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Abstract 

The DNA content of 10 species of bivalve molluscs from British Columbia coast was determined by image 

analysis, and the karyotypes of the horse clam Tressus capax, the bent-nose macoma Macoma nasuta, and 

the nuttall's mahogany clam Nuttallia nuttallii are described here for the first time. We also have analyzed 

the location of rDNA loci using a 28S-5.8S-18S probe in four of these species: Mytilus californianus, M. 

trossulus, Macoma nasuta and N. nuttallii. Results obtained report new data about cytogenetic characteristics 

of bivalve molluscs.  
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Introduction 

The Mollusca are the second most abundant phylum of animals that inhabit the Earth. Belonging to this 

phylum, bivalves  are  represented  by  approximately  15 000  different species  distributed  throughout  

aquatic  habitats.  Karyotypes from  only  200  species  have  been  determined,  and  chromosome banding 

techniques have been applied in a scarce number  of  bivalves.  These  techniques  were  found  to  be  very 

useful in the analysis of the distribution and composition of heterochromatin,  and  for  localizing  the  

nucleolar  organizer regions  (NORs)  in  mussels  (Insua  et  al.  1994; Martínez-Lage et al. 1994, 1995, 

1997a; Pasantes et al. 1996) and oysters (Insua and Thiriot-Quievreux 1993; Ladrón de Guevara et al. 1994; 

Li and Havenhand 1997). Other techniques such as  fluorochrome  staining  were  only  employed  in  a  very 

scarce  number  of  mussels  species  (Martínez-Lage  et  al.1994, 1995; Martínez-Expósito et al. 1997). 

Recently, in situ hybridization  has  been  employed  to  localize  the  18S-28S ribosomal  genes  is  some  

species  of  Mytilidae  (Insua  and  Méndez  1998;  Torreiro  et  al.  1999)  and the 5S ribosomal genes in one 

species of scallops and one of cockles (Insua etal. 1998, 1999). 

Cytogenetics on bivalves from Pacific coasts are restricted to (1) the description of the chromosome number 

in different species of mussels, oysters, and clams (Menzel and Menzel 1965;   Ahmed   and   Sparks   1967;   

Longwell   et   al.   1967; Menzel 1968), (2) the description of chromosome number and   chromosome   

morphology   of   the   mussels Mytilus californianus and M.  edulis ecotype M.  trossulus (Ahmedand 
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Sparks 1970), (3) the determination of the DNA content in  a  great  number  of  mollusc  species  

(Hinegardner  1974),and  (4)  the  analysis  of  allozymic  characters  in  the  oyster C. virginica (Singh and 

Zouros 1978) and mussels belonging to  genus Mytilus (McDonald  and  Koehn  1988;  Sarver  and Foltz  

1993).  More recent studies examined the karyotypes and chromosomal location of Ag-NORs in M. 

californianus and M. trossulus (Martínez-Lage et al. 1997a), the distribution  of  the  telomeric  sequence  

AATGGG  (Guo  and  Allen1997),   satellite   DNA   sequences   in   the   Pacific   oyster Crassostrea gigas 

(Clabby et al. 1996), and the existence of polyploidy in a natural population of the mussel M. trossulus 

(González-Tizón  et  al.  2000).  Phylogenetic  molecular  studies  have  been  carried  out  in  some  species  

of  the M.  edulis complex (Heath et al. 1995; Kenchington et al. 1995; Heathet al. 1996; Heath and Hilbish 

1998). 

In this study we provide new data about some cytogenetic characteristics of 10 bivalve species from Pacific 

Canadian coasts. Data obtained come from the quantification of DNA content, the elaboration of karyotypes, 

and the location of rDNA genes by fluorescence in situ hybridization (FISH). 

 

Material and methods 

Samples collection 

Figure   1   shows   the   localities   on   Vancouver   Island   (British Columbia,  Canada)  where  the  

samples  were  collected: Chlamys hastata and Hinnites giganteus from Chemainus; Macoma nasuta, 

Nuttallia   nuttallii (= Sanguinollaria   nuttallii), Tressus capax, Protothaca  staminea, Crassostrea  gigas,  

and Tapes  philippinarum (= Tapes  japonica,= Ruditapes  philippinarum)  from  Bamberton beach; Mytilus  

californianus from  Point  no  Point,  and Mytilus 

trossulus from Esquimalt Lagoon. 

