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Abstract

The proliferation of GPS devices in smartphones, vehicles and sport wearables on the one
hand, and geolocation mechanisms (such as smart cards in public transportation) on the
other hand, have led to an unprecedented ability to gather and store trajectories that
originate from people’s movements during their daily schedules. However, no standard data
models exist to represent these trajectories and, in addition, neither traditional databases
nor new NoSQL databases are adequate for the representation and exploitation of the
complex spatio-temporal data that make up such trajectories. This general outlook is even
more complex once we consider that whenever we are storing information related to the
context of public transportation passengers, customers inside a mall, or simply vehicles
moving in a city we must deal with a true Big Data scenario in which guaranteeing an
efficient response can be very challenging.

Consequently, in this thesis we address the design of compact data structures for the
representation of the followed trajectories, both in the context of vehicles and/or people
moving in urban or periurban spaces, as in the context of itineraries of commuters in
public transportation. Apart from designing these compact data structures that allow us
to represent the Big Data scenario usually seen in this application domain, we have also
designed the algorithms that allow the efficient exploitation of the underlying information.

We have implemented algorithms that not only to solve the classic spatio-temporal
queries, such as obtaining the position of a moving object at a time instant, reconstructing
the trajectory of an object, or even spatio-temporal window queries (which objects are
inside a spatial range either within a time window or at a time instant), but also solve more
specialized queries for the analysis of the trajectories that travelers make. For instance, we
have designed algorithms to query the number of travelers that start (or finish) their trip
in a certain place within a given time interval, or the number of travelers that switch from
one line from the public transportation network to another one using a particular stop, or
even the number of travelers that had started their trip in a certain place (which can be
either a stop or a whole neighborhood) and finished it in another place.

Both the designed structures and the querying algorithms, which are available at https:
//github.com/dgalaktionov/compact-trip-representation, have been experimentally
evaluated. With these structures we were able to represent, in a compact space of 100 MiB,
a collection of approximately a million and a half of taxi trajectories, or alternatively ten
million trajectories consisting of itineraries over public transportation networks (the latter
being more compressible). In both cases, we can solve most of the considered exploitation
queries in the order of microseconds, with algorithms that scale logarithmically with respect
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to the increase in the number of stored trajectories.
Finally, considering that this work is considered an industrial thesis, and that this

requires showing that the research performed is of clearly applied nature, we have developed
a web application with Geograhic Information Systems technology, which integrates with
our compressed structures and algorithms instead of relying on common spatial databases.
This application, which provides a simple and intuitive user interface that represents the
map of a transportation network, enabled an end user to run the aforementioned querying
algorithms over a large collection of historic trajectories. Likewise, this interface presents
the query results in a graphical and intuitive way.



Resumen

La proliferación de por un lado de dispositivos GPS en smartphones, vehículos o pulseras
de deporte, y por otro, de otros mecanismos de geolocalización (como las tarjetas de pago
de trasporte público), han dado lugar a una capacidad inédita de obtener y almacenar
las trayectorias que generan las personas al moverse durante sus quehaceres diarios. Sin
embargo, no existen modelos de datos estándar para representar dichas trayectorias, además
de que ni las bases de datos tradicionales, ni las nuevas bases de datos NoSQL se adecúan bien
a la representación y explotación de esos datos complejos de naturaleza espacio-temporal
que son las trayectorias. Para hacer más complejo aún el panorama, se constata además que
cuando se quieren almacenar trayectorias de viajeros de transporte público, o de clientes en
centros comerciales, o simplemente de personas o vehículos moviéndose por una ciudad hay
que enfrentarse a un verdadero escenario Big Data en el que la eficiencia en la respuesta a
las consultas se hace muy difícil.

Por todo ello, en esta tesis se aborda el diseño de estructuras de datos compactas para
la representación de las trayectorias seguidas, por un lado, por vehículos y/o personas
que se mueven por las calles de un entorno urbano o periurbano acotado, y por otro los
itinerarios de viajeros de transporte público. Además de diseñar esas estructuras de datos
compactas, que permiten representar ese escenario Big Data habitual en estos dominios de
aplicación, se han diseñado los algoritmos que permiten la explotación eficiente de dichos
datos.

Hemos implementado algoritmos que, además de resolver las consultas
espacio-temporales clásicas, tanto las de posición de un objeto en un tiempo, o
trayectoria de un objeto durante un intervalo temporal, como las consultas de rango
espacio-temporal (qué objetos están en una ventana del espacio en un instante o intervalo
temporal) resuelven también consultas más especializadas para el análisis de trayectorias
de viajeros. Por ejemplo, hemos diseñado algoritmos para consultar el número de viajeros
que inician (o terminan) su viaje en un lugar dado dentro de un cierto intervalo temporal,
o el número de viajeros que conmutan de una línea a otra de la red de transporte público
en una parada concreta, o incluso el número de viajeros que inicia su viaje en cierto lugar
(parada o barrio) y lo termina en otra parada o barrio determinados.

Tanto las estructuras de datos diseñadas como todos los algoritmos de consulta, que
están disponibles en https://github.com/dgalaktionov/compact-trip-representation,
han sido evaluados experimentalmente. Con estas estructuras es posible representar en un
espacio de 100 MiB una colección de aproximadamente un millón y medio de trayectorias de
taxis, o alternativamente diez millones de trayectorias consistentes de itinerarios sobre redes
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de transporte público, al ser éstas últimas más compactas. En ambos casos, podemos resolver
la mayor parte de las consultas de explotación planteadas en el orden de microsegundos,
con algoritmos que escalan de forma logarítmica con respecto al incremento en el número
de trayectorias almacenadas.

Por último, considerando que este trabajo está considerado como una tesis industrial,
lo cual requiere demostrar que el trabajo investigador realizado es de naturaleza aplicada,
hemos desarrollado una aplicación web con tecnología de Sistemas de Información Geográfica
que, en vez de trabajar sobre una base de datos espacial convencional, utiliza la estructura
comprimida y los algoritmos para su explotación diseñados en la tesis. Esa aplicación
facilita, mediante una sencilla e intuitiva interfaz de usuario que representa el mapa de la
red de transporte, el lanzamiento de los algoritmos diseñados sobre un amplio conjunto
de trayectorias de viajeros. Del mismo modo esa interfaz presenta los resultados de las
consultas de modo gráfico e intuitivo.



Resumo

A proliferación de por un lado dos dispositivos GPS en smartphones, vehículos ou brazaletes
deportivos e por outra banda dos mecanismos de xeolocalización (como as tarxetas de pago
do transporte público), teñen dado lugar a unha capacidade sen precedentes para obter e
almacenar as traxectorias que a xente xera ao moverse durante as súas tarefas diarias. Sen
embargo, non hai modelos de datos estándar para representar ditas traxectorias, e ademais
de que nin as bases de datos tradicionais nin as novas bases de datos NoSQL se adecúan
ben á representación e explotación dos datos tan complexos e de natureza espazo-temporal
que son as traxectorias. Para complicar aínda máis o panorama, tamén se comproba que
cando se queren almacenar traxectorias de viaxeiros de transporte público, ou de clientes
en centros comerciais, ou simplemente de persoas ou vehículos que se desprazan por unha
cidade, se ten que afrontar un verdadeiro escenario de Big Data no que a eficiencia na
resposta ás consultas se fai moi difícil.

Por iso, esta tese trata do deseño de estruturas compactas de datos para a representación
dos camiños seguidos, por un lado, por vehículos e/ou persoas que se desprazan polas
rúas dun contorno urbano ou periurbano delimitado, e por outro lado os itinerarios de
viaxeiros en transporte público. Ademais de deseñar estas estruturas compactas de datos,
que permiten representar dito escenario Big Data habitual nestes dominios de aplicación,
deseñáronse algoritmos que permiten a explotación eficiente dos devanditos datos.

Estes algoritmos, ademais de resolver as clásicas consultas espazo-temporais, tanto
a posición dun obxecto nun instante dado, como a traxectoria dun obxecto durante un
intervalo de tempo, así como as consultas de rango espazo-temporal (que obxectos están nun
rango do espazo nun intre ou nun intervalo temporal) tamén permiten resolver consultas
máis especializadas para a análise de traxectorias de viaxeiros. Por exemplo, deseñamos
algoritmos para comprobar o número de viaxeiros que inician (ou rematan) a súa viaxe nun
determinado lugar nun certo intervalo de tempo, ou o número de viaxeiros que cambian
dunha liña a outra da rede de transporte público nunha parada concreta, ou incluso o
número de viaxeiros que comezan a súa viaxe nun determinado lugar (parada ou barrio) e
rematan noutra parada ou barrio específico.

Tanto as estruturas de datos deseñadas como todos os algoritmos de consulta, dispoñibles
en https://github.com/dgalaktionov/compact-trip-representation, foron avaliados
experimentalmente. Con estas estruturas é posible representar nun espazo de 100 MiB unha
colección de aproximadamente un millón e medio de traxectos de taxi ou, alternativamente,
dez millóns de traxectos consistentes en itinerarios en redes de transporte público, por
ser estes últimos máis compactos. Nos dous casos, podemos resolver a maioría das
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consultas de explotación plantexadas na orde de microsegundos, con algoritmos que escalan
logarítmicamente con respecto ao aumento do número de traxectorias almacenadas.

Finalmente, dado o carácter de tese industrial deste traballo, foi necesario que a
investigación realizada tivese un carácter claramente aplicado, polo que se implementou
unha aplicación web con tecnoloxía de Sistemas de Información Xeográfica que, no canto
de traballar nunha base de datos espacial convencional, usa a estrutura comprimida e
algoritmos de explotación deseñados na tese. Esta aplicación facilita, mediante unha
interface de usuario sinxela e intuitiva que representa o mapa da rede de transporte, o
lanzamento dos algoritmos deseñados nun amplo conxunto de rutas de pasaxeiros. Do
mesmo xeito, dita interface presenta os resultados das consultas dun xeito gráfico e intuitivo.

xvi
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Chapter 1

Introduction

1.1 Motivation
The last years have seen a widespread adoption of technological methods focused in
registering the movements of individuals, most notably the smartphone apps for navigation
and map visualization, which often collect the followed GPS trajectories. Similar
applications have also been adopted by companies that manage fleets of vehicles, such as
taxi and emergency services. When the data about a large amount of these individual
trajectories is collected and aggregated, it can be used to infer mobility patterns [LKG+12]
or, if the collection is complete enough, to model a traffic scenario from the collected
sample, as for example was shown in [JL09] with the streets of Hong Kong.

Moreover, in the context of public transportation networks, transportation companies
have adopted numerous advances in wireless technologies, sensor networks (especially
those related to RFID) and ubiquitous computing, leading to a widespread adoption of
passenger tracking technology by public transportation services, making the collection of
large amounts of data about the travel habits of these passengers1 easier than ever before.
This in turn has opened the door for the exploitation of this kind of information to study
the demand (usage) of a network, as opposed to the well-known techniques to analyze the
offer (routes, timetables, etc...). Examples of useful analysis tasks can be the measures of
accessibility and centrality indicators, referred to how easy is to reach different locations or
how important certain stops are within a network [MTA07, EGL11, WZTL15]. All these
measures are based on some kind of counting queries that determine the number of distinct
trips that occur within a spatial and/or temporal window.

To enable these new kinds of demand studies, it is imperative to develop mechanisms to
efficiently persist and manage these vast (and always increasing) collections of data. When
we also take into account that efficient query patterns need to be supported for this data
to be “useful”, the solution clearly constitutes an emerging technological challenge that is
being approached from several different domains, and hundreds of ad-hoc solutions have
been implemented by all the Smart Cities around the globe.

1Alternatively called “users” in the context of transportation companies.
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2 Chapter 1. Introduction

Therefore, it follows that a practical representation that supports efficient indexing
for not only collected GPS trajectories, but also collections of trips over a transportation
network, would have numerous possible applications.

In [TCY+18] we can see how it is possible to combine GPS trajectories with Automated
Fare Collection (AFC) data to recreate complete trips and study the ridership by area.
Alternatively, in [WLS+18] the complete trips are inferred from the AFC data, to later
analyze behaviour patterns and preferences of the travelers with the goal of improving the
efficiency of the network. Another application that is enabled by such analysis is targeted
advertising [ZGN+17], as the interests of a user can be profiled by their travel patterns.
Other works focus on analyzing the usage of individual stops or stations, such as [CSC12],
where the authors determine that congestion times in the metro network of London are
predictable and occur in narrow time intervals. Armed with such information, an user may
choose a different travel pattern to avoid the crowd and enhance their overall experience.

When we consider practical studies focused on trajectories over street networks, we
can find works centered around studying taxi ridership. One notable example is [YZZX13],
that discusses a two-way taxi recommendation system, where taxi drivers are pointed to
the most profitable parking spaces while passengers are directed to the street segments
with a high probability of finding a vacant taxi.

One key observation from all the works referenced above is that a mere collection of
trajectories or time-stamped points over a two-dimensional space of latitude and longitude
would not be rich enough to perform these studies. They are therefore required to work
with a representation that allows for some degree of semantic information. At the very least,
that information must include references to network elements (stops, lines or streets), and
sometimes even some (anonymized) user identifier. Therefore, we require a representation
that differs from the traditional spatial indexes and databases, as it must support efficient
access methods based on network elements.

1.2 Problem definition
Considering the nature of the discussed problems, and also the different sources of
information, we have identified two distinguishable contexts for transportation analysis:

1.2.1 Trajectories over urban streets
In this context, a trajectory can start anywhere, at any time, and follow any arbitrary path
of segments along of streets, which can have either of two alternative graph representations:
assign a vertex for each intersection and edges for street segments that connect these
intersections, or alternatively, assign a vertex for each street segment with no intersections
and edges that connect navigable street segments. In any case, the geolocated trajectory
must be mapped to a path of street segments in order to enable analyzing the movement
patterns between locations (which are always bound to streets in urban contexts) and
average traffic load at a given time of the day. Trajectories of taxis, bicycles, or vehicle
fleets fall into this context. For these systems, queries of interest may involve retrieving
the points of interest where these trajectories could end, or street segments that could be
part of a given path.
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Figure 1.1: Example of a typical urban street layout (left) and a subway
network (right).

Sources: [Boe17] (left), http://www.stm.info/fr/infos/reseaux/metro (right)

Our definition also requires to be able to speak for a concept of time. For these
trajectories where an object moves freely over the network of streets, a representation of
the time intervals when each street segment was traversed may be considered. In order to
achieve a compact representation, time would be expressed in discrete intervals ranging
from one to thirty minutes. Larger sizes for these time intervals may not be practical
since many of the trajectories would be completed in less than thirty minutes, thus fitting
completely in the same interval, thus defeating the purpose of representing a time interval
for every segment of the path.

1.2.2 Trips over public transportation networks
In this case, instead of individual trajectories we consider trips, which must start at
predefined points (stops or stations) at set times that are defined by the vehicles that stop
at those points. These vehicles follow predefined paths along these points, following lines.
Therefore, a trip follows a path along a network of stops and lines, which can be formed
over a street network as in the case of buses, or hold very little relation to the streets, as
in the case of a subway. However, even when the transportation network is related to a
street network, it is more interesting to define the trips using the stops and lines from the
transportation network, as enumerating the individual street segments that are traversed
would have a high redundancy with no clear benefit. Note that defining user trips over
these network elements will still produce redundant collections, as users that travel in the
same vehicle would produce identical parts of trips. This property is one of the keys to
achieve a compact representation, since the analysis tasks revolve around the usage and
trip patterns of network elements (stops and lines) instead of individual trips. This context
applies to bus and metro systems, along train lines and periurban buses.

In this working context, we will operate with a network model. For a public

http://www.stm.info/fr/infos/reseaux/metro
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transportation network, it could be pertinent to consider a more rich representation
than a mere graph of stops and lines, thus also taking into account the routes formed by
transportation vehicles, such as buses or trains, visiting stops at set times and allowing
commuters to board or alight at them. A well-known model that includes these network
elements, among others less interesting for our problem, is the General Transit Feed
Specification (GTFS)2, which is widely adopted by open data platforms in numerous Smart
Cities.

Therefore, a trip will be defined as a path formed by a sequence of stops, that was
traversed by a single passenger/commuter in one trip, with an origin and a final destination.
In this definition, we must consider some practical limitations to the nature of a trip, as
one could argue whether commuters that take more than one hour to switch a line are
actually switching or just finalized their initial trip and are starting a second one with some
new destination. These cases are complicated to unambiguously decide in practice, and
therefore our approach will tend to set hard limits on waiting times and walking distances
between stops for a single trip.

In a network model where the routes are formed by transport vehicles that follow lines,
there would be no need for representing the exact time at which each user has boarded on a
stop. We will only have to asign a route identifier, as the stopping times would be already
available in our modelled network, thus avoiding some redundancy in the representation of
trips.

Massive data collection techniques exist for both of the contexts discussed above, as
will be later seen in Section 2.1, leading to the problem of efficiently handling these vasts
amounts of information that both contexts produce. Apart from the usual well-known
Big Data solutions (Hadoop, Spark, Druid. . . ), there is an ongoing research line on the
application of succint data structures for some of these goals. In particular, it is possible to
apply many of the techniques from the field of Compact Data Structures to build autoindexed
representations that support efficient query patterns tailored for specific information needs,
while offering some sort of compression with respect to a more traditional representation.

A usable solution would also require an user interface that enables the exploitation
of this information by researchers, transportation companies, city administrations and
any other kind of end users. This interface must, at the very least, allow visualizing the
network elements on a map, also granting the ability to make queries over these elements
in an intuitive and responsive way, while respecting the usual quality principles of any
user-oriented software of this kind.

1.3 Contributions
As the two contexts from Section 1.2 lead to different ways of structuring and querying
the information, it is natural to expect at least two different representations, one for
each context. For this reason, in this work we have applied compact data structures and
techniques to design novel representations that are able to handle massive collections of
data related to user moving and transportation habits. Our proposed representations cover
both contexts, as well as offer a fair trade-off for different query needs, while at the same
time ensuring that our proposals can be implemented in a real-world scenario, for which

2https://developers.google.com/transit/gtfs/

https://developers.google.com/transit/gtfs/
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we evaluate the performance of our representations with realistic query cases over real
datasets.3

Furthermore, as a proof of the practicability of our approach, we have developed an
end-user application that is based on our representations, and allows a user to perform
queries through a Geographic Information System (GIS) web interface. Unlike traditional
GIS interfaces, ours is focused on offering convenient methods to query historical user trips
by the network elements instead of purely spatial relationships, and achieves far superior
performance when compared to systems backed by traditional database systems.

In conclusion, we present an end-to-end platform around representations based on
compact data structures to process, store, query and visualize mined public transportation
usage data. To the best of our knowledge, this is the first work to accomplish building such
integrated platform, although other works exist that contemplate the use of compact data
structures for trajectories or moving objects (see Section 2.3).

1.4 Outline
The rest of this thesis is structured as follows: In the following Chapter 2, we review
the literature on existing methods for trajectory extraction and indexing. The former is
interesting to our work as it studies different approaches to obtain the trips over public
transportation systems, which our work focuses on, while the latter discusses alternatives
for supporting some of the traditional queries over trajectories, that are often based on
secondary memory.

After that, our contributions are grouped into two parts:

• In Part I, we propose several representations based on compact data structures to
efficiently handle the analysis of trips for both transportation contexts discussed in
Section 1.2. It is divided in three chapters:

– In Chapter 3, we describe the underlying structures that are used by our
representations, with a brief description of the memory requirements of each
one of them, as well as the temporal complexities of their main algorithms.

– Chapter 4 is devoted to Compact Trip Representation (CTR), our representation
for trajectories in the context of urban streets. We use separate structures for
the spatial and temporal representations, and combine them so that they can
be used to solve spatio-temporal queries.

– In Chapter 5, we discuss the problems that are specific for trips over
public transportation networks, and provide two alternative representations,
Topology&Trip-aware Compact Trip Representation (TTCTR) and eXtended
Compact Trip Representation (XCTR), based on a common model, along with
an additional complementary structure that can be used to accelerate some of
the aggregation queries.

• In Part II, we present an interface designed to aid on the decision making process
of a public transportation company, that relies on the representations from Part I.
This part consists of two chapters:

3When needed, the real data was augmented or mixed with synthetic information.
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– Chapter 6 introduces the reader to some of the basic concepts of GIS, as well
as the technologies used in our developed interface.

– Chapter 7 contains the detailed description of our application, discussing its
architecture and our user interface to analyze historical information of user
trips over public transportation networks.

After these parts, Part III summarizes our contributions in one single concluding
Chapter 8, where we also discuss the future developments planned for the work exposed in
this thesis.

Finally, we also include two appendices: Appendix A enumerates the relevant research
works that have derived from this thesis, while Appendix B provides a summary of the
overall thesis in the Spanish language, as required by the current regulations in the PhD
program that this thesis is submitted for.



Chapter 2

State of the art in trajectory
extraction and representation

This chapter is devoted to provide a context to our contributions with a literature review
of tangential works. We start by discussing methods of collecting useful trajectory data,
followed by a review of mobile objects and models for the trajectories they generate, as well
as types of queries that are often found in mobile objects research. Finally, we look into
the most relevant works in trajectory indexing, which contrast with our contributions as
the latter are based on auto-indexed representations, and are focused on problems specific
to the study of transportation demand and travel patterns on transportation networks.

2.1 Trajectory extraction
In order to make significant conclusions about travel patterns, it is essential to be able
to collect a large enough collection of trips so that it would become representative of the
overall usage within a time span. For this problem, crowd-sourcing can be a viable approach
to record the trajectories of public transportation users, as done in [ZTG+11], where the
users were rewarded with real information on the bus location, estimation of arrival time
and fullness in exchange of recording the GPS trace on their own bus trips.

Currently there are several known techniques that would allow to collect data regarding
users’ trips over a public transportation network. Numerous works exist where those
trajectories are mined from the transactions of smart cards [BC+15, WLL14]. This
can be complemented with information derived from GPS devices, as shown in [MW14].
Alternatively, reliable trajectories may be extracted relying on positioning obtained from
cellular networks, as proven by [LWW+17].

Because smart card methods usually provide only information about boarding stops,
there are works that study the challenge of inferring alighting stops from passengers
[Wan11]. In addition, the authors of [TCMBR14] have specifically tackled the challenge of
reconstructing full trajectories, accounting for trip-chaining, by using data obtained from
smart cards. Furthermore, in [AAMF16] it is also proven that not only the alighting stops,

7
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but also the (last) destination stop of a trip can be estimated from boarding data gathered
by a smart card, within a reasonable accuracy. This is possible because a transportation
network user typically makes a return trip at another time of the day, as happens often
with people that commute from their homes to work and back. We find these methods
particularly interesting, as a significant portion of the query patterns we propose in order
to analyze passenger movements rely on knowing about line switches (trip-chaining) and
the ultimate destination of a trajectory.

However, there is little research on methods for exploitation of this extracted information,
in order to analyze and improve the efficiency of a transportation network, which constitutes
the scope of our work. This summarized review proves that, although we were not
able to access real data from a public transportation company for this work, such
curated information about users’ trips can indeed be obtained and used for our proposed
representations.

2.2 Models of trajectory and types of queries
A good place to begin searching for practical models of trajectory representation is the
vast amount of work on designing data models for moving objects [WXCJ98, SWCD97,
GBE+00, GBE+03, Spa01, FGNS00, EGSV99, GS05]. Basically, a data model for moving
objects represents the continuous change of the location of an object over time, this way
defining a trajectory.

Handling moving objects can be seen as a big data problem, where solutions may
typically differ in the representation of location, contextual or environmental information
where the movement takes place, the time dimension (which can be continuous or discrete)
and the level of abstraction or granularity on which the trajectories are described [DIGV15].
A common classification of trajectories distinguishes free from network-based trajectories.
Free trajectories or Euclidean trajectories are a sequence of GPS points represented by an
ad-hoc data type of moving points [WXCJ98, SWCD97, GBE+00]. Network-constrained
trajectories are a temporal-ordered sequence of locations on networks. This trajectory model
includes a data type for representing networks and for representing the relative location of
static and moving points on the network [GdAD06]. When we want to represent trajectories
over an urban street network, it is often useful to deal with network-matched trajectories,
as this will allow to represent large collections of trajectories more effectively. The process
of obtaining these network-matched trajectories from GPS points is called map-matching
[BPSW05]. This process can also be done online, as recently shown in [DYGL15], where
all the processing is done in the server, eliminating the need for any map or network
representation at the moving object side.

The definition of trajectories at an abstract level must be materialized in an internal
representation with access methods for query processing. An early and broad classification
of spatio-temporal queries for historical positions of moving objects [PJT00] identifies
coordinate- and trajectory-based queries. Coordinate-based queries include the well-known
time-slice, time-interval and nearest-neighbor queries. Typical examples are “find objects or
trajectories in a region at a particular time instant or during some time interval” or also “find
the k-closest objects with respect to a given point at a given time instant”. Trajectory-based
queries involve topology of trajectories (e.g., overlap and disjoint) and related information
(e.g., speed, area, and heading) that can be derived from the combination of time and
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space. An example of such queries would be “find objects or trajectories that satisfy a
spatial predicate (eg., leave or enter a region) at a particular time instant or time interval”.
There also exist combined queries addressing information of particular objects: “Where
was object X at a particular time instant or time interval?”. In all previous queries, the
results are the individual trajectories that satisfy the query constraints.

In many applications, aggregated trajectories must be analyzed in the collection, as an
individual trajectory does not represent any representative information. In this context,
we can further distinguish range- from trajectory-based queries. Range queries impose
constraints in terms of a spatial location and temporal interval. Examples of these queries
are “to retrieve the number of distinct trajectories that intersect a spatial region or spatial
location (stop) at a given time instant or time interval”, “retrieve the number of distinct
trajectories that start at a particular location (stop) or in a region and/or end in another
particular location of region”, “retrieve the number of trajectories that follow a path”, and
“retrieve the top-k locations (stops) or regions with the larger number of trajectories that
intersect at a given time instant or time interval”. Trajectory-based queries require not
only to use the spatio-temporal points of trajectories but also the sequence of these points.
Examples of such queries are to “find the number of trajectories that are heading (not
necessarily ending at) to a spatial location during a time interval”, “find the destination
of trajectories that are passing through a region during a time interval” or also “find the
number of starting locations of trajectories that go or pass through a region during a time
interval”.

2.3 Trajectory indexing
Literature on spatial trajectory indexing can be categorized by the nature of the trajectories:
they can be either constrained to a network or in free space (often called moving objects).
While there are well-known queries for indexes that work on moving objects in free space
[PJT00], the network-constrained trajectory indexes cover more diverse querying needs,
as different networks involve different kinds of challenges (as in vehicular road network
vs public transportation network), and also because the intended application may vary
(analyzing trip-chaining patterns vs number of passengers within a time window). A
comprehensive review on indexing methods can be found in [PT14, Chapter 4], to which
we shall expand in the rest of this section to mention the most remarkable indexes and
some new developments.

2.3.1 Free trajectory indexing
Several adaptations of the R-Tree [Gut84] are widely used for the indexing of moving
objects. The most common approach is to integrate the temporal dimension in the R-Tree
itself, as found in the STR-Tree and the TB-Tree from [PJT00]. Another common approach
is to complement the R-Tree with another similar structure, as has been done for the
MV3R-tree [TP01], where an Historical R-Tree [NS98] was used to partition on the temporal
dimension.

Generally, even for very large collections of trajectories, the spatial dimensions are more
bounded than the temporal dimension, which can grow indefinitely. For this reason, even
for free trajectories, temporal dimension is generally more selective than spatial dimensions.
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This observation was heavily exploited in the subsequent works, such as SETI from [CEP03],
where the space is partitioned statically, while trajectories are indexed by their temporal
dimension using a one dimensional R-Tree, allowing it to grow dynamically.

Recently a framework based on Apache Spark was developed called
UlTraMan [DCG+18], that supports different kinds of partitioning schemes for
large collections of trajectories to answer range, kNN, or aggregation queries, allowing to
repartition the dataset to maximize the query efficiency for a given query type. Although
UlTraMan has been tested over network-constrained trajectories, it does not appear to be
exploiting network information in any way, hence its inclusion in this category.

In the field of compact data structures, an index called GraCT [BGBNP19] has
been developed. It is based on representing snapshots at regular time intervals using
k2-Trees [BLN09] and keeping movement logs for individual trajectories. Such movement
logs are grammar compressed by using RePair [LM00]. Because of this, GraCT is a self-
indexed compact representation that supports spatio-temporal range and nearest-neighbor
queries, as well as allowing for direct access to the trajectory information.

