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Abstract

Spinal-cord-injured (SCI) subjects with some level of hip actuation but with no
or very weak actuation at knee and ankle levels can often walk with the assistance
of knee-ankle-foot orthoses (KAFO) and crutches. However, since knees are kept
extended at all times, even during the swing phase, gait becomes very uncomfort-
able as the hip must be raised for the swing, thus leading to a high energetic cost
which makes fatigue appear quickly. Moreover, the use of crutches leads to high
loads in some joints, particularly shoulders, which may produce injuries in the long
term. The result is that many patients prefer to use the wheelchair, thus losing the
benefits of walking for rehabilitation and for their general health state. To allevi-
ate these problems, active orthoses have been proposed that detect swing intention
and launch a knee flexion-extension cycle, thus approaching healthy gait, which can
make gait more comfortable and increase the actual chances of walking for users.
Some magnitudes, as joint reactions or energetic cost, may serve as indicators to
evaluate the effect of assistive devices in a specific user and, hence, the likeliness of
their actual use in the long term. The combined use of motion-force-EMG capture
and personalized neuromusculoskeletal models enables to estimate the mentioned
magnitudes, without the need for long and tiring experimental tests which could
hardly be undergone by these subjects. Therefore, the present work is devoted, on
the one hand, to review, select, adapt, improve and/or develop, and validate, all the
necessary methods and tools which are required for this purpose: (i) personalized
musculoskeletal models; (ii) methods for analysis at skeletal and musculoskeletal
levels; (iii) methods for energetic cost estimation. And, on the other hand, to apply
them to two SCI subjects, bilateral and unilateral, respectively, and to compare a
new active KAFO with a conventional passive one. Results show that the evalu-
ation of device impact through the mentioned indicators is effective, and that the
new active system objectively streamlines walking to users.





Resumo

Os lesionados medulares con algunha capacidade de actuación en cadeira pero
con pouca ou nula capacidade de actuación en xeonllo e nocello, poden en moitos
casos camiñar coa axuda de órteses de xeonllo-nocello-pé e muletas. Con todo, dado
que os xeonllos se manteñen estendidos en todo momento, mesmo durante a fase de
abalo, a marcha resulta moi incómoda, pois a cadeira debe levantarse para permitir
o abalo da perna, o que supón un alto custo enerxético que fai aparecer a fatiga
rapidamente. Ademais, o uso de muletas produce cargas elevadas nalgunhas arti-
culacións, especialmente nos ombreiros, o que pode xerar lesións a longo prazo. O
resultado é que moitos pacientes prefiren usar a cadeira de rodas, perdendo aśı os
beneficios de camiñar para a súa rehabilitación e para o seu estado de saúde xeral.
Para paliar estes problemas, propuxéronse órteses activas que detectan a intención
de dar o paso e lanzan un ciclo de flexión-extensión de xeonllo, aproximando aśı a
marcha normal, o que pode facer a marcha máis cómoda e aumentar as posibilidades
reais de camiñar para os usuarios. Algunhas magnitudes, como as reaccións nas arti-
culacións ou o custo enerxético, poden servir como indicadores para avaliar o efecto
dos dispositivos de asistencia nun usuario espećıfico e, polo tanto, a probabilidade do
seu uso real a longo prazo. O uso combinado da captura de movemento-forza-EMG
e os modelos neuromusculoesqueléticos personalizados permite estimar as magnitu-
des mencionadas, sen a necesidade de longas e esgotadoras probas experimentais
que dificilmente podeŕıan afrontar estes pacientes. Polo tanto, o presente traballo
está dedicado, por unha banda, a revisar, seleccionar, adaptar, mellorar e/ou desen-
volver, e validar, todos os métodos e ferramentas necesarios que se requiren para este
propósito: (i) modelos músculoesqueléticos personalizados; (ii) métodos de análises a
nivel esquelético e musculoesquelético; (iii) métodos de estimación de custo enerxéti-
co. E, doutra banda, a aplicalos a dous lesionados medulares, bilateral e unilateral,
respectivamente, e a comparar unha nova órtese activa cunha pasiva convencional.
Os resultados mostran que a avaliación do impacto do dispositivo a través dos in-
dicadores mencionados é efectiva, e que o novo sistema activo facilita certamente
camiñar aos usuarios.