Once  in  the  laboratory,  animals  were  placed  in  

tanks  with  filtered sea water and fed continuously 

on a suspension of  Isochrisis sp.,  and Tetraselmis 

sp.  microalgae for 10–15 days.  Metaphase 

obtention   was   made   by   treatment   with   

colchicine   solution (0.005%) for 6–8 h. Then, 

gills were dissected, treated twice with 0.56% KCl 

solution (15 min) and fixed in ethanol – glacial 

acetic acid (3:1).  Fixed cells were dissociated in 

45% acetic acid with water solution and dropped 

onto heated slides at 43°C. Metaphases were 

stained with 4% Giemsa in phosphate buffer pH 

6.8 and photographed with a Nikon Optiphot 

microscope. 

 

Figure 1. Geographic locations on Vancouver Island, 

Canada,where bivalve species were collected. 

 

 



 
 

DNA content 

For   DNA   measurements,   metaphase   plates   were   stained   by Feulgen method (Feulgen and 

Rossenbuck 1924) as follows: treatment  with 5M HCl, 30 min at room  temperature  and  washed  in 

distilled water; staining with Schiff’s reagent, 80 min, followed by three  washes  (10  min  each)  in  

sulphurous  water.  Finally, slides were air-dried in a dark place until needed. 

Five  individuals  from  each  one  of  the  species  and  40  nuclei from each individual were measured. 

Measurements of DNA content were done microdensitometrically using the GENIAS program v.4.0, 

included in the software image analysis system Magiscan (Applied Imaging, England). This software 

captures a black and white image from the microscope and it analyzes the different structures apparent in the 

image.  The  initial  step  of  the  analysis  consists  of splitting this image and depicting it as a binary image, 

i.e., assigning to each pixel (basic unity of image) a value of 1 if the pixel is black,  or  a  value  of  0  if  the  

pixel  is  white.  This function allowed the computer to identify the structures for measurement. The user 

may  modulate  this  function  to  the  computer  such  as  to  identify only the nuclei stained with Feulgen 

(structures to measure). Furthermore, the GENIAS program calculates the optic density (OD), according to 

the formula OD =log10 (1/T) = –log10T; T = intensity of transmitted light × intensity of incident  light–1.  From  

this  estimation,  the  computer  integrates  the  values  of OD obtained  for  each one of the pixels and it 

calculates the IOD (IOD = ΣOD). Observation  of  these  values  is  carried  out  with  a  microscope  

Microphot FXA, operating at a wavelength of 560 nm, equipped with a Nikon apoachromatic  100×  

objective.  This microscope also employs a Bosch camera, which is connected to the image analysis system. 

As standard we used the bivalve species Donax trunculus. This species has a value of IOD (BDonax) that 

represents a DNA content of  3.19  ±  0.06  pg  (represented  by A),  and  was  previously  determined by 

Martínez-Lage et al. (1997b). The value of IOD obtained for each of the species analyzed (represented by 

Bsp) were transformed to picograms according to the formula Csp = A × Bsp /BDonax, where Csp represents the 

picograms of the corresponding species. 

Chromosome analysis 

Chromosome measurements were made using the GENIAS program 4.0, included in Magiscan.  Total 

chromosome length was measured in 10 metaphases of gill tissue from each one of the species.  The  mean  

value  of  the  length  of  the  chromosome  arms  and the mean value for their total chromosome length were 

calculated for each one of the chromosome pairs. The relative length (100 × chromosome length × total 

haploid length–1), the centromeric index (100 × length of short arm × total chromosome length–1), the mean 

value and the standard error (standard deviation × number of individuals–1)1/2 of the relative lengths, and the 

centromeric index were also calculated.  Chromosome nomenclature follows Levan et al. (1964). 