2.3.2 Network-constrained trajectory indexing
There are also numerous approaches that use R-Tree-based indexes for trajectories that
are constrained to an underlying network, aiming to decrease the redundancy in the
representation by separating the representation into levels. Examples of such indexes
include the FNR-Tree [Fre03], where the network elements are indexed with a 2D R-Tree.
Every network element at a leaf node of this R-Tree points to a 1D R-Tree that is used to
index the start and end of the time intervals at which moving objects pass through that edge
of the network. As such, the FNR-Tree is only capable of recording simple movements where
the edges are assumed to be traversed at constant speed. These limitations are addressed
in [dAG05], where the authors propose the MON-Tree, where the moving objects were
indexed in two dimensional R-Trees (the dimensions being edge position vs time). More
recent alternatives, such as the TMN-Tree [CSU10], integrate B+-Trees, which have proven
to be more space and time efficient for indexing the temporal dimension. Alternatively, in
[RRS18] a compact representation of time intervals is proposed using two bitvectors, that
can be combined with those R-Tree-based indexes to increase the efficiency of the temporal
filtering. Refer to [JSR17] for a quick comparison of these R-Tree-based indexes.

As a competitive alternative to these R-Tree-based indexes, PARINET [SPZO+11]
builds spatial partitions from the trajectories based on their distribution and network
topology, and uses a B+-Tree to index the trajectories in each partition by time intervals.
Although candidate trajectories must be filtered in memory during queries, PARINET is
highly efficient in practice as its partitioning strategy minimizes the number of disk accesses
needed.

Another relevant representation is described in [KPTT14]. Their proposed index,
NETTRA, was designed to efficiently solve a specific kind of queries called Strict Path
Queries (SPQ), built on a traditional RDBMS with B+-Tree indexes. Another distinctive
feature of NETTRA is its treatment of network-constrained trajectories as textual
information, which allows to apply string matching techniques such as fingerprinting
functions to determine what trajectories have similar paths on their traversed edges.
This close equivalence between trajectories and strings has been further exploited by
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Geodabs [CG18], where both the spatial distribution and sequence information are taken
into account for finding trajectories by similarity with fingerprinting. These text-based
approaches are sometimes tangled with works on the topic of semantic trajectories such as
[ADWK+17].

A recent compact data structure named CiNCT has been proposed in [KTXI18], where
trajectories are encoded into a string, that is used to build an FM-index [FM00] with a
Huffman-shaped Wavelet Tree [FGNV09]. To further save space, the string is constructed
with relative movement labels instead of absolute edges, with an auxiliary structure that
represents a network graph built from the input trajectories themselves. While this structure
excels at pattern-matching and path extraction in vehicular networks (such as the streets
of a city), it cannot be applied to our problems in public transportation networks, where
network demand and aggregated travel patterns have to be analyzed. Note that finding
out which trajectories traversed on a specific path of sequential street segments does not
provide us much relevant information for our needs.
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Chapter 3

Previous concepts

This chapter presents a brief discussion of the compact data structures used in our proposed
representations, and it gives a background of the underlying concepts that we will be working
with for the rest of this part. For a more in-depth guide on compact data structures, the
reader may refer to [Nav16].

A reader who is already familiar with compact data structures is still encouraged to
read Section 3.1, where the Summed Area Table (SAT) is introduced, which is initially
unrelated to compact data structures, and also Section 3.4, where we discuss some less
known variants and operations of the Wavelet Tree (WT), that we make use of in our
contributions.

3.1 Summed Area Table
The Summed Area Table (SAT) was first introduced in computer graphics [Cro84] to
speed up the mipmapping process, where given a texture image represented as a series of
bidimensional matrices of numbers (usually three matrices of integers, one for each color
channel) we are interested in finding the average color of any arbitrary rectangle within the
image. This operation is most often used to reduce the rendering time for distant polygons
where a pixel on the target screen may correspond to several texture pixels (texels), and
also for anisotropic filtering, in order to improve the visual quality of polygons that are
projected in an oblique angle.

With the most direct representation of a matrix as an array of values, we are required
to compute the average value of a rectangle [(a, b), (a+ h, b+ w)] as:

M [a..a+ h, b..b+ w]←

h∑
i=0

w∑
j=0

M [i+ a, j + b]

(h+ 1)(w + 1)
Note that the summation has a time complexity of O(hw), which would make this

operation quite expensive for real-time rendering applications. In order to decrease the
complexity of these calculations, the SAT precomputes the summations of M in a matrix

15
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I, of the same size, where I[a, b]←
a∑
i=0

b∑
j=0

M [i, j]. That is, each cell of I is the sum of the

values within the rectangle spanning from the origin of the matrix to the position of the
cell. An example of a SAT is shown in Figure 3.1.

Figure 3.1: An example of a Summed Area Table (right) built over a matrix
(left).

Having I, we can compute the average value of a rectangle in O(1) operations as:

M [a..a+ h, b..b+ w]← I[a+ h, b+ w]− I[a+ h, b− 1]− I[a− 1, b+ w] + I[a− 1, b− 1]
(h+ 1)(w + 1)

In our example from Figure 3.1, to calculate the sum of the delimited 3x3 region
in the matrix M , we simply operate over the four terms in bold from I, obtaining

4∑
i=2

4∑
j=2

M [i, j] = I[4, 4]− I[4, 1]− I[1, 4] + I[1, 1] = 84− 27− 18 + 8 = 47.

While with this representation we do not need to keep the original matrix,1 the improved
computational efficiency comes at the expense of having to represent larger numbers than
the original values.

3.2 Entropy coding
Given an information source (such as a text) that provides symbols from an alphabet [1..σ]
with a probability of 0 ≤ pi ≤ 1 for each symbol, where

∑
i

pi = 1, the goal of an entropy

coder is to exploit these probabilities in order to achieve compression by assigning shorter
codes to the most frequent symbols, and longer codes to the less frequent ones. In the work
that is considered as the foundation of information theory [Sha48], Claude Shannon defined
a concept called entropy, which is closely related to the probabilities we are discussing, and
used it to prove that when encoding the symbols in binary, the optimal length in bits for

1As accessing a single cell can be viewed as a special case of the computation of an average
where h = 0, w = 0.
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each code is of li = 1
log2 pi

= − log2 pi bits, and the entropy of an information source S is

calculated as H0(S) = −
σ∑
i

pili = −
σ∑
i

pi log2 pi.

For any compression technique relying on using variable-length codes, it is necessary for
the codes to be unambiguous: there can be no two codes Ci, Cj that, when concatenated,
could be interpreted as another code . Additionally, it is computationally very useful for
those codes to be also prefix-free, meaning that there can be no code that is the prefix
part of another code (Ci 6= Cj{0|1}a, ∀i, j ∈ [1..σ], i 6= j, a ∈ [0..∞)). This will allow us to
unambiguously interpret the symbol right after the bits of Ci, without having to determine
if it could be the prefix part of some other longer code Cj .

The Huffman coding, introduced in [Huf52], is a coding algorithm that produces
optimal2 prefix-free codes based on the frequencies of each symbol. The ideas of the
Huffman coding have been widely implemented in numerous compression algorithms and
codecs since its inception, where the most notable examples are DEFLATE (PKZIP, GZIP),
JPEG and MPEG.

One less known variation of the Huffman codes are the Hu-Tucker codes [HT71], which
aim to provide codes that preserve the same lexical order as the original symbols, meaning
that for any two symbols si, sj , it holds that si ≺ sj ⇐⇒ Ci ≺ Cj . This comes at the
expense of at most one extra bit per code over Huffman on average.3

3.3 Bitvectors
A vast amount of works in compact data structures involves the use of bitvectors, both
compressed and uncompressed. A bitvector B[1..n] is a sequence of n bits, for which the
following operations are expected to be supported:

• rank1(B, i) is the number of set bits in B[1..i]. Alternatively, rank0(B, i) ← i −
rank1(B, i). Consequently, it also holds that the bit from the position i can be
retrieved as B[i] = rank1(B, i)−rank1(B, i−1), with a special case of rank1(B, 0) = 0.

• select1(B, i) is the position in [1..n] where the i-th 1 occurs. Therefore,
rank1(B, select1(B, i)) = i. An equivalent version for 0 bits may be defined as
select0(B, i), although, unlike rank0, there does not exist a direct way of obtaining
it from the previously defined operations.

Example 3.1: Given a bitvector B = 011001, it holds that rank1(B, 1) = 0, rank1(B, 2) =
1, rank1(B, 3) = 2, rank1(B, 4) = 2. Furthermore, B[3] = rank1(B, 3) − rank1(B, 2) = 1
and rank0(B, 3) = 3− rank1(B, 3) = 1.

We can also say that select1(B, 2) = 3 and select1(B, 3) = 6, thus holding that
rank1(B, select1(B, 2)) = rank1(B, 3) = 2 and rank1(B, select1(B, 3)) = rank1(B, 6) = 3.
Additionally, select0(B, 2) = 4 as rank0(B, select0(B, 2)) = rank0(B, 4) = 2.

All these operations can be supported in O(1) time with o(n) extra bits [Jac89, Mun96].
Additionally, there exist several techniques for compressing these bitvectors based on

2That is, with lengths as close to − log2 pi as possible with a whole number of bits per symbol.
3Being Lh and Lht the average codeword length of Huffman coding and Hu-Tucker codes for S

respectively, it holds: H0(S) ≤ Lh ≤ H0(S) + 1 and H0(S) ≤ Lht ≤ H0 + 2(S) (see [CT06] (pages
122-123), or [Hor77, GM59]).
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their statistical properties or the arrangement of the bits. In this work we will use a
representation that excels in efficiently solving select1 operations for sparse bitvectors (with
a low number of set bits in proportion to the bitvector size) introduced in [OS07], and
also another representation that works particularly well with non uniformly distributed
bitvectors, thus exploiting their entropy to require only nH0(B) + o(n) bits4 [RRR02].

3.4 Wavelet Tree and Wavelet Matrix
When working with a sequence S[1..n] built over an alphabet [1..σ], we can extend the
definitions of rank and select from Section 3.3 to work over any symbol a ∈ [1..σ] instead
of bits, resulting in the following operations:

• ranka(S, i) gives the number of occurrences of the symbol a in S[1..i].
• selecta(S, i) gives the position in [1..n] where the i-th a occurs.
The Wavelet Tree (WT) [GGV03] represents S with a balanced binary tree, with

σ leaves, one for each symbol. Every internal node v represents the range of symbols
[αv..ωv] ⊆ [1..σ] in the same order as they appear in S, where the root node corresponds
to all the n symbols from the alphabet [1..σ] appearing in S. Its left child vl will only
represent the nl symbols that fall in the range [1.. σ2 ), preserving the order that they had

in v0, while the right child will represent the other nr symbols from [σ2 ..σ], holding that
nl + nr = n. This is built recursively until a leaf va is reached, with will correspond to
only one symbol a ∈ [1..σ], with na = ranka(S, n) times. An example WT can be found in
Figure 3.2.

Figure 3.2: An example Wavelet Tree of four levels.

For each node v, these symbols from the alphabet [αv..ωv] are represented implicitly
using a bitvector Bv[1..nv], where B[i] = 0 when the symbol a represented in the position

4Being n1 the number of set bits inB and n0 = n−n1, thenH0(B) =
n1 log

n

n1
+ n0 log

n

n0
n

≤ 1.
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i should belong to the left child (a < αv + ωv
2 ), while B[i] = 1 means it should belong to

the right child (a ≥ αv + ωv
2 ). By making use of rank and select operations over these

bitvectors, we are able to recover the value of any S[i], and also to answer ranka and
selecta for any a ∈ [1..σ] in O(log σ) without the need of storing the original sequence. As
there are n bits per level and log σ internal levels (the nodes from the leaf level do not
have bitvectors), we could represent all the bitvectors in n log σ bits, which is equivalent to
the space it would take to represent S as an array of fixed length integers.5 However, we
also need some auxiliary structures for rank1 and select1, which will require o(n log σ) bits
and also store a pointer for every one of the 2σ − 1 nodes. Therefore, the total size of this
representation amounts to n log σ + o(n log σ) +O(σ logn).

In order to access the value of S[i], we must start by looking into Bv[i] from the
root node. If Bv[i] = 0, we traverse to the position Bv0 [rank0(Bv, i)] of the bitvector
of the left child. Conversely, when Bv[i] = 1, we traverse to the bitvector of the right
child at Bv1 [rank1(Bv, i)]. In both cases, we recurse until a leaf is reached, which will
unambiguously correspond to the symbol a, thus we determine that S[i] = a.

Example 3.2: In the WT from Figure 3.2, if we wanted to retrieve the value of S[2], we
would start by looking into the bit Bv[2] = 0, meaning that the we have to traverse to the
node v0 and look into the bit Bv0 [rank0(Bv, 2)] = Bv0 [2] = 1, leading us to the node v01 at
Bv01 [rank1(Bv0 , 2)] = Bv01 [2] = 0. The left node is a leaf node belonging to the symbol 2,
so S[2] = 2 (namely, the first occurrence of 2 in S, as rank0(Bv01 , 2) = 1).

We can also solve ranka by traversing the tree from top to bottom with the rank
operation on the bitvectors: knowing that the binary representation (and thus also the
path in the WT) of a symbol will allow us to use rank1 or rank0 in each level i according
to the i-th bit of our code. In the Example 3.4, knowing that the binary representation of
2 is 010, we can calculate rank2(S, 2) (or any other position) following the same order of
operations: a rank0, a rank1 and one final rank0 to determine the position of the leaf node,
which will give away rank2. It is also possible to calculate selecta(S, i) with a bottom-up
traversal of the tree, by starting at the i-th position from the leaf belonging to a, and
applying select0 and select1 on the bitvectors of the parent nodes, following the reversed
binary code of a. Eventually, a position S[j] = a will be reached such that it will contain
the i-th occurrence of a in S, consequently obtaining that j = select(S, i).

A more complex operation that we have found very useful in our work is the operation
counta,b(S, i, j), first described in [GNP12], which counts the number of occurrences of the

symbols in [a..b] within S[i..j]. While it is equivalent to
b∑

k=a

rankk(S, j)− rankk(S, i), it can

be solved more efficiently by doing two simultaneous top-down traversals, as described for
ranka. Starting at the root node v we calculate rank0(Bv, i) and rank0(Bv, j) to find out
the limits in the left node for the codes within [a..b] that start with 0, and also rank1(Bv, i)
and rank1(Bv, j) for those codes starting by 1. If all the codes in [a..b] start with either a
zero or a one, we will only compute the corresponding rank. After that, we recurse for each
node, where on the left we set i ← rank0(Bv, i), j ← rank0(Bv, j) and we only consider

5When σ is not a power of two, log σ would need to be rounded up for fixed length integers,
while for the WT there will be some leaves at level h− 1, being h the height of the tree, and its
total size will depend on the frequency of those symbols (bn log σc <

∑
i
ni < dn log σe).
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the range of symbols [a..b′] that can be represented by that node (b′ ≤ ωv0 )). The same is
true for the recursion on the right, where i← rank1(Bv, i), j ← rank1(Bv, j) and αv1 ≤ a′.
Therefore, we compute recursively:

counta,b(v, i, j) = counta,b′ (v0, rank0(Bv, i), rank0(Bv, j))
+ counta′,b(v1, rank1(Bv, i), rank1(Bv, j))

The recursion on each node v stops when a ≤ αv and ωv ≤ b, in which case the count for
that node is reported as j − i+ 1. Finally, all the counts are summed and the total amount
of occurrences is obtained. While it may look as if the worst case would imply traversing
all σ internal nodes, it is avoided by stopping the recursion when a ≤ αv and ωv ≤ b, thus
requiring to visit only O(log σ) nodes.6 In the WT from Figure 3.2, we have marked in red
the ranges considered for solving count3,3(S, 5, 10). Additionally, when the subsequence
S[i..j] is sorted, we can define [l..r]← countLRa,b (S, i, j), which returns the upper and lower
limits S[l..r] of the occurrences of the symbols [a..b]. Naturally, S[l..r] ⊆ S[i..j].

3.4.1 Hu-Tucker Wavelet Tree
A straightforward way of reducing the size of a WT is to use compressed bitvectors, as
discussed in [CN08], allowing to represent a WT in nH0(S) + o(n log σ) +O(σ logn) bits
[GGV03]. There is, however, a different approach to achieve similar space requirements
is to use a prefix-free variable-length encoding for the symbols. For example, Huffman
code [Huf52] can be used to build a Huffman-Shaped WT [FGNV09], where the tree is not
balanced anymore, as the level of each leaf va will be the number of bits for the Huffman
code of a, which will depend on the frequency of a in S. The size reduces to n(H0(S) + 1) +
o(n(H0(S) + 1)) +O(σ logn),7 while average time becomes O(H0(S)) for ranka and selecta
(the worst-case time is still O(log σ) [BN13]). By using compressed bitvectors [CN08] space
can be even further reduced to nH0(S) + o(n(H0(S) + 1)) + O(σ logn). Unfortunately,
the Huffman codes (including canonical Huffman) assigned to lexicographically adjacent
symbols do not maintain that lexicographic order, and it is not possible to have a O(log σ)
bound for counta,b(S, i, j) anymore.

In order to support counta,b(S, i, j) more efficiently, Hu-Tucker codes [HT71] can be used
instead. While the compression achieved by a Hu-Tucker Wavelet Tree (HTWT) [BN09]
degreades slightly with respect to using Huffman coding, yielding a bound of n(H0(S) +
2) + o(n(H0(S) + 1)) +O(σ logn),8 the codes for adjacent symbols are lexicographically
contiguous. Therefore, we can guarantee a bound of O(log σ) for counta,b(S, i, j) again. An
example of a HTWT in practice can be found in Figure 4.4.

3.4.2 Wavelet Matrix
For large alphabets, the size of the WT is affected by the term O(σ logn). A pointerless
WT [CN08] permits to remove9 that term by concatenating all the bitvectors level-wise

6In fact, the best case is cnt1,σ(S, i, j) = j − i+ 1, which is solved without traversing at all.
7O(σ logn) term includes both the tree pointers and the size of the Huffman model.
8This can be reduced to nH0(S) + o(n(H0(S) + 1)) +O(σ logn) by using compressed bitvectors

as well.
9In a pointerless Huffman-shaped WT a term O(σ log logn) still remains due to the need for

storing the canonical Huffman model.
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and computing the values of the pointers during the WT traversals. The operations on a
pointerless WT have the same time complexity but become slower in practice.

By reorganizing the nodes in each level of a pointerless WT, the Wavelet Matrix (WM)
[CNO15] obtains the same space requirements, yet its performance is very close to that of
the regular WT with pointers. Figure 3.3 contains an example of a Wavelet Matrix (WM),
representing the same sequence as in Figure 3.2.

3 2 7 7 0 1 4 3 7 6 3 2 5 5 3

0 0 1 1 0 0 1 0 1 1 0 0 1 1 0B
1

3 2 0 1 3 3 2 3 7 7 4 7 6 5 5

1 1 0 0 1 1 1 1 1 1 0 1 1 0 0B
2

0 1 4 5 5 3 2 3 3 2 3 7 7 7 6

0 1 0 1 1 1 0 1 1 0 1 1 1 1 0B
3

S

z
1
=8

z
2
=5

Figure 3.3: An example of a Wavelet Matrix with three levels. A conceptual
fourth level was omitted since it does not contain a bitvector.

As in the WT, the i-th level stores the i-th bits of the encoded symbols. A single
bitvector Bi is kept for each level. In the first level, B1 stores the 1-st bit of the encoding
of the symbols in the order of the original sequence S. From there on, at level i, symbols
are reordered according to the (i − 1)-th bit of their encoding; that is, according to the
bit they had in the previous level. The symbols whose encoding had a zero at position
i− 1 must be arranged before those that had a one. After that, the relative order from the
previous level is maintained. That is, if a symbol a occurred before some other symbol b,
and the (i− 1)-th bit of their encoding coincides, then a will precede b at level i.

If we simply keep track of the number of zeros at each level zl ← rank0(Bl, n), we can
easily see that the symbol with the k-th zero at level i− 1 is mapped at position k within
Bi, whereas the symbol with the j-th one at level i− 1 is mapped at position zl + j within
Bi. This avoids the need for pointers, enabling to retain the same time complexity of the
WT operations, including counta,b(S, i, j). For implementation details see [CNO15, Ord16].

Example 3.3: To find out the symbol at S[8], we start by observing that B1[8] = 0
and rank0(B1, 8) = 5. We move to the next level where we check position 5; we see that
B2[5] = 1 and rank1(B2, 5) = 3. We move to next level and check position 3+z2 = 3+5 = 8,
where we finally see B3[8] = 1. Therefore, we have decoded the bits 011 that correspond
to the symbol S[8] = 3.

To reduce the space needs of the WM we could use compressed bitvectors as for the WT.
Yet, compressing the WM by giving it either a Huffman or Hu-Tucker shape is not possible
as the reordering of the WM would lead to the existence of gaps in the bitvectors that would
ruin the process of tracking symbols during traversals. To overcome this issue, an optimal
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Huffman-based coding was specifically developed for wavelet matrices [CNO15, FGM+16].
This allows to obtain space similar to that of a pointerless Huffman-shaped WT but with
faster ranka and selecta operations. Unfortunately, since the encodings of consecutive
symbols do not keep the same order, counta,b(S, i, j) is no longer supported in O(log σ)
time.

3.5 Compressed Suffix Array
Given a sequence S[1..n]10 built over an alphabet Σ of length σ, the suffix array A[1..n] is
built over S [MM93] as a permutation of the positions i ∈ [1..n] of all the suffixes S[i..n],
so that S[A[i]..n] ≺ S[A[i+ 1]..n] for all 1 ≤ i < n Because A contains all the suffixes of
S in lexicographic order, we can use this structure to search for any pattern P [1..m] in
time O(m logn) by simply performing binary searches for the range A[l..r] that contains
pointers to all the positions in S where P occurs. We can find an example of an suffix
array A in Figure 3.4. Any pattern P [1..m] (such as ana) can be delimited by a range
A[l..r] (for “ana” it is A[3..4]), where the limits l and r can be found with binary searches
due to the suffixes being sorted.

Figure 3.4: All the structures involved in constructing a Compressed Suffix
Array over the sequence S = banana$. Note that S and A do not need to be
stored.

A straightforward enhancement to avoid storing the original string S is to set up a
vocabulary array V [1..σ′], with all the different symbols from Σ appearing in S,11 and a
bitvector D[1..n] aligned to A so that D[1] = 1 and D[i] = 1 ⇐⇒ S[A[i− 1]] 6= S[A[i]]
for all the other i ∈ [2..n]. This means that D marks with a 1 the beginning of a range
of suffixes pointed from A such that the first symbol of those suffixes coincides. With D,
keeping S is no longer needed since S[A[i]] = V [rank1(D, i)].

We can also replace A as described in Sadakane’s Compressed Suffix Array (CSA)
[Sad03], using another permutation Ψ[1..n] defined in [GV00], where Ψ[i] = A−1[A[i] + 1].

10For convention, we establish that S[n] must contain a terminator symbol $ that must be
lexicographically smaller than any of the other symbols in S[1..n− 1].

11Note that σ′ ≤ σ) since some of the symbols from Σ may never occur in S.
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That is, for every A[i] = k and A[j] = k + 1, Ψ[i] = j. The special case when A[i] = n12

is handled as Ψ[i] = A−1[1], making a cycle. Therefore, the Compressed Suffix Array
(CSA) is formed by Ψ, D, and V , which are sufficient to simulate binary searches of the
interval A[l..r] for the occurrences of P without the need of accessing A nor S. In this
work, we define that operation as [l..r]← bsearch(Ψ, P ). The symbol S[A[i]] pointed by
A[i] can be obtained as V [rank1(D, i)]. We can also easily obtain the following symbol
from the source sequence S[A[i] + 1] as V [rank1(D,Ψ[i])], S[A[i] + 2] can be obtained as
V [rank1(D,Ψ[Ψ[i]])], and so on.

Although an uncompressed Ψ would have the same space requirements as A, it is highly
compressible, since it is formed by σ strictly increasing subsequences. By using δ-codes
of the gaps (differences of each value with respect to the previous one) it is possible to
compress Ψ to around the zero-order entropy of S [Sad03], with nH0(S) +O(n log log σ)
bits. In [NM07] it has been further proved that Ψ can be split into at most nHk + σk (for
any k) runs of consecutive values so that the differences within those runs are always 1. This
allows for a combination of δ-coding of gaps with run-length encoding (of 1-runs) to achieve
a higher-order compression of Ψ without further intervention. In addition, to maintain
fast random access to Ψ, absolute samples at regular intervals (every tΨ entries) are kept.
Parameter tΨ implies a space/time trade-off. Larger values lead to better compression of Ψ
but slow down access time to non-sampled Ψ[i] values.

In [FBN+12], the authors have adapted Sadakane’s CSA to deal with large (integer-
based) alphabets and created the integer-based CSA (iCSA). They also showed that, in
their scenario (natural language text indexing), the best compression of Ψ was obtained by
combining differential encoding of runs with Huffman and run-length encoding.

12i = 1 if we use the unique terminator $.
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Chapter 4

Representations for
trajectories over urban
streets

As explained in Section 1.2, we have identified two contexts for public transportation systems
according to their networks, which can be based on urban streets or public transportation.
While the proposed structure in this chapter is capable of operating within both contexts,
it does not take public transportation elements (routes and vehicles) into account. This
leads to a more redundant representation than the ones later proposed in Chapter 5, which
are more adequate for public transportation networks.

The work in this chapter proposes a new structure named Compact Trip Representation
(CTR) that answers counting-based queries and uses compact self-indexed data structures to
represent the large amount of trajectories in compact space. CTR combines two well-known
data structures. The first one, initially designed for the representation of strings, is the
CSA. The second one is the WT. With these two structures, CTR is able to efficiently
resolve queries over trajectory patterns in any dimension (spatial, temporal or, combining
both structures, spatio-temporal).

In Section 4.1 we present our scenario, and describe the simplified data model used to
represent user trajectories. The most interesting queries that are defined for this scenario
are also discussed. Then, Section 4.2 describes the internals of CTR and Section 4.3 is
devoted to explain how query operations are solved in CTR. After that, experiments are
included in Section 4.4.

We experimentally tested our proposal using two sets of data representing trajectories
over two different real public transportation systems. Our results are promising because
the representation uses around 50% of its original size and answers most of our spatial,
temporal, and spatio-temporal queries within 1−1000 microseconds. No experimental
comparisons with classical spatial or spatio-temporal index structures were possible, because
none of them were designed to answer the types of queries in this work. Our approach
can be considered as a proof of concept that opens new application domains for the use of
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well-known compact data structures such as the CSA and the WT, creating a new strategy
for exploiting trajectories represented in a self-indexed way.

4.1 Description
Given a transportation network, whether it is based on urban streets or public
transportation, we work with a representation of the network that is based on a directed
graph. For an urban street network, a node represents a road segment delimited by
intersections, where two nodes are connected by an edge if it is possible (i.e. legally
allowed). This allows to accurately describe a trajectory by sequentially listing the road
segments that were traversed, while minimizing the redundancy.

Figure 4.1: An ER diagram representing the model for user trajectories for
CTR.

Figure 4.1 contains the entity-relationship diagram of our network model, where nodes
and connections define a directed graph, over which user trajectories can be conformed by
sequentially visiting the nodes. The order in which these nodes are visited is implicitly
defined by the time, meaning that it is necessary to somehow represent that time for the
visited nodes of each trajectory.

To make the use of CSA possible, we define a trip or trajectory of a moving object
over a network as the temporally-ordered sequence of the nodes the trajectory traverses.
An integer si ∈ S is assigned to each node such that a trajectory is a sequence (string) of
consecutively nodes visited by a single user. Note that this representation avoids the cost
of storing coordinates to represent the location users pass through during a trajectory. It
is just enough to identify the stops or nodes and when necessary to map these nodes to
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geographic locations. Moreover, when the underlying network is formed by street segments,
we do not specify at which part of the segment did the trajectory start or finished: we
consider such level of detail irrelevant for traffic analysis, as it can be effectively made on a
street-segment level.

