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Abstract 

Transcranial static magnetic stimulation (tSMS) modulates cortical excitability probably by interacting with 

the GABA-glutamate intracortical balance. Different transcranial magnetic stimulation (TMS) waveforms 

probe distinct GABA-mediated cortical inhibition networks. The goal of the present work is to further 

characterize tSMS-induced changes in motor cortex reactivity and inhibition–excitation (I/E) balance. We 

hypothesized that tSMS affects particular cortical networks and thus, the effects of tSMS would be different 

depending on the TMS waveform used to assess its results. 23 healthy young adults completed two sessions 

of real or sham tSMS. The order of the sessions was randomized across participants. Motor evoked potentials 

(MEPs), cortical silent period (CSP), short- and long-interval intracortical inhibition (SICI and LICI), and 

intracortical facilitation (ICF) were assessed with TMS monophasic posterior–anterior (monoPA; n = 9), 

monophasic anterior–posterior (monoAP; n = 7), or biphasic (biAP-PA; n = 7) pulses. Repeated measures 

analyses of variance and appropriate pairwise comparisons were performed for each TMS measure. After 15 

min of real tSMS, the MEP amplitudes decreased compared to sham and baseline, SICI and LICI showed 

greater inhibition, and a tendency towards longer CSPs and less facilitation was found. These results were 

only observed with monoPA TMS. MEP amplitude increased compared to sham with monoAP TMS, with no 

clear changes in general intracortical I/E balance. Biphasic TMS was not able to capture any effects of tSMS. 

The results show that the effects of tSMS on cortical excitability and inhibition involve specific interneuron 

circuits that are selectively activated by monoPA TMS. © 2019 IBRO. Published by Elsevier Ltd. All rights 

reserved 

Key words: 

transcranial static magnetic stimulation, transcranial magnetic stimulation, paired-pulse TMS, biphasic, 

monophasic, current direction. 



Abbreviations:  

AP, Anterior-to-posterior; biAP-PA, Biphasic anterior-toposterior–posterior-to-anterior; CS, Conditioning 

stimulus; CSP, Cortical silent period; DMF, Dynamic magnetic field; EMG, Electromyography; FDI, First 

dorsal interosseous; FDR, False discovery rate; GABA, Gamma-Aminobutyric acid; HSD, Honestly 

significant difference; I/E, Inhibition–excitation balance; ICF, Intracortical facilitation; ISI, Inter-stimulus 

interval; LAI, Long afferent inhibition; LICI, Longinterval intracortical inhibition; MEP, Motor evoked 
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Introduction 

Magnetic fields can be classified into dynamic (DMF) and static (SMF), depending on whether 

there is a change of the direction or intensity of the field over time associated with an induced 

electric current. DMFs have been used for decades to explore brain function and physiology, as 

well as to modulate cortical activity. The most known example of this is transcranial magnetic 

stimulation (TMS). 
 

During the last decade, several studies have found that moderate SMFs (i.e. magnetic fields 

between 1 mT and 1 T (Rosen, 2003)) can modify human cortical excitability. The use of SMFs as 

a non-invasive brain stimulation tool has grown as a safe (Oliviero et al., 2015) and promising 

brain neuromodulation technique (Dileone et al., 2017, Lozano-Soto et al., 2018) named 

transcranial static magnetic stimulation (tSMS). 
 

However, the way tSMS interacts with the cortical elements is insufficiently understood. The 

stimulation of motor cortex with a 0.5-T magnet for 10–15 min induces 25% inhibition of motor 

evoked potentials (MEPs) (Oliviero et al., 2011). This reduction outlasts the intervention for 

several minutes and is negatively correlated with an increase in resting motor threshold (RMT) 

(Oliviero et al., 2011, Silbert et al., 2013), together translating in a decrease in motor cortex 

excitability. Nojima and colleagues (Nojima et al., 2015) investigated the effects of tSMS on 

short-interval intracortical inhibition (SICI) finding an enhancement of inhibition. Since SICI has 

been shown to be GABAA-dependent, the authors suggested that GABA-related interneurons may 

be responsible for the reduction of cortical excitability induced by tSMS. On the other hand, Arias 

and coworkers (Arias et al., 2017) found that other GABAA-dependent inhibitory TMS protocols 

(i.e. Short and long afferent inhibition, SAI and LAI, respectively) did not change after tSMS. The 

authors hypothesized that SICI and SAI or LAI protocols evaluate GABAA-inhibition but through 

independent interneuron cortical networks. More recently, Dileone et al. (Dileone et al., 2018) 

have shown that increasing the stimulation time to 30 min yield longer-lasting decrease in 

excitability but, in turn, less inhibition SICI and greater facilitation after short-interval intracortical 

facilitation (SICF). The authors proposed a more complex interaction between the SMFs and brain 

GABA-glutamate neurotransmitters balance. 
 