Resumen

Los lesionados medulares con alguna capacidad de actuación en cadera pero con
poca o nula capacidad de actuación en rodilla y tobillo, pueden en muchos casos
caminar con la ayuda de órtesis de rodilla-tobillo-pie y muletas. Sin embargo, dado
que las rodillas se mantienen extendidas en todo momento, incluso durante la fase
de balanceo, la marcha resulta muy incómoda, pues la cadera debe levantarse para
permitir el balanceo de la pierna, lo que conlleva un alto coste energético que hace
aparecer la fatiga rápidamente. Además, el uso de muletas produce cargas eleva-
das en algunas articulaciones, especialmente en los hombros, lo que puede generar
lesiones a largo plazo. El resultado es que muchos pacientes prefieren usar la silla
de ruedas, perdiendo aśı los beneficios de caminar para su rehabilitación y para su
estado de salud general. Para paliar estos problemas, se han propuesto órtesis acti-
vas que detectan la intención de dar el paso y lanzan un ciclo de flexión-extensión
de rodilla, aproximando aśı la marcha normal, lo que puede hacer la marcha más
cómoda y aumentar las posibilidades reales de caminar para los usuarios. Algunas
magnitudes, como las reacciones en las articulaciones o el coste energético, pueden
servir como indicadores para evaluar el efecto de los dispositivos de asistencia en un
usuario espećıfico y, por lo tanto, la probabilidad de su uso real a largo plazo. El uso
combinado de la captura de movimiento-fuerza-EMG y los modelos neuromuscu-
loesqueléticos personalizados permite estimar las magnitudes mencionadas, sin la
necesidad de largas y agotadoras pruebas experimentales que dif́ıcilmente podŕıan
afrontar estos pacientes. Por lo tanto, el presente trabajo está dedicado, por un
lado, a revisar, seleccionar, adaptar, mejorar y/o desarrollar, y validar, todos los
métodos y herramientas necesarios que se requieren para este propósito: (i) mode-
los músculoesqueléticos personalizados; (ii) métodos de análisis a nivel esquelético
y musculoesquelético; (iii) métodos de estimación de coste energético. Y, por otro
lado, a aplicarlos a dos lesionados medulares, bilateral y unilateral, respectivamente,
y a comparar una nueva órtesis activa con una pasiva convencional. Los resultados
muestran que la evaluación del impacto del dispositivo a través de los indicadores
mencionados es efectiva, y que el nuevo sistema activo facilita ciertamente caminar
a los usuarios.





Résumé

Les personnes souffrant d’une lésion médullaire conservant une bonne mobilité au
niveau de la hanche mais ayant une mobilité nulle ou très faible au niveau du genou et
de la cheville ont la possibilité de marcher avec l’aide d’orthèses de genou-cheville-
pied et de béquilles. Cependant, comme les genoux sont maintenus en extension
tout au long du cycle de marche, même pendant la phase du swing, le mouvement
de marche devient très inconfortable car il demande une élévation additionnelle du
bassin durant le swing, entrâınant ainsi un coût énergétique élevé qui fait apparâıtre
rapidement la fatigue. De plus, l’utilisation de béquilles entrâıne des charges élevées
dans certaines articulations, en particulier les épaules, susceptibles de provoquer
des blessures à long terme. Il en résulte que de nombreux patients préfèrent utiliser
leur fauteuil roulant, perdant ainsi les avantages de la marche pour leur rééducation
et leur état de santé général. Afin d’atténuer ces problèmes, des orthèses actives
ont été proposées pour détecter la phase du swing et lancer un cycle de flexion-
extension du genou, simulant ainsi le mouvement normal d’une personne saine, ce
qui peut rendre la démarche plus confortable et augmenter les chances réelles de
marcher pour les utilisateurs. Certaines grandeurs, telles que les forces de réaction
des articulations ou le coût énergétique peuvent servir d’indicateurs pour évaluer
l’effet des dispositifs d’assistance sur un utilisateur spécifique et, par conséquent, la
probabilité de son utilisation réelle à long terme. L’utilisation combinée de la cap-
ture de mouvement, de forces et d’EMG et de modèles neuromusculosquelettiques
personnalisés permet d’estimer les grandeurs mentionnées, sans recourir à des tests
expérimentaux longs et fatigants que ces sujets pourraient difficilement réaliser. Par
conséquent, le présent travail est consacré, d’une part, à examiner, sélectionner,
adapter, améliorer et/ou développer et valider toutes les méthodes et tous les outils
nécessaires à cet effet : (i) modèles musculosquelettiques personnalisés ; ii) méthodes
d’analyse aux niveaux squelettique et musculosquelettique ; (iii) méthodes d’estima-
tion des coûts énergétiques. Et, d’autre part, de les appliquer à deux sujets atteints
d’une lésion médullaire, bilatérale pour l’un, et unilatérale pour le second, et de com-
parer une nouvelle orthèse active avec une originale, passive. Les résultats montrent
que l’évaluation de l’impact du dispositif à l’aide des indicateurs mentionnés est effi-
cace et que la nouvelle orthèse active offre objectivement des facilités pour marcher
aux utilisateurs.
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ḣSL Shortening/lengthening heat rate. 57, 58, 60
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Chapter 1