Fluorescence in situ hybridization 

The   DNA   probe   used   was   pDm   238   from Drosophila melanogaster containing   the   repeat   unit   

18S-5.8S-28S   rDNA (Roiha et al.  1981)  labelled with digoxigenin-11-dUTP using a Nick Translation Kit 

(Boehringer Mannheim). Chromosomal DNA was  denatured  by  immersing  the  slides  in  DNAase-free  

RNAase (100 μg/mL in 2× SSC) for 1h at 37°C, followed by incubation in pepsin (10% in 100 mM HCl), 

post-fixed in formaldehyde (1% in PBS  50  mM)  for  10  min,  washed  in  2 ×  SSC  for  10  min  and,  

finally, dehydrated in graded ethanol series and air-dried.  

The  hybridization  solution  (consisted  of  50%  formamide  in  2 × SSC, 10% dextran sulphate, 0.33% 

SDS, 10 μg salmon sperm DNA,and  100  ng  of  labelled  DNA  probe)  was  denatured  for  15  min  at 

75°C.  Then, 30 μL of this hybridization solution was applied to each slide under a sealed coverslip.  

Hybridization  was  performed in a slide-PCR (MJ Research, MJ 100) as follows: 7 min at 75°C, 2 min at 



 
 

55°C, 30 s at 50°C, 1 min at 45°C, 2 min at 42°C, 5 min at  40°C,  5  min  at  38°C,  5  min  at  37°C,  and,  

finally,  overnight  at 37°C in a moist chamber. 

Post-hybridization washes were carried out for 5 min at 42°C in 2×  SSC,  10  min  in  20%  formamide  and  

0.2×  SSC,  5  min  in  0.1× SSC,  5  min  in  2×  SSC  and,  finally,  5  min  in  0.1  M  Tris,  0.15  M NaCl,  

0.05%  Tween–20.  After  blocking  the  slides  for  30  min  in 0.1  M  Tris–HCl,  0.15  M  NaCl,  and  0.5%  

Boehringer  Mannheim blocking   reagent,   probe   hybridization   sites   were   detected   by 

immunocytochemical  incubations  in  mouse  anti-digoxigenin,  rabbit anti-mouse-FITC  (fluorescein  

isothiocyanate)  and  goat  anti-rabbit-FITC. 

Chromosomes   were   counterstained   with   propidium   iodide (50  ng/mL  anti-fade)  and  visualized  and  

photographed  using  a Nikon  Microphot  AFX  microscope  equipped  with  the  appropriate filters. The 

film used was Kodak Ektachrome 400 ASA. 

 

Results and discussion 

DNA content 

The DNA content, or C-value, is a species-specific genetic characteristic, defined as the amount of DNA per 

haploid nucleus.  DNA content has been determined in several groups of animal and plant species (see 

Cavalier-Smith 1978 for review). In bivalves, the most extensive analysis was made by Hinegardner (1974), 

who determined the DNA content in 55 species belonging to 22 families. Cavalier-Smith (1978), in a 

revision of all previous data, pointed out that the DNA content in bivalves ranges from 0.43–5.4 pg.  

Recently, Ieyama et al. (1994) determined the DNA content in 10 bivalve species from Japanese coasts and 

Rodríguez-Juiz et al.  (1996) determined it for 21 bivalve species from the northwest of the Iberian 

Peninsula. 

Our results are shown in Table 1. Five of the species analyzed belong to the subclass Pteriomorphia and the 

other five to the subclass Heterodonta.  The  values  of  DNA  content showed  in  the  present  work  are  

included  in  the  range  described  by  Cavalier-Smith  (1978)  for  mollusc  species,  and vary from 1.82 pg 

for the oyster species C. gigas to 3.94 pg for    the    clam Tapes    philippinarum.    It    supposes    an 

approximately two-fold difference in the mean value for DNA content among these two species. It could be 

observed that  values  for  DNA  content  in  Heterodonta  species  show homogeneity  in  mean  genome  

size;  i.e.,  values  range  from 3.27 pg (the lowest value) for T. capax to 3.94 pg (the highest  value)  for T.  

philippinarum.  But,  there  was  significant heterogeneity  in  mean  genome  size  of  species  belonging  to 

Pteriomorphia;  values  vary  from  1.82  pg  (the  lowest)  for C.  gigas to  3.28  pg  (the  highest)  for C.  

hastata;  while  H.giganteus  has a DNA content of  2.57 pg, M. californianus has 3.21, and M. trossulus 

3.02. 