TMS can be used to evaluate specific neural components and intracortical networks (Di 

Lazzaro et al., 2018) by choosing the appropriate waveform and current direction. The aim of the 

present study was to deepen on the understanding on tSMS-motor cortex interactions by using 

different TMS waveforms and current directions to evaluate tSMS-induced changes in cortical 

excitability and inhibition-excitation (I/E) balance. 
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Experimental Procedures 

Participants 

Data were obtained from 26 healthy participants (ages 18 to 35, 12 males, 22 right-handed). 

All participants provided written informed consent prior to enrollment and received monetary 

compensation upon completion. The study was approved by the local Institutional Review Board 

and conducted in accordance with the Declaration of Helsinki. 
 

Each participant completed two identical sessions (intersession interval 1–70 days; 

median = 10.5 days) for sham and real tSMS. The order of the sessions was randomized and 

counterbalanced across participants. All participants underwent equivalent testing: (1) During the 

first visit, a structured medical history review and handedness determination were performed. 

Handedness was assessed with the revised Edinburgh Handedness Inventory (Oldfield, 1971). 

Safety screening for possible contraindications and side effects was performed at the beginning 

and end of each session. (2) After the initial evaluation, participants were assigned to one of three 

groups for TMS assessments, which differed only in the pulse waveform characteristics: ten 

subjects received monophasic posterior–anterior (monoPA), nine monophasic anterior–posterior 

(monoAP), and seven biphasic (biAP-PA) stimulation (waveforms are named after the direction of the 

current induced in the motor cortex). TMS cortical reactivity and excitability assessments were 

acquired in the same order before and after real and sham tSMS intervention. 
 

Three participants were excluded from the study and data analyses. One participant was 

excluded because of a recent episode of traumatic brain injury with probable loss of 

consciousness. The other two participants could not be included given their RMT was greater than 

83% of the stimulator output and therefore stimulation at 120%RMT was not feasible. The 

remaining 23 participants had no history of neurological disease or any contraindication to TMS or 

tSMS. 

 

Participants were comfortably seated with their arms rested in a natural 90° angle on a table in 

front of them. During the tSMS stimulation and TMS recordings, the participants were instructed 

to remain quiet with their muscles relaxed, monitored for drowsiness and asked to keep their eyes 

open. 

Transcranial static magnetic stimulation 

During each visit the participants were exposed to either real or sham tSMS. Each participant 

underwent both the real and sham interventions in a random order. The real tSMS was induced 

with a cylindrical neodymium magnet (Model DX8X8, K&J Magnetics, US) (45 MGOe, nominal 

strength 65 kg ≈ 0.5 tesla-T). A non-magnetic metal replica indistinguishable from the real magnet 

was used for sham tSMS. Following prior publications (Oliviero et al., 2011, Silbert et al., 

2013, Kirimoto et al., 2014) south polarity was used for stimulation. Both interventions had a 

duration of 15 min and were performed over the first dorsal interosseous (FDI) representation in 

primary motor cortex of the dominant hemisphere. The FDI cortical representation was previously 

identified by TMS motor output mapping (Rossini et al., 2015). Both the magnet and its replica 

were held in place with identical elastic bands under continuous investigators' monitoring. At the 

end of the second visit, participants were formally asked if they could determine which session 

was real and which sham. Only five out of the 23 analyzed participants (22%) guessed correctly 

the order of real/sham visits. 
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EMG recordings 

Surface electromyography (EMG) activity was recorded from the dominant FDI using a 

PowerLab 4/25-T data acquisition device and Scope software (ADInstruments, Colorado Springs, 

CO, USA). The negative electrode was placed over the belly of the muscle, the positive electrode 

over the first interphalangeal joint of the second finger, and the ground over the ipsilateral ulnar 

styloid process. 
 

EMG data were digitized at 1 kHz for 250 ms following each stimulus trigger and amplified 

with a range of ± 10 mV (band-pass filter 0.3–1000 Hz). Triggered epochs were acquired for single 

and paired-pulse measures, while live EMG was recorded and monitored throughout the cortical 

silent period (CSP) protocol to provide feedback for muscle contraction. MEP peak-to-peak 

amplitudes (mV) for single- and paired-pulse protocols and CSP durations (ms) were measured for 

individual traces. 

Transcranial magnetic stimulation 

Neuronavigated-TMS was performed with a MagPro X100 (MagVenture A/S, Denmark) using 

a hand-held Cool-B65 figure-of-eight coil (outer diameter 75 mm) placed over the motor cortex 

with the handle pointing backwards and at a 45° angle. To assure consistent targeting throughout 

the experiment, we used a brain MRI template with a Brainsight TMS neuronavigation system 

(Rogue Research, Inc., QC, Canada) and a Polaris infrared-optical tracking system (Northern 

Digital Inc., ON, Canada). 
 