Introduction

1.1 Motivation

Advances in the care of spinal cord injured (SCI) subjects have resulted in an
increased life expectancy among this population [1]. Standing up and walking regu-
larly has huge benefits for the general health state of these subjects, since it reduces
the negative consequences of sedentarism. An example is osteoporosis [2], i.e. bone
loss due to skeletal mechanical unloading. While muscle plasticity or muscle elec-
tric stimulation attenuate muscle atrophy, none of them preserves bone mass [3].
Therefore, achieving adherence to assisted gait is important, but there is a risk of
abandoning due to several issues, as pain, fatigue or very low speed, which can make
the subject return to solely use the wheelchair.

SCI subjects with some level of hip actuation but with no or very weak actua-
tion at knee and ankle levels can often walk with the assistance of knee-ankle-foot
orthoses KAFO and crutches [4] [5]. However, since knees are kept extended at all
times, even during the swing phase, gait becomes very uncomfortable as the hip
must be raised for the swing, thus leading to a high energetic cost which makes
fatigue appear quickly. Moreover, the use of crutches leads to high loads in some
joints, particularly shoulders, which may produce injuries in the long term. The
result is that many patients prefer to use the wheelchair [6], thus losing the ben-
efits of walking for rehabilitation and for their general health state. To alleviate
these problems, active orthoses have been proposed that detect swing intention and
launch a knee flexion-extension cycle [7], thus approaching healthy gait, which can
make gait more comfortable and increase the actual chances of walking for users.
Some magnitudes, as joint reactions or energetic cost, may serve as indicators to
evaluate the effect of assistive devices in a specific user and, hence, the likeliness of
their actual use in the long term. The combined use of motion-force-EMG capture
and personalized neuromusculoskeletal models enables to estimate the mentioned
magnitudes, without the need for long and tiring experimental tests which could
hardly be undergone by these subjects. Therefore, the present work is devoted, on
the one hand, to review, select, adapt, improve and/or develop, and validate, all the
necessary methods and tools which are required for this purpose: (i) personalized
musculoskeletal models; (ii) methods for analysis at skeletal and musculoskeletal
levels; (iii) methods for energetic cost estimation. And, on the other hand, to apply
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1. Introduction

them to SCI subjects to compare a new active KAFO with a conventional passive
one.

1.2 Background

Biomechanics is an interdisciplinary science that studies the concepts of me-
chanics applied to life sciences [8]. It evolves on the border between biology and
mechanics by appropriating the knowledge of many other scientific disciplines.

The study of the movement of the human body and its interaction with the
environment in which it evolves is the main objective of this discipline. The human
body can be seen as a multibody system, composed by solids linked by joints and
actuated by internal motors, the muscles. The central nervous system (CNS) manage
the control of this complex mechanism [9]. For its full understanding, knowledge
and experience from different scientific disciplines is necessary.

Among the different applications of biomechanics, the study of locomotion is one
of the main topics of investigation, firstly in the case of healthy people and more
and more in the case of people with motor problems.

Determination of muscle forces during gait (or any other exercise) is of great
interest to extract the principles of the CNS control [10] (assessment of pathological
gait from muscular activation abnormalities, diagnosis of neuromuscular disorders),
or to estimate the loads on bones and joints [11] (prevention of injuries in sports,
surgical planning to reconstruct diseased joints). The invasive character of in vivo
experimental measurements, and the uncertain relation between muscle force and
electromyography (EMG) , makes computer modeling and simulation a useful sub-
stitutive approach [12].

1.2.1 Gait analysis

Walking is the natural mode of locomotion of the adult human being, allow-
ing him to combine the maintained standing equilibrium and the propulsion [13].
It involves combining and alternating the two lower limbs. Schematically, walking
consists of putting one foot in front of the other alternatively and repeatedly. Walk-
ing is characterized by a succession of double supports and unipodal supports, the
body remaining permanently in contact with the ground by at least one unilateral
support.