We then build a CSA, over the concatenation of these strings (trajectories), with some
adaptations for this specific application. In addition, we discretize the time in periods
of fixed duration (i.e. timeline split into 5-minute intervals) and each time segment is
identified by an integer ti ∈ I. In this way, it is possible to store the times when trajectories
reach each node by associating the corresponding ti with each node in each trajectory.
The sequence of times for all the nodes within a trajectory is self-indexed with a WT to
efficiently answer temporal and spatio-temporal queries.

Among other types of queries, in this work we focus on the following counting queries,
which to the best of our knowledge have not been addressed by previous proposals. In
general terms, we define two general queries, number-of-trips queries and top-k queries,
upon which we apply spatial, temporal, or spatio-temporal constraint when useful.

(a) Number-of-trips queries. This is a general type of queries that counts the number of
distinct trajectories. When applying spatial, temporal, or spatio-temporal constraints,
it can specialized in the following queries:

1. Pure spatial queries:
- Number of trips starting at node X (start_X).
- Number of trips ending at node X (end_X).
- Number of trips starting at X and ending at Y (from_X_to_Y).
- Number of trips using or passing through node X. Can also be seen as the
average load of the node X. (load_X)

2. Spatio-temporal queries:
- Number of trips starting at node X during time interval [t1..t2] (start_XT ).
- Number of trips ending at node X during the time interval [t1..t2] (end_XT ).
- Number of trips starting at X and ending at Y occurring during time
interval [t1..t2] (from_X_to_YT ). This type of queries is further classified
into:
(i) from_X_to_YT with strong semantics (from_X_to_YTs), which consid-

ers trajectories that completely occur within interval [t1..t2].
(ii) from_X_to_YT with weak semantics (from_X_to_YTw), which considers

trajectories whose life time overlap [t1..t2].
- Number of trips using node X during the time interval [t1..t2]. Can also
be seen as the average load of the node X within a given time interval.
(load_XT ).

3. Pure temporal queries:
- Number of trips starting during the time interval [t1..t2] (start_T).
- Total usage (load) of network nodes during the time interval [t1..t2]
(load_T).

- Number of trips performed within the time interval [t1..t2] (trip_T).
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(b) Top-k queries. In this type of queries we want to retrieve the k nodes with the
highest number of trips. In this case, depending on having a temporal constraint or
not we include the following queries:

1. Pure spatial Top-k queries:
- Top-k most used nodes (top_K), that returns the nodes with the largest
number of trips passing through.

- Top-k most used nodes to start a trip (top_Ks), that returns the nodes
with the largest number of trips that start at that node.

2. Spatio-temporal Top-k queries:
- Top-k most used nodes during time interval [t1..t2](top_KT ), that returns
the nodes with the largest number of trips passing through within time
interval [t1..t2].

- Top-k most used nodes to start a trip during time interval [t1..t2](top_KTs),
that returns the nodes with the largest number of trips starting there
within time interval [t1..t2] at that node.

4.2 Structures
To support the queries seen in Section 4.1, we need to represent the spatial and temporal
components of our collection of user trips that is coherent with the network model described.
Therefore, we will proceed to detail how each trip is described, before we show how that
description is implemented in our compact data structures.

If we consider a network N with a set of nodes S, we can see a dataset of
trips T over N as a set of trips, where for each trip Ti ∈ T , we represent a list
with the ni temporary-ordered nodes it traverses and the corresponding timestamps:
T = {〈(si1, si2, . . . , sini

), (ti1, ti2, . . . , tini
)〉}, i ∈ [1..|T |], sij ∈ S, and tix ≤ tiy, ∀x < y. Note

that every node in the network can be identified with an integer ID sij ∈ S and that, if we
are interested in analyzing the usage patterns of the network, we will also be interested in
discretizing time into time intervals (i.e. 5-min, 30-min intervals). Therefore, we will have
|I| different time intervals that can also be identified with an integer ID (tij ∈ I).

The size of the time interval is a parameter for the time-discretizing process that can be
adjusted to fit the required precision in each domain. For example, in a public transportation
network where we could have data including five years of trips, one possibility would be
to divide that five-years period into 10-minute intervals hence obtaining a vocabulary of
|I| = 5× 365× 24× 60/10 = 262, 800 different intervals. Other possibility would be to use
cyclically annual 10-minute periods resulting in |I| = 262, 800/5 = 52, 560. However, in
public transportation networks, queries such as “Number of trips using the stop X on May
10 between 9:15 and 10:00” may be not as useful as queries such as “Number of trips using
stop X on Sundays between 9:15 and 10:00”. For this reason, CTR can adapt how the time
component is encoded depending on the queries that the system must answer.
Example 4.1: Figure 4.2 shows a network that contains |S| = 10 nodes numbered from
1 to 10. Over that network we have six trips (|T | = 6), and, for each of them, we
indicate the sequence of nodes it traverses and the time when the trip goes through those
nodes. If we discretize time into 5-minute intervals, starting at 08:00h, and ending at
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Figure 4.2: A set of trips over a network with 10 nodes.

9:20h, we will have have |I| = 16 different time intervals. Any timestamp within interval
[08 :00 , 08 :05 ) will be assigned time-code 0, those within [08 :05 , 08 :10 ) code 1, and so
on until times within [09 :15 , 09 :20 ) that are given time-code 15. Therefore, our dataset of
trips will be: T : {〈(1,2,3), (5 , 7 , 8 )〉, 〈(2,3,10,6), (10 , 13 , 14 , 15 )〉, 〈(1,2,3), (0 , 3 , 5 )〉,
〈(2,3,10,4,7), (2 , 4 , 6 , 8 , 10 )〉, 〈(3,10,5), (9 , 11 , 12 )〉, 〈(9,8,7), (12 , 14 , 15 )〉}, where
bold numbers indicate node IDs and slanted ones indicate times.

In CTR we represent both the spatial and the temporal component of the trips using
well-known self-indexing structures in order to provide both a compact representation and
the ability to perform fast indexed searches at query time. In Section 4.2.1 we focus on
the spatial component and discuss how we adapted CSA to deal with trips. We also show
how we support spatial queries. Then, in Section 4.2.2 we show that the times, which are
kept aligned with the spatial component of the trips, can be handled with a WT-based
representation. Actually we study two alternatives (a HTWT and a WM) and show how
temporal and spatio-temporal (Section 4.3.3) queries are supported by CTR.

4.2.1 Spatial component using a CSA
We use a slightly adapted CSA to represent the spatial component of our dataset of trips
within CTR. However, we must perform some preprocessing on each trip Ti ∈ T before
building a CSA on it. Initially, we sort the trips by their first node (si1), then by the
last node (sin), then by the starting time (ti1), and finally, by its second node (si2), third
node (si3), and successive nodes (i.e. the trips are sorted by the key s1, sn, t1, s2..n−1. Note
that the start time (ti1) of the trip does not belong to the spatial component, but it is
nevertheless used for the sorting.1

Following with Example 4.2, after sorting the trips in T with the criteria above,
our sorted dataset T s would look like: T s: {〈(1,2,3), (0 , 3 , 5 )〉, 〈(1,2,3), (5 , 7 , 8 )〉,
〈(2,3,10,6), (10 , 13 , 14 , 15 )〉, 〈(2,3,10,4,7), (2 , 4 , 6 , 8 , 10 )〉, 〈(3,10,5), (9 , 11 , 12 )〉,
〈(9,8,7), (12 , 14 , 15 )〉}. Note that (2,3,10,6) appears before (2,3,10,4,7) because
during the sorting process we compare (2,6, 2 ,3,10,6) with (2,7, 10 ,3,10,4,7); that is,
we compare the starting nodes (2 and 2) and then the ending nodes (6 and 7). If needed
(not in this example) we would have also compared the slanted values (2 and 10 ) that
are the starting times of the trips, and finally the rest of nodes (3,10,6 and 3,10,4,7).

1This initial sorting of the trips will allow us to answer some useful queries very efficiently (i.e.,
count trips starting at node X and ending at node Y ).
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Similarly, the two trips containing nodes (1,2,3) are sorted by the starting times (0 and
5 ).

In a second step, we enlarge all the trips T si ∈ T s with a fictitious terminator-node
$i whose timestamp is set to that of the initial node of the trip. We choose terminators
such that $i ≺ $j , ∀i < j; that is, the lexicographic value of $i is smaller for smaller
i values. In addition, the lexicographic value of any terminator must be lower than
the ID of any node in a trip. Therefore, an enlarged trip T si would become T ′i =
〈(si1, si2, . . . , sini

, $i), (ti1, ti2, . . . , tini
, ti

1)〉.
The next step involves concatenating the codes sij and $i of the spatial components

of our trips and to add an extra trailing terminator $0 to create a sequence Text[1..n].2
$0 must be lexicographically smaller than any other entry (then it also holds $0 ≺ $i,
∀i ∈ [1..|T |]). In the top part of Figure 4.3, we can see array Text for the running example,
as well as the corresponding time-IDs that are regarded in sequence Icode (T ime shows
the original times).

Figure 4.3: Structures involved in the creation of a CTR.

Finally, we build a CSA on top of Text to obtain a self-indexed representation of the
spatial component in CTR. Figure 4.3 depicts the structures Ψ and D used by the CSA
built over Text. There is also a vocabulary V containing a $ symbol and the different node
IDs in lexicographic order.

Note that the use of different values $i as terminators ensures that our sorting criteria
are kept even if we follow the standard suffix-sort procedure3 required to build suffix array
A during the creation of CSA. Yet, when we finish that process, we can replace all these
1 + |T | terminators $i by a unique $. This is the reason why there is only one $ symbol in
V .

2By definition, it must hold that n = |T |+ 1 +
|T |∑
i=1

ni.

3The suffix Text[i..n] is compared with the suffix Text[j..n].
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Although they are not needed in CTR, we show also suffix array A and Ψ’ for clarity
reasons in Figure 4.3. Ψ′ contains the first entries of Ψ from a regular CSA, whereas we
introduced a small variation in CTR for entries Ψ[1..(|T | + 1)]. Displaying both Ψ and
Ψ′ helps us to better illustrate our process to build Ψ. For example, A[8] = 1 points to
the first node of the first trip S[1]. Ψ[8] = 10 and A[10] = 2 point to the second node.
Ψ[10] = 14 and A[14] = 3 point to the third node. Ψ[14] = 2 and A[2] = 4 point to the
ending $1 of the first trip. Therefore, in the standard CSA, Ψ′[2] = 9 and A[9] = 5 point to
the first node of the second trip. However, in CTR, Ψ[2] = 8 and A[8] = 1 point to the first
node of the first trip. With this small change, subsequent applications of Ψ will allow us to
cyclically traverse the nodes of the trip instead of accessing the following entries of Text.

Another interesting property arises from the use of a cyclical Ψ on trips, and from
using trip terminators. Since the first entries in Ψ[2..|T | + 1] correspond the $ symbols
that mark the end of each trip in Text (remember that Ψ[1] corresponds the $0), we can
see that the j-th node of the i-th trip can be obtained as V [rank1(D,Ψj [i+ 1])], (where
Ψ3[x] = Ψ[Ψ[Ψ[x]]]). This property makes it very simple to find starting nodes for any trip.
For example, if we focus on the shaded area Ψ[2..7], we can find the ending terminator $4
of the fourth trip at the 5-th position (because the first $0 corresponds to the final $ at
S[28]). Therefore, its starting node can be found as V [rank1(D,Ψ[4 + 1])]. Since Ψ[5] = 12
and rank1(D, 12) = 3, the starting node is V [3] = 2. For illustration purposes note that it
would correspond to Text[A[12]]. By applying Ψ again, the next node of that trip would
be obtained by computing Ψ[12] = 16, rank1(D, 16) = 4, and accessing V [4] = 3 (that is,
we have obtained V [rank1(D,Ψ[Ψ[4 + 1]])] = 3, and so on.

Regarding the space requirements of the CSA in CTR, we can expect to obtain a good
compressibility due to the structure of the network, and the fact that trips that start in a
given node or simply those going through that node will probably share the same sequence
of “next” nodes. This will lead us to obtaining many runs in Ψ ([NM07]), and consequently
good compression could be expected.

4.2.1.1 Implementation details
In our implementation of CSA, we used the iCSA4 from [FBN+12] briefly discussed in
Section 3.5. Yet, we introduced some small modifications:

• The construction of the Suffix Array A is done with SA-IS algorithm [NZC11].5 In
comparison with the qsufsort algorithm6 [LS07] used in the original iCSA, it achieves
a linear time construction and a lower extra working space. Refer to [MPPP19] for
an up to date comparison among the modern Suffix Array construction methods.

• In iCSA, a plain representation for bitvector D was used, with additional structures
to support rank1 in constant time using (0.375× n bits). With that structure, they
could solve select in O(logn) time (yet they did not actually needed solving select
in iCSA). In our CSA, we have used the SDArray from [OS07] to represent D. It
provides a very good compression for sparse bitvectors, as well as constant-time
select1 operation.

4http://vios.dc.fi.udc.es/indexing
5We have used the improved implementation by Yuta Mori, available at https://sites.google.

com/site/yuta256/sais
6 http://www.larsson.dogma.net/research.html

http://vios.dc.fi.udc.es/indexing
https://sites.google.com/site/yuta256/sais
https://sites.google.com/site/yuta256/sais
http://www.larsson.dogma.net/research.html
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• In [FBN+12], bsearch(Ψ, P ) operation was implemented with a simple binary search
over Ψ rather than using the backward-search optimization proposed in the original
CSA [Sad03]. In our proposals, we used backward search since it led to a much lower
performance degradation at query time when a sparse sampling of Ψ was used.

4.2.2 Time intervals representations
In this section, we focus on the temporal component associated with each node of the
enlarged trips T ′i in our dataset, previously described in Section 4.2.1. Recall that in
Figure 4.3, sequence T ime contains the discretized time intervals associated with each
visited node in a trip, and Icode a possible encoding of times. In CTR we focus on the
values in Icode, yet, since Text is not kept anymore in CTR, we reorganize the values in
Icode to keep them aligned with Ψ rather than with Text. Those values are represented
within array IcodeΨ in Figure 4.3. For example, we can see that IcodeΨ[4] corresponds with
Icode[A[4]] = 10, IcodeΨ[15] corresponds with Icode[A[15]] = 8, and so on. Conveniently,
the first |T |+ 1 entries of IcodeΨ will contain the time interval codes for the start of each
trip, as each $i was originally aligned with a copy of the first time interval ti1 of each trip.

Aiming at having a compact representation of IcodeΨ while permitting fast access and
resolution of range-based queries (that we could use to search for trips within a given
time interval), we have considered two WT-based alternatives from the ones presented in
Section 3.4:

• A Wavelet Tree using variable-length Hu-Tucker codes (HTWT). Recall this is the
WT variant that permits to compress the original symbols with variable-length codes
and still supports counta,b(S, i, j) operation in O(log σ) time. Since Hu-Tucker
coding assigns shorter codes to the most frequent symbols, the compression of our
HTWT is highly dependent of the distribution of frequencies for the IcodeΨ. Yet, if
our trips represent movements of single users in a transportation network, we could
expect to observe two or more periods corresponding to rush hours within a single
day (see Section 4.4.1). This would lead to obtaining a skewed distribution of the
frequencies for the symbols in IcodeΨ, and consequently, we could expect to have
better compression than if we used a balanced WT. The expected number of bits of
our HTWT is nH0(IcodeΨ).

• A balanced Wavelet Matrix (WM). As we have shown in Section 3.4, the WM
is typically the most compact uncompressed variant of WT and it is faster than
a pointerless WT. This is the reason why we chose a balanced WM instead of a
balanced WT as this second alternative. Recall that, IcodeΨ contains n symbols,
and each symbol can be encoded with log |I| bits, hence the balanced WM can be
seen as a matrix of n log |I| bits.

In Figure 4.4, we show both the WM and the HTWT built on top of IcodeΨ from
Figure 4.3. The binary code-assignment to the source symbols ti ∈ I and that obtained
after applying Hu-Tucker encoding algorithm [HT71] are also included in the figure.

Since the most useful operation of these two structures for our application is, by
far, counta,b(IcodeΨ, i, j), we will proceed to explain in detail how the efficiency of that
operation has influenced our choice of structures. Just as proven in Section 3.4 with WT,
both HTWT and WM implement the counta,b(IcodeΨ, i, j) operation in O(log σ) time
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Figure 4.4: Balanced WM (top) and HTWT (bottom).

on average. This is easy to prove for HTWT as each node will contain entries from a
lexicographically contiguous subrange from the alphabet Σ, making the same properties
seen for WT hold. The main difference is that Hu-Tucker codes will reshape the tree,
making the leaves containing the least frequent symbols deeper than the leaves with the
more frequent symbols, which may theoretically produce a tree of height σ − 1,7 which will
obviously affect the worst-case performance, in exchange of an improved compression ratio.

The complexity may seem initially harder to analyze for WM, as its “nodes” are
delimited implicitly: the symbols with a code starting with a 0 will find their second bit
in an implicit node delimited by the subrange B2[1..z] (for some 1 ≤ z < n), while the
symbols with a code starting with a 1 will correspond to B2[z + 1..n]. Generalizing this
idea, we can assert that symbols with the same context of α starting bits in their codes will
find their next α+ 1 bit in some subrange Bα+1[i..j] with 1 ≤ i ≤ j ≤ n. Therefore, the
same properties from WT can be exploited for a counta,b(IcodeΨ, i, j) operation in WM as

7Assume a vocabulary Σ = {s1, ..., sσ}, where the probability of appearance of the symbol si in
the text S turned out to be 2−i.
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well, allowing us to solve it in O(log σ) worst-case time.
While it would also be possible to build WM using canonical Huffman codes, it is

unfortunately impossible to guarantee the O(log σ) bound on counta,b(IcodeΨ, i, j) on such
WM, as the symbols lose their original lexicographic proximity, meaning that symbols
which would appear on the same node of WT due to the common most significant bits
in their original codes, would get different Huffman codes based on their frequency of
appearance in the text, ending up in separate nodes. On the other hand, to the best of our
knowledge, there is no practical way of building WM with Hu-Tucker codes.

4.2.2.1 Implementation details

As we discussed in Section 3.4, both HTWT and WM are built over bitvectors that require
support for rank and select operations. In our implementations we included two alternative
bitvector representations avaliable at libcds library:8

• A plain bitvector based on [Mun96] named RG with additional structures to support
rank in constant time (select in logaritmic time). RG includes a sampling parameter
(factor) that we set to value 32. In this case, our bitvector RG uses n(1 + 1/32) bits.
That is, we tune RG to use a sparse sampling.

• A compressed RRR bitvector [RRR02]. The RRR implementation includes a sampling
parameter that we tune to values 32, 64, and 128. Higher sampling values typically
achieve better compression.

In advance, when presenting results for HTWT and WM we will consider the four
bitvector configurations above. Regarding our implementations of WM and HTWT, note
that we reused the same implementation of WM from [CNO15], and we created our custom
HTWT implementation, paying special focus at solving counta,b(IcodeΨ, i, j) efficiently.

4.3 Algorithms
In this section, we discuss how our previously described structures can solve the queries
proposed in Section 4.1. We also include a brief complexity analysis for some of the cases.

4.3.1 Spatial queries
With the CSA structure described for representing the spatial component of the trips, the
following queries can be solved.

• Number of trips starting at node X (start_X). Because Ψ was cyclically built in
such a way that every $ symbol is followed by the first node of its trip, this query is
solved by [l..r]← bsearch(Ψ, $X) over the CSA, which results on a binary search for
the pattern $X over the section Ψ[2..|T |] corresponding to $ symbols. Then r− l+ 1
gives the number of trips starting at X. Applying the backward search algorithm
for CSA, this query involves two select1 operations over D in order to delimit the

8https://github.com/fclaude/libcds

https://github.com/fclaude/libcds


4.3. Algorithms 35

region Ψ[lx..rx] for X9 and one binary search in the $ region to find the subrange for
$X. Since select1 on D are O(1), the temporal complexity of this query is O(log |T |),
omitting a constant factor due to the compression of Ψ.

• Number of trips ending at node X (end_X). In a similar way to the previous query,
this one can be answered with bsearch(Ψ, X$). It will require four select1 operations
(still O(1)) and a binary search over the X region, giving a total worst-case complexity
of O(log(n− |T |)) ⊂ O(logn).

• Number of trips starting at X and ending at Y (from_X_to_Y). Combining both
ideas from above, and thanks to the cyclical construction of Ψ, this query is solved
using bsearch(Ψ, Y $X). As it requires two binary searches, the first one to delimit
the $X region and the second one to find the entries within Y that point to that $X
region, the overall complexity is O(logn).

• Number of trips using node X (load_X). Even though we could solve this query with
bsearch(Ψ, X), it is more efficient to solve it by directly operating on D, by finding
the region Ψ[l..r] for X and calculating r − l + 1. All the operations involved are
O(1).

• Top-k most used nodes (top_K). We provide two possible solutions for this query
named: a sequential and a binary-partition approach:

– The sequential (top_Kseq) approach is the simpler alternative to compute the k
most used nodes. The idea is to apply select1(D, i) operations sequentially for
every i ∈ [2..|V | to compute the frequency of each node and to return the k
nodes with highest frequency. We use a min-heap that is initialized with the
first k nodes, and for every node s from k + 1 to |V |, we compare its frequency
with that of the minimum node (the root) from the heap. In case the frequency
of s is higher, the root of the heap is replaced by s and then moved down
to comply with the heap ordering. At the end of the process, the heap will
contain the top-k most used nodes 〈p1 , p2, . . . , pk〉, which can be sorted with
the heapsort algorithm if needed. Note that, since |S| = |V | − 1, this approach
will perform |S| select1 operations on D, as well as up to |S| insertions in the
heap of size k, thus having an overall complexity of O(|S| log k).

– The binary-partition (top_Kbin) approach takes advantage of the skewed
frequency distribution for the nodes that trips traverse. Working over D and
V , we recursively split D into two segments after each iteration. If possible, we
leave the same number of different nodes in each side of the partition. Initially,
we start considering the range in D[l..r]← D[select1(D, 2)..n] = D[|T |+ 2..n]
which corresponds to the nodes that appear in V from positions i = 2 to
j = |V |.10 We use a priority queue that is initialized as Q ← (〈i, j〉, 〈l, r〉).
Then, assuming m = i+ j−i+1

2 and q = select1(D,m), we create two partitions
D[l..q−1] and D[q..r], which correspond respectively to the nodes in V [i..m−1]

9Assuming that X is at position p in the vocabulary V of CTR (V [p] = X), its region in
Ψ[lx..rx] is obtained as lx ← select1(D, p), rx ← select1(D, p+ 1). If p is the last entry in V , we
set rx ← n.

10We skip the $ at the first entry of V and its corresponding entries in D; that is,
D[1.. select1(D, 2)− 1].
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and V [m..j]. These segments created after the partitioning step are pushed
into Q. The pseudocode can be found in Algorithm 1.
The priority of each segment in Q is directly the size of its range in D (r− l+1).
When a segment extracted from Q represents the instance of only one node
((〈i, j〉, 〈l, r〉), with i = j), that node is returned as a result of the top-k
algorithm (we return V [i]). The algorithm stops when the first k nodes are
found.
For example, when searching for the top-1 most used nodes in the example
from Figure 4.3, Q is initialized with the segment [8..28], corresponding to
nodes from 1 to 10 (positions from 2 to 11 in V ). Note that the entries of D
from 1 to 7 and V [1] represent the $ symbol. Since it is not an actual node, it
must be skipped. Then [8..28] is split producing the segments [8..20] for nodes
1 to 5 (V [2..6]) and [21..28] for nodes 6 to 10 (V [7..11]). After three more
iterations, we extract (〈3, 3〉, 〈14, 18〉), hence obtaining the segment [14..18] for
the single node 3 (position 4 in V ), concluding that the Top-1 most used node
is 3 = V [4] with a frequency equal to 5 = 18− 14.
Even though the worst-case complexity of this approach is O(|S| log |S|), which
can be expected when the distribution of nodes is uniform, it can perform
considerably better than the sequential approach with a skewed distribution
and a small k, as will be experimentally proven in Section 4.4.3.1.

• Top-k most used nodes to start a trip (top_Ks). Both top_K approaches above can
be adapted for answering top_Ks. However, unlike its simpler variant, it requires
performing bsearch(Ψ, $X) over Ψ (rather than a select1 on D) at each iteration,
hence increasing the temporal complexity of the operation.
The implementation of the linear approach is straightforward. The binary-partition
approach differs slightly from Algorithm 1: in line 3 we have insert (〈2, |V |〉, 〈2, z+1〉)
intoQ, and we replace line 12 with [x..y]← bsearch(Ψ, $V [m]); q ← x. This increases
the temporal complexity of top_Ks by a factor of O(logn) over the complexities
discussed for the original top_K queries.

4.3.2 Temporal queries
With either one of the described alternatives (HTWT or WM) to represent time intervals
we can answer the following purely temporal queries:

• Number of trips starting during the time interval [t1..t2] (start_T). Since we keep
the starting time of each trip within IcodeΨ[2..|T |+ 1], we can efficiently solve this
query by simply computing countt1,t2 (IcodeΨ, 2, |T |+ 1) in O(log |I|) time.

• Total usage of network nodes during the time interval [t1..t2] (load_T). This query
can be seem as the sum of the number of trips that traversed each network node
during [t1..t2]. We can solve this query by computing countt1,t2 (IcodeΨ, |T |+ 2, n),
in O(log |I|) time.

• Number of trips performed during the time interval [t1..t2] (trip_T). This is also an
interesting query that measures the actual number of trips started or completed within
the queried time interval. To solve this query we could compute trip_T by subtracting
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1 Function GetTopK_most_used_nodes(k):
Data: number k
Result: topK nodes

2 Q ← new PriorityQueue();
3 Push(Q,(〈2, |V|〉, 〈select1(D, 2), n〉));
4 current_k ← 0;
5 while current_k < k do
6 (〈i, j〉, 〈l, r〉) ← Pop(Q);
7 if i =j then
8 topK[current_k] ← V[i];
9 current_k ← current_k + 1;

10 else
11 m ← i + j−i+1

2 ;
12 q ← select1(D,m + 1);
13 Push(Q,(〈i,m− 1〉, 〈l, q− 1〉));
14 Push(Q,(〈m, j〉, 〈q, r〉));
15 end
16 end
17 return topK;
Algorithm 1: Algorithm Top-k most used nodes using binary-partition
approach.

the number of trips that started after t2 and the number of trips that ended before
t1 from the total number of trips (|T | − start_T(t2 + 1, |I|) − end_T(1, t1 − 1)).
However, recall that IcodeΨ[2..|T | + 1] has the starting time of each trip, but we
do not keep their ending time. We could solve end_T(1, t1 − 1) by taking the first
node (X) of each trip starting before t1, then applying Ψ until reaching the ending
node (Y ), and finally getting the ending time of that trip associated to node Y .
However, this would be rather inefficient. A possible solution to efficiently solve
end_T(1, t1 − 1), would require to augment our temporal component, in parallel with
IcodeΨ[2..|T |+ 1], with another WT-based representation of the ending times for
our |T | trips. This would permit to report the number of trips ending before t1 as
countLR0,t1−1(IcodeΨ, 2, |T |+ 1), but would increase the overall size of CTR. Yet, note
that even without keeping ending-times, we could provide rather accurate estimations
of trip_T for a system administrator. For example, using load_T to compute the
number of times each trip went through any node during the time interval [t1..t2],
and dividing that value by the average nodes per trip. Another good estimation can
also be obtained with start_T(t1, t2).
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4.3.3 Spatio-temporal queries
Apart from the pure spatial and temporal queries discussed in the previous sections, we
can combine both the self-indexed spatial and temporal components from CTR to answer
spatio-temporal queries. The idea is to restrict spatial queries to a time interval [t1..t2].
An example of this type of query is to return the number of trips starting at node X that
occurred between t1 and t2, which we can solve by first finding the range in the CSA of the
trips starting in X and then relying on the count operation in the HTWT (or WM). The
following spatio-temporal queries can be solved by CTR:

• Number of trips starting at node X during time interval [t1..t2] (start_XT ). Recall
that in the time sequence we also included timestamps associated with the area of
$-symbols in Ψ[1..|T |+ 1]. Particularly, for each $ at Ψ[i+ 1], we keep the time of
the first node of its trip Ti. Therefore, we can perform [l..r]← bsearch(Ψ, $X) as in
a regular spatial query to find the range Ψ[l..r] ([l..r] ⊆ [2..|T |+ 1]) that corresponds
to $ symbols that end a trip which started at node X. Then, since the time sequence
IcodeΨ (represented with either a HTWT or WM) is aligned with Ψ, we can filter out
those trips that started within [t1..t2] performing operation countt1,t2 (IcodeΨ, l, r).
Because both bsearch and count are used, the time complexity for the whole query
is O(logn+ log |I|). In Figure 4.5 (steps 1O and 2O) we illustrate the steps involved.