Table 1 also shows the diploid chromosome number of the species analyzed (unknown in H. giganteus). The 

more frequent chromosome number in Heterodonta species results as 2n = 38 (M.   nasuta, N.   nuttallii, P.   

staminea,   and  T.   philippinarum). Only T.   capax has   34   chromosomes. Pteriomorphia species show 

more heterogeneity in the chromosome number than Heterodonta, similar to the case of DNA content. So, 

Mytilidae species have 28 chromosomes, C. gigas shows 20 chromosomes, and C. hastata possess 38 

chromosomes. Analyzing both cytogenetic characteristics, It is   obvious   that   species   belonging   to   the   

same   family (Veneridae,  Mytilidae,  and  Pectinidae)  show  differences  in DNA content, despite the 

uniformity in chromosome number (2n =  28  for  Mytilidae  and  2n =  38  for  Veneridae).  These 

differences also appear between species belonging to same genera (M. californianus and M. trossulus). 

 



 
 

 

Table 1. DNA content of species analyzed. 

Species Family pg DNA 2n 

Subclass Heterodonta    

Tressus capax Mactridae 3.27 ± 0.09 34 

Macoma nasuta Tellinidae 3.90 ± 0.09 38 

Nutallia nutallii Psammobiidae 3.48 ± 0.08 38 

Protothaca staminea Veneridae 3.50 ± 0.09 38a 

Tapes philippinarum Veneridae 3.94 ± 0.12 38b 

Subclass Pteriomorphia    

Mytilus californianus Mytilidae 3.21 ± 0.07 28c 

Mytilus trossulus Mytilidae 3.02 ± 0.05 28c 

Crassostrea gigas Ostreiade 1.82 ± 0.04 20d 

Chlamys hastata Pectinidae 3.28 ± 0.10 38 a 

Hinnites giganteus Pectinidae 2.57 ± 0.12 Unknown 

Note: 2n, diploid chromosome number;  aUnpublished data;  bIeyama (1985);  cMartínez-Lage et al. (1997a); 
dAhmed and sparks (1967) 

 

 

On  the  other  hand,  one  hypothesis  offered  to  explain  the evolutionary significance of genome size is 

that generalized species  (Psammobiidae,  Veneridae,  and  Mytilidae)  tend  to possess  a  high  DNA  

amount,  while  the  specialized  ones (Mactridae,  Tellinidae,  and  Ostreidae)  possess  low  DNA content  

(Hinegardner  1974).  This assumption could be applied for some of the species analyzed here (e.g., C. gigas 

or T.  philippinarum),  but  it  can  not  be  assumed  for  species such  as C.  hastata or T.  capax.  

Subsequently,  the  relationship between specialization and low DNA content (or generalization  and  high  

DNA  content)  cannot  be  considered  a universal  rule,  and,  in  this  sense,  some  cases  of  evolution 

through   increased   DNA   have   been   reported   (John   and Miklos 1988). 

We  think  that  the  variation  in  genome  size  is  caused  by changes  in  the  DNA  involving  repetitive  

and  non repetitive sequences.  The  genetic  mechanisms  implied  could  be  gene loci  duplications,  

changes  in  number  and  size  of  repetitive sequences,  and  structural  and  (or)  chromosome  

rearrangements. 

Chomosome number and karyotypes 

Chromosome   analysis   and   karyotypes   of   the   species T.  capax, M.  nasuta,  and N.  nuttallii are  

described  for  the first  time.  The diploid chromosome number in the species T.  capax (family  Mactridae)  

was  calculated  to  be  2n = 34 (Fig.  2a). Table 2 displays relative length and centromeric index values.  