The repeated movement composed by a support phase and a swing phase is called
gait cycle. In this work, the following gait cycle has been considered: it starts with
the initial heel contact of the right foot and ends with the new contact of the same
foot on the ground. The support phase corresponds to the entire period when the
foot is in contact with the ground. Its beginning corresponds to the initial contact
(contact of the foot with the ground) and its end to the detachment of toes (loss of
contact of the foot with the ground) [14]. It ranges from 0 to 60% of the walking
cycle, a duration of 60% of the walking cycle. The swing phase corresponds to the
entire phase when the foot is no longer in contact with the ground and which allows
the advancement of the lower limb. Its beginning corresponds to the detachment of
the toes and its end to the new ground contact of the same foot. It extends from 60
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1.2 Background

to 100% of the walking cycle, i.e. a duration of 40% of the walking cycle. A more
detailed description of the gait cycle can be observed in Figure 1.1.

Figure 1.1 – Gait cycle [15].

The gait analysis and pattern of the human body movement represents a fun-
damental part of the assessment of the individual by correlating their changes due
to alterations in the different body systems. Over time, many investigations have
been conducted in order to determine the normality values in the various parameters
that shape or determine the particular characteristics of gait pattern in specific dis-
eases or specific population groups. According to the interest, the analysis can focus
on the kinematics, the dynamics, the muscular activity or the energy consumption
during the locomotion activity [16].

Crutch-assisted gait is a particular case because of the intensive use of the upper
limbs. Ground contacts are more complicated due to the additional support offered
by the crutches [17]. The gait cycle will depend on the type of crutch gait employed
by the subject.

1.2.2 Neuromusculoskeletal models

Movement of the human body is controlled by the CNS, which generates neural
commands to activate the contractile apparatus of the muscles. Muscles generate
forces which combine with the inertia and external forces acting on the body, result-
ing in observable movements. Complete models of the musculoskeletal mechanics
must represent the dynamics of muscle force production and the dynamics of move-
ment in the skeletal system [18].

The skeletal system is composed of bones (considered as rigid bodies) that are
connected to each other via articulations or joints. The articulated bodies form a
multibody system whose motion is influenced by external forces (applied by muscles,
gravity, and the environment) and constraints imposed by joints. The configuration
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of the body segments and the types of articulations determine all possible movements
that a skeletal system is capable of performing.

Motion within the degree(s) of freedom allowed by a joint type is usually con-
strained by mechanical stops and elastic ligaments associated with the construction
of the anatomical joint, which can be modeled as joint angle-dependent internal
forces acting on the skeleton. Environmental forces arise when the skeletal system
contacts the environment such as foot-ground and hand-tool contacts. These forces
are modeled by equations that represent the dynamics of the contact between the
body segment and the environment. The calculation and the application of a given
muscle force is more complicated. The correct calculation and application of muscle
force to the skeletal system requires knowledge of the correct path of the muscle
from its origin to its insertion [19].

Figure 1.2 – 3D Opensim gait musculoskeletal model 2392.

As the muscles stretch from its origin to its insertion, they commonly wrap
around multiple complex anatomical obstacles such as bones and neighboring tis-
sue, thus most muscle paths cannot be represented adequately by straight lines.
Therefore, a broad variety of muscle model wrapping approaches has been reported
in the literature. Finite element algorithms [20] provide the highest level of detail
because they allow for considering muscle deformations and use realistic bone ge-
ometry for wrapping, but they are computationally expensive. In the majority of
musculoskeletal models, muscle paths are approximated by wrapping around geo-
metric obstacle surfaces representing bone and tissue [21] [22] or simply by plural
straight lines via several points [23]. Commercial musculoskeletal models can be
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found as, for example, Anybody [24] or SIMM [25], but researchers commonly use
the open-source software Opensim [26] (Figure 1.2) or develop their own model.

In addition of the different geometries, muscle modeling can consider the muscle
physiology, providing the feasible muscle forces according to the complex relation
with the muscle length, muscle contraction velocity and activation state. Hill-type
muscle model [19] is commonly used to consider these restrictions. However, the
high stiffness of the tendon generates some computational difficulties and drive the
authors to consider it as rigid [27] or to directly neglect the physiological constraints
[28]. Quantitative models of muscle contraction are crucial for understanding neural
control of movement.

1.2.3 Central nervous system strategy

A large set of muscles is commanded in a precise sequence by the CNS. The fun-
damental problem is that there are more muscles serving each degree of freedom of
the system than those strictly necessary from the mechanical point of view, which
implies that, in principle, an infinite number of recruitment patterns are accept-
able. This problem is often referred to as the redundancy problem of the muscle
recruitment [29] or the force-sharing problem [30]. Experimental studies [31] and
EMG collections [32] suggest that a specific strategy of muscle coordination is cho-
sen by the CNS to perform a given motor task. The actual strategy selected from
this set will likely depend on factors such as metabolic energy consumption, whose
minimization is clearly advantageous for survival.