Figure 4.5: Trips staring at, ending at, or using node X during time interval
[t1..t2].

• Number of trips ending at node X during the time interval [t1..t2] (end_XT ). As
above, we initially perform the spatial query [l..r]← bsearch(X$) to obtain the range
in Ψ[l..r] that corresponds to the pattern X$ (trips ending at node X). Then, we
use countt1,t2(IcodeΨ, l, r) operation to count how many of those trips match the
temporal constraint. See steps 3O and 4O in Figure 4.5.

• Number of trips using node X during the time interval [t1..t2] (load_XT ). As in the
corresponding spatial query, the range Ψ[l..r] is obtained with two select1 operations
on D. Finally, countt1,t2 (IcodeΨ, l, r) finds the occurrences within the time interval
[t1..t2], thus solving this query in O(log|I|) time. See steps 5O and 6O in Figure 4.5.

• Number of trips starting at X and ending at Y occurring during time interval [t1..t2]
(from_X_to_YT ). We consider two different semantics. A query with strong semantics
will obtain trips that start and end within [t1..t2]. Whereas, a query with weak
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Figure 4.6: Trips staring at X and ending at Y during time interval [t1..t2].

semantics will obtain trips whose time intervals overlap [t1..t2] and, therefore, they
could actually start before t1 or end after t2.
In Figure 4.6, we show the step-by-step process to solve this type of queries. As
in a spatial query, we start by searching for the range [l..r] ← bsearch(Ψ, Y $X)
corresponding to trips starting at Y and ending at X (step-1O). Next, due to our
sorting of trips, the range for Y $X in Ψ[l..r] can be mapped to a continuous range
Ψ[α..β] of the same size in the $X region of Ψ.11 We compute α← Ψ[l], β ← α+r− l
(step-2O). Furthermore, note that the range for $XY preserves the same order as that
for Y $X.
At this point, since IcodeΨ was aligned with Ψ, we could check ending-time constraints
within IcodeΨ[l..r] and starting-time constraints within IcodeΨ[α..β] (recall we keep
starting times associated with the corresponding $ of each trip). Note also that,
due to our sorting (by starting-node, ending-node, starting-time,. . . ) the times in
IcodeΨ[α..β] are increasing (IcodeΨ[i] ≤ IcodeΨ[i+1], ∀α ≤ i < β), as long as they are
within the region Ψ[α..β], which corresponds to trips with the same starting-node X
and ending-node Y . Therefore, we can find the continuous subrange [α′..β′] ⊆ [α..β]
corresponding to trips that start within [t1..t2] (step-3O). This operation was defined as
countLRa,b (IcodeΨ, i, j) in Section 3.4. Thus, that assuming IcodeΨ[α..β] are increasing,
[α′..β′] ← countLRt1,t2(IcodeΨ, α, β) would report the positions [α′..β′] ⊆ [α..β] such
that α′ = argminx(IcodeΨ[x] ≥ t1) and β′ = argmaxx(IcodeΨ[x] ≤ t2).
The last step will differ on whether the query is implementing strong or weak
semantics:

– Strong semantics (from_X_to_YTs). Note that the subrange [α′..β′] (containing
trips starting within [t1..t2]) has a matching subrange [l′..r′] = [l + α′ − α..l +
β′ − α] ⊆ [l..r] (step-4O), where some of the ending times of these trips will fall
inside [t1..t2], allowing us to check the ending time constraint. By performing
countt1,t2 (IcodeΨ, l′, r′] we get the final result (step-5O). To sum up, answering

11As the trips were sorted by the key s1, sn, t1, s2..n−1, and we positioned each $i according to the
order of their trip Ti, the region Y $X will be conveniently sorted by the key sn, $, s1, sn, t1, s2..n−1
within Ψ, thus delimiting an equivalent region Ψ[α..β] in $X where each entry corresponds to a
trip that also ends in Y .
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this query requires: one bsearch over Ψ (to find [l..r]), one access to Ψ to
obtain α (since β = α+ r− l), one countLR to find [α′..β′], and one final count
operation to count the valid ending times in [l′..r′], amounting in a total of
O(logn+ log |I|) time.

– Weak semantics (from_X_to_YTw). The size of [α′..β′] (β′ − α′ + 1) is already
a partial answer. To get the final result, we need to add also the occurrences
of those trips starting before t1 that end at t1 or later, which can only exist if
α < α′. To do so, we need to obtain l′ ← l+ α′ − α as done in from_X_to_YTs,
and compute countt1,|I|(IcodeΨ, l, l′ − 1). This gives us the number of time
instants in the range [l..l′) of IcodeΨ that fall inside [t1..|I|]. That is, ending
times equal or after t1. Yet again, the time complexity for this query is
O(logn+ log |I|).

• Top-k most used nodes during time interval [t1..t2] (top_KT ). Both the sequential
and binary-partition approaches discussed in Section 4.3.1 can be easily extended to
support this query. The idea is that, when we add a node either to the min-heap or
the priority-queue respectively, we compute its frequency within time interval [t1..t2]
(using count operation) rather than using its overall frequency.

– In the sequential approach (top_KTseq), given a node whose corresponding range
in Ψ is Ψ[l..r], we compute its frequency using countt1,t2 (IcodeΨ, l, r) instead
of simply using r− l+ 1. The rest of the process is exactly as discussed for the
pure spatial top_Kseq query. The time complexity is increased by a factor of
O(log |I|) over the spatial top_Kseq variant, resulting in O(|S| log k log |I|).

– In the binary-partition approach (top_KTbin), we have to consider the priority
of a given segment as the number of trips covered by that segment that occurred
during [t1..t2]. Again, given a segment [l..r] in Ψ we compute that priority as
pl..r ← countt1,t2(IcodeΨ, l, r) instead of pl..r ← r − l + 1. Apart from that,
the only modifications that we must consider over the pure spatial top_Kbin Al-
gorithm 1 are: we replace line 3 by pl..r ← countt1,t2 (IcodeΨ, select1(D, 2), n);
Q.push(〈2, |V |〉, 〈select1(D, 2), n〉, pl..r), and we replace lines 12 and 13, re-
spectively, by Q.push(〈i,m − 1〉, 〈l, q − 1〉, countt1,t2 (IcodeΨ, l, q − 1)) and
Q.push(〈m, j〉, 〈q, r〉, countt1,t2 (IcodeΨ, q, r)). Due to these modifications, the
overall time complexity for this variant is O(|S| log |S| log |I|).

• Top-k most used nodes to start a trip during time interval [t1..t2](top_KTs). Following
the same guidelines discussed above for top_KT , adapting the sequential and
binary-partition solutions for the spatial top_Ks to include temporal constraints
is straightforward, making its time complexity O(|S| log |S| log |I| logn).

4.4 Experiments
We have run experiments to evaluate both the space requirements and performance at
query time of CTR when dealing with spatial, temporal, and spatio-temporal queries over
two different datasets (Porto and Madrid) that are described in Section 4.4.1.
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We have used several configurations of CTR by tuning both its spatial and temporal
components. In the spatial part, we set the Ψ sampling parameter (tΨ) to the values
tΨ ∈ {32, 128, 512}. For the temporal component, we have tested both the balanced WM,
and the Hu-Tucker-shaped WT (HTWT) using the bitvector configurations discussed in
Section 4.2.2.1. That is, using either a plain bitvector RG with a sparse sampling (RG32), or
a RRR bitvector with sampling parameter ∈ {32, 64, 128} (RRR32, RRR64, and RRR128).

4.4.1 Experimental datasets
We used two different datasets of trips in our experiments:

• Madrid dataset: Using GTFS data obtained for the public transportation network
of Madrid,12 we generated a dataset of synthetic trips combining the subway network
with the Spanish commuter rail system.13 (called cercanías) In this dataset, we have
defined the nodes as stops or stations, making two of them connected if there exists
a line or route that stops at both nodes, consecutively, thus allowing us to represent
user trajectories following the same strategy as for urban street networks. In total,
there are 313 different stations/nodes from 23 lines.
We generated 10 million trips with lengths varying from 2 to 31 nodes traversed.
Those lengths follow a binomial distribution. The average length of the trips is 11.81
nodes.
In the generation of a trip of length l, we randomly choose a starting node from a
line, and the starting direction. Then, we follow that line until we reach a switching
node. At this node, we decide whether to follow the current line or to switch to
a new line. We allow only up to four line switches for a given trip, and use fixed
probability values to decide whether to switch line or not. Such probability is 0.5,
0.1, 0.05, and 0.02 respectively for the first, second, third, and fourth line switch in
a trip. We also avoid revisiting nodes in the same trip. The generation process ends
when l nodes have been added to the trip, or a dead end is reached.
As a baseline, the plain representation of the generated trips using a 9-bit integer
(dlog2 314e = 9) for every node-ID (and the $ separator) would require 137.47 MiB,
while requiring a sequential processing on the whole collection to answer most of our
proposed queries.
We also generated synthetic times for those trips following the same rules used
to create the time distribution named skewed in Figure 4.7, so most of the trip
timestamps belong to rush hours. Instead of using only regular working days, we
distinguished four kinds of days in a week: regular working days; Fridays and holiday
eves; Saturdays; and Sundays and holidays. We also assume that there are two kinds
of weeks related to high and low season periods. Therefore, a time interval may
belong to eight types of day. When discretized at five-minute intervals we obtain
2,304 distinct time intervals, while when we use thirty-minute intervals we obtain 384.
In the former case, our baseline for the generated times using 12 bits per time-ID
would occupy 183.30 MiB. In the latter one, each time-ID requires 9 bits and the
temporal baseline requires 137.47 MiB.

12Data from the CRTM corporation at http://www.crtm.es/.
13Data manually scraped from public sources.

http://www.crtm.es/
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Figure 4.7: Time distributions tested. The final Madrid dataset was
generated with the distribution called skewed. The y-axis indicates the
number of passengers per each 5-min interval.

• Porto dataset: We downloaded a collection of 1,710,671 trajectories from the city
of Porto corresponding to taxi trips during a full year (from July 1, 2013 to June 30,
2014), provided by [MMGF+13].14 Among other fields those data include, for each
taxi ride, a list of GPS coordinates and times gathered every 15 seconds of the trip.
We adapted such data to our needs by using a map matching algorithm provided
by the Graphhopper library,15 and OpenStreetMap cartography.16 With this, we
could determine what streets segments were traversed by the trips from their list of
coordinates. Finally, trips were encoded as a sequence of identifiers corresponding to
adjacent stretches of street (that is, basic street segments with no intersections) the
trip traversed, each one of them tagged with a timestamp.
After filtering incomplete matches, 1,617,774 trips, built over 59,618 distinct street
segments, were used for the dataset. Due to the nature of the network and the trips,
the average number of street segments per trip is 64.74; that is, the length of the
trips is longer than in Madrid dataset. Since we needed 16 = dlog2 59,618e bits to
represent each segment in a trip, the total size of our plain spatial baseline is 202.85
MiB.
For the temporal part, we considered only one kind of day. Therefore, when we
sample those 24 hours into five-minute intervals, we obtain 288 distinct time intervals
that are given a 9-bit time-ID. Consequently the overall size of the temporal baseline
becomes 114.10 MiB. However, if we split those 24 hours into thirty-minute intervals,
only 48 time intervals arise. In this case, each time-ID needs only 6 bits and the
total size of the temporal baseline is 76.07 MiB.

Note that, although this is not the best representation for trips over public transportation
14Description at http://www.geolink.pt/ecmlpkdd2015-challenge/dataset.html . Down-

loaded from https://archive.ics.uci.edu/ml/machine-learning-databases/00339/train.csv.
zip

15https://github.com/graphhopper/map-matching
16http://www.openstreetmap.org/

http://www.geolink.pt/ecmlpkdd2015-challenge/dataset.html
https://archive.ics.uci.edu/ml/machine-learning-databases/00339/train.csv.zip
https://archive.ics.uci.edu/ml/machine-learning-databases/00339/train.csv.zip
https://github.com/graphhopper/map-matching
http://www.openstreetmap.org/
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networks (see Chapter 5 for our proposed representations for those cases), we have decided
to include the experiments over the Madrid dataset anyway. The reason for its presence
is twofold: One, to show a realistic use case of this representation built over a public
transportation network instead of a context of streets or roads, so the problems discussed
in the next chapter could be understood more clearly. Two, because it serves as a better
example for space-time trade-offs of our two alternative structures used to represent time
intervals: the HTWT and the WM.

4.4.2 Space Requirements
We show the compression obtained by CTR when built on our two test datasets.
Compression is shown as the percentage of the size of the plain baselines discussed
above. Using different configurations of CTR, we will show the compression of the spatial
component (CSA), that of the temporal component (HTWT and WM), and finally the
overall compression of CTR.

tΨ

32 128 512
Madrid 41.32% 26.80% 23.06%
Porto 23.66% 15.49% 13.37%

Table 4.1: Compression of CSA with respect to the spatial baseline.

Results regarding the compression obtained by CSA are given in Table 4.1. The
compression ratio is calculated over a plain spatial-only (stop-IDs or street-segment-IDs in
each case) representation. Note that an iCSA built on English text [FBN+12] typically
reached the compression of gzip (around 35% in compression ratio). As expected, the high
compressibility of our sorted datasets of trips helps our CSA to improve those numbers
with compression ratios under 30%, while also offering indexing features that allow us
to perform efficient searches. In a rather dense configuration of CSA with tΨ = 32 we
obtain compression ratios around 41% and 23% for Madrid and Porto datasets respectively.
Those results are interesting from the simple fact that the baseline representations were
only using respectively 9-bits per node (Madrid) and 16-bits per segment (Porto). As
expected, compression improves as we increase the Ψ sampling parameter tΨ. We show
that by tuning CSA in a more sparse setup we can almost halve the space needs of using
tΨ = 32, although the resulting CSA would become much slower as we will later prove in
Section 4.4.3. In general, we can see that CSA obtains better compression in Porto than
in Madrid. This is probably due to the longer and more predictable trips. Note that is
not common to arrive at an intersection having more than two valid street links where to
navigate to.

In Table 4.2, we focus on the space needed by the temporal component of CTR. In this
case we show the compression ratios obtained by HTWT and WM considering that time is
either discretized into 5-min or 30-min intervals. Recall that the size of the plain baseline
representations differs depending on the discretization period. Both HTWT and WM were
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Type of bitvector in WM/HTWT
RG32 RRR32 RRR64 RRR128

Madrid (HTWT, 5-min) 91.33% 80.89% 76.90% 74.90%
Madrid (WM, 5-min) 103.13% 86.03% 80.61% 77.88%
Madrid (HTWT, 30-min) 92.30% 78.90% 74.66% 72.52%
Madrid (WM, 30-min) 103.14% 83.32% 77.90% 75.18%
Porto (HTWT, 5-min) 93.52% 102.61% 98.27% 96.11%
Porto (WM, 5-min) 103.13% 106.88% 101.41% 98.66%
Porto (HTWT, 30-min) 96.00% 103.78% 99.08% 96.74%
Porto (WM, 30-min) 103.12% 107.00% 101.50% 98.75%

Table 4.2: Compression of WM and HTWT with respect to the temporal
baseline.

tuned by using bitvector representations RG32, RRR32, RRR64, and RRR128, as indicated
above.

One important insight from these results is that in the synthetic dataset from Madrid
RRR bitvectors always lead to a better compression than the plain RG, while in the
real dataset from Porto that is not always the case, and we have to use the sparsest
configuration of RRR to achieve similar space requirements of the uncompressed RG
version. Consequently, for Porto dataset, the faster plain RG bitvectors are probably the
best choice. In Madrid dataset, we can see an actual space/time trade-off: RRR obtains
better compression but will be slower, as later seen in Section 4.4.3.

Finally, in Table 4.3, we show the overall compression rates of CTR. We use the
same configurations for HTWT and WM as in Table 4.2, and both the most dense and
sparse tuning of CSA (tΨ = 32 and tΨ = 512 respectively). For Madrid dataset, the
pair (node, timestamp) is represented with 9 + 9 = 18 bits in our baseline representation
when time is discretized into 30-minute intervals, and with 9 + 12 = 21 when we use
5-minute intervals. In the case of Porto dataset, when using 30-minute intervals, each pair
(node, timestamp) from the baseline requires 16 + 9 = 25 bits. If discretization considers
5-minute intervals, the baseline requires 16 + 6 = 22 bits. We can see that the overall
compression of CTR in Madrid dataset ranges between 76% and 50%. Also we show that
Porto dataset is much more compressible, obtaining compression ratios from around 50%
down to 35%.

4.4.3 Performance at query time
Through this section, we evaluate the time performance of CTR when solving spatial,
temporal, and spatio-temporal queries. We have randomly generated 10,000 query patterns
from our two datasets for each type of query. Each time measurement presented below is
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Type of bitvector in WM/HTWT
RG32 RRR32 RRR64 RRR128

t Ψ
=

32

Madrid (HTWT, 5-min) 69.90% 63.93% 61.65% 60.51%
Madrid (WM, 5-min) 76.64% 66.87% 63.77% 62.21%
Madrid (HTWT, 30-min) 66.81% 60.11% 57.99% 56.92%
Madrid (WM, 30-min) 72.23% 62.32% 59.61% 58.25%
Porto (HTWT, 5-min) 48.81% 52.08% 50.52% 49.74%
Porto (WM, 5-min) 52.27% 53.62% 51.65% 50.66%
Porto (HTWT, 30-min) 43.39% 45.51% 44.23% 43.59%
Porto (WM, 30-min) 45.33% 46.39% 44.89% 44.14%

t Ψ
=

51
2

Madrid (HTWT, 5-min) 62.07% 56.10% 53.82% 52.68%
Madrid (WM, 5-min) 68.81% 59.04% 55.94% 54.38%
Madrid (HTWT, 30-min) 57.68% 50.98% 48.86% 47.79%
Madrid (WM, 30-min) 63.10% 53.19% 50.48% 49.12%
Porto (HTWT, 5-min) 42.22% 45.49% 43.93% 43.15%
Porto (WM, 5-min) 45.68% 47.03% 45.06% 44.07%
Porto (HTWT, 30-min) 35.91% 38.03% 36.75% 36.11%
Porto (WM, 30-min) 37.85% 38.91% 37.41% 36.66%

Table 4.3: Overall compression of CTR including different configurations
for both the spatial and temporal components.

the average execution time of 10,000 runs using the corresponding query patterns, except
for the top_K queries where we perform 100 runs of the top-k algorithms with k ∈ {10, 100}.

Our test machine has an Intel(R) Core(tm) i5-4690@3.50GHz CPU (4 cores/4 siblings)
and 8GB of DDR3 RAM. It runs Ubuntu Linux 16.04 (Kernel 4.4.0-21-generic). The
compiler used was GCC version 5.4.0 and we set compiler optimization flags to −O3. All
our experiments run in a single core and time measures refer to CPU user-time.

During the generation of query patterns, for those queries involving only one node X
from the network, we have randomly chosen X 10,000 times from the available network
nodes. This is the case of the query patters used both for the spatial queries start_X,
end_X, and load_X or the spatio-temporal start_XT , end_XT , and load_XT . In the case of
the spatial from_X_to_Y and the spatio-temporal from_X_to_YTs, and from_X_to_YTw the
pair of network nodes 〈X,Y 〉 that compose our query patterns were generated by randomly
choosing 10,000 trips and then extracting the initial X and ending Y nodes of those trips,
in order to avoid generating queries for pairs 〈X,Y 〉 that were absent in our dataset.

Moreover, we also generated the time intervals [t1..t2] required for the spatio-temporal
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queries. Considering the different available time-IDs, we chose a random starting instant t1
and then randomly generated the width of that interval from five minutes to two hours.
Note that if we discretized time into 5-minute intervals and interval-width = 59 minutes,
our time interval [t1..t2] would contain exactly 12 time IDs (t2 ← t1 + 11). However, if time
was discretized into 30-minute intervals, [t1..t2] would contain only 2 time IDs (t2 ← t1 + 1).
We followed the same procedure to generate the query patterns used for the pure temporal
queries load_T and start_T.

4.4.3.1 Space/time trade-off when dealing with spatial queries

In Figures 4.8 and 4.9, we show the performance of CTR at solving spatial queries for
Madrid and Porto datasets respectively. Note that all these queries can be answered using
only the CSA component of CTR. Therefore, the size of the temporal component is not
considered here and compression values (x-axis) refer only to the size of CSA with respect to
the spatial baseline as in Table 4.1. We show the average query time (in µs) depending on
the space used by CSA with three different sampling configurations (tΨ ∈ {512, 128, 32}).

Results show that the queries that involve searching in the $ region of Ψ, such as
start_X or from_X_to_Y are considerably slower than queries end_X and load_X due to
the large size of that region when compared to the frequency of any node: in neither of the
two datasets there is a node that was visited by every trip, while there is one $ per trip.

In both datasets, we can see that load_X (solved using select on D rather than bsearch
on Ψ) is the fastest query. On average, it takes only around 10ns per query. Except in
the most sparse configuration of CSA, queries end_X, start_X, and from_X_to_Y require
typically less than 10µs. This basically shows the cost of performing bsearch on a compressed
Ψ. In the most sparse setup (tΨ = 512), times for start_X and from_X_to_Y are always
better for the dataset of Madrid than for the one of Porto, and end_X draws rather identical
times. With the densest configuration (tΨ = 32), end_X and from_X_to_Y are respectively
around 10-20% fastest in Madrid dataset (end_X takes 4.05µs and 4.51µs respectively, and
from_X_to_Y takes 4.54µs and 5.66µs). However, start_X performs around 20% faster in
Porto dataset (2.28µs vs 2.90µs).

Focusing on top_K queries, we can see huge differences between top_Ks and the rest of
the top_K queries, as the former needs to perform bsearch over the compressed Ψ instead
of a select on D.

We can also see that due to the small number of stops in Madrid dataset, it is always
more efficient to use the sequential version of top_Ks and top_K algorithms. This is also
because a rather uniform frequency among nodes increases the number of insertions in the
priority queue (i) of the binary-partition algorithm needed for retrieving the first k nodes
(i ≈ |S|). Moreover, note that for the sequential algorithm i is at most |S|, whereas for the
binary-partition counterpart it could become up to 2|S| − 1.

However, in Porto dataset, where nodes follow a biased distribution (some streets are
much more used than others by taxis), and a vocabulary is 190 times larger than the one
for Madrid, the binary-partition version of top_Ks and top_K algorithms is clearly faster
than the sequential counterpart (top_Kseq and top_Ksseq). Note that in Madrid dataset,
top_100 returns 32% of the nodes (hence sequential processing worths it) whereas in Porto
dataset less than 0.2% of the nodes are returned.
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Figure 4.8: Spatial queries (left) and spatial top-k queries (right) for Madrid.
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Figure 4.9: Spatial queries (left) and spatial top-k queries (right) for Porto.

The gap between top_10seq and top_100seq that we can clearly appreciate in Madrid
dataset is due to the cost of the insertion of nodes in the min-heap. However, the gap
between the binary top_10bin and top_100bin is mainly related to the number of iterations
performed until the binary-partition algorithm gathers the first 10 and 100 nodes returned
respectively. The same discussion applies for top_Ks queries.

4.4.3.2 Comparing the space/time trade-off of WM and HTWT
In order to compare the efficiency of our HTWT (that uses variable-length codes and
supports count efficiently) with a balanced WM alternative under different time distributions
(recall that this WM is time distribution invariant), we run some experiments that evaluate
the average time to execute count operation on both representations.

We used a dataset of generated trips for Madrid (refer to Section 4.4.1 for details)
and we generated three kinds of time distributions for our evaluation. We refer to them
as: uniform, skewed, and very skewed, as they are shown in Figure 4.7. According to the
total number of passengers in a day, in the uniform distribution, 51,000 passengers use
the network for each 5-minute interval. We also generated a skewed distribution for the
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time interval frequencies in an effort to model the usage of a public transportation network
in a regular working day, where the starting time of a trip is generated according to the
following rules:

• With 30% of probability, a trip occurs during a morning rush hour.
• With 45% of probability, a trip occurs in an evening rush hour.
• With 5% of probability, a trip occurs during lunch rush hour.
• The remaining 20% of probability is associated to unclassified trips, starting at a

random hour of the day, which may also fall into one of the three previous periods
discussed.

In the very skewed distribution we increase the rush-hour probabilities with 40% for the
morning rush hour, 50% for the evening rush hour, 8% for lunch period and only 2% of
random movements.

For these generated datasets, we have built the HTWT and the WM considering two
different granularities for the discretization of times: five-minute and thirty-minute intervals.
Then, we generated 10,000 random intervals of times [t1..t2] over the whole time sequence
of the dataset considering interval widths of five minutes, one hour, and six hours. Finally,
we run 10,000 countt1,t2(IcodeΨ, |T | + 2, n) queries (we show average times) from each
query set over the six configurations of HTWT and WM (2 different granularities for the
time discretization and 3 datasets).

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 70  75  80  85  90  95  100  105

t
i
m
e
 
(

µ
s
e
c
/
p
a
t
t
e
r
n
)

space (% of baseline)

time granularity=5 min (uniform time distrib)

wtht:5-min
wtht:1-hour
wtht:6-hour

wm:5-min
wm:1-hour
wm:6-hour

 1

 1.5

 2

 2.5

 3

 70  75  80  85  90  95  100  105

t
i
m
e
 
(

µ
s
e
c
/
p
a
t
t
e
r
n
)

space (% of baseline)

time granularity=30 min (uniform time distrib)

wtht:5-min
wtht:1-hour
wtht:6-hour

wm:5-min
wm:1-hour
wm:6-hour

Figure 4.10: Space/time trade-offs for count queries with a uniform the
time distribution. Time granularity for the time index is 5 minutes (left) or
30 minutes (right).

In Figures 4.10,4.11 and 4.12, we show the results of our experiments. In Figure 4.10,
we include the results for HTWT and WM built over the times assuming uniform frequency
distribution. In Figure 4.11 we assume times follow a the skewed distribution, and in
Figure 4.12 we show results when considering a very skewed distribution. Moreover, plots
in the left column show results for our structures considering that a 5-minute granularity
is chosen for the discretization of times, whereas plots on the right column assume time
granularity is 30 minutes. For each scenario we include plots wtht:5-min, wtht:1-hour,



4.4. Experiments 49

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 70  75  80  85  90  95  100  105

t
i
m
e
 
(

µ
s
e
c
/
p
a
t
t
e
r
n
)

space (% of baseline)

time granularity=5 min (skewed time distrib)

wtht:5-min
wtht:1-hour
wtht:6-hour

wm:5-min
wm:1-hour
wm:6-hour

 1

 1.5

 2

 2.5

 3

 70  75  80  85  90  95  100  105

t
i
m
e
 
(

µ
s
e
c
/
p
a
t
t
e
r
n
)

space (% of baseline)

time granularity=30 min (skewed time distrib)

wtht:5-min
wtht:1-hour
wtht:6-hour

wm:5-min
wm:1-hour
wm:6-hour

Figure 4.11: Space/time trade-offs for count queries with a skewed the time
distribution. Time granularity for the time index is 5 minutes (left) or 30
minutes (right).

and wtht:6-hour for HTWT (range width for count is respectively 5-minutes, 1-hour, and
6-hours). We also present those plots for WM (wm:5-min, wm:1-hour, and wm:6-hour).

The baseline used for the space usage (x-axis) is the size of an array of fixed-length
time-interval IDs represented with the least number of bits needed (12 bits and 9 bits
respectively for 5-minute and 30-minute granularity, see Section 4.4.1).

When times are uniformly distributed, our HTWT can only exploit the redundancy
introduced by the $ symbols. With this, HTWT can obtain only a minimal compression
(around 96− 98% of the baseline) when using a RG (plain) bitvector, whereas WM uses
more space than the baseline (around 104%). Recall that, for each plot, we present four
points corresponding (left-to-right) to RRR128, RRR64, RRR32, and RG bitvectors. When
using compressed bitvectors (RRR), WM becomes the best choice. It is both more compact
(bitvectors in WM are more compressible) and faster than HTWT. In any case, using RRR
clearly slows down queries.