Relative length varies from 7.41–4.35, and karyotype (Fig. 3a) is composed of 10 metacentric chromosome 

pairs (Nos. 1, 2, 6, 7, 8, 11, 12, 14, 15, and 16), and seven submetacentric pairs (Nos. 3, 4, 5, 9, 10, 13, and 

17). Neither subtelocentric nor telocentric chromosomes have been observed. 

Tressus   capax shows   a   chromosome   number   different from   other   species   belonging   to   the   same   

family.   So, Labiosa plicatela from Virginia coasts (U.S.A.), analyzed by Menzel  (1968),  and Spisula  

solidissima (Ropes  1972)  possess a chromosome diploid complement of 36, whereas three different species 

of Mactra clams (Ieyama 1982; Corni and Trentini   1987), Spisula   subtruncata (Corni   and   

Trentini1987), and Mulinia lateralis (Wada et al. 1990), from Delaware  and  Virginia,  show  38  

chromosomes.  A  chromosome number of 34 is not usual in bivalves, so only three species, belonging  to  

the  family  Myoidea,  show  this  chromosome number: Mya arenaria (Allen et al. 1982), Barnea truncata, 



 
 

and Cyrtopleura  costata (Menzel  1968).  However, the only species of Mactridae in which the karyotypes 

were described are Mactra   chinensis (Wada   and   Komaru   1993)   and M.  lateralis (Wada  et  al.  1990), 

and both have 38 chromosomes. The   karyotype   of M.   chinensis does   not   have metacentric   

chromosomes,   while   the   entire   chromosome complement  of M.  lateralis consists  of  subtelocentric  

and telocentric chromosomes. The karyotype of T. capax is very different from both of these species. These 

differences could be the consequence of chromosome rearrangements along evolution of these species, such 

as Robertsonian fusions, although a more exhaustive and detailed study must be carried out to confirm this 

possibility. 

Figure 2. Giemsa metaphases of: (a) 

Tressus capax, (b) Macoma nasuta, and 

(c) Nuttallia nuttallii. 

 

 

Chromosome number in M.  nasuta 

is  38.  As  can  be  observed  in  

Table  2,  relative  length  values  

vary  from  6.67 – 3.13. Karyotype 

(Fig. 3b) consists of eight 

metacentric pairs (Nos. 1, 3, 4, 5, 8, 

12, 16, and 17), four submetacentric 

pairs (Nos.  6, 7, 10, and 14), two 

submetacentric–subtelocentric pairs 

(Nos.  2 and 11), one subtelocentric–

submetacentric pair (No. 9), and four 

subtelocentric pairs (Nos. 13, 15, 18, 

and 19). 

Macoma  nasuta shows  the  same  

chromosome  number  as other  

species  belonging  to  the  family  

Tellinidae,  but  the karyotype  is  

different  from  those  described  for 

M.  balthica and Tellina tenuis from different European populations (Cornet  and  Soulard  1990a;  

Wolowicz  and  Thiriot-Quievreux 1997).   Therefore,   the   number   of   metacentric   pairs   in M.  nasuta 

is  smaller  than  in M.  balthica,  although  metacentric chromosomes of the Canadian species are larger than 

those from the European ones. 

Finally, the clam N. nuttallii, with a diploid chromosome number of 38, shows a relative length that varies 

from 7.15 – 3.48 (Table 2).  Karyotype (Fig.  3c)  is composed of seven pairs of metacentric chromosomes 

(Nos.  1,  3,  5,  8,  10,  15,and  16),  11  pairs  of  submetacentric  (Nos.  2,  4,  6,  7,  9,  11,13,  14,  17,  18,  

and  19)  and  one  pair  of  submetacentric–subtelocentric chromosomes (No. 12). 

To date, there is no reference about karyological data in species   belonging   to   the   family   

Psammobiidae.   Thus, N. nuttallii analyzed in this work is the first one in which the chromosome number 

and karyotype is described.  Chromosome number of N.  nuttallii  is  coincident  with  the  modal number   of   

the   species   belonging   to   the   superfamily Tellinaceae,  and  karyotype  is  similar  to  those  described  

in other  different  European  species  belonging  to  this  superfamily   (Cornet   and   Soulard   1987;   

Cornet   and   Soulard1990b).  