Regardless of the TMS waveforms and current direction, the real and sham visits began with 

the assessment of the motor hotspot (optimal site for eliciting large and reliable motor responses 

on the FDI). The hotspot, once found, was marked in the template-MRI and designated thereafter 

as the neuronavigation target for the remaining of the visit. The hotspot was assessed also at the 

beginning of the second visit with the same methodology. RMT was determined in each session 

following hotspot assessment. RMT was defined following the International Federation of Clinical 

Neurophysiology guidelines (Rossi et al., 2009, Rossini et al., 2015) as the lowest intensity that 

elicits an MEP of at ≫ 50 μV in at least 50% of the trials. 
 

Once RMT was determined, a battery of standard TMS neurophysiological measures of 

cortical reactivity and excitability was acquired: baseline cortico-motor reactivity; contralateral 

CSP; and three common paired-pulse protocols interleaved in a pseudorandom sequence. After the 

15-min tSMS or sham interventions these neurophysiological measures were repeated in the same 

order. For each TMS measure, individual data points ≫ 2.5 SD from each participant's mean were 

excluded from calculation and analysis. 
 

Baseline cortico-motor reactivity was assessed by the average peak-to-peak amplitude of 40 

unconditioned pulses at 120%RMT. The 40 post-intervention unconditioned MEPs were expressed 

as a percentage of change from pre-intervention mean MEP amplitude and divided in four groups 

of 10 averaged consecutive trials. The change in cortico-motor reactivity will be hereafter referred 

to as MEP amplitude. 
 

The CSP was assessed with 10 single pulses delivered at 120%RMT during isometric 

contraction of the FDI at about 25% of the participant's total strength. Participants could rest for 

few seconds between pulses and had constant visual feedback of their performance with the live 

EMG. The CSP was measured from the onset of the MEP to the resumption of pre-TMS EMG 

activity (Orth and Rothwell, 2004), and the duration was averaged across all 10 trials. 
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Paired-pulse protocols included SICI, long-interval intra-cortical inhibition (LICI) and 

intracortical facilitation (ICF) using standard parameters (Valls-Sole et al., 1992, Kujirai et al., 

1993). SICI and ICF consisted of a conditioning stimulus (CS) at 80%RMT, a test stimulus (TS) at 

120%RMT and an interstimulus interval (ISI) of 3 and 12 ms, respectively. In LICI, CS and TS 

were 120%RMT separated by an ISI of 100 ms. Stimulation consisted of 40 individual trials per 

protocol (for a total of 120 trials), administered in a pseudorandom, interleaved order to reduce 

blocking effects and with pseudorandomized inter-trial interval (4–6 s) to minimize expectation 

and avoid influence of a previous trial. The amplitude of the 40 conditioned MEP for each 

protocol was expressed as a percentage of unconditioned MEP amplitude and divided in four 

groups of 10 trials. The post-tSMS percentage of change from pre-intervention was then 

calculated. Post-to-pre paired-pulse change calculation will be referred to as SICI, LICI or ICF. 

Statistical analyses 

Stata software version 13.1 (StataCorp, College Station, TX, USA) was used for statistical 

analyses. Calculation of TMS data for each of the three waveforms/current directions (monoPA, 

monoAP, biAP-PA) included: %change post- to pre-intervention of MEP amplitude; pre- and post- 

intervention average CSP duration in ms; and %change of paired-pulse measures (SICI, LICI, and 

ICF). All analyses were conducted using a two-tailed 95% confidence interval (α = 0.05) 
 

All data were checked for normality using the Shapiro–Wilk test. MEP amplitude, LICI, SICI 

and ICF significantly deviated from normality (p's < 0.05), whereas CSP did not (p's ≫ 0.12). 

Consequently, MEP amplitude, LICI, SICI and ICF were transformed following previously 

described methods (van Albada and Robinson, 2007). 
 

After data normalization, we conducted repeated-measures analyses of variance (rm-

ANOVAs) to assess the effect of tSMS on cortical reactivity in both the real and sham visits. Each 

TMS measure was the dependent variable, the waveform/current direction, hereafter referred to 

as Waveform (monoPA, monoAP, or biAP-PA), was a between-subject variable with nested effects, 

and Intervention (real or sham tSMS) and Time (groups of 10 consecutive trials) were longitudinal 

within-subject variables. Follow-up Tukey's honestly significant difference (HSD) tests were used 

to conduct pairwise comparisons of the effects of the interventions for each different Waveform. 

Planned-contrast analyses were used to conduct pairwise comparisons of the intervention effects at 

each time point. Results were adjusted for multiple comparisons with the false discovery rate 

(FDR) method. 
 