A popular mathematical approach for solving the muscle recruitment problem is
the optimization method, which can be associated to inverse or forward dynamics
[33]. These methods minimize or maximize some criterion (objective function or
cost function) which reflects the mechanism used by the CNS to recruit muscles
for the movement considered. The proper cost function is not known a priori, so
the adequacy of the chosen function must be validated according to the obtained
results [34]. Many criteria have been proposed in the literature to predict muscular
activations.

Activity patterns appear to be different for each muscle, although certain fea-
tures are common to many muscles. In fact, there is analytical evidence that many
muscles may share certain activity patterns. In the last decades, some authors deter-
mined whether the main features of the EMG patterns could be described by a few
underlying components [35], [36] and [37]. Later, by applying other mathematical
methods, researchers demonstrated that the CNS use muscle synergies in order to
simplify the muscular control [38] [39].

1.2.4 Energy consumption

Physiological energy expenditure estimation has proven to be a reliable method
of quantitatively assessing the penalties imposed by gait disability [40]. While energy
consumption is generally experimentally based on the oxygen consumption (VO2)
measured with gas analyzer [41] [40] [42] or estimated by heart rate monitoring
[43] [41] [44], these processes require maintaining a constant activity during several
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minutes and wearing uncomfortable devices which can be a limitation for some
activities or subjects.

So, use of musculoskeletal models to estimate the energy consumption shows a
great interest to avoid the previous limitation. In the last decades, several methods
have been proposed to computationally estimate the human energy expenditure
during gait [45] [46] [47], and some of them were compared in [48].

As energy expenditure computational methods are directly linked with the mus-
cular activity, the force-sharing problem needs to be solved first by optimization,
regardless of whether it is an inverse or forward dynamics approach [49]. By the
way, Hill-type muscle parameters are extracted from this step to be used as input of
the mentioned methods to computationally estimate the human energy expenditure
during gait. Accuracy of the neuromusculoskeletal model chosen is consequently
fundamental.

1.2.5 Spinal-cord-injured subjects

The spinal cord is the part of the CNS that lies inside the spine. It is an essential
structure to the sensations coming from our body and to the motor functions. A
spinal cord injury cuts off communication between the brain and the body and causes
total or partial paralysis of the limbs and trunk. The extent of paralysis depends
on the location of the wound in the spine and its severity (Figure 1.3) [50]. A low
lesion causes paraplegia, that is, paralysis of the lower limbs, while a high lesion in
the cervical vertebrae, for example, causes quadriplegia, the paralysis of the four
limbs.

Figure 1.3 – Spinal cord injury levels.

However, the level of the injury is not enough to determine the associated dam-
age. The same injury can have different consequences on subjects. For this reason,
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the American Spinal Injury Association (ASIA) published the International Stan-
dards for Neurological Classification of Spinal Cord Injury (ISNCSCI) to evaluate
the motor scores [50]. At lower extremities, the lower extremity muscle score (LEMS)
is used to evaluate SCI subjects. Muscles function grading of Figure 1.4 are defined
as follows:

- 0 = total paralysis,
- 1 = palpable or visible contraction,
- 2 = active movement, full range of motion (ROM) with gravity eliminated,
- 3 = active movement, full ROM against gravity,
- 4 = active movement, full ROM against gravity and moderate resistance in a

muscle specific position,
- 5 = (normal) active movement, full ROM against gravity and full resistance in

a functional muscle position expected from an otherwise unimpaired person,
- 5* = (normal) active movement, full ROM against gravity and sufficient resis-

tance to be considered normal if identified inhibiting factors (i.e. pain, disuse) were
not present,

- NT = not testable (i.e. due to immobilization, severe pain such that the patient
cannot be graded, amputation of limb, or contracture of > 50% of the normal ROM).

Figure 1.4 – LEMS evaluation.

In addition to reducing motor function, the lesion in most cases affects the func-
tioning of organs below the level of the lesion, including the bladder and intestines.
It also deprives the spinal cord injured of its sensitivity in areas of the body whose
nerves are connected to the spinal cord below the site of the lesion. Spinal cord
injuries are often the result of accidents: road accidents, falls, diving accidents,
accidents at work, etc.

