.

[22] R. S. Wallace, The anatomy of ALICE in parsing the turing
test, doi: 10.1007/978-1-4020-6710-5.

[23] AIML Project, Artificial Intelligence Markup Language
(AIML), version 1.0.1, A.L.I.C.E. AI Foundation, 2011.

[24] J. Edmonds and R. M. Karp, Theoretical improvements in
algorithmic efficiency for network flow problems, Journal
of the ACM , vol. 19, no. 2, pp. 248–264, 1972.

[25] M. Girvan and M. E. J. Newman, Community structure in
social and biological networks, in Proc. of the National
Academy of Sciences, Washington, DC, USA, 2002, pp.
7821–7826.

[26] R. Tarjan, Depth-first search and linear graph algorithms,
SIAM Journal on Ccomputing, vol. 1, no. 2, pp. 146–160,
1972.

[27] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E.
Lefebvre, Fast unfolding of communities in large networks,
Journal of Statistical Mechanics: Theory and Experiment,
vol. 2008, no. 10, p. 10008, 2008.

[28] B. Pang, L. Lee, and S. Vaithyanathan, Thumbs up?
Sentiment classification using machine learning techniques,
in Proc. of the ACL-02 Conference on Empirical Methods
in Natural Language Processing–Volume 10, Philadelphia,
PA, USA, pp. 79–86, 2002.

[29] P. Brereton, B. Kitchenham, D. Budgen, and Z. Li, Using
a protocol template for case study planning, in Proc.
of the 12th International Conference on Evaluation and
Assessment in Software Engineering, Bari, Italy, 2008, pp.
1–8.

[30] P. Runeson, M. Host, A. Rainer, and B. Regnell, Case
Study Research in Software Engineering: Guidelines and
Examples. Hoboken, NY, USA: John Wiley & Sons, 2012.

[31] ISO/IEC 15504-2: 2003 Information technology-Process
assessment–Part 2: Performing an assessment, Geneva,
Switzerland, 2003.

[32] ISO/IEC 12207: 2008 Systems and software engineering –
Software life cycle processes, Geneva, Switzerland, 2008.

[33] ISO/IEC 27001: 2005 Information technology – Security
techniques - Information security management systems –
Requirements, Geneva, Switzerland, 2005.

[34] ISO/IEC 25010: 2011 Systems and software engineering –
Systems and software Quality Requirements and Evaluation
(SQuaRE) – System and software quality models, Geneva,
Switzerland, 2011.

[35] R. K. Yin, Case Study Research: Design and Methods.
Thousand Oaks, CA, USA: SAGE Publications, 2013.



Oscar Pedreira et al.: An Architecture for Software Engineering Gamification 797

Oscar Pedreira is an associate professor
at Universidade da Coruña (UDC), Spain.
He received the MS (2006) and PhD
(2009) degrees from UDC. He is a member
of the Database Lab. Research group,
and his research interests include data
management, software engineering, and
information systems.

Fééélix Garcííía is a full professor at the
University of Castilla-La Mancha (UCLM).
He received the MS (2001) and PhD (2004)
degrees from the UCLM. He is a member
of the Alarcos Research Group, and his
research interests include business process
management, software processes, software
measurement, and agile methods.

Mario Piattini is the director of the Alarcos
Research Group and a full professor at
the University of Castilla-La Mancha. He
received the MS and PhD degrees from
Madrid Technical University in 1989 and
1994, respectively. His research interests
include information systems quality and
software and data engineering.

Alejandro Cortiñas is an assistant
professor at the Database Lab of the
Universidade da Coruña (Spain). He
received the PhD degree from the same
university in 2017 for his thesis, entitled
“Software product line for web-based
geographic information systems”. His
research topics of interest include software

product lines, generative programming, geographic information
systems, and spatial big data.

Ana Cerdeira-Pena obtained the MS
and PhD degrees from University of A
Coruña in 2007 and 2013, respectively.
where she is an assistant professor. Her
fields of interest include the analysis
and design of compact data structures
and algorithms for data compression and
indexing, mathematical modelling and

algorithms design for operational research problems, and
information systems management.