 
 

 

Figure 3. Idiograms of: (a) Tressus capax, (b) Macoma nasuta, (c) Nuttallia nuttallii ,(d) Mytilus californianus, and (e) M. 

trossulus. (b–d) Show the location of 18S-5.8S-28S ribosomal loci. Bar = 5μm. 



 
 

 

 

Table 2. Chromosome measurements and karyotype of Tressus capax, Macoma nasuta, and Nuttallia nuttallii. 

 Tressus capax Macoma nasuta Nuttallia nutallii 

n R.L. C.I. Class R.L. C.I. Class R.L. C.I. Class 

1 7.41 ±  0.03 42.31 ±  1.19 m 6.67 ±  0.03 42.87 ±  0.52 m 7.15 ±  0.30  44.21 ± 0.74 m 

2 7.16 ± 0.01 46.86 ± 0.80 m 6.45 ± 0.25 25.01 ± 0.55 sm/ st 6.45 ± 0.11 30.21 ± 1.71 sm 

3 7.02 ± 0.03 34.84 ± 0.27 sm 6.24 ± 0.10 43.23 ± 0.16 m 6.31 ± 0.14 44.72 ± 1.06 m 

4 6.42 ± 0.09 31.76 ± 1.10 sm 6.15 ± 0.13 40.31 ± 0.13 m 6.04 ± 0.08 29.59 ± 0.75 sm 

5 6.40 ± 0.09 27.71 ± 1.57 sm 5.90 ± 0.05 46.92 ± 0.92 m 5.75 ± 0.12 44.11 ± 0.82 m 

6 6.30 ± 0.07 41.47 ± 0.75 m 5.80 ± 0.04 28.70 ±  0.11 sm 5.70 ± 0.06 27.43 ± 1.06 sm 

7 6.14 ± 0.07 45.41 ± 0.90 m 5.78 ± 0.04 26.67 ± 0.25 sm 5.51 ± 0.08 29.52 ± 1.70 sm 

8 5.91 ± 0.06 43.33 ± 0.93  m 5.67 ± 0.09 39.01 ± 0.22 m 5.36 ± 0.18 40.64 ± 0.33 m 

9 5.86 ± 0.07 30.66 ± 1.05 sm 5.50 ± 0.06 24.88 ± 0.67 st/ sm 5.33 ± 0.06 30.00 ± 1.76 sm 

10 5.73 ± 0.05 28.74 ± 1.02 sm 5.39 ± 0.20 36.51 ± 0.16 sm 5.22 ± 0.13 43.32 ± 0.73 m 

11 5.52 ± 0.04 44.40 ± 1.03 m 5.36 ± 0.06 25.30 ± 0.44 sm/ st 5.22 ± 0.06 32.78 ± 1.11 sm 

12 5.49 ± 0.03 44.92 ± 1.06 m 5.11 ± 0.03 47.30 ± 0.73 m 4.98 ± 0.08 26.03 ± 1.54 sm/ st 

13 5.46 ± 0.12 31.34 ± 1.14 sm 4.91 ± 0.03 23.86 ± 0.62 st 4.91 ± 0.09 29.92 ± 1.60 sm 

14 5.36 ± 0.07 44.78 ± 0.79  m 4.77 ± 0.05 28.56 ± 0.59 sm 4.72 ± 0.08 29.70 ± 0.97 sm 

15 5.11 ± 0.14 39.30 ± 0.41 m 4.68 ± 0.07 23.16 ± 1.07 st 4.56 ± 0.18 45.03 ± 0.83 m 

16 4.36 ± 0.22 43.61 ± 0.75 m 4.67 ± 0.07 43.59 ± 0.40 m 4.54 ± 0.12 43.89 ± 1.06 m 

17 4.35 ± 0.18 29.69 ± 1.08 sm 3.91 ± 0.07 44. 93 ± 0.39  m 4.24 ± 0.14 32.92 ± 2.38 sm 

