
ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 160 (2019) 23–29

1877-0509 © 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.
10.1016/j.procs.2019.09.439

10.1016/j.procs.2019.09.439 1877-0509

© 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2018) 000–000
www.elsevier.com/locate/procedia

The 10th International Conference on Emerging Ubiquitous Systems and Pervasive Networks
(EUSPN 2019)

November 4-7, 2019, Coimbra, Portugal

Validation of SDN policies: a property-based testing perspective
Laura M. Castroa,∗, Nicolae Paladib,c

aUniversidade da Coruña, Centro de Investigación CITIC, Spain
bLund University, Sweden

cRISE Research Institutes of Sweden, Sweden

Abstract

Software-defined networks are being widely adopted and used in large and complex networks supporting critical operations. Their
increasing importance highlights the need for effective validation of SDN topologies and routing policies both prior and during
operation. The policies that configure an SDN deployment come from several, possibly conflicting sources. This may lead to
undesired effects such as node isolation, network partitions, performance drops and routing loops. Such effects can be formulated
as automatically testable reusable conditions using property-based testing (PBT). This approach allows to automatically determine
and formulate as a counterexample the minimum set of conflicting rules. The approach is especially useful when policies are
configured in an incremental manner. PBT techniques are particularly good at automatic counterexample shrinking and have the
potential of being extremely effective in this area.
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1. The challenge of SDN policies validation

Software Defined Networks (SDNs) have become popular in enterprise and research settings. Some of the reasons
for this are: (a) they establish a functional separation of concerns amongst application, control and infrastructure lay-
ers; (b) they facilitate network virtualisation and allow seamless cloud support; and (c) they enable network automation
and in-network processing through programmability.

With an SDN, an administrator can supervise and update networking rules during operation, change their priorities,
steer traffic, and perform other network management actions. This is done via a centralised, unified SDN controller
instead of tampering directly with heterogeneous hardware switches. In multi-tenant, cloud-based architectures like
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Fig. 1: Example of SDN with a tree topology

Fig. 2: Evolved SDN topology

data-centres or large Internet-of-Things (IoT) systems, this allows to manage system load in a controlled, flexible and
efficient manner. Considering that SDN are a cornerstone of the upcoming 5G, it is reasonable to think the adoption
of SDNs has hardly seen its peak [14].

Building larger and more complex SDN deployments results in increasingly complex policies to operate them.
Policies in an SDN deployment may be issued from several sources - by network applications, by the network
administrator, or by the network controller based on a configuration file. The policies may be added, removed, and
changed during operation and in arbitrary order. For example, in the SDN depicted on Fig. 1, requests from hosts
h1 − h4 to hosts h13 − h16 could be easily dropped at s1 with a rule like:

DROP REQUEST WHERE origin = s2 AND destination = s5 (1)

Later on, if there are too many packets flowing between hosts h9 − h12 and h13 − h16, the SDN administrator could
decide to add a new link between s4 and s5 to improve latency. A similar situation could later require a new link
between s2 and s4, resulting in a network topology similar to the one in Fig. 2. As a result, we inadvertently added a
path between hosts connected to s2 and s5 via s4. Requests amongst hosts h1 − h4, and hosts h13 − h16 routed through
this new path violate aforementioned rule 1, installed only in s1 where it was needed at the time.
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Admittedly, this is a simple scenario with few network components and a very straightforward rule. However,
the situation looks different when we consider cloud-size deployments with complex, dynamic and possibly conflict-
ing rules: the need and complexity of detecting potential violations and the interest of doing so before their effects
propagate in the system both become more evident.

The SDN controller can verify the policies before applying them. There are several tools that address this issue
from several perspectives [13]. However, many such tools focus on verifying reachability and loop absence; moreover,
most of them do not scale to large networks with hundreds of thousands of nodes.

A different angle to the situation described in our previous example would be adding rule 1 when the network has
already reached the configuration shown on Fig. 2. Whether we would consider this an ineffective measure because
traffic from s2 would still be able to reach s5 through s4, or a purposeful measure aimed to just alleviate s1 load, it
would be difficult to assess in a fully-automatic way, and it is, to the best of our knowledge, outside of the scope of
the existing approaches.