Finally, long periods of muscle relaxation (Todd et al., 2006) or possible cumulative effects of 

the single-pulse TMS (Pellicciari et al., 2015) have been shown to progressively increase MEP 

amplitude over time. We tested whether these factors have influenced our results by conducting an 

rm-ANOVA. MEP amplitudes after sham condition were included as the dependent 

variable, Waveform (monoPA, monoAP, or biAP-PA) as the between-subject variable with nested 

effects, and Time (groups of 10 consecutive trials) as the longitudinal within-subject variable. 

Results 

Table 1 shows the mean (± SD) of each TMS measure before and after the intervention, and the 

effect and direction of the change due to the real/sham interventions. 
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Table 1. Transcranial magnetic stimulation neurophysiological measures. 

 

 

 
  Pre-Intervention Post-Intervention Effect 

MEP amplitude 

monoPA 
Real 1.4 ± 0.9 1.1 ± 0.9 ▼ 24.4% * ** 

Sham 1.2 ± 0.6 1.6 ± 1.5 ▲ 41.3% 

monoAP 
Real 2.2 ± 1.6 2.5 ± 1.3 ▲ 14.7% * 

Sham 2.1 ± 1.3 2.2 ± 1.5 ▲ 5% 

BiAP-PA 
Real 1.8 ± 0.5 2.1 ± 0.7 ▲ 20% 

Sham 1.5 ± 0.9 2.2 ± 0.9 ▲ 16.5% 

cSP 

monoPA 
Real 119.4 ± 32.5 126.4 ± 25.7 ▲ 5.9% * 

Sham 126.2 ± 31.1 136.4 ± 27.6 ▲ 8.1% * 

monoAP 
Real 127.1 ± 23.3 143.5 ± 50.8 ▲ 12.9% * 

Sham 133.4 ± 36.8 135.5 ± 27.5 ▲ 1.5% * 

BiAP-PA 
Real 139.1 ± 26.3 147.1 ± 18.3 ▲ 5.8% * 

Sham 138.7 ± 28.1 148.5 ± 20.0 ▲ 7.1% * 

% Δ LICI 

monoPA 
Real − 0.8 ± 0.1 − 0.9 ± 0.1 ▲ 3.3% * ** 

Sham − 0.9 ± 0.1 − 0.8 ± 0.1 ▼ 0.8% 

monoAP 
Real − 0.8 ± 0.4 − 0.8 ± 0.4 ▲ 1.6% * ** 

Sham − 0.9 ± 0.2 − 0.9 ± 0.2 ▼ 0.6% 

BiAP-PA 
Real − 0.9 ± 0.2 − 0.9 ± 0.1 ▲ 6.5% ** 

Sham − 0.9 ± 0.2 − 0.9 ± 0.2 ▲ 1.5% 

% Δ SICI 

monoPA 
Real − 0.7 ± 0.3 − 0.7 ± 0.2 ▲ 7.4%  * ** 

Sham − 0.7 ± 0.2 − 0.6 ± 0.2 ▼ 6.1% 

monoAP 
Real − 0.7 ± 0.3 − 0.5 ± 0.7 ▼ 31.8% ** 

Sham − 0.6 ± 0.4 − 0.6 ± 0.5 ▼ 0.5% 

BiAP-PA 
Real − 0.5 ± 0.4 − 0.4 ± 0.4 ▼ 22.3% ** 

Sham − 0.6 ± 0.3 − 0.4 ± 0.6 ▼ 38.7% 

% Δ ICF 

monoPA 
Real 0.04 ± 0.4 − 0.1 ± 0.5 ▼ 286.9% 

Sham 0.2 ± 0.4 0.4 ± 0.7 ▲ 145.3% 

monoAP 
Real 0.6 ± 1.0 1.1 ± 1.9 ▲ 104.9% 

Sham 0.3 ± 0.6 0.3 ± 0.6 ▼ 11.6% 

BiAP-PA 
Real 0.8 ± 0.7 1.1 ± 1.1 ▲ 29.4% 

Sham 0.6 ± 0.5 1.1 ± 0.8 ▲ 87.6% 

 

Mean and standard deviation (SD) are shown in the table. The black arrows indicate the % of increase (▲) or decrease (▼) 

in mean MEP amplitude (mV) or cSP duration (ms). For paired-pulse protocols the black arrows reflect the % of increase 

(▲) or decrease (▼) in mean inhibition (LICI, SICI) or facilitation (ICF). Abbreviations: % Δ, percentage of change from 

baseline; BiAP-PA, biphasic anterior–posterior–posterior–anterior; cSP, cortical silent period (ms); ICF, intracortical 

facilitation, MEP, motor evoked potential (mV); monoAP, monophasic anterior–posterior; monoPA, monophasic 

posterior–anterior; LICI, long-interval intracortical inhibition; SICI, short-interval intracortical inhibition. 