Because the spinal cord controls the functioning of the lower and upper limbs,
SCI people often have to use a wheelchair [6]. Subjects selected for our experiments
were able to walk with crutches but required in addition the assistance of passive
KAFO (Figure 1.5), commonly referred to with the term “caliper” few years ago.
Advances in both material science and orthotic design have resulted in improved
functional outcomes for individuals who require lower limb orthoses [51]. However,
KAFO provokes a biomechanical problem for the normal gait pattern. By locking
the knee to allow subjects to stand and ambulate safely, subjects are unable to clear
the floor during swing phase, which causes an abnormal gait pattern, with either
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hip hiking, abducted swing, or excessive heel rise (vaulting) on the contralateral
side, all combined with higher loads in upper extremities by using crutches which
create other long-term problems for the patient [52]. With technical advancements
controlling how and when the knee locks and unlocks during stance and swing phase
(active orthoses), it is expected that more patients who are bound to wheelchairs
will be able to ambulate with fewer complications.

Figure 1.5 – KAFO.

Because of the mentioned difficulties, the two subjects of this study mainly used
a wheelchair to move in daily life, and resorted to the crutch-assisted gait with
KAFO only occasionally and during short periods of time.

In order to apply the analysis methods used in healthy people to SCI subjects,
neuromusculoskeletal models have to be personalized to each subject due to the
uniqueness of each injury and its consequences.

1.3 Objectives

The objective of this work is to evaluate the effect of orthotic devices on SCI
subjects and the likeliness of its long-term use, through the estimation of some
indicators as joint reactions and energetic cost, which in turn require the estimation
of muscular activations and forces. To this end, some partial goals are set:

— Selection of a neuromusculoskeletal model for healthy subjects and adapta-
tion to SCI subjects.

— Comparison, at accuracy and efficiency levels, of several methods for the
solution of the muscle recruitment problem, and proposal of use criteria de-
pending on the application.

— Validation of two methods for energetic cost estimation in healthy gait.
— Application of the previously selected models and methods to the crutch-

orthosis-assisted gait of SCI subjects and comparison between a passive and
an active orthotic device.
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1.4 Contributions

The contributions of this thesis can be summarized as follows:

— A synergy-based approach is presented for the inverse-dynamics based anal-
ysis of human gait at neuromusculoskeletal level, which calculates synergies
by applying non-negative matrix factorization to the activations coming from
a static optimization. This approach is compared with other synergy-based
approach proposed in the literature, and with EMG measurements.

— A co-simulation algorithm is shown for the forward-dynamics based analysis
of human gait at neuromusculoskeletal level, which enables to separately in-
tegrate the equations of motion and the muscular dynamic equations, thus
allowing to use codes for general multibody-dynamics simulation. This algo-
rithm is compared with the popular computed muscle control (CMC) algo-
rithm.

— An extensive comparison is carried out, both in terms of accuracy and ef-
ficiency, among several variants of inverse- and forward-dynamics based ap-
proaches for the analysis of human gait at neuromusculoskeletal level. Crite-
ria of use are then drawn based on the comparison results.

— Two methods proposed in the literature for the estimation of energetic cost
are validated in healthy gait with experimental results and results from lit-
erature, and indications are given for their application.

— A neuromusculoskeletal model is proposed for SCI subjects walking with the
help of KAFO and crutches, along with a way to personalize the model to a
particular subject.

— The gait of a bilateral SCI subject is analyzed, by application of the tech-
niques previously developed in the thesis, when wearing a pair of conventional
passive orthoses. Results of the muscular force-sharing problem are assessed
by comparison with EMG measurements, and reaction forces at shoulders
are estimated. Furthermore, gait improvement is studied at kinematic level
when wearing active orthoses.

— The gait of a unilateral SCI subject is analyzed, by application of the tech-
niques previously developed in the thesis, when wearing either a pair of pas-
sive or active orthoses. Results of the muscular force-sharing problem are
assessed by comparison with EMG measurements. Both reaction forces at
shoulders and energetic cost are estimated for the two types of orthotic de-
vices, and improvement provided by the active system is studied at kinematic
and dynamic levels.

1.5 Thesis outline

The remainder of this thesis is organized as follows:

Chapter 2 introduces musculoskeletal model, the muscle model and the mutibody-
dynamics formulation used in this thesis.
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Chapter 3 compares several optimization methods for estimating muscle forces
in human gait using inverse- and forward-dynamics approaches.

Chapter 4 presents two methods from the literature to estimate the muscular
energy expenditure: Umberger’s and Bhargava’s methods.

Chapter 5 shows the application of the methods proposed in previous chapters
to two SCI subjects walking with two types of orthotic devices and compares their
effect on the subjects’ gait.

Chapter 6 draws the conclusions and indicates future research lines.
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Chapter 2

Human models, multibody
formulation and data collection

2.1 Subjects and models

2.1.1 Subjects

Five voluntary healthy subjects whose characteristics are presented in Table
2.1 were recorded during walking for the experimental validation of the different
methods treated in this work.