18 - - - 3.87 ± 0.17 23.42 ± 0.95 st 4.17 ± 0.15 27.65 ± 2.11 sm 

19 - - - 3.13 ± 0.47 23.85 ± 0.47 st 3.48 ± 0.19 32.73 ± 2.42 sm 

Note: n, chromosome number; R.L., relative length; C.I., centromeric index; Class., classification; m, metacentric; sm, submetacentric; st, subtelocentric 

 



 
 

Location of ribosomal rDNA loci 

Despite of the use of  FISH in other taxa (Szostak and Wu 1980; Coen et al.  1982; de Lucchini et al.  1993), 

there are few studies in bivalve molluscs. This technique has been applied to locate satellite (Clabby et al.  

1996)  and  telomeric (Guo and Allen 1997) DNA sequences in Crassostrea gigas from  American  coasts,  

and  ribosomal  loci  of  some  species of bivalves from European coasts (Insua and Méndez 1998). In this 

work we have analyzed the location of 18S-5.8S-28S ribosomal loci by FISH in four species: M. 

californianus, M. trossulus, M. nasuta, and N. nuttallii. 

In the mussel M. californianus, the number of fluorescent signals varied from four to six per cell.  Ribosomal  

loci  appear  located  on  the  short  arms  of  three  chromosome  pairs:on  the  telomeric  region  of  pairs  3  

and  12,  meta  and  submetacentric, respectively, and in the subterminal position of the chromosome 

submetacentric pair 5 (Fig. 4a). These locations are coincident with the positions of Ag-NORs analyzed by 

Martínez-Lage et al.  (1997a)  in  this  same  species;  however,   the   fluorescent   signal   on   chromosome   

5   appeared weakly  labelled  or,  in  some  cases,  could  not  be  observed. We think that it could be 

attributed to the existence of a low number of rDNA copies on this chromosome, or possibly a consequence   

of   the   condensation   of   metaphase   chromosomes. Surely, the analysis of a high number of individuals 

allows us to observe it. 

 

Figure 4. FISH with 18S-5.8S-28S rDNA probe in metaphase chromosomes of: (a) Mytilus californianus, (b) M. 

trossulus,(c) Macoma nasuta, and (d) Nuttallia nutallii. 

In M. trossulus, hybridization signals were spread on the telomeres of the short arm on chromosome 

metacentric pairs 3 and 9 and on the telomere of the short arm of chromosome submetacentric 7 (Fig. 4b). 



 
 

These observations are coincident with the positions of Ag-NORs in this species (MartínezLage et al. 

1997a), and we have not observed, either by FISH or silver staining, the simultaneous appearance of the 

signals on both chromosomal arms. Furthermore, such as happened with Ag-NORs; the signals on 

chromosome 7 always appear very slightly labelled. Again, this fact could be a consequence of the existence 

of a small number of copies in this chromosomal region. Such results are not unusual, considering that in 

eukaryotes, the number of chromosomal loci and the number of genes at each locus vary among species, 

among populations, and among individuals. In a great number of species the existence of intra-individual and 

inter-individual variability have been described for rDNA loci (Nardi et al. 1978; Mukai et al. 1991; Garrido-

Ramos et al. 1995). 

FISH resulted in labelling of two chromosomes of M. nasuta and N. nuttallii at telomeric positions. In M. 

nasuta, the two hybridization signals spread over the long arm on chromosome subtelocentric pair No. 15 

(Fig. 4c). N. nuttallii showed the hybridization signals over the short arm on chromosome metacentric pair 

No. 8 (Fig. 4d). Both species showed intra-individual variability; so, some of the metaphases showed both 

homologous chromosomes labelled in comparable intensity, while others showed the homologous unequally 

labelled. Again, it could be attributed to variation in the number of ribosomal loci.  

Although scarce data exist about FISH in the bivalves, the comparison between our results and those 

described by other authors in other species and populations seem to suggest that these organisms have a 

tendency to locate the rDNA loci at the telomeric level. 
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