In this work-in-progress, we explore whether property-based testing (PBT) techniques can fill in the above gaps
and become a potent tool for SDN policy validation. PBT allows for a semi-formal description of requirements that
suits perfectly how SDN policies are defined. We have successfully run experiments showing that SDN network de-
ployments can be translated into easy-to-reuse PBT stateful models with invariants describing its enforced policies.
We then used these descriptions to effectively test for rule conflict situations like those described above. We imple-
mented the experiments using popular open-source tools: Hypothesis [7], a PBT tool for Python; and MiniNET [6], a
simulator implementing OpenFlow [8], a widely used SDN protocol.

2. Property-based testing for SDN validation

Property-based testing [2] (PBT), and in particular stateful property-based testing [1], is a testing technique that
automates the validation of invariants, called properties, given a model of the subject under test (SUT) and rules for
modelling its behaviour (evolution and change during operation). Given a stateful model, a PBT tool can automatically
assess its behaviour generating, running, and evaluating large numbers of sequences of interactions. The random
element introduced during generation in both test data and test sequence composition and length, accounts for an
effective complement, or even replacement, of more traditional example-based testing (i.e. unit testing) [3].

One of the most appreciated features of PBT techniques is shrinking. Upon fault detection (i.e. inconsistency be-
tween SUT expected behaviour according to its model, and SUT actual behaviour), shrinking represents the automatic
simplification of both sequence of interactions input data in order to reproduce the same faulty behaviour.

Our application of PBT to SDN policies validation demonstrates two complementary approaches, namely:

Given a fixed set of policies, an SDN deployment can be automatically evolved (for example, by adding and re-
moving links or changing bandwidth) to detect violations.

The policies in the fixed set act as invariants, and the PBT stateful model features SDN changes as interactions.
Sequences of SDN changes are then randomly generated as test cases, with invariants being checked both after each
change and after the whole sequence. Upon invariant violation detection, SDN change sequence is reduced to show
a minimum counterexample, so a simplified network is presented, where all components which are not affected by
the issue are removed. For our example in Sect. 1, test model invariant (cf. 3a) and counterexample (cf. 3b) would
look as shown in Fig. 3. Actually, the first counterexample found by our model (cf. Fig. 3c) was directly linking
s2 and s5, but since that sort of “configuration error” will likely be immediately spotted, we modified the test data
generator tree link so that a combination of at least two links were needed to hit the error. Due to the random
component of PBT, sometimes test run would yield a different counterexample: linking s2 to s3 and s3 to s5 (and
any of the two in the reverse order).

Given a fixed SDN deployment, policies can be generated and applied in random order, to automatically detect
conflicts.

In this case, the interactions generated by the PBT model correspond to new SDN policies. After a new policy
is generated and added to the SDN, all accumulated policies are checked. Upon conflict detection, the shrinking
process is able to eliminate from the test case the policies that do not take part in the detected issue, effectively
trimming the list of conflicting policies to the incompatible ones.
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@invariant()
def fixed_policies(self):

print ’*** INVARIANT ***’
host1 = self.net.get(’h1’)
host16 = self.net.get(’h16’)
value = self.net.ping([host1,

host16])
assert (value == 100) # reachability measured

# in % of dropped pckgs

(a) Invariant for SDN reachability

Falsifying example:
+++ Created network
*** INVARIANT ***
h1 -> X
h16 -> X
*** Results: 100% dropped (0/2 received)
+++ Linking s2 and s4
*** INVARIANT ***
h1 -> X
h16 -> X
*** Results: 100% dropped (0/2 received)
+++ Linking s4 and s5
*** INVARIANT ***
h1 -> h16
h16 -> h1
*** Results: 0% dropped (2/2 received)
----------------------------------------
Ran tests in 2868.531s

FAILED (failures=1)
****************************************

(b) Counterexample found automatically for invariant violation

class MininetStatemFixedPolicies(RuleBasedStateMachine):
def __init__(self):

super(MininetStatemFixedPolicies, self).__init__()
self.net = TreeNet(depth=2,fanout=4,autoStaticArp=True)
self.net.start()
self.net.configLinkStatus(’s1’, ’s2’, "down")
self.net.configLinkStatus(’s1’, ’s5’, "down")
print ’+++ Created network: {0}’.format(self.net.keys())