* Significant difference between pre and post measures at each intervention (p < 0.05). 

** Significant difference between real and sham interventions (p < 0.05). 

 



MEP amplitude inhibition after real tSMS was only observed when TMS was performed with 

monoPA (inhibition of 24.4%, Table 1). The rm-ANOVA analysis for the MEP amplitude showed a 

significant effect of Waveform (p < 0.001) and of Waveform–Intervention interaction (p < 0.001). 

No significant effects of Intervention, Time or for the rest of the interactions were observed 

(all p's ≫ 0.05). Post Hoc Tukey's HSD and planned contrast analyses, of Waveform and 

the Waveform–Intervention interaction respectively, showed a significant difference between 

monoPA with both monoAP and biAP-PA waveforms (p's < 0.05). MonoPA was the only waveform that 

revealed significant inhibition after real intervention (p < 0.001) whereas monoAP MEP amplitudes 

were significantly facilitated (p = 0.02, Fig. 1). Furthermore, the inhibitory effects of real tSMS 

when evaluated by monoPA were significantly greater than sham at Post-T3 and Post-T4 (i.e. 

pulses 21 to 30 and 31 to 40, respectively) (both p's < 0.02, Fig. 1B). Follow-up contrast analysis 

for monoAP waveform also showed an increase of mean MEP amplitude at real Post-T3 compared 

to sham condition although this change did not survive FDR correction (p = 0.18). BiAP-

PA waveform did not differ significantly from monoAP and the slightly facilitatory effects of the 

tSMS captured by BiAP-PA did not reach significance. 

 

Fig. 1. Effects of real tSMS and sham interventions on motor evoked potentials (MEP) amplitude. (A) Percentage of 

change (%Δ) (mean ± SE) from pre- to post-intervention evaluated in real and sham interventions for the three different 

waveforms. Negative values represent a decrease in MEP amplitude and an increase in inhibition in the motor cortex. (B) 

Comparison of the percentage of change from baseline (%Δ) (mean ± SE) through time for the three different waveforms 

and current directions. Real intervention is shown in black and sham intervention is in light gray. The dashed lines 

represent the transition time from pre-intervention (Pre) to post-intervention (Post-T1–T4) where the intervention took 

place. Abbreviations: MonoAP, monophasic anterior–posterior; BiAP-PA, biphasic anterior–posterior–posterior–anterior; 

MonoPA, monophasic posterior–anterior. 

When searching for possible influences of long periods of muscle relaxation or possible 

cumulative effects of TMS on sham MEP amplitude no significant differences were found 

for Waveform, Time or their interaction (all p's ≫ 0.3). 
 

All the Waveforms lengthened the duration of CSP regardless of the Intervention (Table 1). 

Accordingly, the rm-ANOVA for CSP showed a significant effect of Waveform (p < 0.01) 

and Time (p = 0.02) but no significant differences were found either for the Intervention or any of 

the interactions. Tukey's HSD for Waveform found that BiAP-PA was significantly different than 

both monophasic waveforms (p < 0.05) which inhibited more. None of the rest of follow-up 

analyses were significant. 
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All waveforms were able to elicit greater inhibition after the real intervention (Table 1) when 

performing LICI. Furthermore, both Waveform and Waveform–Intervention interaction were 

significant (p's < 0.001). Post hoc Tukey's HSD showed that all waveforms were significantly 

different form each other (p's < 0.05) but only the monophasic (monoPA and monoAP) were able to 

significantly inhibit after real tSMS (p's < 0.01, Fig. 2A–B). The effects of Time and its 

interactions did not reach significance. 

 

 

Fig. 2. Effects of real tSMS and sham interventions on paired pulse TMS protocols. (A, C–D) Percentage of change (%Δ)) 

(mean ± SE) from pre- to post-intervention evaluated in real and sham interventions for the three different waveforms. 

Negative values represent a decrease in motor evoked potentials (MEP) amplitude, in other words more inhibition after 

short- or long-interval intracortical inhibition (SICI or LICI, respectively) and less facilitation after intracortical facilitation 

(ICF). (B, D–F) Comparison of the percentage of change from baseline (%Δ) (mean ± SE) through time for the three 

different waveforms and current directions. Real intervention is shown in black and sham intervention is in light gray. The 

dashed lines represent the transition time from pre-intervention (Pre) to post-intervention (Post-T1–T4) where the 

intervention took place. Abbreviations: MonoAP, monophasic anterior–posterior; BiAP-PA, biphasic anterior–posterior–

posterior–anterior; MonoPA, monophasic posterior–anterior. 
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When performing SICI, only monoPA waveform captured an increase in inhibition after real 

tSMS (Table 1). The rm-ANOVA yielded significant Waveform and Waveform–

Intervention interaction effects (both p's < 0.001). Post Hoc Tukey's HSD analyses showed that 