2.1.2 Skeletal model

The human body is modeled as a 3D multibody system formed by rigid bodies,
as shown in Figure 2.1. It consists of 18 anatomical segments: two hindfeet, two
forefeet, two shanks, two thighs, pelvis, torso, neck, head, two arms, two forearms
and two hands. The segments are linked by ideal spherical joints, thus defining
a model with 57 degrees of freedom. The global axes are defined as follows: x -
axis in the antero–posterior direction, y-axis in the medio–lateral direction, and
z -axis in the vertical direction. The computational model is defined with 228 mixed
(natural + angular) coordinates. The subset of natural coordinates comprises the
three Cartesian coordinates of 22 points, and the three Cartesian components of 36
unit vectors, thus making a total of 174 variables. The points correspond to the
positions of all the spherical joints (white dots in Figure 2.1, left and center), along

Subjects
1 2 3 4 5

Gender Male Male Male Female Male
Age 28 26 58 30 28

Weight (kg) 86 74 96 50 99
Height (cm) 187 182 190 165 180
Speed (m/s) 1,18 1,29 1,14 0,92 1,20

Table 2.1 – Characteristics of the five healthy subjects.
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with points of the five distal segments -head, hands and forefeet- (black dots in
Figure 2.1). Each one of the 18 bodies is defined by its proximal and distal points,
plus two orthogonal unit vectors aligned at the antero–posterior and medio–lateral
directions, respectively, when the model is in a standing posture. The remaining 54
variables are the 18 sets of 3 angles that define the orientation of each body with
respect to the inertial frame.

Figure 2.1 – 3D human model.

The geometric and inertial parameters of the model are obtained, for the lower
limbs, by applying correlation equations from a reduced set of measurements taken
on the subject, following the procedures described in [53].

For the upper part of the body, data from standard tables [33] is scaled according
to the mass and height of the subject. In order to adjust the total mass of the subject,
a second scaling is applied to the inertial parameters of the upper part of the body.

The kinematic information of the motion is obtained from the trajectories of
the 37 markers attached to the subject’s body (red dots in Figure 2.1, left), which
are captured at 100 Hz frequency by means of the 12 infrared cameras. Position
data are filtered using an algorithm based on Singular Spectrum Analysis (SSA) [54]
and the natural coordinates of the model are calculated using algebraic relations.
Afterwards, a minimization procedure ensures the kinematic consistency of the nat-
ural coordinates. From that information, the histories of a set of 57 independent
coordinates -as many as the system degrees of freedom- formed by the Cartesian
coordinates of the position vector of the lumbar joint and the 18 x 3 angles that
define the absolute orientation of each body, are kinematically obtained and approx-
imated by using B-spline curves. Analytical differentiation yields the corresponding
velocity and acceleration histories. More detail about the treatment of the captured
data can be found in [17].

2.1.3 Musculoskeletal model

Gait studies for healthy people focus on lower limbs. 43 muscles have been con-
sidered in each leg of the model plus 6 muscles in the pelvis (Figure 2.2). Geometries
and properties of the muscles have been taken from OpenSim [26], which are defined
for the OpenSim reference model. According to the aim of the studies the number of
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2.1 Subjects and models

Figure 2.2 – Musculoskeletal model.

Figure 2.3 – Gait of healthy subject: acquired motion (left); computational
model (right).

muscles can be reduced. For example, to estimate the muscular forces during gait,
muscles on the right leg have only been considered due to the symmetric behaviour
(Figure 2.3), whereas to estimate the whole energy consumption all the muscles of
the lower limb have been take into account.

A scale factor is derived for each segment by comparing its dimensions with
those of the reference model. This factor is applied to obtain the corrected location
of the origin and insertion points in the segment. Then, lengths of muscles are
calculated from the standing position and compared with their counterparts in the
reference model, thus yielding a scale factor for each muscle. This scale factor is
applied to muscle parameters as the tendon slack length and the optimal muscle fiber
length. However, no recommendation has been found in the literature on how to
scale the muscle maximum isometric force, which could be expected to significantly
vary among different subjects.
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2. Human models, multibody formulation and data collection

2.2 Musculoskeletal geometry

The musculotendon length, musculotendon velocity, and moment arms of a mus-
cle depend directly on the musculoskeletal geometry as well as on body segment
configurations. These variables play an important role in generating joint torques.