A skewed distribution favors the compression for a statistical coder like Hu-Tucker,
which explains the higher compression obtained. However, it also slightly increases the
query times, especially in the wider one-hour and six-hours query sets. This happens
because the probability of having a query that forces to descend completely up to the leaves
of the HTWT also increases.

For a very skewed distribution, the gap in compression between HTWT and WM
increases clearly (around 5 percentage points), whereas query times remain similar to those
in the previous scenario.

As a conclusion of the experiments discussed in this section, we have shown that the
distribution of the sequence of times can be exploited by our HTWT to achieve a better
compression and even improved query times than the balanced WM counterpart.

4.4.3.3 Space/time trade-off when dealing with temporal queries
In this section we focus on the performance of the temporal component of CTR. We
use the same configurations as in Table 4.2 for WM and HTWT (although we are only
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Figure 4.12: Space/time trade-offs for count queries with a very skewed the
time distribution. Time granularity for the time index is 5 minutes (left) or
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using generated times for Madrid following the skewed variant, as previously stated in
Section 4.4.1), and show the space/time trade-offs obtained when solving pure temporal
queries. Figures 4.13 and 4.14 present the results obtained at load_T and start_T queries
for Madrid and Porto datasets respectively. Note that, in this case, since the CSA is not
actually needed to solve temporal queries, we do not include its size within the compression
values (x-axis).

We can see that when running load_T queries, both HTWT and WM obtain rather
similar times (requiring less than 4µs to perform a count operation in all cases) and that
those times improve as the height of the structure decreases. We can see that in the
highest HTWT and WM, corresponding to using 5-min intervals in Madrid dataset, load_T
requires less than 3.5µs. Then, when using 30-min intervals, the time required to solve
load_T is always below 2.3µs (yet WM performs faster than HTWT here), and those times
are similar to the ones obtained for Porto dataset when using 5-min intervals. Finally, the
best query times (below 1.2µs) are obtained for Porto dataset with 30-min intervals.

Regarding start_T, recall that it also performs a count operation, but within a smaller
range ([2..|T + 1|]) in comparison with the range [|T |+ 2..n] where count is performed for
load_T. We can see that, whereas the WM obtains similar times to those of load_T query,
start_T performs clearly faster than load_T over the HTWT.

While query times are bounded by O(log |I|), as seen in Section 4.3.2, it is observed
that, in some cases, start_T is answered considerably faster than load_T. This occurs
because, for some of our randomly queried time intervals (of up to two hours), there are no
trips starting around that queried time, allowing the count operation to be cut short before
reaching the leaves of the HTWT or the last level of the WM. The difference is obviously
accentuated in the case of HTWT, as the tree is not uniform.

As a final note, recall that in Madrid dataset, bitvector RG always needs more space
than RRR counterparts whereas in Porto dataset (as discussed in Section 4.4.2) RG obtains
the best space values when using 5-min intervals and still requires less space than RRR32
when using 30-min intervals. This is the reason why while plots for Madrid dataset are
decreasing from left to right, in Porto dataset the first point (RG) in the left figures (5-min
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Figure 4.13: Pure temporal queries for Madrid, using either a HTWT (left)
or a WM (right). Time granularity is 5 minutes (top) or 30 minutes (bottom).

intervals), and the third point (RG) in the right figures (30-min intervals) require less space
than the others (RRR) and are also typically faster.

4.4.3.4 Space/time trade-off when dealing with spatio-temporal queries
In Figures 4.15 and 4.16, we show the space/time tradeoff obtained by CTR when dealing
with spatio-temporal queries. Recall that this type of queries require both using the CSA,
to exploit indexed access to the nodes in the trips, and the temporal component of CTR to
handle temporal constraints. In this case, the space values showed in the figures include
both the size of CSA and that of either WM or HTWT. Therefore, we also show the overall
space needs of CTR. In the case of CSA we have set tΨ = 32 (a fixed dense sampling), and
for WM and HTWT we used again the same configurations as in the previous sections
obtained by varying the bitvectors and the temporal discretization.

For queries start_XT , end_XT , and load_XT we can see typically small differences
between using WM or HTWT. In Madrid dataset, WM overcomes HTWT being 2-30%
faster in these types of queries. However, in Porto dataset HTWT is slightly faster (from 1
to 25%) than its WM counterpart.

For queries from_X_to_YTs and from_X_to_YTw we can see a big gap between the times
reported by HTWT and WM. This gap arises because in WM we have used the countLR
operation discussed in Section 4.3.3 that was implemented with two additional upward
traversals for the WM.17 However, in our implementation of HTWT we have engineered

17We used the exact same WM implementation as in [CNO15] and simply added the new
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Figure 4.14: Pure temporal queries for Porto, using either a HTWT (left)
or a WM (right). Time granularity is 5 minutes (top) or 30 minutes (bottom).

an improved version of countLR where, during the execution of count, we also report α′
and β′, hence avoiding extra operations.

Finally, we also include results for top_KT and top_KTs queries in Figures 4.17 and 4.18.
As explained in Section 4.4.3.1, the sequential approach is preferred when the frequency
distribution of nodes is rather uniform (Madrid dataset). Otherwise, the binary-partition
counterpart outperforms it. The need for applying a temporal constraint simply accentuates
this effect in comparison with the corresponding pure spatial queries.

operation countLR that calls the underlying count from the WM and traverses up from the bottom
level by using the select operation over its bitvectors. In later works, we have optimized this
operation.
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Figure 4.15: Spatio-temporal queries for Madrid, using either a HTWT
(left) or a WM (right). Time granularity is 5 (top) or 30 minutes (bottom).
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Figure 4.16: Spatio-temporal queries for Porto, using either a HTWT (left)
or a WM (right). Time granularity is 5 (top) or 30 minutes (bottom).
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Figure 4.17: Spatio-temporal top_K queries for Madrid, using a HTWT
(left) or a WM (right). Time granularity is 5 (top) or 30 minutes (bottom).
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Figure 4.18: Spatio-temporal top_K queries for Porto, using a HTWT (left)
or a WM (right). Time granularity is 5 (top) or 30 minutes (bottom).



Chapter 5

Representations for trips
over public transportation
networks

After CTR was introduced in Chapter 4 as a representation oriented for trips over urban
street networks, in this chapter we introduce two alternative representations, called
Topology&Trip-aware Compact Trip Representation (TTCTR) and eXtended Compact
Trip Representation (XCTR). These new techniques are expected to be more adequate
for trips over public transportation networks, since they make it possible to query about
network concepts such as line and schedules, and also use them in order to reduce the size
of our structures.

Both TTCTR and XCTR are also based on the CSA and the WM, although they
rely on other common structures for a network representation, that do not need to be
compact due to their already small size. However, we have found out that while these
representations excel at many of our proposed queries related to trip patterns, they could
be rather inefficient for other kinds of aggregation queries about the load of a network.
For this reason, we have also introduced a complementary Trip-Matrices (T-Matrices), a
SAT-based structure designed to accelerate this second kind of queries.

We have implemented and evaluated our structures, over the current bus network
of Madrid, thus analyzing, both theoretically and experimentally, the fitness of each
representation for every use case. This chapter starts with a brief description of the scenario
where we identify all the elements involved in a public transportation network, and we also
identify the most significative queries that should be considered. Then, in Section 5.2, we
present all the structures considered in our proposal. This includes the common structures
to manage network-related elements, and the structures TTCTR, XCTR, and Trip-Matrices
(T-Matrices). In Section 5.3, we show how to support queries. Finally, we analyze them
theoretically in Section 5.3.3, and experimentally in Section 5.4, where we measure both
the space needs and query performance. Additionally, in Chapter 7 we will show how
these representations can be integrated into a GIS application, usable for a transportation

55
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network administrator.

5.1 Description
While, in theory, we could use the CTR (Chapter 4) to also represent trips over a subway
or bus network, such representation would be very redundant. If we defined our CTR nodes
as stops or stations, making two of them connected if there exists a line or route that stops
at each, we would find out that a commuter would board at a stop and follow only one
route (line), passing through all its stops consecutively until the alighting stop, either to
switch lines or end the trip. Furthermore, a single vehicle (such as a bus or a train) will
be shared by several commuters at the same time, thus also producing trips that visit the
same nodes at the same times. Because simply listing every node traversed introduces all
these kinds of redundancy for public transportation networks, we state that CTR is more
adequate for urban street networks.

Therefore, in order to better capture the information regarding trips over a public
transportation network, and to exploit this information in order to find a representation
that permitted us to reduce redundancy, we proposed an ER model that handles all the
information related to the demand on a public transportation network. It is shown in
Figure 5.1.

Figure 5.1: An ER diagram representing our model of user trips for public
transportation networks.
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These are the main elements from our model:

• A stop_place is a physical stop with a location, on which several lines may make
stops.

• A line is an ordered sequence of stop places that can be traveled by a transport
vehicle, such as a bus or a train. It only considers one travel direction. For this
reason, there is often a different and complementary line for the opposite direction.

• A journey is a singular traversal of a transport vehicle over a line. It can be seen
as a vehicle trip, instead of a user trip.

• A stage is formed by a boarding from a stop and an alighting to another from the
same single line and journey.

• An user_trip is a concatenation of several stages, until the final destination
(alighting stop of the last stage) is reached.

This approach allows us to treat the information in a layered fashion: the bottom layer
is a static network representation, formed by the line and stop_place types, the middle
layer represents the journeys made by vehicles that make stops at specific times, while
the top layer includes the trips made by the users in these vehicle journeys. Finally, it is
possible to introduce a user identity, with an anonymized identifier to split trips by users.
However, we have not considered such information useful for the kind of analysis that this
work focuses on. If needed in the future, this additional entity could be trivially integrated
in our representation.

In order to represent and operate our data structures, we will follow this model by
defining stops si ∈ S, lines li ∈ L and journeys ji ∈ J l. It is important to state that
journeys are not identified by ji, as the same ji can belong to several J l from different
lines, so we speak about journey codes (jcodes) instead of journey identifiers. In Figure 5.2
we can find an example network with two lines and fourteen stops, and journeys that
periodically traverse these lines. Note that journey-code 0 appears both in line 0 and in
line 1.

A user trip can be represented by the stops from the transportation system that were
boarded by a user, so from now on we will consider a trip as a sequence of triplets <s, l, j>,
where s and l are, respectively, stop and line identifiers, while j are the journey codes
corresponding to the journeys that compose the trip. These triplets describe a trip in a
consecutive fashion, on the same order as the stops were boarded. Additionally, as we are
interested in knowing where the trips end, we also represent the last stop where the user
has alighted. Note that both its line and journey will logically match the line and journey
of the last boarding stop. Although it is generally hard to obtain information about the last
destination stop of a trip, many transportation companies are investing effort in providing
it, either by implementing systems to keep track of users as they leave their system or
estimating it based on previous trips made by that user [AAMF16].

Example 5.1: The arrows in Figure 5.2 are examples of five user trips done along the
network. For example, there is a user trip (dashed arrow from S3) that starts at stop S3
at 06:25 on day-1, following the journey 1 of line 1 until S10, where the user switches to
line 2 at time 06:35 and continues along the journey 2 of line 2 (the one started as 06:30 in
S13) up to stop S12. Consequently, this trip includes two stages.
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Figure 5.2: Network representation with the common structures.

In our first representation, TTCTR, we encode all valid <s, l> pairs into a vocabulary
V , with every trip defined as a concatenation of the <s, l> pairs for the boarded stops,
ended by the final destination stop, which will be alighting. We build a CSA over the
concatenation of these trips, and a parallel WM with the journey codes of the boarded stops,
as previously done for CTR in Chapter 4, but with the temporal component represented
by line-dependant journey codes instead of explicit time intervals. For our alternative
representation, XCTR, we only encode the sequence of boarded stops, while the lines go
into a parallel WM, and the journey codes are in a second WM that is aligned to the last
level of the first one, allowing us to have more flexibility for some queries, while sacrificing
efficiency in others. Finally, T-Matrices represents a matrix Mb

l for each line l where each
cell in the matrix stores the number of boardings (or alightings) performed in the s-th stop
of the j-th journey of line l.

In the context of public transportation networks, we are interested in solving two main
kinds of queries, which we present with a non-comprehensive list of examples that can be
solved with the structures proposed in this work:
A) Queries about the network load, asking for the gross number of users that boarded or

alighted within a stop and a given time/journey. Furthermore, it can be also interesting
to obtain the average load of a bus or a train between any two stops from its line. Some
of those queries are:

• board_XLT . Number of users that boarded a vehicle at stop X, optionally
restricting to a line L and a time range T.

• alight_XLT . Number of users that alighted a vehicle at stop X, optionally
restricting to a line L and a time range T.
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• use_LT . Number of users (boarding any vehicle) for the line L, optionally
restricting to a time range T.

• board_T. Number of users boarding (any vehicle) within a time range T.
• alight_T. Number of users alighting (any vehicle) within a time range T.
• load_XLT . Average number of passengers traveling from the stop X to its next

stop in the line L within the time range T. It can also be seen as the average load
of the vehicle.

B) Queries about user trips patterns. With his kind of queries we can obtain the number
of times a stop was used to switch lines or the number of trips that started on a
stop with another specific stop as the final destination. In this work we consider the
following queries of this kind:

• start_XLT . Number of user trips starting at a given stop X, optionally restricting
to a line L and a time range T.

• end_XLT . Number of user trips ending at a given stop X, optionally restricting to
a line L and a time range T.

• switch_XLT . Number of trips in which the stop X was used to switch lines,
optionally restricting to a destination line L and a time range T.

• from_XLT _to_YLT . Number of user trips that originate at stop X and end at
stop Y, both being optionally restricted to a line and time range. A fundamental
difference with the similar definition of from_X_to_YT from Section 4.1 is that we
no longer restrict the whole trip to a single time range, but we query for separate
time filters for the starting stop X and the ending stop Y .

• start_LT . Number of user trips starting at any stop from a given line L, optionally
restricting to a time range T.

• end_LT . Number of user trips ending at any stop from a given line L, optionally
restricting to a time range T.

• start_T. Number of user trips starting within a time range T.
• end_T. Number of user trips ending within a time range T.

5.2 Structures
To the best of our knowledge, there is no indexing structure that would allow us to
efficiently represent trips that could also support all the kinds of queries described in
the previous section. For this reason, we propose a new solution that relies on two data
structures, T-Matrices and TTCTR. The former is targeted for queries of type A, solving
most aggregation queries in constant time, while the latter can be used for queries of type
B. Finally, we introduce a more versatile alternative to TTCTR that we call XCTR.

5.2.1 Common Data Structures
Considering our network formed by stops si ∈ S, lines li ∈ L, and journeys ji ∈ J l, the
following structures represent these elements. All our following representations will rely on
them.
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• lineStopi(j) is the j-th stop of line li.
• stopLinei(j) is the j-th line that makes a stop at the stop si.
• avgT imei(j) is the average time in seconds that it takes for a vehicle of line li to

reach its j-th stop from the start of a journey.
• initialT imei(k) is the starting time of the journey jk for line li.

With the exception of initialT ime, all these structures are considered small enough
to be represented using plain fixed-length integer arrays. In the case of initialT ime, its
size naturally grows with the amount of trips that are indexed, thus there is a motivation
to reduce its size, which can be easily achieved with any technique that works on posting
lists or sequences of strictly increasing numbers, many of which have been discussed and
benchmarked in [CFMPN16] and [FMPC+19]. In our work we have used a simplified
Vbyte+ANS compression described in [MP17] using the Zstd library.1 In order to facilitate
searches and random access, we introduced fixed-length samples on configurable intervals.

Examples of these sequences may be found in Figure 5.2, where we indicate the sequence
of stops for each line (lineStop), the average estimated times (avgT ime), the initial times
of each journey (initialT ime), and finally the inverted lists of lines per stop (stopLine).

5.2.2 TTCTR
Topology&Trip-aware Compact Trip Representation (TTCTR) was introduced in [BFG+18],
as a way of representing trips that are sequences of triplets <s, l, j> for every boarded
stop s, with its line l, and journey j. Finally, there is also an additional triplet for the last
alighted stop, which is considered to be the final destination of the trip. In TTCTR, the
spatial component (the pairs <s, l> for the stops and lines of a trip) is represented with a
CSA where each valid pair <s, l> is encoded as an integer id in the input sequence T [1..n]
that is used to build the CSA.

In order to build the TTCTR structure, all trips must be first sorted. If we consider
that a trip is composed by m of the <si, li, ji>, 1 ≤ i ≤ m triplets previously described,
where the first triplet corresponds to the first boarded stop and the last triplet corresponds
to the last alighted stop (final destination), then the collection of trips is sorted by the key
<s1, sm, l1, j1>. That is, trips are initially sorted by the first boarded stop identifier. If
these are equal, they are then sorted by their last stop identifier, analogously followed by
the line identifier, and journey code of the first stop.

Example 5.2: By our defined criteria, the correct way of sorting the five
trips depicted as arrows in Figure 5.2 is: t1 = 〈(1, 1, 0), (10, 2, 1), (11, 2, 1)〉,
t2 = 〈(2, 1, 1), (7, 1, 1)〉, t3 = 〈(3, 1, 1), (10, 2, 2), (12, 2, 2)〉, t4 = 〈(6, 2, 0), (11, 2, 0)〉,
and t5 = 〈(13, 2, 2), (9, 1, 2), (14, 1, 2)〉.

Note that, for example, (13, 2, 2) from t5 indicates that, at stop 13, the user boarded
vehicle from line 2, that corresponds to the 3-rd journey (as the first journey-code is zero),
which started at 06:30. Naturally, the line and journey ids of the last triple of each trip
are identical to the ones in the previous triple, as the commuter had to board into that
line and journey before alighting from it.

1https://github.com/facebook/zstd
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We also need a bijective function to encode the pairs <s, l>. Consider a vocabulary V
such that:

• Entry V [0] is reserved for the terminator symbol $.
• Entries 〈V [1], V [2], . . . V [|S|]〉] are associated with stops s1, s2, . . . , s|S| and are used

to represent the final stops of the trips. That is, when a given stop si ends a user
trip, it is given id← si.

• The following |L| · |S| entries are associated with the sequence composed of the pairs
<s, l >∈ S × L, sorted first by the stop id s and later by the line id l. That is, entry
V [|S| + 1] is given to <s1, l1>; V [|S| + 2] to <s1, l2>; V [|S| + 3] to <s1, l3>; . . . ;
V [|S|+ |L|] to <s1, l|L|>; V [|S|+ |L|+ 1] to <s2, l1>, V [|S|+ |L|+ 2] to <s2, l2>,
and so on. Therefore, it is easy to see that any <si, lj> is going to be associated
with the entry V [|S|+ |L|(i− 1) + j].

This arrangement would theoretically produce many entries in V that are mapped to
pairs <s, l> that are unused in T , either because the stop is never traversed by that line
or (rather unlikely) because we do not have the record of a user trip containing it. These
unused entries can be skipped with a compact bitvector B with rank and select capabilities,
that marks with a one every used entry from V . This will enable us to operate with a much
smaller vocabulary V ′ with only the used entries from V , such that V [i] = V ′[rank1(B, i)].
Refer to the vocabulary shown in Figure 5.3(2) for an example where pairs (i.e. <s, l>)
are encoded to 43 unique identifiers in V . After that, B marks which of the entries of V
actually appear in the original sequence. Finally. V ′ will contain only 12 entries, for each
bit set to 1 in B. Note that neither V nor V ′ are explicitly represented in practice, as rank1
and select1 operations over B are enough to map and unmap, respectively, vocabulary
identifiers.

Figure 5.3: Structures involved in the creation of a TTCTR.

After this, the sequence T [1..n] is built, with the identifiers obtained by mapping the
pairs <s, l> from the user-trips to the vocabulary entries of V ′. Then a CSA is built over it,
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as seen in Figure 5.3(3). Each encoded trip in T is terminated with an additional $ symbol.
Even though in the final CSA we assign all these $ a lexicographical value of 0 (V [0]), we
assign them different correlative values during the construction of the suffix array (A) to
ensure that the entries for $ in A maintain the same order as in the original text. Finally,
we make a modification on Ψ to make the entries of each $ point to the start of its own
trip instead of the next one (cyclical as in CTR, see Section 4.2). These two modifications
are proven necessary for our implemented queries, at the expense of losing some of the
properties of a classic CSA that are not necessary here. For reference, in Figure 5.3 we
also present A′ and Ψ′, that show how our modifications compare to the original CSA.

The journey codes (jcodes) are encoded in JcodesΨ[1..n], as shown in Figure 5.3(4),
that is aligned to Ψ instead of T . Jcodes[8] = 1 corresponds to JcodesΨ[14] = 1, since
A[14] = 8; Jcodes[9] = 2 corresponds to JcodesΨ[18] = 2, since A[18] = 9; and so on.
Recall that jcodes are relative to their line identifiers, leading us to skip the jcodes that
would be aligned to the entries of Ψ belonging to the final stops (represented as “s :∗” in V ),
as they lack line identifiers, which are in turn needed to identify a journey. Additionally,
for the the first positions of JcodesΨ, aligned with the $ entries, we duplicate the same
jcodes as in the beginning of each trip.

Finally, JcodesΨ is represented with a WM. This is exactly the same strategy as in
the case of the temporal component of CTR, although in this case we are encoding jcodes
instead of time intervals.

5.2.3 XCTR
For certain queries, TTCTR can be rather inefficient, as we will discuss later in Section 5.3.
These use cases motivated us to develop a second version, XCTR, that instead of encoding
the lines into the CSA vocabulary (V ), uses a second WM with the sequence of line
identifiers, thus reducing the complexity of the queries that restrict the final line, and
delegates line checks on a new WM. This yields improved space-time trade-offs. As in
TTCTR, the input trips need to be sorted by the same criteria, but in XCTR we use
three complementary structures to represent each component of the sequence, as shown in
Figure 5.4:

(i) An adapted CSA over the stop identifiers of all trips, concatenated into a string with
additional terminator symbols $ appended at the end of each trip. As in the CSA
from TTCTR, we make these $ symbols maintain the order of the trips and cyclical
in Ψ. Because this time we do not encode line and stop identifiers together and CSA
only encodes stops, there is no need for a complex vocabulary anymore.

(ii) WML: Aligned to the entries of (i) there is a WM for the line identifiers of each stop.
Aligned to the $ section we duplicate the starting lines of each trip. As a trivial
optimization, we build a separate WM for every stop, allowing us to save space due
to the fact that a single stop does not usually belong to many lines, thus the average
height of these WM is no larger (and usually smaller) than the height of a single WM.
In addition, since there are stops that belong to only one line, the corresponding WMLs
for those stops can be implicitly kept, and therefore they are not actually stored.

(iii) WMJ: A WM of jcodes aligned to last level of (ii). Note that this makes this structure
dependant on (ii), which is coherent with the fact that journey codes themselves are
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relative to the line identifier. In case (ii) implements the optimization described, the
entries of this WM must also be rearranged to match the delimited stops.

Figure 5.4: An example of five trips represented on XCTR with the
optimizations for WML and WMJ, and sections for each stop delimited by dotted
lines.

Example 5.3: Just as in example from Section 5.2.2, in Figure 5.4 we build XCTR
with five trips over the network shown in Figure 5.2. This time, unlike for TTCTR, our
vocabulary V will only contain stop identifiers. These identifiers are used to build the
CSA with our cyclic Ψ variation. Then, the sequence of lines is aligned to the entries of Ψ,
and WML is built. Note that the only stops used in this example are 0, 3, 9, 10, 12 and 14.
Because the stops 3, 12, and 14 belong to only one line each, we do not even need to keep
a WM for their sections (which are delimited by D), as the value will always be the same.
This corresponds respectively to the 2-nd, 5-th, and 6-th sections delimited in the figure.
Finally, the sequence of Jcodes is aligned to the leaves of WML, and WMJ is built.

For example, <9, 2, 1> from the fourth trip is represented as follows: the stop id 9
is mapped to V ′[rank(B, 9) − 1] = V ′[2] = 2, and it is encoded in T at position 13. It
delimits the 10-th suffix in the sequence, as A[10] = 13, therefore its line identifier 2 also
appears in position 10 in the sequence LinesΨ. Because in this example we have opted
for the optimized version of WML, there is a single WM dedicated for the entries of stop
9, which fall in the section of A[9..11], as delimited by D. Therefore, such WML represents
the entries LinesΨ[9..11] =<1, 2, 1> and consequently requires only one level that contains
the bitmap 010. This means that in the last (conceptual) level of that WM would contain
<1, 1, 2> and consequently our entry for line 2 will appear on the third position. As the
sequence JcodesWML is aligned to this last level of WML, the journey code can be found at
JcodesWML[11] = 1.

In the later Section 5.3, we will detail how these structures are used in order to solve
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the queries proposed in Section 5.1, and we will also compare the time complexities with
those of TTCTR for every kind of query.

5.2.4 T-Matrices

While both TTCTR and XCTR are effective solutions for the trip pattern queries (type B
in Section 5.1), they can be too unpractical to efficiently solve network load queries (type
A). For this reason, we propose T-Matrices, a structure based on the SAT described in
Section 3.1, to which we have designed a compression scheme that will reduce the total
size of the structure while maintaining the O(1) time bound for obtaining the sum of an
arbitrary rectangle.

We build a SAT Mb
l for each line l, with a column for every stop of that line and a row

for every journey, sorted by their starting times. For each cell Mb
l [j, s] we store the number

of users that have boarded on the stop s during the journey j from the line l. There is also
an analogous matrix Ma

l that stores the number of alighting users in l. A small example of
a single T-Matrix is displayed in Figure 5.5, where Basic refers to the raw (unaggregated)
values, Sum are the accumulated values of a SAT, and Blocks is our compressed version.

Figure 5.5: T-Matrices example.

In order to compress the size of T-Matrices, we observe that, because the amount of
journeys is usually much larger than the amount of stops in the line, every T-Matrices is
expected to be tall and narrow. Therefore, we can divide the matrix into blocks of r rows,
so that only the first row of the block stores the absolute values of a SAT, while the values in
the rest of the rows will be relative to the first one. Given a block matrix R built on the SAT
S, any value from S can be then obtained in O(1) time as S[i, j] = R[bi/bc+i%b, j]+R[i, j]2
when i%b 6= 0, and S[i, j] = R[i, j] otherwise.

2The symbol % refers to the modulo operation i.e., the remainder of the integer division.
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5.3 Algorithms
In these section, we show how the structures from Section 5.2 allow us to solve the queries
proposed in Section 5.1. Finally, we will provide a complexity analysis that we will later
support with experiments in Section 5.4.

5.3.1 Solving network load queries
With T-Matrices, we can directly solve most of the proposed network load queries with
summations over the matrices. For example, board_XL, when we are not restricting to a
time interval T , is equivalent of summing the corresponding column of the stop X for the
matrix Mb

L. If we did not want to restrict to a line L either, since there is a Mb
l for every

line l, we would simply have to add all the sums of those matrices whose lines contain the
stop X. All this also holds true for alight_XL, using the alighting matrix Ma

L instead of
the boarding one.

When dealing with queries that do restrict to a time interval T , we must find the jcodes
of the journeys that will fall within T , which can be done with the common structures
discussed in Section 5.2.1, which store the initial time for each journey and also the average
time of arrival to each stop of a line. An example of these structures being used to find
a range of jcodes can be found at Algorithm 2, where the function lower_bound is an
exponential search that returns the index of the first occurrence that is no lesser than the
queried value, while upper_bound returns the index of the last no greater occurrence. We
also use lineStop−1

l (s) to obtain the position of a stop s within the sequence of stops from
a line l.

1 Function GetJCodes(l,s,ta,tz):
Data: line l, stop s, times ta,tz
Result: jcodes for ta and tz

2 offset ← avgT imel(lineStop−1
l (s));

3 ja ← lower_bound(initialT imel, ta-offset);
4 jz ← upper_bound(initialT imel, tz-offset);
5 return < ja, jz >;
Algorithm 2: Obtaining the codes of the journeys from the line l that should
arrive to the stop s within the time range given by ta and tz.