BiAP-PA significantly differed from the other two waveforms (p < 0.05). Planned contrast tests 

revealed a significant increase in inhibition after real tSMS for monoPA when compared to sham 

(p = 0.005). BiAP-PA and monoAP, both showed a decrease in inhibition after both real and sham 

interventions. Nevertheless BiAP-PA led to a relative increase in inhibition after real when compared 

to sham tSMS (p = 0.005), whereas monoAP showed a significant decrease in inhibition (relative 

facilitation) after real intervention (p < 0.001, Fig. 2C). None of the specific time points post-

intervention survived FDR correction (Fig. 2D). 
 

Finally, among the TMS measures that were carried out, only ICF reflects the facilitatory 

mechanisms that take place in the motor system. MonoPA was the only waveform that was able to 

capture an expected overall decrease in facilitation after real tSMS, while monoAP and biAP-

PA revealed some degree of facilitation (Table 1 and Fig. 2E–F). However, due to the high variance 

of the sample the rm-ANOVA yielded no significant effects of Waveform, Intervention, Time or 

their interactions (p's ≫ 0.15, Fig. 2E–F). 

Discussion 

The present study investigated the effects of real and sham tSMS on motor cortex excitability, 

expressed in terms of changes in MEP amplitude, and cortical I/E balance characterized by CSP, 

LICI, SICI and ICF. Different TMS waveforms and orientations were used to selectively explore 

distinct intracortical neural components and networks. 
 

After the real intervention, the MEP amplitude and the paired-pulse protocols LICI and SICI 

showed an increase in intracortical inhibition, while CSP tended to have longer durations and ICF 

tended towards less facilitation of the conditioned MEPs. These effects of tSMS on the motor 

cortex excitability and inhibitory processes, however, were only revealed when explored with the 

TMS waveform monoPA. With monoAP an overall facilitation of MEP amplitude and less inhibition 

after SICI were observed; however, LICI induced more inhibition and no changes were observed 

in CSP or ICF. All together monoAP TMS showed an increase in cortical excitability measured by 

single-pulse MEPs but no clear effect on I/E balance was observed. Finally, no significant tSMS-

induced changes in excitability or I/E balance were captured by the biAP-PA TMS waveform. 
 

In order to understand the present findings, the best framework available nowadays is the 

theoretical canonical cortical model proposed by several authors in the past decades (Di Lazzaro et 

al., 2001a, Di Lazzaro et al., 2001b, Di Lazzaro et al., 2006, Di Lazzaro et al., 2008, Di Lazzaro et 

al., 2011, Di Lazzaro and Ziemann, 2013, Di Lazzaro et al., 2018). Although still uncertain, this 

cortical model suggests that depending on the TMS waveform and the current direction unique 

intracortical circuits are activated. As a brief example, monoPA and monoAP activate different sets 

of interneurons that arrive at the PTN and motor pathway several milliseconds apart. From studies 

recording changes in spinal cord activity after a TMS pulse (Di Lazzaro and Rothwell, 2014, Di 

Lazzaro et al., 2018), it has been proposed that monoPA activates the local intracortical 

interneurons in layers II and III eliciting primarily early I-waves, and particularly the I1-wave. 

Meanwhile, monoAP stimulates horizontal cortico-cortical connections from surrounding cortices 

or from other brain structures to the primary motor cortex (such as premotor areas or the thalamus) 

eliciting mainly later I-waves with slightly delayed latencies (namely I2–I5 waves). By 

comparison, biphasic pulses evoke a more complex group of D- and I-waves where the intensity of 

the pulse plays a greater role and the combination of waves evoked by the AP and the PA 

components may have competing effects on the outcome. 
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Previous studies on the effects of tSMS on the motor cortex excitability have found a decrease 

in MEP amplitude of about 25% after real tSMS. These results were first shown by Oliviero et al. 

(2011) and subsequently replicated by Silbert et al. (2013). Both groups used monoPA for their 

TMS procedures. Our results, in line with these prior reports, showed that the effects of the real 

tSMS yielded an average MEP amplitude decrease of 24.4% when the excitability of motor cortex 

was explored using the same type of waveform. In addition, we also explored the time course of 

these inhibitory effects and in relation to the responses to sham intervention. Relatively to sham, 

the inhibitory effects after the real tSMS were enlarged, showing a decrease up to a 60% when real 

and sham were directly compared. This difference between real and sham cortical excitability was 

not only due to a decrease of MEP amplitude after real tSMS, but also because there was a 

tendency towards MEP facilitation after sham. In contrast to the reduction of the MEP amplitude, 

the increase of MEPs following sham tSMS was captured by all waveforms and current directions 

as time went on with no significant difference between them. An increase of the motor responses 

after sham or no intervention has been previously related to prolonged periods of muscle 

relaxation (Todd et al., 2006) or possible cumulative effects of single-pulse TMS (Pellicciari et al., 

2015). Todd et al. found an increase of about 50% of MEP average duration after 20 min of muscle 

relaxation with no increase in peripheral muscle response (M wave) or spinal cord excitability (F 

wave). The authors, who used monoPA TMS in their experiments, argued that this change could 

be mainly explained by an increase in cortical excitability due to the lack of motor input signals. 