@rule(link = mns.tree_link())
def connect_components(self, link):

print ’+++ Linking {0} and {1}’.format(link[0], link[1])
self.net.configLinkStatus(link[0], link[1], "up")

@rule(link = mns.tree_link())
def disconnect_components(self, link):

print ’+++ Unlinking {0} and {1}’.format(link[0], link[1])
self.net.configLinkStatus(link[0], link[1], "down")

def teardown(self):
self.net.stop()

(c) PBT model

Fig. 3: Example of PBT for SDN validation with fixed policies

For the second situation in Sect. 1, test model, test invariant, and counterexample would look like Fig. 4. For
simplicity, the policies generator policy we have defined produces only two kinds of basic rules: (reachable,
source, destination) and (unreachable, source, destination), that are all in all enough to demonstrate our
approach.

In both cases, PBT models are very small (55 and 54 SLOC respectively1, with a shared module where utility
functions and data generators are defined, amounting an additional 48 SLOC), and yet reusable in a large amount, if
we consider that only the network definition (that is to say, the class constructor) would need to be modified.

Also in both cases, potential issues are reported back the administrator in a human-readable form (cf. Fig. 3b
and 4b). Although the simplification process that counterexamples are subjected to using PBT are general and not
SDN-specific, they are somewhat equivalent to sub-graph exploration or determination of subnet(s) affected by change
that other tools and methods perform.

1 The models in Fig. 3c and 3c do not contain import sentences and the like, for the sake of simplicity.
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@invariant()
def fixed_deployment(self):

print ’*** INVARIANT ***’
result = [True]
for (p, (source, destination)) in self.policies:

value = self.net.ping([self.net.get(source),
self.net.get(destination)])

result.append({
’reachable’: (lambda x: (x == 0)),
’unreachable’: (lambda x: (x == 100))

}[p](value))
for r in result: assert r

(a) Invariant for SDN coherence

Falsifying example:
+++ Created network
*** INVARIANT [] ***
+++ Applying new policy: (’reachable’, (’h1’, ’h12’))
*** INVARIANT [(’reachable’, (’h1’, ’h12’))]***
h1 -> h12
h12 -> h1
*** Results: 0% dropped (2/2 received)
*** ASSERT 0.0 pckg drop between h1-h12
+++ Applying new policy: (’unreachable’, (’h1’, ’h14’))
*** INVARIANT [(’reachable’, (’h1’, ’h12’)),

(’unreachable’, (’h1’, ’h14’))]***
h1 -> h12
h12 -> h1
*** Results: 0% dropped (2/2 received)
*** ASSERT 0.0 pckg drop between h1-h12
h1 -> h14
h14 -> h1
*** Results: 0% dropped (2/2 received)
*** ASSERT 100.0 pckg drop between h1-h14 FAILED
+++ Dropping network
----------------------------------------
Ran tests in 25.311s

FAILED (failures=1)
****************************************

(b) Counterexample found automatically for unfeasible policy set

class MininetStatemFixedSDN(RuleBasedStateMachine):
def __init__(self):

super(MininetStatemFixedSDN, self).__init__()
self.net = TreeNet(depth=2,fanout=4,autoStaticArp=True)
self.net.addLink(’s2’,’s4’)
self.net.addLink(’s4’,’s5’)
self.net.start()
self.policies = []
print ’+++ Created network: {0}’.format(self.net.keys())

policies = Bundle(’policies’)

@rule(target = policies, p = mns.policy())
def update_policies(self, p):

print ’+++ Applying new policy: {0}’.format(p)
self.policies.append(p)

def teardown(self):
self.net.stop()

(c) PBT model

Fig. 4: Example of PBT for SDN validation with fixed deployment

3. Discussion

Our preliminary experiments, reported here, show that modelling SDN network behaviour fits the PBT abstractions
nicely. The models we have designed are admittedly simple, as are the examples we have chosen, but represent the
first step into more complete, realistic ones.

Randomly generating policies, as we have seen in Fig. 4c, is of course not a very effective nor efficient way of
introducing conflict. We do plan on using real cases with industrial deployments and operational sets of policies to
further evaluate our approach. In doing so, policies would be instead randomly sampled from such existing sets built
or configured by human experts. Similarly, reachability invariants (cf. Fig. 3a) will likely become more complex in
larger and more sophisticated SDN topologies, and possibly dynamic as well. However, we are confident that they can
be defined in a way that their logic is interpreted from configuration parameters or inferred from PBT model status,
maintaining their reusability.