The range of jcodes obtained [ja..jz] will correspond to a range of rows in the T-Matrix of
the queried line, thus allowing us to solve board_XLT (or alight_XLT ) as a sum of the
rectangle Mb

L[ja..jz, s] (or Ma
L[ja..jz, s]), where s is the corresponding column for the stop

X. Similarly, we can solve use_LT with a summation on the last column of L, restricted to
the range of jcodes of T .

Finally, we can solve load_XLT by combining both the boarding and the alighting
matrices, with the observation that at any stop X, the number of passengers in the vehicle
has to equal the number of passengers that had boarded at or before X minus the number
of passengers that had alighted. Therefore, for any line L, a range of stop indices [sa..sz]
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that occur in L until X, and a range of jcodes [ja..jz] obtained for T , it follows that

load_XLT =
∑

s∈[sa..sz ]

∑
j∈[ja..jz ]

Mb
L[j, s]−Ma

L[j, s]

, which can be computed in O(1) because we refer to a contiguous range in Mb
L and Ma

L.

5.3.2 Solving trip pattern queries
As with CTR, we also obtain a clear separation between the spatial representation of the
trips (CSA) and the temporal representation (WM of JcodesΨ) in TTCTR. The spatial
component can be used to address queries such as “number of passengers that started
their trip from a stop X ∈ S and a line l ∈ L” (start_XL from Section 5.1) with a binary
search of the pattern $Xl, as the pair <X, l> will be mapped to a single symbol Xl in
V . The temporal component can be used to filter down these results to a time window
(start_XLT ) with a countja,jz (JcodesΨ, i, j) operation over the WM, where ja and jz are
jcodes obtained from Algorithm 2 and i and j delimit the range of the results obtained in Ψ.
Because the $ symbols were made cyclical in Ψ, it is also possible to answer from_X_to_Y
queries by searching for a pattern Y $Xl instead.

With XCTR we can overcome the main weakness of TTCTR, i.e. that it requires
several binary search operations over the CSA in the following cases:

• We are interested in the number of passengers that started their trip at a stop X
and a time window ta..tz, but from any line (start_XT ). As jcodes are relative to
lines, we must make a separate query for each possible pair <X, li > ∀li ∈ L.

• We need to restrict the line of a final stop, in queries such as end_XL or from_X_to_YL
(and similar variations). Because the final stops belong to separate entries of the
vocabulary that do not encode line identifiers, to restrict a stop Y ∈ S to a line l ∈ L
we need to search for every possible expanded pattern Wl, Y..., for every stop W
from the line l that could have been boarded before alighting at Y . While it looks
tempting to address this issue by modifying the design of TTCTR so that final stops
also encode line identifiers, this would in turn make queries that do not restrict the
line of the final stop inefficient, and we would need to perform a new query for every
combination of (Y, li) ∀li ∈ L, as in the previous case.

We address these limitations in XCTR, at the expense of an additional structure, which
involves more (conceptual) complexity in our operations. We will now proceed to detail
how a single trip ti may be extracted from this compact representation in Algorithm 3,
where WML(sa) is the WM corresponding to the stop sa in the optimized version of WML3 and
TrackDown returns the leaf index of a WM given a root index. In a practical implementation,
it is not needed to access WML and WMJ for the line identifier and jcode of the last stop of
the trip, as they will always match the previous ones.

Note that Algorithm 3 starts with the first stop of the trip, for which it recovers the
corresponding line la and journey ja. Then, it continues with the next stop of the trip in
line 10, until the ending $ (a 0) is reached.

3Recall that the optimized WML keeps a separate WM for every stop, instead of a single one for
all the line identifiers. Without this optimization, the pseudocode would still be valid by assigning
z ← 0 at line 6.
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1 Function Extract_trip(i):
Data: trip number i
Result: Sequence of tuples <s, l, j> that compose the trip

2 trip ← [];
3 a ← Ψ[i];
4 sa ← rank1(D, a);
5 while sa 6= 0 do
6 z ← select1(D, sa);
7 la ← WML(sa)[a− z];
8 ja ← WMJ[TrackDown(WML(sa), a-z) + z];
9 append < sa, la, ja > to trip;

10 a ← Ψ[i];
11 sa ← rank1(D, a) − 1;
12 end
13 return trip;
Algorithm 3: Extracting the trip i from XCTR, using its components Ψ, D,
WML and WMJ from Figure 5.4.

A more complex example of these structures working together is the query “number of
trips that started from a stop sa and ended at a stop sz”, which can be further restricted to
specific starting and ending lines and a time window (from_XLT _to_YLT ). The pseudocode
for the full version of such query can be found in Algorithm 4. This algorithm relies heavily
on the countja,jz (JcodesΨ, i, j) operation, as well as its variant countLR, both defined in
Section 3.4.

We will now proceed to explain the process in Algorithm 4 line by line:

• In line 2, we query our CSA for the pattern consisting of the destination stop sz,
followed by a $ and finally the origin stop sa. This results in a range of entries
within the section of sz that belong to our queried trips, because the trips were
made circular in Ψ, so each $ points to the beginning of its own trip. If we were
not interested in restricting lines nor time, the function would end here, returning
right-left.

• In lines 3-5 we obtain the corresponding range in the section of $ by accessing
Ψ. Note that because of how the sorting of the $ symbols was altered during the
construction of the suffix array, these two ranges are equal in size, as the comment
in line 5 points out.

• In line 6 we query WML in the $ section, within the range previously obtained, for the
queried starting line la, obtaining the range of its occurrences [a..z] ⊆ [left0..right0],
since the $ were sorted by their starting stop first, ending stop second and their
starting line third. Note that if the XCTR were constructed without the optimization
that separates WML in sections, this line would be exactly the same, except for the
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1 Function FromXtoY_full(la,lz,sa,sz,ta,tz,n):
Data: lines la,lz, stops sa,sz, times ta,tz and length of the sequence n
Result: Number of occurences

2 [left, right] ← bsearch(Ψ, sz$sa);
3 left0 ← Ψ[left];
4 right0 ← Ψ[right];
5 // right-left = right0-left0
6 [a, z] ← countLR

la,la
(WML($), left0, right0);

7 // left0 ≤ a ≤ z ≤ right0
8 [ja, jz] ← GetJCodes(la,sa,ta,tz);
9 [a, z] ← countLR

ja,jz (WMJ, TrackDown(a), TrackDown(z));
10 a’ ← TrackUp(WML($),a);
11 z’ ← TrackUp(WML($),z);
12 // z-a = z’-a’
13 offset ← select1(D, sz);
14 [a, z] ← countLR

lz,lz
(WML(sz), left−offset+a’− left0, left−offset+ z’− left0);

15 [ja, jz] ← GetJCodes(lz,sz,ta,tz);
16 return countja,jz (WMJ, offset + a, offset + z);
Algorithm 4: Querying for from_XLT _to_YLT with all restrictions on XCTR.

query being on a WML that would encode the whole sequence of lines instead of just
the WML($) for $.

• In line 8 we obtain the range of jcodes for the journeys from the line la that would
pass through the stop sa within the time window delimited by ta and tz, using the
function GetJCodes from Algorithm 2.

• In line 9 we operate over a range of WMJ that encodes a non-decreasing sequence of
jcodes, given that within the same origin stop, final stop, and starting line, the $
symbols were sorted by the starting journey code of their trips. This allows us to
keep using countLR, as we are still operating within the $ section. We also need to
use TrackDown on a and z since WMJ is aligned to the last level of WML.

• In lines 10-12 we use the TrackUp operation, which is the inverse of TrackDown: it
returns the position in the first level given a position in the last level of a WM. In
this case, as the a and z we obtained in the previous step are also positions in the
last level of the WML, we use TrackUp to translate that range of indexes to the root of
WML and therefore to the entries of the CSA as well. Note that the resuling range is
inside the $ section for trips with the same origin stop, final stop, and starting line
that includes all the trips for jcodes that span from ja to jz. The properties of our
adapted CSA also ensure that this range maintains the same size after translation
and it can also be directly translated to a range in [left..right].

• In line 13 we obtain the starting position of the section for the stop sz in the CSA
with a select1 operation over the bitvector D. This is necessary for operating on WML
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and WMJ to restrict the line and journeys for the final stop.

• In line 14 the range [a’..z’] ⊆ [left0..right0] is trivially translated to the section for sz
within [left..right], where we query WML to obtain the subrange [a..b] ⊆ [left..right] for
the line lz. Remember that WML(sz) represents only the lines for sz, therefore both
the translated positions and the resulting subrange positions are relative and must
be adjusted by offset. This would have not been necessary if the optimization was
not implemented, and absolute positions would have been used (offset← 0).

• In line 15 we obtain the jcode range analogously to line 8, but this time for lz and
sz.

• In line 16 we return the number of entries of WMJ between ja and jz within our final
subrange. Unlike countLR, count does not report any range boundaries, but simply
returns the number of occurrences.

It is trivial to reuse Algorithm 4 to answer queries with less constrains. For example, if
we were only interested in restricting the starting line, we could return z-a after line 6. If
we only wanted to restrict the ending line and time, we could do it by skipping the lines
3-12, and using directly countLRlz ,lz (WML(sz),left-offset,right-offset) in line 14.

The complexity would increase if we restricted by a time window but not by lines, as we
would need to iterate through all possible lines for sa and sz to obtain the jcodes for each
line and perform these operations on WML and WMJ. Fortunately, the number of lines a single
stop can belong to tends to be rather small in practice, thus with a careful implementation
that avoids repeating computation, the performance of such query scales well, as it will be
shown later in Section 5.4. Finally, to obtain only the trips that started on a given stop we
would simply need to set pattern to $sa in line 2, or alternatively to sz$ for the final stop,
and skipping the operations on the sections of sz or $, respectively.

Additionally, XCTR can also be used to efficiently obtain other interesting information
about trips, such as the top k most boarded stops, with the possibility of differentiating
stops that are only used to switch lines in XCTR. However, to the best of our knowledge,
there exists no efficient way of using this representation to obtain other kinds of information
efficiently (e.g. the number of passengers in a journey between two stops).

5.3.3 Analyzing our representations

To illustrate the application of each representation, as well as highlight the motivation
for the development of XCTR, in this section we discuss in detail the worst case time
complexities of each query described in Section 5.1, being l the number of lines we restrict
to, |L| the total number of lines represented, |S| the number of stops in the queried line
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and |J l| is the maximum number of jcodes per line.
Query T-Matrices TTCTR XCTR

T
yp

e
A

board_XLT O(l) O(l · log(|J l|)) O(log(n|L| · |J l|))⊗

alight_XLT O(l) Hard‡♦ Hard‡♦

use_LT O(1) O(|S| log(|J l|)) O(|S| log(n|L| · |J l|))⊗

board_T O(|L|)) Hard♦ Hard♦

alight_T O(|L|) Hard‡♦ Hard‡♦

load_XLT O(l) Hard‡♦ Hard‡♦

T
yp

e
B

start_XLT - O(log(n|J l|))⊗ O(log(n|L| · |J l|))⊗

end_XLT - O(|S| log(n|J l|))⊗ O(log(n|L| · |J l|))⊗

switch_XLT - O(log(n|J l|))⊗ O(log(n|L| · |J l|))⊗

from_XLT _to_YLT - O(|S| log(n|J l|))⊗ O(log(n|L| · |J l|))⊗

start_LT - O(|S| log(n|J l|))⊗ O(log(|L| · |J l|))
end_LT - Hard♦ O(|S| log(n|L| · |J l|))⊗

start_T - Hard♦ O(|L| log(|L| · |J l|))
end_T - Hard♦ Hard♦

⊗ The complexity will increase when the line is not restricted. See discussion.
‡ May include false positives.
♦ Not practical to solve with the indexing capabilities of this representation.

Table 5.1: Worst case time complexities for the representations described in
Section 5.2, assuming the queries have all the restrictions.

Before explaining the details of how each of these operations would be implemented
in our representations, it is worth noting that the complexity of the XCTR and TTCTR
queries marked by ⊗ will depend on the constraints that are applied, as explained in the
previous Section 5.3.2. Generally, the time complexity of XCTR with all the restrictions
is bounded by one bsearch operation on the CSA to restrict by a stop id, one countLR
on WML to restrict by a line id and, finally, a count on WMJ to restrict by jcodes, with
a total complexity of O(log(n|L| · |J l|)), being n the size of the represented sequences.4
However, when only the time is restricted, every line that the queried stop belongs to must
be considered, thus increasing the worst-case complexity to O(log(n) + |L| log(|L| · |J l|)).
Similarly, the complexity of TTCTR is normally a search in the CSA and a count on the
WM (if time is restricted), which would amount to O(log(n|J l|)), although when only
the time (and not the line) is restricted, we must perform a new query for every possible
line, and the complexity increases to O(|L| log(n|J l|)), which is generally higher than
O(log(n) + |L| log(|L| · |J l|)), the one from XCTR.

• board_XLT . This can be solved easily in the T-Matrices, as there are aggregated
matrices for boarding stops, even though it is necessary to access a separate matrix
for every line queried, hence O(l). For TTCTR, the number of occurrences for the

4While theoretically locating a pattern of length m in a Suffix Array takes O(m logn) time, in
our case m is bounded to 2 or 3 (in case of from_X_to_Y). Furthermore, with a backward search
implementation, only m− 1 binary searches are needed.
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stop X is counted by delimiting its range in D (with a O(1) select1 operation) and
filtering down the WM if needed. For XCTR, the filtering is done through WML and
WMJ, and after that we must subtract the occurrences of final stops, obtained by one
end_XLT with the same restrictions.

• alight_XLT . Both in TTCTR and XCTR, the only alighting stops that are explicitly
represented are the final stops. To obtain an approximated count of the rest of them,
we would need to extract and examine all the occurrences for board_WLT for every
stop W that could have been boarded before X, as the worst-case time complexity
of solving with their index operations is prohibitive. On the other hand, it can be
solved much faster in T-Matrices by accessing the alighting matrices.

• use_LT . This operation is straightforward to solve in T-Matrices, as it only needs to
access one matrix. For TTCTR we must filter through the WM for every stop from
L. While in XCTR the total number of occurrences of line L can be calculated in
one O(log |L|) operation (with additional filtering through WMJ if needed), we need
to subtract the occurrences of start_LT and end_LT , the latter having a higher
complexity of O(|S| log(n|L| · |J l|)).

• board_T and alight_T. Although T-Matrices, TTCTR, and XCTR could solve it by
applying use_LT |L| times, this would imply a prohibitive cost for both TTCTR and
XCTR, where extracting all the trips would be preferred in practice.

• load_XLT . It is possible to solve this kind of query using both alighting and boarding
matrices in T-Matrices. Knowing how many travelers got on and off the vehicle
previously to one particular point makes trivial to determine how many of them are
in the vehicle between two stops. This method can be easily adapted to measure the
average number through an interval of time.

The following Type B operations are not supported by T-Matrices:

• start_XLT . We need to the range for the pattern $X in the CSA and to filter down
the WMs, if needed.

• end_XLT . In XCTR it is solved similarly to start_XLT , by delimiting the range for
the pattern X$ in the CSA and to filter down WMs, if needed. It can be much more
complex for TTCTR, where the only way to restrict a line is to make a new query for
every stop that could have been boarded before X in that line, which is a problem
detailed at the begining of Section 4.

• switch_XLT . It is calculated as board_XLT - start_XLT .
• from_XLT _to_YLT . It was explained in detail in Algorithm 4. In TTCTR the |S|

factor only takes effect if the line (or time) for Y must be restricted, as for end_XLT .
• start_LT . It is trivially solved in XCTR, by filtering down WML and WMJ, if needed,

over the $ section of the CSA. On the other hand, for TTCTR the CSA needs to be
queried with the $X pattern for every stop X from line l.

• end_LT . It can be solved in XCTR, by performing a end_XLT for every stop X
from the line l. If we used the same strategy for TTCTR, we would end up with a
complexity of O(|S|2 log(n|J l|)), which we consider prohibitive.

• start_T. It is solved in the XCTR by applying start_XLT |L| times.
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• end_T. None of our representations can solve this query efficiently, although it could
be approximated by start_T.

5.4 Experiments
In this section we discuss the practical performance of our structures. To evaluate them, we
have run randomly generated queries against T-Matrices, TTCTR, and XCTR built over a
dataset of synthetic user trips generated from a real transportation network (Section 5.4.1),
with several configurations to study the trade-off between compression (Section 5.4.2) and
query efficiency (Section 5.4.3), and testing different configurations for each individual
structure.

5.4.1 Experimental dataset
Using real GTFS5 descriptions of bus routes and schedules, we generated a synthetic dataset
of user trips that aims to realistically imitate real user behaviour during a month. In this
work, we have combined the GTFS obtained for the networks of urban6 and interurban7

buses for the city of Madrid. The network model was extracted and user trips were
generated with the following general steps:

1. We parsed stop, route, and trip identifiers. This produced two lines per route in
almost all cases, one for each direction. With the gathered data, we were able to
build the common structures lineStop and stopLine discussed in Section 5.2.1.

2. We connected stops that are on a short walking distance (100 meters) from each
other, or appear sequentially on the same line.

3. We parsed the schedules for bus trips.
4. We generated a month of journeys from the schedules, differentiating days of week.

From this step, we computed avgT ime and initialT ime common structures.
5. User trips were generated. A trip starts from a random stop, day, and journey and

simulates boarding that journey and traversing it. After each traversed stop, the
user may end the trip with a probability that starts at zero and increases by 1%
for every stop visited. Additionally, there is a fixed probability of attempting to
switch lines at the current stop, if there is a journey available at that stop within
the allowed waiting time (30 minutes) and from a different line.8 Switching lines is
also attempted when the end of the current line is reached.

6. We persisted these generated trips as sequences of stages
< <line, journey, boarding_stop>, <line, journey, alighting_stop> >,
where a boarding and alighting stop naturally share the same line and journey within
the same stage. This results in the same number of stages as lines have been used.
With the parameters used, about 56% of our trips have one stage, 33% have two, 9%
have three, and 2% have four.

5https://developers.google.com/transit/gtfs/
6Provided by EMT http://www.emtmadrid.es
7Provided by CRTM http://www.crtm.es
8The reverse of the current line is also disallowed.

https://developers.google.com/transit/gtfs/
http://www.emtmadrid.es
http://www.crtm.es
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With this approach we have generated a dataset of ten million trips, over a real network
consisting of 11021 stops, 1048 lines for a simulated month,9 with an average of 1622
journeys per line and a maximum of 9980 per line. We consider that this synthetic dataset
is of enough accuracy and size to obtain significant results when studying the compression
capabilities and performance of our representations.

5.4.2 Space requirements
We have measured the in-memory sizes of all the individual components of our representation
built over the experimental dataset. We also present the sizes of our common structures,
followed by T-Matrices. After that, we compare the compression achieved with TTCTR and
XCTR.

For the CSA structures from TTCTR and XCTR, we use an adapted iCSA from
[FBN+12], and tuned it with the tΨ (sampling interval) factors of 32, 128, and 512. For
the WM present in TTCTR, as well as in the two WM from XCTR, we analyze the space
required by four different configurations: when we tune the WMs to use the RRR bitvector
and tuning it to use a plain bitvector with a rank structure, which we call RG32.

The space occupied by the common structures is reflected in Table 5.2. These were
represented using plain fixed bit length integers with the exception of initialT ime, where
we used the compression approach discussed in Section 5.2.1 with a sampling interval of
512. This has allowed us to represent all required network information in a negligible space
of less than 1 MiB.

Structure lineStop stopLine avgT ime initialT ime Total
Size (KiB) 119 141 64 440 764

Table 5.2: Sizes of the common structures.

To measure the amount of space occupied by the two different variants of T-Matrices that
were presented in Section 5.2.4, we have summed the total space required by each line
matrix. These results, which can be found in Table 5.3, helped us to prove that Blocks is
an effective strategy to reduce the size of the accumulated values.

Variant Sum Blocks
Size (MiB) 55.49 28.68

Table 5.3: Sizes of the two different variants from T-Matrices.

In Table 5.4 we analyze the space occupied by the two structures that compose TTCTR:
the CSA that encodes stops and their lines, and the WM that encodes journey codes.

We have observed that when we use a very sparse configuration of tΨ, the CSA becomes
a small representation, as it captures the repetitiveness of trips when constrained to our
network of bus lines.

9A period of 31 days, starting on a Monday.
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(a)
tΨ bps Size (MiB)
32 7.288 30.91
128 6.069 25.74
512 5.761 24.43

(b)
Bitvector bps Size (MiB)
RG32 14.438 44.02
RRR32 13.478 41.09
RRR64 12.79 38.99
RRR128 12.446 37.94

Table 5.4: Space requirements for the Compressed Suffix Array (a) and the
Wavelet Matrix (b) from TTCTR.

We were not able to achieve such good level of compression for the WM, where
compressing the bitvectors with RRR results in a WM that is only slightly smaller than
the baseline with the RG plain bitvector. This sequence is indeed hard to compress, given
than it was rearranged to be aligned to the entries of our CSA, which nullifies any local
redundancy that other kinds of arrangements may obtain.

We have also measured the space occupied by XCTR in Table 5.5, where three structures
must be taken in consideration: the CSA that only encodes stop identifiers, and two WM:
one for line identifiers (WML) and the WM for journey codes (WMJ).

(a)
tΨ bps Size (MiB)
32 6.956 29.50
128 5.727 24.29
512 5.417 22.97

(b)
Bitvector bps Size (MiB)
RG32 14.438 61.23
RRR32 13.419 56.91
RRR64 12.732 53.99
RRR128 12.388 52.53(c)

Bitvector bps Size (MiB)
RG32 4.778 20.26
RRR32 2.338 9.91
RRR64 2.18 9.24
RRR128 2.103 8.92

Table 5.5: Space requirements for the CSA (a), the WMJ (b), and the WML
(c) from XCTR.

When compared to the structures of TTCTR, we can observe that WMJ of XCTR,
despite achieving a marginally better compression than the WM from TTCTR, requires
considerably more space, as the sequence of jcodes from XCTR includes final stops, while
in TTCTR they are skipped.

Contrary to the case of WMJ or the WM from TTCTR, we are able to achieve significant
compression with WML. When using the baseline bitvector RG32, we are already obtaining a
very compact representation, due to the optimization discussed in Section 5.2.3, where we
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keep a separate WM aligned to each stop from the CSA, resulting in much shorter WMs.
The further compression achieved with the RRR bitvectors in XCTR is possible because
the stop entries in the CSA are sorted by either the final stop the user alights to or the
next stop to board, making the aligned sequence of lines very predictable. Additionally,
our CSA maintains the order of trips from the original text in the $ section, leading to the
appearance of clusters in the first WML.

In Table 5.6 we also evaluate the compression of the overall TTCTR and XCTR repre-
sentations with respect to a plain representation of the user trips that we use as input, which
are the triplets <s, l, j> seen in Section 5.2.2, where the stop identifiers, line identifiers,
and journey codes had to be represented with 14-, 11-, and 14-bit integers, respectively.
We only show the compression ratios for the four configurations that will be tested in
the following Section 5.4.3, combining two tΨ and two WM configurations.10 Note that
a more realistic baseline would be a relational database representation, where additional
fixed-width integers would be needed to maintain foreign key relations, thus requiring much
more space than our chosen baseline.

plain TTCTR XCTR
tΨ WM MiB % MiB % MiB %
32 RG32

165.39 100

81.73 49.42 111.73 67.56
32 RRR128 75.66 45.75 91.70 55.44
512 RG32 75.25 45.50 105.21 63.61
512 RRR128 69.18 41.83 85.17 51.50

Table 5.6: Sizes (in MiB) and compression ratio of TTCTR and XCTR shown
as a percentage of the size of a plain representation of the user trips with
fixed-width integers.

We can see that when compared to the same baseline, the compression ratios of
XCTR are worse than those of TTCTR, for any configuration tested. This result is not
surprising considering that XCTR separates the line identifiers into a different WM, that
has proven to be less compressible than a CSA for repetitive sequences, although we have
also observed that while the CSA is slightly smaller in XCTR, the compression ratios are
worse than the ones in TTCTR when we compare to a smaller baseline that only represents
the sequence of stops, with no information about lines. In the next section we will show
the advantages of this separation of line identifiers in terms query performance.

5.4.3 Query performance
We have implemented the most adequate queries for TTCTR and XCTR from those
compared in Section 5.3.3, and measured their average execution time from 100,000
randomly generated queries on a Intel Xeon E5-2620v4@2.1 GHz machine, running Debian
6.3.0 and compiling our code with GCC 6.3.0 using the -O3 optimization flag. In this
section we will only discuss four of the possible configurations tested for both TTCTR and

10In case of XCTR, this refers to bitvectors from both WML and WMJ.
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XCTR. We tuned the CSA to use tΨ ∈ 32, 512 and configured the WMs to use either
uncompressed bitvectors (RG32) or the most compressed bitvector setting (RRR128). These
four configurations should be illustrative enough to provide an understanding of the
space-time trade-offs of our approaches. Finally, we will also compare the performance of
the query board_XLT with the one achieved by the T-Matrices.

In Figure 5.6b, we can see the main advantage of XCTR over TTCTR, where restricting
a line or a time interval for an end_X query is very expensive for TTCTR due to its
separate vocabulary for final stops. Recall it requires to query the CSA for every possible
stop that could have been boarded before X to restrict a line. In Figure 5.6a, it is also
possible to see how the performance of XCTR degrades less with a highly compressed CSA
for the query start_XT , where even queries over a compressed WML are faster than queries
over the CSA.
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Figure 5.6: Comparison of start_XLT (a) and end_XLT (b) queries, with
all variants. Note the logarithmic scale for the y axis in (b).

Recall that restricting both the line and time is always cheaper than only restricting
the time, as for the latter more operations need to be performed to filter out every line.
This explains why T queries are always slower than LT queries. This is true for both
representations, with any configuration and query.

We can see more examples of this difference in performance between our two
representations with the from_X_to_Y queries in Figure 5.7, whenever the end lines or
times are restricted. Additionally, we can observe yet again how using the most sparse
sampling of Ψ affects much more the performance of TTCTR than that of XCTR, with
the performance of from_XT _to_Y consistent with the start_XT shown in Figure 5.6a.

The performance of both representations can sometimes improve when more selective
restrictions are added, where the execution is cut short when no matching trips are found,
before evaluating further restrictions. For this reason, the average times for from_XT _to_YL
and from_XLT _to_YL are faster than those of from_X_to_YL and from_XL_to_YL.

When restricting to the end time, XCTR consistently outperforms TTCTR, as shown
in Figure 5.8. This was expected considering the large number of times that the CSA from
TTCTR needs to be queried, yielding results similar to those from Figure 5.6b where the
end time is also restricted.

The high selectivity of time restrictions explain why TTCTR becomes more competitive
with the most restrictive queries of Figure 5.8b. However, its query time still increases
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Figure 5.7: Comparison of from_XLT _to_YLT queries, variating line (a)
and starting time (b) restrictions.
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Figure 5.8: Comparison of from_XLT _to_YLT queries, variating line (a)
and starting time (b) restrictions with a fixed ending time restriction.

several times when the CSA is highly compressed.

The only query for which TTCTR is clearly preferred over XCTR is board_X, with any
restriction, as it can be seen in Figure 5.9a. Both for board_X and board_XL, TTCTR takes
on average less than one microsecond per query, as the only operations needed are two
constant time select1 over the bitvector D from the CSA, while XCTR needs to subtract
the occurrences of X$ (as those are alighting stops, not boarding), for which Ψ must be
accessed. This advantage is carried on the queries with time restrictions as well.

When comparing the best performing configuration of TTCTR with the different
variants of T-Matrices discussed in Section 5.2.4, we can observe wildly different results in
Figure 5.9b depending on the variant of the board_X query used. The biggest difference is
observed when comparing queries that filter by time, which use the WM in TTCTR, while
any variant of T-Matrices solves it in a small number of O(1) operations. Another evident
difference occurs within each T-Matrices variant, where the queries that are restricted to a
single line are significantly faster than those that consider every line, as the latter must
query a different matrix for every line where the stop occurs in. It was also expected to
see the compressed variant Blocks to perform slower than the uncompressed Sum, as the
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Figure 5.9: Comparison of board_XLT queries, with all variants (a) and
also with all variants of T-Matrices (b). Note the logarithmic scale in (b), as
well as the measurements in nanoseconds.

two former store relative values that must be resolved, increasing the number of memory
accesses, although still by a constant factor. This also hints for a reason why the queries
board_Xand board_XL seem to be slightly faster in TTCTR than any of the T-Matrices, as
a higher number of accesses over larger memory regions in T-Matrices makes cache misses
more frequent. Nevertheless, the difference is very small, within the same microsecond.