Their hypothesis is also supported by previous experiments with ischemic or anesthetic nerve 

blocks (Brasil-Neto et al., 1992, Ziemann et al., 1998) where cortical excitability raised after a 

short period of time. In another relevant study, Pellicciari et al. (2015) studied the effects of blocks 

of single-pulses over time with fixed and random ISIs using biphasic TMS waveform. The authors 

found that regardless of the pattern of ITIs the MEP amplitude increased over time and argued that 

single-pulse TMS may have a modulatory cumulative effect on corticospinal excitability similar to 

the modulation seen after rTMS. 
 

All of the above considerations suggest that the local SMFs of real tSMS are able not only to 

decrease cortical reactivity to some extent but also to prevent a rise in motor cortex excitability in 

response to either muscle inactivity or the cumulative facilitatory effects of repeated single-pulse 

TMS. In our results, this difference between real and sham for monoPA waveform was more 

evident at times T3 and T4 (about 4–6 min after the intervention). This time frame is well aligned 

with previous publications (Oliviero et al., 2011, Silbert et al., 2013). 
 

While our results using monoPA TMS are in line with those previously reported, it is important 

to highlight that this decrease in motor cortex excitability was not observed with either monoAP or 

biAP-PA waveforms. Remarkably, the effects captured by monoAP were facilitatory showing an 

average increase of MEP amplitude after real tSMS. To explain this increase it is necessary to 

return to the canonical cortical model and the specific neural circuits that monoAP explores. As 

mentioned above, monoAP evaluates cortico-cortical connections that most probably have 

regulatory inputs from other cortical regions or brain structures. One possibility may be that the 

SMFs inhibit those regulatory inputs releasing cortico-cortical connections that are explored with 

monoAP, thus resulting in an overall MEP facilitation. This hypothesis should be further tested 

with future experiments, for example recording from spinal cord epidural electrodes to test 

whether there is an increase in the late I-waves amplitude after real tSMS when evaluated by 

monoAP. In contrast to monophasic TMS, MEP amplitudes assessed by biphasic TMS did not 

show any significant decrease or increase after the real tSMS or when compared to sham. In this 

case, a plausible explanation may be that biphasic pulses engage competing mechanisms by 

activating both the cortico-cortical connections (AP-component) and the inhibitory intracortical 

networks in layers II and III (PA-component). 

 

Beyond cortical excitability, the balance between inhibition and excitation (I/E balance) within 

the motor system was evaluated. Single- and paired-pulse inhibitory protocols included SICI, LICI 

and CSP. These protocols have been associated with cortical GABA processes but the differences 

between them should be taken into consideration. GABA, which is the primary inhibitory 

neurotransmitter of the CNS, has two main membrane receptors: GABAA and GABAB. While 
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SICI is mediated by GABAA processes that exert a fast phasic ionotropic inhibition (Cherubini, 

2010), LICI and CSP are mediated by GABAB translating slow metabotropic inhibitory processes 

(Mott, 2015). Furthermore, spinal cord epidural recordings have shown that SICI and LICI 

produce a reduction in the amplitude of late I-waves with preservation of the I1-wave. In the CSP 

protocol there is a first facilitatory phase where both the I1-wave and the late I-waves are 

enhanced with a posterior reduction or inhibitory phase (Di Lazzaro et al., 2018). On the other 

hand, facilitatory processes were evaluated by ICF. It has been proposed that the NMDA system is 

the main mediator in the facilitation produced by ICF (Ziemann et al., 2015). However, no 

particular changes have been observed in D- or I-waves on epidural recording studies (Di Lazzaro 

et al., 2018). To sum up, each inhibitory protocol despite their similarities most probably activates 

distinctive neural circuits through a common inhibitory neurotransmission system with specific 

membrane receptors, whereas facilitatory processes remain much less understood. 
 