Another aspect to extend our experiments to is the different parametrisations supported by MiniNET. So far, we
have relied on the default controller (namely OpenFlow reference controller), but there are several alternatives that can
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be configured (i.e. Ryu, NOX, Open vSwitch. . . ), and also the option to use custom, externally-run controllers. Given
that the choice of controller can significantly impact the behaviour of the SDN [12], this is very relevant. The same
applies to topological options: while we have chosen a tree net as basis, there are others (linear, torus. . . ), alongside
with the possibility of full customisation [11]. Last but not least, switches, hosts and other network components are
also fine-tunable, in aspects like link direction, link bandwidth, RTT, etc. An exhaustive review of all use cases and
configuration options is unfeasible, considering that SDN deployments vary in size and complexity from small-scale
test labs to globally distributed network overlays connecting multiple data centres [4]. However, our approach can be
benchmarked against existing solutions on a common data set, sufficiently representative of the real-world complexity.

The examples we have discussed were executed in a 4-core machine (i7 running at 2.4GHz each) with 16GB of
RAM, where MiniNET version 2.2.2 was running inside a VirtualBox (the recommended setting) on Ubuntu 19.04.
Figs. 3b and 4b report two considerably different test running times: over 45 minutes vs. less than half a minute. PBT
tools typically run 100 test sequences in each execution, but given that these are failing runs (that is to say, runs in
which failures are found and shrinking is performed), some test sequences will pass but some others will not, and the
latter are typically shorter. However, it is hard to further elaborate on this point, because Hypothesis, the PBT tool
we have applied, does not excel for its introspection tools. Empirically, we can partially explain the rather noticeable
two-orders of magnitude difference between the fixed policies vs. fixed topology experiments due to the timeouts used
by MiniNET to determine that a link is down when pinging from one host to another. Since the fixed policies model
features setting links up and down as part of the test sequence operations, those timeouts are much more frequently
hit than in the case of the fixed policies, where links are stable and it is the policies checking for reachability that are
dynamically added to the tests. All in all, a more exhaustive evaluation of test performance with regard to, at least,
network size and number of policies, is a required next step to evaluate the validity of this work, especially with regard
to its applicability to large scale SDN testing.

Finally, even if we consider the test feedback shown in Figs. 3b and 4b readable, less PBT-experienced developers
and practitioners might have a different opinion. Using a tool compatible with MiniNET, such as the one we used to
automatically generate the diagrams in Figs. 1 and 2 [9], could be a friendlier alternative and thus have a positive im-
pact on the adoption of this approach. A similarly significant change in this regard would be replacing Hypothesis by a
more powerful PBT tool, such as Quviq QuickCheck [10]. Quviq QuickCheck is arguably the most powerful PBT tool
at the moment, and features more self-explanatory feedback, in our opinion. Even if this means adding a communica-
tion indirection between Erlang (the language of Quviq QuickCheck) and Python (the language of MiniNET), which
will have an impact in test performance, the level of documentation, support, and more importantly, of model expres-
siveness, could very well bring in enough benefits to compensate for the additional running time. Another solution
in this case is to use a network simulation tool invokable from Erlang, such as OMNET++ implemented in C++ [5].
Ultimately, for large SDN deployments the choice of the simulation tool will depend on the available support for the
most relevant network properties.

While incorporating all these aspects into our approach is adamant to the final applicability and impact of this
work, we consider this proof-of-concept illustrative of the potential of PBT in this area.

4. Conclusions

In this paper, we outline the possibility of using PBT as validation strategy for SDN policies. Although the field
of work in SDN verification is rather extensive, we believe there are gaps to be filled, especially when it comes to
solutions usable in practice.

Our experiments demonstrate that PBT, in particular stateful PBT, can be used to effectively model and test SDN
policies from two complementary perspectives: testing enforcement of a fixed set of policies on an evolving SDN, and
conversely, testing enforcement of evolving set of policies on a fixed SDN.

We intend to keep exploring the potential of PBT in the context of SDN policies validation. In particular, we plan
to extend our work to massive SDNs and very large sets of policies, as well as to benchmark the performance of PBT
models testing on a large scale.
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