Obviously, T-Matrices may be used to solve other queries more efficiently than
TTCTR or XCTR. We did not find it interesting to report the run times for those
queries as they are mostly equal to those shown in Figure 5.9b, due to being resolved with
the same CPU operations. Refer to the complexities in Table 5.1 to obtain an accurate
estimate of the time that it would take T-Matrices to solve each of the supported queries.
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Chapter 6

Previous concepts on GIS

Any application aiming at providing a simple and usable user-interface in the scope of the
analysis of data from a transportation scenario should, without any kind of doubt, consider
a map-based user interface. Therefore, in this chapter we shall introduce the basic concepts
of Geographic Information System (GIS) in order to provide a context for this part of this
thesis.

While there exist several complementary definitions for GIS in the literature, from the
point of view of the current work we will regard a GIS as an application designed to assist
a decision making process related to spatial or geographical information [HA03, LGMR15].

In this chapter, we initially discuss the most significative features of spatial data. After
that, we focus on conceptual models for geographical data on Section 6.2, and Section 6.3
is devoted to review logical models. The last two sections present the main GIS standards
we used both to make spatial data accessible for a real GIS application and also to visualize
that data on a GIS interface.

6.1 Spatial information features
One of the main challenges in GIS is the treatment of spatial information, which presents
some distinctive features that make it more complicated to store, manage and visualize
than the kinds of data managed by traditional information systems (e.g. an accounting
database). We consider that the most significative features of spatial information are:

• Two alternative conceptual interpretations. Geographical information may
be regarded on a conceptual level from three different perspectives: as geographical
objects, as geographical fields, or as topological networks. This division on an abstract
level will also propagate to the more concrete levels.

• Multiple possible logical models. The complexity of geographical information
makes it possible to have several possible and valid representations for the same
geographical phenomenon. Each one of them with their own advantages and
disadvantages depending on the context.

81



82 Chapter 6. Previous concepts on GIS

• Data types and specific operations. Due to the three possible conceptual
interpretations and the multiple possible logical models, there are numerous possible
datatype sets. Moreover, there also exist many different operations that may be
defined over these datatypes, and there is no standard for a minimum amount of
operations that may be used to define every other operation.

• Complex and varied methods of analysis. Depending on the field of application
where the GIS is used on, there may exist a great variety of techniques to analyze
geographical information that are expected to be included in the GIS.

• Large datasets. Geographical information can be quite voluminous, both in the
complexity of every element and in the number of elements that must be stored. As
a result, the structures used to store this information have to be specific.

• Slow transactions. The complexity of geographical information can make updating
times significantly slow, which in turn can make long locking times on the stored
elements. A GIS must consider updating mechanisms, since its information is
naturally dynamic.

• Spatial indexing. Due to the large size of the datasets, combined with the spatial
features (i.e. number of dimensions, space boundaries, and overlapping), the indexing
structures that are used to provide an efficient access method to the stored information
are particular to a specific use case.

• Implicit hierarchy. Unlike traditional information, geographical information is
always visualized over a bounded space (the map). Because of this, the visualization
scale acquires a main role in the presentation of the information and also determines
an implicit hierarchy, as it is not possible to display all the information at the same
time.

• Special visualization techniques. A usable interface to visualize geographical
information must include commonly expected features, such as interactive controls,
a layer abstraction and an acceptable performance to be considered responsive.

6.2 Conceptual models
A first step to define a conceptual model for geographical information is to be able to
measure and understand the geographical space. To achieve that, we need a mathematical
definition of space and to define a Coordinate Reference System (CRS).

6.2.1 Coordinate Reference Systems
In order to represent a spatial element, we need to define a CRS, because such representation
will depend on our mathematical definition of space. One common coordinate system is
the Cartesian one, based on an Euclidean space, a plane over which bidimensional objects
may be represented. However, this system is insufficient for broad areas of the Earth’s
surface, where the curvature of the Earth must be taken into account. To address these
cases, the geometry of the planet is often approximated with a spheroid or an ellipsoid,
over which spherical coordinates (latitude and longitude) are used instead of Cartesian
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ones. Currently, the most popular coordinate system is based on the WGS84 ellipsoid,1
used for GPS navigation.

Once the definition of space has been established, we need to choose a coordinate
system and define how it will reference the space (i.e. origin of coordinates, orientation
and scale). Depending on the application, we can directly use the spherical coordinates
defined by the ellipsoid or project these coordinates into an Euclidean space. The most
common projection to work with relatively small areas of the Earth’s surface is the Universal
Transverse Mercator (UTM), which divides the chosen ellipsoid into 60 zones, each one
of them spanning 6 degrees of longitude. Within each zone, it is possible to project the
curved surface into a plane with minimal precision loss,[Kar11] thus allowing to reference
coordinates in a Cartesian system, with a scale of meters, where the first component is
the Easting from the central meridian (plus an offset of 500,000 meters to avoid dealing
with negative numbers) and the second component is the Northing from the intersection
between the central meridian and the Equator.

Example 6.1: Using a CRS defined by the WGS84 ellipsoid, the building of the Faculty
of Informatics of the Universidade da Coruña is located at the coordinates (43.332709,-
8.410517). Another possible CRS can be defined by projecting the WGS84 ellipsoid using
UTM, which would place the longitude of the building (-8.410517) into the zone 29, with
the coordinates (547788, 4797931). This projection may also be used with a different
ellipsoid, yielding a different CRS with some other coordinates.

6.2.2 Abstractions for geographical information
Once the CRS is defined, we must define the abstractions that will allow us to represent
geographical information, which can be considered from three alternative perspectives: as
geographical objects, as geographical fields, or as topological networks.

Geographical objects are subsets of space that are used to represent the position or
extension of spatial entities. The surface of a road or the position of a store are examples of
geographical objects. Figure 6.1 (left) shows an example of geographical objects on a map.

Figure 6.1: Two of the possible abstractions for geographical information:
geographical objects (left) and geographical fields (right).

1https://epsg.io/4326

https://epsg.io/4326
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Note that there can be several valid representations for a geographical object, regardless
of its extension in the real world. For instance, a city may be represented as a single
position (point) or as a geometric surface, depending on the ultimate requirements of
visualization or exploitation.

A geographical field is characterized as a function that associates a value for every
point of space. The surface temperature or the slope of the terrain may be considered as
geographical fields. An example of a geographical field can be found in Figure 6.1 (right),
where an elevation map is shown.

Both abstractions described above (geographical objects and geographical fields) can
be alternatively used to represent information of different nature. Commonly, geographical
objects are used to analyze man-made structures, such as roads, borders, or land registry,
while geographical fields are more appropriate for natural information collected by sensors,
such as meteorological, geological, or satellite information. However, this does not mean
that, for example, a building could not be represented as a geographical field that assigns a
value of 1 for a coordinate contained within the building and 0 for every other coordinate,
although such conceptual definition may be ill-fitted for many applications.

There are defined standards for modeling geographical objects, such as ISO 19107,2
based on primitives objects (points, curves, and surfaces) that may be combined to form
more complex types. In addition, ISO 191233 is a standard used for modeling geographical
fields, which may be discrete (existing only a value for some discrete points in space) or
continuous, having a value for any point in space.

As a special case, it is also possible to work with a topological network, where instead
of using a coordinate system, we can model our space as a graph. An example of such
application may be a road network used for GPS routing, where the movement is restricted
by roads instead of by a true Euclidean space. While there are also standards for these
abstractions, ad-hoc models based on vertices and edges are more commonly used instead.

6.3 Logical models
In the previous Section 6.2, we have defined conceptual models, that work on an
abstract level. However, the abstract models do not regard the limitations of a practical
implementation. As such, they may assume that both the memory and arithmetic precision
are infinite, and consequently a geographical object is an infinite set of points while a
geographical field is a defined function for any point in space. These limitations must be
addressed in order to implement a GIS, and for that purpose we must work with a logical
model.

In this section, we will present two well-known models used to represent geographical
information, although we will not cover how the most used operations are implemented
using these models or how the precision problems have to be addressed. Refer to [Xia15]
for a more in-depth discussion on those topics.

2https://www.iso.org/standard/26012.html
3https://www.iso.org/standard/40121.html

https://www.iso.org/standard/26012.html
https://www.iso.org/standard/40121.html
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6.3.1 Vector model

This model uses numerical data types (such as integers or floating point representations)
to define a system of coordinates over which the geographical information is represented
using geometric constructions (points, segments, polygons, etc. . . ). For each primitive data
type defined in the geographical object conceptual model, there is a vector representation.

The most extended vector model is the Simple Feature Specification, defined by the
Open Geospatial Consortium (OGS),4 in which data types are defined to represent simple
spatial objects defined in the ISO 19107. The simpler data types are composed to represent
more complex ones, as shown in Figure 6.2, where a curve is approximated as a LineString,
which is defined as a sequence of points, while a surface can be a Polygon defined with
LinearRings, which are special cases of LineStrings where their last point is equal to the
first one, thus enclosing a space.

Figure 6.2: The data types of the Simple Feature Specification by the Open
Geospatial Consortium

This composition can be also seen in Figure 6.3, where six points are used to define
a LineString, while three LinearRings are used to define a polygon, one for the external
borders of the polygon while the other two define the internal borders (the holes).

4https://www.opengeospatial.org/standards/sfa

https://www.opengeospatial.org/standards/sfa
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Figure 6.3: Examples of Simple Feature Specification data types.

6.3.2 Raster model
The raster model represents the spatial information using a matrix, where every cell stores
a value for a portion/cell of the space. The meaning of each value will depend on the
particular case. To cite some examples, the value of a cell may refer to temperature,
pressure, humidity, wind speed, or the color of the surface. In order to translate a cell
position to coordinates in a CRS and vice versa, we need six values: the position of the
origin of coordinates and how much the height and width of each pixel contribute to the
x and y coordinates in the CRS. Since the raster may be oriented in any angle, a single
dimension in the matrix (such as the width) may contribute to both the x and y components
in the CRS.

Rasters are frequently stored within an image format with some additional metadata
for the CRS transformation. An extension of the TIFF format called GeoTIFF5 is one of
the most common formats for these purposes, as it allows to define a CRS and the linear
transformation parameters for coordinates. Additionally, it is possible to store several
images in a single TIFF file, which is often used to store several levels of detail for the
raster, allowing to speed up operations that do not require the highest resolution.

6.3.3 Comparison of vector and raster models
In the previous section we have described two possible logical models to represent
geographical information. Both the vector and raster models can be used to represent
either geographical objects or geographical fields. As previously seen, each model has a
different approach to the practical limitations when implementing a conceptual model. In
this section we will show how each of the logical models can represent either geographical
objects or geographical fields and also make a brief comparison of both models.

5https://www.opengeospatial.org/standards/geotiff

https://www.opengeospatial.org/standards/geotiff
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In the vector model, geographical objects are represented as a discretization, which
may lead to some precission loss in some of the shapes, as seen in Figure 6.4 (top). In the
other hand, the raster model can represent objects by a process called rasterization, where
each cell value is assigned to an object identifier, as seen in Figure 6.4 (bottom).

Figure 6.4: Representing geographical objects in the vector (top) and raster
(bottom) models.

Geographical fields are also transformed when they are represented in a logical model.
As such, in the vector model, these fields are represented with a polygonization of the
function, as shown in Figure 6.5 (top), while in the raster model we discretize the function,
representing a unique value only for the cells of the matrix, as done in Figure 6.5 (bottom).

As both models are interchangeable, the best choice will depend on the specific GIS
application intended. The decision can be influenced by the representation size (vector
model is usually more compact), the processing efficiency (raster algorithms are often more
efficient and straightforward than the vector ones), expressive capabilities, visualization
(the precision of the vector model vs the efficiency of the raster one) or source of the
information.

6.4 Standards
Over the years, many GIS standards have been developed and adopted by the community,
making it easier to develop and integrate applications using multiple data sources. In this
section, we are only going to cover the standards used by the GIS prototype Trippy (see
Section 7).
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Figure 6.5: Representing geographical fields in the vector (top) and raster
(bottom) models.

6.4.1 TMS

The Open Source Geospatial Foundation defines a standard to generate cartographic images
(tiles) called Tile Map Service (TMS),6 which aims to simplify and modernize some aspects
of an older standard called Web Map Service (WMS).7

A TMS service returns map parts, called tiles, at several levels of zoom with HTTP
GET requests, typically in PNG format, although other formats can be supported. With
a special metadata request that returns the definition of the CRS and the parameters
to translate pixel coordinates to CRS coordinates (discussed in Section 6.3.2) at all the
supported zoom levels, it is possible to develop a web-based map application, loading tiles
interactively as a user spans and zooms over the map.

It is also possible to integrate TMS from several sources, as tiles can have transparent
background. This could allow, for example, to paint tiles containing only bus lines over tiles
showing the streets of a city. Due to its ease of implementation, both for server side and
for client libraries, this standard has been widely adopted and made available by operators
such as OpenStreetMap, Google, Thunderforest, and many others.8

6http://wiki.osgeo.org/wiki/Tile_Map_Service_Specification
7https://www.opengeospatial.org/standards/wms
8https://wiki.openstreetmap.org/wiki/Tile_servers

http://wiki.osgeo.org/wiki/Tile_Map_Service_Specification
https://www.opengeospatial.org/standards/wms
https://wiki.openstreetmap.org/wiki/Tile_servers


6.5. GIS interfaces 89

6.4.2 GeoJSON
While there is a well-known web standard for accessing geographical features defined by
the Open Geospatial Consortium called Web Feature Service (WFS),9 which allows to
obtain, among many other kinds of information, the vector representation of the geometry
for these geographical features, this standard is often found too complex for the single
purpose of transmitting vector geometries.

For this reason, custom REST APIs that encode vector geometries in GeoJSON10 (RFC
7946) have become the most popular way of transmitting this type of data. This format
makes it possible to encode Points, LineStrings, Polygons, and their multipart variants in
a compact string, while also allowing to attach any arbitrary information (properties) to
these features in JSON format.

6.4.3 GTFS
Developed as a standard to represent the schedules of most public transportation systems,
the General Transit Feed Specification (GTFS)11 was developed by Google and it provides
a standard model to specify stops, routes, schedules, and other useful information for trip
planning that may be associated with a transportation system, as shown in the diagram
from Figure 6.6.

This has some resemblance to the model we have previously proposed in Figure 5.1 from
Section 5.1, where a stop in GTFS corresponds to a stop_place in our model, stoptime to
stop_time, a trip is similar to a journey, while a route is a line. The largest difference,
however, is that we consider that a line (route) is formed by a fixed sequence of stops,
while in GTFS no such restriction exists, and every trip can theoretically have a different
sequence of stops.

There are GPS coordinates stored for a stop, and it is also possible to define a LineString
shape for a trip, which will be referenced by a shape_id from a shapes definition file. The
stop times for a trip are usually defined within the calendar dates, allowing this way to
specify a schedule based on the day of the week or have a special consideration for selected
days. Outside of the calendar definition, it is still possible to specify an expected frequency
that a trip must respect.

6.5 GIS interfaces
In the previous sections we have discussed how to represent geographical information in
conceptual and logical models, as well as what GIS standards are followed in this work. In
this section, we will briefly speak about how this geographical information can be presented
to the user and visualized in a GIS interface, as well as introduce a web mapping library
called Leaflet.12

9http://www.opengeospatial.org/standards/wfs
10https://geojson.org/
11https://developers.google.com/transit/gtfs/
12https://leafletjs.com

http://www.opengeospatial.org/standards/wfs
https://geojson.org/
https://developers.google.com/transit/gtfs/
https://leafletjs.com
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Figure 6.6: UML class diagram of the entities specified by GTFS.

6.5.1 Data visualization
The visualization of geographical information is often complex due to the special features
of spatial information. In the first place, these features require a different abstraction
level than the ones used by traditional databases. In the second place, this information
usually needs to be transformed with a projection in order to be able to visualize it on a
flat surface. It is also necessary to define a visualization metaphor for the user interface:
the stored geographical information is presented to the user in several layers.

A layer can be seen as a set of geographical elements that are intended to be visualized
with a common style. These layers are later sorted in a stack, to determine which layers are
superior or inferior to others. That way, the information of the superior layers is presented
over the information of the inferior ones.

This system of layers allows to display a digital map in a similar fashion to that of a
paper map. However, a GIS user interface is fundamentally different from a conventional
map, as the information and visualization is no longer static. Hence, the interface needs to
support interactive operations that can alter this visualization. Among these operations,
we would like to mention the following ones:

• Layer management, with the possibility of adding or removing layers, as well as
reordering them in the stack.
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• Scrolling over the map, defining a new point of origin.
• Changing the scale of the visualization, increasing or reducing the zoom level.
• Invocation of processing operations over the map. These may include, among others,

interactive measurements or queries about the visualized elements.

Another important element in this visualization is the context information, which
must be included within the user interface in order to better understand the displayed
information. This context information frequently includes a graphic legend, which allows
to interpret and categorize every geographical element. Additionally, the interface must
have means to inform the user of the current visualization scale and the center coordinates.
Other information may be necessary, such as labels that identify geographical objects or
present relevant information.

6.5.2 Leaflet
Among the several available alternatives to develop a web-based map, in this work we
have used Leaflet, which is an open source Javascript library that can be integrated with
different data sources and providers to easily develop interactive maps with standard web
technologies (HTML, CSS, and Javascript).

It supports both the TMS and the GeoJSON standards described in the previous
Section 6.4, among others. This combination is often used to display a base map from a
tile provider with vector information layers over it obtained in GeoJSON format.

Although this library is comparatively lacking in features when compared to other
well-known alternatives such as Google Maps13 or OpenLayers,14 it is frequently preferred
due to its usability and smaller size. Due to its broad adoption, open source plugins exist
for all the features offered by the other comparable solutions, including support for other
data sources (such as WFS), advanced features (such as routing), and also small interface
tweaks (such as the integration of a context menu).

13https://developers.google.com/maps/documentation/
14https://openlayers.org/

https://developers.google.com/maps/documentation/
https://openlayers.org/
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Chapter 7

A GIS interface for public
transportation networks

While in the previous part of this work we have presented compact representations that
are capable of efficiently handling large collections of trips over both streets and public
transportation networks, in this chapter we present a front-end interface that permits them
to be actually usable by city management and network administrators.

We have developed a proof-of-concept map-based interface using GIS and web
technologies called Trippy, that allows to exploit some of the capabilities of XCTR to
visualize and query transport demand information over a real transportation network. This
constitutes a tool designed to aid the decision-making process for a public transportation
company, and can be easily adapted for different networks and use cases.

In Section 7.1, we begin by contextualizing the use case in detail. After that, we
provide an overview of the architecture of Trippy, both from a functional perspective and a
technical one. After that, we present our API for querying the underlying structure, and
finally we show the user interface of our prototype.

7.1 Motivation and overview
In public transport, such as buses or trains, we find that most transport companies have
been focused mainly on providing helpful information to their passengers regarding the
existing offer, hence providing not only information related to their transport network (e.g.
maps with the lines, their schedule, etc.) but also, in many cases, real-time information
with the actual position of a vehicle, remaining time to destination, remaining time until
next vehicle arrives, etc. However, although there is also an increasing interest on gathering
actual information regarding what users demand from the public transport and how they
use their services, to the best of our knowledge, there are no final end-user tools that have
tackled both the problems of: (i) effectively handling the huge amount of data that arises
when we track all the user’s trips (e.g. within a large city) and (ii) efficiently exploiting
the underlying information.
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Therefore, we are focusing on a solution prototype that allows both to query and
visualize historical records of aggregated patterns of movement from the travelers of a
transportation network. While there exist popular solutions such as Google Maps to
accurately calculate optimal multi-modal routes and even monitor the real time condition
of the transportation networks, these systems only manage information about the offer
of the network (such as schedules) and sometimes the real-time demand (current traffic
conditions). In contrast, our approach aims at satisfying query needs about the historical
demand over a large collection of past trajectories collected from users.

When dealing with vast amounts of historic traveler data, a valid first approach to
tackle its analysis is to extend a traditional Database Management System (DBMS) that
could both assimilate and handle greater volumes of spatial data. A popular tool that fits
in this description would be postGIS,1 a spatial extension for the widely adopted relational
DBMS PostgreSQL. However, these solutions that include spatial indices are not the most
adequate ones for our information needs, that are many times unrelated to a geographical
component, but to the network elements and their relationships (“how many travelers
started their trip at a stop X using line L to end it at a stop Y within the time frame T?”),
while the expected large sizes of our data collections would force us to use solutions based
on secondary memory, considerably affecting the performance of the system.

Given that we are focusing on a tool specifically for public transportation networks,
our interface is built over the XCTR (designed in Section 5.2.3), which has allowed us to
achieve fast response times in our tested use cases. In any case, the architecture designed
for our tool makes it flexible enough to allow data to be represented in a more traditional
way, such as with a relational DBMS.

7.2 Architecture
In this section we discuss the overall architecture of Trippy, our interface based on XCTR.
We start by describing it from a functional perspective, following the data flow from
the data sources until the presentation layer in the user interface. We complement this
description with a technical architecture overview, speaking about how the individual
components are integrated together and facilitate an understanding of the decisions behind
our technological choices.

7.2.1 Functional architecture
We have designed Trippy to be as flexible as possible, ensuring that it can operate with any
network and trip descriptions that can be adapted to the model from Figure 5.1, which is
elementary enough to apply to most of the current transportation systems. For an overview
of this data flow, refer to the diagram in Figure 7.1.

Although our system is oblivious to the specific data sources, we have successfully
experimented adapting information collected from GTFS sources, as well as OpenStreetMap,
to obtain a description of a public transportation network. Each different source or format
would require a custom conversion to adapt it to our model, which is one of the reasons
that we had for standing against overcomplicating our model. As for the passenger trips,

1https://postgis.net/

https://postgis.net/
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Figure 7.1: Functional architecture of Trippy.

they must be described in terms of stages (boarding and alighting pairs) that are related
to stops and journeys. The amount of preprocessing needed will depend on the source
of the data, as most Automated Fare Collection (AFC) systems do not directly record
the alightings and the specific journey within the day will have to be estimated based on
timestamps.

We have also opted for different persistence options for the network description and
the passenger trips, as we are interested in using our XCTR for the latter, while the former
does not pose any technological challenges that would benefit from the use of a compact
representation.

Finally, these two data repositories are used to feed an API over which requests can be
made, which is going to be exploited by the user interface. The specific supported requests
are discussed in Section 7.3.

7.2.2 Technical architecture
We have designed and implemented the infrastructure needed to solve our query needs,
which are focused on the usage of network elements, as previously explained in Section 7.1.
To visualize and query on these network elements, we need to work with a representation
of the network itself. Specifically, we represent the model for trips over a public transport
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network shown in Figure 5.1, extended with spatial attributes (gps coordinates) for the
stops and lines. Implementing this model for networks does not pose any challenge, as this
information is rather static (it is not expected to grow significantly) and only requires a
small amount of space in comparison to passenger trips. Therefore, a Relational Database
Management System (RDBMS) can be used to represent the elements of the network. On
the other hand, we use our compact representation XCTR for the trips, that we are going
to rely on for most of our queries. The reduced size of this autoindexed representation
allows us to keep it in primary memory, making it outperform any traditional indexing
alternative that is based on secondary memory.

The overall technical architecture of our proposal is presented in Figure 7.2. In the
bottom part, we can find the backend that includes two sources of information: the
former one includes the network representation and relies on a small read-only database
implemented in SQLite;2 the latter source includes a XCTR, for our compact representation
of the passenger trips.

Figure 7.2: Technical architecture of Trippy.

The backend is implemented in the Go language,3 and provides a uniform API to query
the information sources. This is accessed by our GIS frontend (top of Figure 7.2), which is

2https://sqlite.org/index.html
3Since XCTR is implemented in C++, a C wrapper allows us to call the query functions

supported by XCTR from the Go handler.

https://sqlite.org/index.html
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in charge of displaying the transport network on a web map and allows the final user to
make queries by interacting with the elements of the map and its controls.

Further details about the elements included in both the backend and the frontend of
Trippy are discussed below.

7.2.2.1 Representing the transport network (SQLite)

Since we aim at visualizing the elements of the network over a map, we need information
regarding the stops and lines of the transport network, following closely the model from
Figure 5.1. For each physical stop, along with the GPS coordinates of its location, we store
a unique numeric identifier. Regarding the lines of the transport network, we basically
keep the sequence of stops each line traverses. Note that, unlike the abstractions used by
most public transportation networks, we consider lines to be one-way (i.e. they have a
unique direction), and consequently the reversed/returning path is considered a different
line.

As indicated above, we have chosen a SQLite database to represent the network because
it is conveniently portable and efficient for such small datasets. While no spatial database
technology was required to deal with the GPS coordinates of the stops, we have opted to
integrate the SpatiaLite extension4 to support storing the shapes of our lines.

7.2.2.2 GO handler

This component is on top of the backend of Trippy and receives the requests from the
front-end. It has two main parts. On one hand, it implements a REST API that is used
to obtain the collection of stops and lines in GeoJSON format. On the other hand, it
also provides a querying interface for XCTR. While the query functions themselves are
implemented in XCTR using C++, we have opted for Go as our main backend language
because it is specifically oriented for web services and can be easily integrated with C code.
In our case, we have implemented a thin C wrapper that interacts with the XCTR libraries
to load XCTR structures (when the application is launched it loads the XCTR-based
representation of the trips into memory) and handle calls to the query functions.

7.2.2.3 Map viewer

The Map viewer in Trippy makes up the frontend and provides the user web interface. It is
in charge of visualizing the elements of the network, and handles user interaction. Apart
from typical functions to move around a map (i.e. zoom in/out, span, etc.), the user can
interact with the elements within the map (e.g. a stop or a set of stops within a region)
and access functions related to them. Those functions are supported by our backend.

The Map viewer was built with a web map using the Leaflet library. With this library, it
is simple to make an interactive map consisting of several interchangeable image (tiles) and
vector-based layers, and also to efficiently represent thousands of points or other vector-type
elements. For additional controls, communication with the backend, state synchronization

4https://www.gaia-gis.it/fossil/libspatialite/index

https://www.gaia-gis.it/fossil/libspatialite/index
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among our implemented controls and the map, we have used Vue.js,5 which is a popular
web framework based on components.

7.3 Our API to query transport-related data
In this section, we discuss the main query features that were integrated into Trippy and
were defined within our API that is described below.

As previously seen in Section 5.3.3, XCTR supports a wide set of query functions,
which have allowed us to solve a broad range of transport-related queries in Trippy. Those
include, yet are not limited to:

• How many passengers boarded or alighted on a particular stop during a specific time
interval (e.g. this evening, yesterday)?

• How frequently is a stop X used to switch lines during rush hours?
• How many passengers started/ended their trips at a specific stop X?
• How many passengers started their trips at stop X and ended them at stop Y during

a given time interval?
• How many travelers had to switch lines to get to their destination during a given

time interval?
• How many times a line was used as a start or end of a trip? Alternatively, how many

times was the line used to switch between two other lines, even though it was neither
the origin nor the final destination?

Along with these basic queries supported originally by XCTR,[BFG+18] we have
extended its functionality to also support a range of more complex queries that were solved
as a combination of the previous ones:

• How many passengers traveled from area A to area B during a time interval?
• At what time is a specific stop more crowded?
• At what time does a line get more crowded?

To support these queries, we have developed API Endpoints that we are going to discuss
in the rest of this section. Note that a single request will frequently be responsible for more
than one kind of query in the XCTR backend, as it is often more practical and efficient
to perform multiple types of queries over the same element in XCTR for one single API
request.

7.3.1 Stops endpoint
This endpoint is implemented as an HTTP GET request with the format /stop/X, where
X corresponds to the queried stop identifier. This request returns the following information
of the stop X:

• Number of passengers that had boarded in that stop.
5https://vuejs.org

https://vuejs.org
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• Number of times the stop was used to start a trip.

• Number of times the stop was used to end a trip.

Additionally, this request accepts parameters to restrict the line identifier, lower time
limit and upper time limit, which will filter the numerical results mentioned above.

When this endpoint is queried with no parameters (/stop/), it will return the list of
all the stops in the network, which is needed to display them on a map and initialize the
user interface components. Consequently, the information for each stop returned by this
query will consist of the following fields:

• Identifier.

• Name of the stop.

• Identifiers of the lines this stop belongs to.

• Geographical coordinates of the location of the stop.

7.3.2 Lines endpoint
We created a line endpoint that handles HTTP GET requests in the form of /line/X,
being X the identifier of a line. Similarly to the previous endpoint, the information returned
is also the equivalent to the one returned for the stops, but concerning a whole line instead
of a single stop. Therefore, we can return:

• Number of passengers that had boarded (and alighted).