In a previous study, Nojima et al. (2015) evaluated the effects of tSMS on SICI, CSP and ICF 

when explored with a monoPA TMS waveform. Comparable to our monoPA results, the authors 

found greater inhibitory effects of SICI and a tendency towards longer CSP durations, suggesting 

that GABA-mediated inhibitory processes may be involved in the reduction of cortical excitability 

observed after real tSMS. However, a more recent study (Dileone et al., 2018) has shown that the 

effects of SMFs on SICI may be turned around by extending the time of stimulation implying that 

this relationship may be more complex than proposed before. The authors of the study suggested 

that tSMS may reduce glutamatergic excitation with short stimulation periods, whereas longer 

stimulations (30 min) may also reduce the phasic GABA-ergic inhibition. How these longer 

stimulation periods affect GABAB-metabotropic processes (e.g. processes measured by LICI and 

CSP) still needs to be elucidated. CSP is a complex motor response that involves both cortical and 

spinal circuits with a facilitatory response followed by an inhibitory phase. Therefore, changes in 

CSP durations may be more difficult to unveil. Another complex response that involves cortical 

and spinal processes is ICF. However, the authors did not find any reduction in facilitation, 

whereas our results suggest a trend towards lower facilitation after real tSMS reflecting an overall 

cortical inhibition. It is probable that decreasing the variance of the sample (by either increasing 

the number of pulses, the n of the sample or modifying the technical parameters for a more stable 

ICF response) this reduction in facilitation may be more obvious. In regard to this last point, it has 

been suggested that a minimum of 30 pulses is required for a reliable response to ICF protocol 

(Biabani et al., 2018). Thus, in future studies a greater number of pulses should be used in order to 

further clarify whether facilitatory processes may be also affected by tSMS. 
 

While the sample sizes may seem small, the power to detect significant differences has not 

been reduced. It should be noted that we were able to detect significant differences between the 

waveforms, and between real and sham interventions within each waveform. Also our samples are 

similar to those in previous studies. Furthermore, our results are in line and have expanded the 

results previously reported in the literature. A within-subject comparison of these parameters 

would have resulted in more power to detect significant differences in the effects of tSMS 

associated with pulse waveform and current direction. However, completing those studies using a 

within-subject design would have required six visits per subject, which may have reduced the 

feasibility of our study due to attrition. 

 

In conclusion, tSMS reduces motor cortical excitability and modulates the intracortical 

inhibition/excitation balance towards inhibition, but these effects are only captured by TMS 

monoPA. These results suggest that tSMS affects processes linked to specific intracortical neural 

circuits. In other words, the effects of SMFs selectively affect specific networks of intracortical 

interneurons in layers II and III that are evaluated with monoPA. Future studies investigating the 

effects of tSMS on other muscle cortical representations, of longer stimulation periods on other 

paired-pulse protocols such as LICI or the effects of tSMS on epidural responses when TMS is 

performed with different waveforms and current directions might provide further insights on the 

effects of SMFs on specific cortical circuits. 
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Glossary 

Cortical silent period (CSP) 

period of electrical silence in electromyogram that follows the activation of the corticospinal tract 

after a cortical stimulus during tonic contraction of the target muscle. 

 

D-wave 

evoked potential recorded at cervical spinal level, evoked by a stimulus over motor cortex (e.g. a 

transcranial magnetic stimulation pulse), which represents direct activation of the pyramidal tract 

neuron. 

 

I-waves 

evoked potentials recorded at cervical spinal level, evoked by a stimulus over the motor cortex 

(e.g. a transcranial magnetic stimulation pulse), which represent probable activation of cortical 

interneurons leading to the indirect activation of the pyramidal tract neuron. 

 

Intracortical facilitation (ICF) 

enhancement of the motor evoked potential following a pair of transcranial magnetic stimulation 

pulses over the motor cortex when the first stimulus has a low intensity and the inter-stimulus 

interval is between 8 and 30 ms. 

 

https://doi-org.accedys.udc.es/10.1016/j.brs.2013.03.007
https://doi-org.accedys.udc.es/10.1016/j.brs.2013.03.007


Long-interval intracortical inhibition (LICI) 

suppression of the motor evoked potential following a pair of transcranial magnetic stimulation 

pulses over the motor cortex when both stimuli have sufficient intensity and with an inter-

stimulus interval between 50 and 200 ms. 

 

Resting motor threshold (RMT) 

the minimum intensity at which there is a motor response after at least half of the stimuli. 

 

Short-interval intracortical inhibition (SICI) 

the suppression of the motor evoked potential following a pair of transcranial magnetic 

stimulation pulses over the motor cortex when the first stimulus has a low intensity and the inter-

stimulus interval is between 1 and 4 ms. 

 

TMS pulse waveform 

refers to the shape of the TMS pulse. Most commonly available waveforms are biphasic (the 

pulse is sinusoidal and has both positive and negative phases) or monophasic (the pulse is not 

sinusoidal and has a prominent positive or negative phase). 

 

TMS pulse current direction 

refers to the direction of the TMS-induced electrical current in relation to the scalp. Most 

commonly used current directions are posterior-to-anterior and anterior-to-posterio 

 

 

 