• Number of times the line was used to start a trip.

• Number of times the line was used to end a trip.

This endpoint accepts filtering by a time interval with the parameters of upper and
lower time limits.

There is also a listing request /line/, to obtain a list of existing lines, which includes
the following fields:

• Identifier.

• Name of the line.

• Identifiers of the stops this line contains, in order.

• If exists, the path of the line, encoded as a sequence of coordinates.6

6This information is optional, without it a line on the map can be displayed by simply connecting
points with a straight line (which may not follow any road or track) or using an existing image tile
(TMS) layer with lines.
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7.3.3 Trips endpoint
This endpoint is dedicated to return one single field: the number of trips that have started
at any of the stops from X∗ and finally end at any stop from Y∗, where both X∗ and Y∗ can
be either a single stop or a collection of them. Due to technical reasons,7 this requests are
implemented using the POST method over the /trip endpoint.

Both X∗ and Y∗ can be restricted by a line parameter (one line for starting stops and
another for ending) and also lower and upper times (starting or ending times of the trip
contained within the limits). These requests can be noticeably slow when the number of
queried stops is very high (in the order of thousands).

7.3.4 Histograms endpoints
These are two endpoints that handle HTTP GET requests about time series of boarding
events either for a stop (/hstop/X) or a line (/hline/X). The returned data is a sequence
of pairs <ti, ni> , where each ti is a timestamp and ni is the number of boardings on ti.

Those requests may be bound to a time window (by specifying lower and upper time
limits, as in the other endpoints) and also accept an additional parameter of sampling that,
if present, will lead to grouping the number of boardings by a given number of seconds
s into bins. The query then returns a sequence of pairs <ti, ni>, where each ti delimits
the lower time limit of a bin that corresponds to the period [ti..ti + s), and consequently,
ti+1 = ti + s. The second component of each pair, ni is the total number of boardings
within that delimited time period. A reasonably large sampling parameter may not only
save bandwidth as less information needs to be transmitted, but also speed up the request.8

7.4 User Interface
Based on the API developed from Section 7.3, we have developed a prototype of an
accessible and intuitive user interface, based on web application technologies. In the rest of
this section, we present a kind of brief user manual that discusses the main elements of
such user interface.

The interface of Trippy consists of a map as shown in Figure 7.3, where have set up
a study case with the same bus networks from Madrid used in Section 5.4.1. Every bus
stop is represented by a stop and we are using an underlying Thunderforest9 TMS layer to
display the bus lines that connect them. Additionally, the interface presents stop selectors
1O, line selectors 2O and also date 3O and time 4O filters that allow a user to query the
XCTR for information.

As the interface shown is still in a prototype phase, it does not yet incorporate all
the planned features. Concretely, we are not yet displaying the geometries of the lines
nor making them interactive, and there is yet no way to make requests over the line or

7The requests may contain thousands of stops, surpassing the length limits of GET requests in
many web servers, proxies and even modern browsers.

8In XCTR, a large sampling value may translate into more than one journey code for a line,
thus making it possible to return a result before reaching the last level of the WMJ in the count
operation.

9https://www.thunderforest.com

https://www.thunderforest.com
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Figure 7.3: Main view of the user-interface of Trippy.

histogram endpoints from the previous Section 7.3 using the graphic interface. However,
we consider it complete enough to be representative of the utility that such an interface
can have when powered by XCTR.

By clicking on a stop, a popup is shows up with the stop name, the lines the stop
belongs to, and also the number of users that used that stop for boarding, starting or
ending a trip, or as a switch stop,10 as shown in Figure 7.4 (left). These usage numbers will
only be considered within the time window specified by the filter, if any. It is also possible
to open a context menu for the stop with a right click, as done in Figure 7.4 (right). This
makes up one of the ways to specify a starting or ending stop for an X to Y query (from
the trip endpoint).

A future feature is planned to query the line endpoint in a similar way, in order to
display usage statistics for a whole line instead of for single stops. Since several line paths
may overlap, the interface must provide a way to disambiguate the selection. The navigation
among stops and lines will also be helped by providing links in the corresponding popups.

In the upper part of the main screen we include stop and line selectors, which are
implemented as custom dropdown components with a search field, as depicted in Figure 7.5.
On the left box we are looking for stops containing Bilbao in their names, and on the right
one we are checking lines from Leganés, from the partial query legan.

As in Madrid it is frequent to have several bus stops with the exact same name for

10The number of boardings must be equal to the number of starts added to the number of
switches.
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Figure 7.4: Stop popup showing the information and usage of a single stop
(left), as well as its context menu (right).

Figure 7.5: The stop (left) and line (right) selectors.

different physical stop locations, either because it is used by different lines or by the
reversed direction of the same lines (as such, they tend to be located on the opposite
direction of the same street), we display the lines that each stop belongs to, in order to
help a user to distinguish between these cases. Note that in the displayed version we do
not distinguish the direction of the line in the interface, although we do keep track of the
directions internally, and consider the reverse direction to be a separate line. These two
selectors are also correlated: selecting a stop in the starting (or ending) field will restrict
the starting (or ending) line selector to only those lines that the selected stop belongs to,
and vice versa.

The date and time filters affect all the displayed results, and can be edited with their
corresponding components as shown in Figure 7.6. We also ensure that the selected starting
and ending dates and times do not overlap: in our example only the dates starting from
2019-03-11 are available, since that is the selected starting date. If a popup is displayed
while these filters are changed, the contents of the popup are dynamically updated.
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Figure 7.6: The date and time filters.

The trip endpoint (which returns the number of trips performed starting with a stop X
and ending with a stop Y) may be queried by either using the starting and ending stop
selectors or the context menu of the stops accessible with a right click, which also fills the
selected stop into the corresponding stop selector. A straight arrow connecting the starting
and the ending stops is displayed, as can be seen in Figure 7.7, and a popup with the total
number of trips is also shown over that arrow.

Additionally, we allow both of these stops be be filtered by line, and the results filtered
by a time window. These controls may be interacted with while the popup is open, and
the number of results will be updated.

We can also perform the generalized version of this query, and obtain the number of
movements between a starting and a final areas, as done in Figure 7.8.

In order to select the stops within a rectangular area, the user must press the shift-key
on the keyboard and select the area of interest, by dragging the cursor. The first selected
area will be considered the origin area, while the second area will be the destination. An
arrow joining both areas will be drawn, and a a pop-up showing the number of trips that
fulfill the criteria will also be displayed. Once again, this query can be refined by properly
setting the time filters.

Note that, while in this preliminar prototype we require the use of a keyboard to
perform this query, an interactive control is planned to be able to select the starting and
ending areas, with the goal of improving the accessibility of the user interface.

7.5 Summary
In this chapter we have presented Trippy, a preliminar prototype that takes advantage of
the trip representations developed in this thesis to efficiently support queries related to the
demand of a public transportation network.

We have proposed an architecture that is flexible enough to extend the current
functionality and to include different sources of information in our system, and also
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Figure 7.7: Querying for the number of displacements between a starting
and an ending stop.

presented a web user-interface to allow any user to easily perform queries of interest to
analyze the demand of the underlying transportation system.

Therefore, our Trippy prototype permitted us to show that our research on compact
data representations to efficiently handle user trips can be interesting for real applications
oriented to the support of decision-making processes related to the transportation network
administration.
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Figure 7.8: Querying for the number of displacements between two areas.
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Chapter 8

Conclusions and future works

In transportation systems from smart cities, new technologies such as traffic monitoring,
automatic fare collection (e.g., smartcards) and automatic passenger counting have made
possible to generate a huge amount of highly detailed, real-time data useful to define
measures that characterize a transportation network. This data is particularly useful
because it actually consists of real trips, combining implicitly the demand of the system
with either the street network or the service offered by a public transportation system.

At the same time, analyzing these historic records about the demand of the network
is within the interest of transportation companies, as well as other entities that may be
interested in studying the movements of crowds in an urban context. To make this kind
of analysis possible, we have proposed powerful representations based on compact data
structures that can easily be adapted for both urban transportation contexts (streets and
most public transportation systems), and can handle diverse use cases with considerable
memory and time efficiency.

In addition, we have developed a GIS application that integrates the compact
representations developed, and includes a simple web-based user interface that makes
it possible to analyze the stored information by an end user in a simple way, not requiring
them to have a previous knowledge of the underlying technologies. Furthermore, this user
interface further validates the choice of an approach based on compact data structures,
thus proving that it is possible to develop a competitive product that may be adopted by
an interested organization.

Finally, in the context of compact data structures, we believe that this research work
may open a new field of practical applications for these structures and algorithms, as have
been previously done for the fields of information retrieval and bioinformatics.

8.1 Contributions
The following list summarizes the main contributions in our work:

1. In the context of trips over urban street networks, we have developed a representation
based on a modified CSA and different alternatives of the WT called CTR,
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which requires as little as a 36% of the size of an uncompressed baseline, while
handling spatio-temporal queries in the order of several microseconds, while offering
configurable trade-offs.

2. We have proposed an extensible model for the representation of trips over a public
transportation network, that may be adapted for most transportation systems around
the world.

3. We have developed two alternative representations for the context of trips over public
transportation networks, TTCTR and XCTR, based on the same structures of CTR,
which can solve most of our proposed queries about network-aware trip patterns in
the order of several mmicroseconds, while needing only about 50% of space compared
to a plain (unindexed) representation.

4. We have presented a scheme to compress Summed Area Table without affecting the
temporal complexity of its operations, and we applied it in T-Matrices as a structure
to accelerate network load queries in the public transportation context.

5. We have developed a GIS prototype including an user interface to analyze the demand
of public transportation networks based on our proposed representations, as well as
on GIS technologies.

8.2 Future work
While there are many possible future developments for our proposed representations for
trips over public transportation networks, we are mostly concerned with finding a single
representation that can efficiently handle both kinds of proposed queries in Section 5.1:
those focusing in the network load and those focusing in the trip pattern. Finding such a
representation is rather challenging, as most solutions that allow to efficiently aggregate
multidimensional data (such as stops and times or journeys) cannot support most of our
trip pattern queries.

Regarding out Trippy prototype, which is still under development, our most urgent
goals are to support an intuitive visualization for lines that may enable the user to perform
queries over them, as well as the addition of means to query the histogram endpoint, to
display the usage of a stop or a line over time with dynamic charts. Finally, this interface
may be improved to support different interactive visualizations for the total network usage
over all the lines within a time range, in addition to reachability queries, where given a
stop in the network we are interested in obtaining the average time taken to arrive to any
other stop.
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Resumen del trabajo
realizado

En este apéndice se presenta un resumen del trabajo realizado durante la tesis. En la
sección B.1 se puede encontrar una introducción, donde describimos brevemente el problema
a resolver. En la sección B.2 resumimos todas las contribuciones de esta tesis. Finalmente,
en la última sección B.3 mencionamos los futuros desarrollos planteados como continuación
del trabajo expuesto.

B.1 Introducción
B.1.1 Motivación
En el contexto de las redes de transporte público, los últimos años han visto numerosos
avances en las tecnologías inalámbricas, redes de sensores (especialmente aquellas
relacionadas con RFID) y computación ubicua, lo que ha llevado a una adopción generalizada
de la tecnología de seguimiento de pasajeros por parte de los servicios de transporte público,
lo que hace que la recolección de grandes cantidades de datos sobre los hábitos de viaje
de estos pasajeros sea más fácil que nunca antes. Esto, a su vez, ha abierto la puerta a
la explotación de este tipo de información para estudiar la demanda (uso) de una red, a
diferencia de las técnicas conocidas para analizar la oferta (rutas, horarios, etc.). Para estas
aplicaciones, no son los datos sobre trayectorias individuales los que tienen importancia,
sino las medidas del uso de la red, con las cuales se pueden desarrollar plataformas para
el monitoreo del tráfico y las tareas de planificación de carreteras. Ejemplos de medidas
útiles son los indicadores de accesibilidad y centralidad, referidos a la facilidad para
llegar a determinadas ubicaciones o la importancia de ciertas paradas dentro de una red
[MTA07, EGL11, WZTL15]. Todas estas medidas se basan en algún tipo de consultas de
conteo que determinan el número de distintos viajes que ocurren dentro de una ventana
espacial y/o temporal.

Para habilitar estos nuevos tipos de estudios de demanda, es imperativo desarrollar
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mecanismos que hagan posible persistir y administrar eficientemente estas vastas (y siempre
crecientes) colecciones de datos. Cuando también tenemos en cuenta que los patrones de
consulta eficientes deben ser compatibles para que estos datos sean “útiles”, la solución
claramente constituye un desafío tecnológico emergente, que se está abordando desde varios
dominios diferentes y cientos de soluciones ad-hoc han sido implementados por todas las
Smart Cities en todo el mundo.

Por consiguiente, una representación práctica para esta información que soporte la
indexación eficiente tendría numerosas aplicaciones posibles. En [TCY+18] podemos ver
cómo es posible combinar trayectorias GPS con datos de Automated Fare Collection
(AFC) para recrear trayectorias completas y estudiar la cantidad de pasajeros por área.
Alternativamente, en [WLS+18] las trayectorias completas se infieren de los datos AFC,
para luego analizar los patrones de comportamiento y las preferencias de los viajeros con el
objetivo de mejorar la eficiencia de la red. Otra aplicación que se habilita mediante dicho
análisis es la publicidad dirigida [ZGN+17], ya que los intereses de un usuario pueden ser
perfilados por sus patrones de viaje. Otros trabajos se centran en analizar el uso de paradas
o estaciones individuales, como [CSC12], donde los autores determinan que los tiempos de
congestión en la red de metro de Londres son predecibles y ocurren en intervalos de tiempo
estrechos. Armado con dicha información, un usuario puede elegir un patrón de viaje
diferente para evitar la multitud y mejorar su experiencia general. Cuando consideramos el
transporte público a través de una red de carreteras, podemos encontrar obras centradas
en el estudio de los pasajeros de taxis. Un ejemplo notable es [YZZX13], que analiza un
sistema de recomendación de taxis bidireccionales, en el que los taxistas señalan los espacios
de estacionamiento más rentables mientras los pasajeros son dirigidos a los segmentos de la
calle con una alta probabilidad de encontrar un taxi vacante.

Una observación clave de todos los trabajos mencionados anteriormente es que una simple
colección de trayectorias o puntos marcados en el tiempo sobre un espacio bidimensional
de latitud y longitud no sería lo suficientemente rica como para realizar estos estudios. Por
lo tanto, deben trabajar con una representación que considere cierto grado de información
semántica. Como mínimo, esa información debe incluir referencias a elementos de la red
(paradas, líneas o calles) y, a veces, incluso algún identificador de usuario, pudiendo éste
último ser anónimo. Por lo tanto, requerimos una representación que difiera de los índices
y bases de datos espaciales tradicionales, ya que debe admitir métodos de acceso eficientes
basados en elementos de red.

B.1.2 Definición del problema
Considerando la red subyacente, hemos identificado dos contextos distinguibles para las
redes de transporte:

• Redes basadas en calles urbanas: dentro de estas redes, una trayectoria puede
comenzar en cualquier momento y ubicación, y puede seguir cualquier ruta arbitraria
de segmentos a lo largo de una red de carreteras definida. Las trayectorias de taxis,
bicicletas o flotas de vehículos entran en esta categoría. Para estos sistemas, las
consultas de interés pueden involucrar puntos de interés alrededor de los cuales
podrían terminar estas trayectorias, o segmentos de carreteras que podrían ser parte
de una ruta.
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• Redes de transporte público: las trayectorias deben comenzar en puntos
predefinidos (por lo general, paradas o estaciones) en los horarios establecidos
definidos por los vehículos que realizan una parada en esos puntos. Estos vehículos
siguen caminos predefinidos a lo largo de estos puntos, formando rutas, y los usuarios
que viajan en el mismo vehículo producirían partes idénticas de trayectorias. Esta
clasificación se aplica a los sistemas de autobuses y metro, junto con la mayoría de
otros sistemas de transporte urbano. Se espera que para una colección de trayectorias
de una red de transporte público algunas de las consultas de interés puedan girar en
torno a los elementos principales de la red, que son rutas y paradas.

Independientemente del contexto de trabajo, operamos con un modelo de red, que
tiende a ser bastante simple en las redes de calles urbanas, consistiendo simplemente en un
grafo dirigido con segmentos de calles como nodos, donde la conexión a otros segmentos
de calles indica que la navegación es posible. Para las redes de transporte público, podría
ser pertinente considerar una representación más rica que un gráfico de paradas y líneas,
pero que tenga también en cuenta las rutas formadas por vehículos de transporte, como
autobuses o trenes, que visitan las paradas en horarios establecidos en las que los viajeros
pueden subir o bajar del vehículo. Un modelo muy conocido que incluye estos elementos
de red, entre otros menos interesantes para nuestro problema, es el GTFS,1 que ha sido
ampliamente adoptado por las plataformas de datos abiertos en numerosas smart cities.

Para cualquier tipo de red, una trayectoria se define como una ruta formada por
una secuencia de elementos de red (generalmente paradas o segmentos de calles), que
fue recorrida por un solo viajero en un viaje, con un origen y un destino final. En esta
definición debemos considerar algunas limitaciones prácticas inherentes a la naturaleza
de una trayectoria, ya que se podría argumentar si los viajeros que tardan más de una
hora en cambiar una línea a otra realmente las están cambiando, o si simplemente han
finalizado sus trayectorias y están comenzando una segunda trayectoria con algún nuevo
destino. Estos casos son complicados para decidir inequívocamente en la práctica y, por lo
tanto, nuestro enfoque tiende a establecer límites en los tiempos de espera y las distancias
del camino entre paradas para una sola trayectoria.

Nuestras definiciones también requieren poder hablar del concepto de tiempo. Cuando
trabajamos con un modelo de red de transporte público que integra recorridos formados
por vehículos de transporte que siguen líneas, no sería necesario representar la hora exacta
en que cada usuario se ha subido a una parada, solo un identificador de recorrido, ya
que los tiempos de parada estarían ya disponibles en la red modelada, evitando cierta
redundancia en la representación de trayectorias. Alternativamente, para redes de calles
urbanas u otros casos donde la información de ruta no está disponible, se puede considerar
una representación de intervalos de tiempo para lograr una representación compacta, donde
el tiempo se expresaría en intervalos discretos entre uno y treinta minutos.

Existen técnicas de recolección masiva de datos para los dos contextos de red discutidos
anteriormente, lo que lleva al problema de manejar eficientemente esta vasta cantidad
de información. Por ello, además de las soluciones habituales conocidas de Big Data, en
nuestro trabajo abrimos una línea de investigación sobre la aplicación de estructuras de
datos compactas para los problemas tratados en este ámbito. En particular, es posible
aplicar muchas de las técnicas del campo de las estructuras de datos compactas para crear

1https://developers.google.com/transit/gtfs/

https://developers.google.com/transit/gtfs/
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representaciones autoindexadas que admitan patrones de consulta eficientes adaptados a
las necesidades de información específicas, al tiempo que ofrece algún tipo de compresión
con respecto a una representación más tradicional.

Con nuestras representaciones buscamos una solución que pueda dar una respuesta
eficiente a consultas sobre los hábitos de movilidad de los usuarios de un sistema de
transporte. Las consultas a considerar pueden variar en función del contexto de la red de
transporte. Así, para un contexto de redes de calles, como el de los movimientos en taxi,
podríamos destacar las siguientes consultas:

• Número medio de movimientos que han pasado por una calle o tramo de calle durante
un intervalo temporal.

• Número de viajes que se han realizado a partir de un origen determinado durante los
fines de semana.

• De aquellos viajes que han empezado en un origen, obtener cuántos han terminado
el viaje en un destino concreto.

• Par cada día, obtener las diez calles donde más frecuentemente comienzan los viajes.

Por otro lado, en el contexto de las redes de transporte público, nos pueden interesar
consultas que tengan en consideración los elementos de la red, como pueden ser líneas/rutas
y los recorridos individuales de éstas. Por tanto, algunas de las consultas relevantes podrían
ser:

• Número de usuarios que se han subido a las paradas extremas de una línea durante
las horas puntas de la mañana.

• Carga media del vehículo de transporte (tren o autobús) entre dos paradas de una
línea.

• Número de veces que una parada concreta se ha utilizado para cambiar de línea, en
lugar de como un destino final.

• Número de viajes originados desde una parada concreta de una línea que hayan
terminado en otra parada concreta dentro de un intervalo temporal.

Es importante destacar de estas consultas que, a pesar de que muchas de ellas se refieran
a calles o a paradas concretas, es habitual que la red subyacente no permanezca estática
durante todo el tiempo que comprende el conjunto de datos, sino que existan cambios
de naturaleza temporal (obras o accidentes) o permanente (paradas o líneas cerradas o
abiertas). Sin embargo, no consideramos que estos cambios en la red sean importantes para
las tareas finales, ya que el efecto en la demanda de la movilidad es mínimo: cuando una
parada de metro deja de estar disponible, los usuarios simplemente utilizarán otra parada
cercana, de forma que se sigue pudiendo realizar un análisis de movilidad sobre zonas.

Por último, hemos considerado que una solución usable también requeriría disponer
de una herramienta que provea una interfaz de usuario simple que permita la explotación
de esta información por parte de investigadores, empresas de transporte, administraciones
municipales y cualquier otro tipo de usuarios finales. Esta interfaz debe, como mínimo,
permitir visualizar los elementos de la red en un mapa, además de permitir la capacidad de
realizar consultas sobre estos elementos de una manera intuitiva y accesible, respetando los
principios de calidad habituales de cualquier software similar orientado a usuario.
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B.2 Contribuciones y conclusiones
En los sistemas de transporte de las smart cities, las nuevas tecnologías como el monitoreo
del tráfico, la existencia de mecanismos de pago automatizados (por ejemplo, tarjetas
inteligentes) y el conteo automático de pasajeros han permitido generar una gran cantidad
de información altamente detallada, datos en tiempo real útiles para definir medidas que
caracterizan una red de transporte. Estos datos resultan particularmente interesantes
porque consisten en viajes reales, combinando así implícitamente la demanda del sistema
con la red de calles o el servicio ofrecido por un sistema de transporte público.

Al mismo tiempo, el análisis de estos registros históricos sobre la demanda de la red
puede interesar a las compañías de transporte, así como a otras entidades que puedan
estar interesadas en estudiar los movimientos de los viajeros en un contexto urbano. Para
hacer posible este tipo de análisis, hemos propuesto representaciones eficaces y flexibles
basadas en estructuras de datos compactas que pueden adaptarse fácilmente a contextos
de transporte urbano (calles y la mayoría de los sistemas de transporte público), y que
pueden manejar diversos casos de uso con considerable eficiencia temporal y de memoria.

La representación propuesta para las redes de calles, llamada CTR, codifica los
identificadores de los nodos de red que se recorren en forma de una cadena de texto,
al igual que la secuencia de los intervalos de tiempo en los que se visita cada uno de
estos nodos. Con esta codificación hemos construido un CSA para las secuencias de nodos
(componente espacial) y también ofrecemos dos variantes del WT (el HTWT y el WM) como
alternativas para las secuencias de intervalos de tiempo (componente temporal). Ambas
estructuras pueden utilizarse de forma conjunta para resolver consultas espacio-temporales
complejas relacionadas con la utilización de la red.

En cuanto a las redes de transporte público, hemos definido un modelo que puede usarse
para representar la demanda de la mayoría de los sistemas de transporte existentes, con el
cuál toda trayectoria queda representada como una secuencia de subidas y bajadas en varios
puntos de la red. Para cada subida es necesario definir: la parada, la línea y el recorrido
concreto del vehículo de transporte. Ofrecemos dos alternativas para la representación de
estos componentes: el TTCTR, que codifica las combinaciones válidas de parada y línea en
un mismo vocabulario con el que se construye un CSA; y el XCTR, donde la secuencia de
líneas se mantiene en una WM separado. Ambas representaciones usan una WM adicional
para los códigos de recorrido, que se pueden usar para filtrar resultados temporalmente al
disponer de la hora de inicio de cada recorrido y el tiempo medio de llegada a cada una de
las paradas de la línea.

Además, hemos desarrollado un prototipo de aplicación GIS (llamada Trippy que
integra las representaciones compactas desarrolladas, lo que permite analizar la información
almacenada por un usuario final de una manera simple, sin requerir que tengan un
conocimiento previo de las tecnologías subyacentes. Además, esta interfaz de usuario valida
aún más la elección de un enfoque basado en estructuras de datos compactas, demostrando
así que es posible desarrollar un producto competitivo y ágil que pueda ser adoptado por
una organización.

Finalmente, en el contexto de la investigación de estructuras de datos compactas,
creemos que este trabajo puede abrir un nuevo campo de aplicaciones prácticas para estas
estructuras y algoritmos, como se ha hecho anteriormente para los campos de recuperación
de información y bioinformática.
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La siguiente lista resume las principales contribuciones en nuestro trabajo:

1. En el contexto de viajes a través de redes de calles urbanas, hemos desarrollado
una representación basada en un CSA modificado y diferentes alternativas del WT
llamado CTR, que requiere tan solo un 36% del tamaño de una línea base sin
comprimir, al tiempo que maneja consultas espacio-temporales en el orden de varios
microsegundos, al tiempo que ofrece trade-offs configurables.

2. Hemos propuesto un modelo extensible para la representación de viajes a través de
una red de transporte público, que puede adaptarse para la mayoría de los sistemas
de transporte del mundo.

3. Hemos desarrollado dos representaciones alternativas para el contexto de viajes a
través de redes de transporte público, TTCTR y XCTR, basadas en las mismas
estructuras del CTR, y que pueden resolver la mayoría de nuestras consultas
propuestas acerca de patrones de trayectorias sobre la red en el orden de varios
microsegundos, mientras que solo se necesita alrededor del 50% de espacio del que
requeriría una representación tradicional sin índice.

4. Hemos presentado un método para comprimir Summed Area Table (SAT) sin afectar
a la complejidad temporal de sus operaciones, y lo aplicamos en T-Matrices como una
estructura para acelerar las consultas de carga de red en el contexto del transporte
público.

5. Hemos desarrollado un prototipo preliminar de aplicación para analizar la demanda
de redes de transporte público que utiliza nuestras representaciones propuestas, así
como tecnologías GIS.

B.3 Trabajo futuro
Si bien consideramos que hay muchos desarrollos futuros posibles para las representaciones
que hemos propuesto para viajes a través de redes de transporte público, nos preocupa
principalmente encontrar una representación única que pueda manejar eficientemente los dos
tipos de consultas propuestas en la sección 5.1: las consultas sobre carga de la red y también
aquellas sobre los patrones de viaje. Encontrar tal representación resulta considerablemente
complejo, ya que la mayoría de las soluciones que permiten agregar eficientemente datos
multidimensionales (como paradas y horarios o viajes) no pueden soportar la mayoría de
nuestras consultas de patrones de viaje.

En cuanto a los métodos de evaluación de nuestras representaciones para las trayectorias
en redes de transporte público, consideramos importante poder disponer de registros de
trayectos de transporte reales, con los que podríamos realizar la evaluación sin tener que
depender de la generación de trayectos sintéticos sobre las redes. Estos registros podrían
usarse también para aumentar artificialmente nuestro conjunto de datos, ya que sería
posible repetir los mismos trayectos sobre días diferentes, con o sin pequeñas modificaciones,
o también utilizar esa información para generar nuevos trayectos. Actualmente es posible
recolectar la información necesaria para reconstruir estos trayectos, como por ejemplo con
el uso de las tarjetas de transporte tanto a la entrada como a la salida de las estaciones de
metro, o con aplicaciones móviles para los pasajeros de autobús.
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Por otro lado, en relación a nuestro prototipo desarrollado, Trippy, nuestros objetivos
más urgentes son soportar una visualización intuitiva de líneas que permita al usuario
realizar consultas sobre ellas, así como la adición de medios para consultar el endpoint
del histograma, para mostrar el uso de una parada o una línea a lo largo del tiempo con
gráficos dinámicos. Finalmente, la interfaz de usuario actual se puede mejorar para admitir
diferentes visualizaciones interactivas para el uso total de la red en todas las líneas dentro
de un rango de tiempo. Además podríamos incluir consultas de accesibilidad, donde a
partir e una parada de la red estamos interesados en obtener el tiempo promedio necesario
para llegar a cualquier otra parada.
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