2.2.1 Muscle paths

Muscles are modeled as a single or a plural straight line with several points. These
points correspond to the attachment of musculotendon to bone and are defined
as origin (i.e., proximal attachment) or insertion (i.e., distal attachment). Local
coordinates of this points have been obtained from [26] for the lower limb and
[55] for the upper limb. For musculotendon actuators with more than one single
straight line, effective origins and insertions are defined when the straight path from
the actual origin to the actual insertion passes through bones during certain body
configurations (see Figure 2.4).

Oa

Oe

Ie
Ia

~uMT
~FMT

~r

C

T

~FMT

Figure 2.4 – Muscle path and line of action. O and I refer to origin and
insertion, and the subscripts a and e denote actual and effective origin and
insertion points, respectively.

The musculotendon length is the summation of the lengths of muscle segments
that connect the points defining the muscle path. If a muscle path is defined by n
points, the musculotendon length is given by

lMT =
n−1∑
i=1

si (2.1)
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2.2 Musculoskeletal geometry

where si is the length of ith muscle segment. The musculotendon velocity is the
time derivative of the musculotendon length, i.e.,

vMT =
n−1∑
i=1

ṡi (2.2)

The musculotendon force vector can be expressed as the unit vector ~u (see Fig-
ure 2.4) directed along the line of action of the muscle multiplied by the force
magnitude FMT , i.e.,

~FMT = FMT~uMT (2.3)

The unit vector of the line of action of the muscle is given by

~uMT =
~rIe − ~rOe
‖~rIe − ~rOe‖

(2.4)

where ~rOe and ~rIe are the locations of the effective origin and insertion of the muscle,
respectively.

2.2.2 Calculation of the Jacobian of muscle moment arms

Muscle forces provide the joint torques T MT at the multiple joints crossed by
the muscle. Musculotendon forces are transformed into muscular moments by this
relation:

T MT = J>FMT (2.5)

where J> is the transpose of the Jacobian matrix J which is called the Jacobian
matrix of muscle moment arms. There are two methods to determine J : one is
the velocity-based determination method [56] and the other is the force-based de-
termination method. In this work, the force-based determination method is used to
determine the Jacobian of muscle moment arms, where, for each muscle and each
joint, the moment arm vector ~d is obtained by the following relation:

~d = ~uMT ∧ ~r = [dxdydz]
> (2.6)

J> can be written as

J> = [~d1...~di...~dm] (2.7)

where ~di = [d1i, ..., dni]
> represents the ith column of J> and is called the moment

arm vector of muscle i, m is the number of muscles, n is the number of the muscle-
driven generalized coordinates.

If the Jacobian matrix J of moment arms is a square matrix and has full rank,
a unique solution exists. Normally, there are more musculotendon actuators than
joint DOFs, i.e., m > n. In this case, J> is rectangular, and its inverse is not
defined. This is called actuator redundancy. This problem is resolved by optimizing
an objective function that represents some neural strategy.
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2. Human models, multibody formulation and data collection

2.3 Musculotendon actuator dynamics

The dynamics of musculotendon actuators can be divided into activation dynam-
ics and contraction dynamics [19]. Activation dynamics refers to the transformation
of a neural excitation into an activation of the contractile apparatus, while con-
traction dynamics refers to the transformation of the activation to a muscle force.
Thus, according to the Hill’s muscle model, muscle dynamics are represented by two
first-order dynamical processes which are cascaded and decoupled from each other
[19]. This summary of the musculotendon actuator dynamics is provided by [57].

2.3.1 Hill’s muscle model

Muscles are composed by a set of fibers and tissues, called tendons, which make
the connection to the bone. Fibers, oriented either parallel to the tendon (a parallel-
fibered muscle) or at an acute angle α > 0 to the tendon (a pennated muscle, see
Figure 2.6), are considered equally long. The fibers of a pennated muscle are con-
nected to the aponeurosis of the muscle, which is the internal portion of the tendon.
The properties of the internal and external portions of the tendon are assumed
identical. Muscle fibers contain contractile filaments as well as non-contractile fiber
strands [19].

In this study, a Hill-type model [19] is used to estimate the force generated by
a musculotendon actuator. The simplified mechanical model of a musculotendon
(see Figure 2.5) consists of an active contractile element (CE), a parallel passive
elastic element (PE), and a serial elastic element (SE). For a pennated muscle, a
relationship among the musculotendon length lMT , the muscle fiber length lM , the
tendon length lT , and the pennation angle α is given by

lMT = lM cosα + lT . (2.8)

Figure 2.5 – Architecture of a pennated muscle.
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2.3 Musculotendon actuator dynamics

Figure 2.6 – Hill-type muscle model. The muscle fibers are modeled as an
active contractile element (CE) in parallel with a passive elastic component
(PE). These elements are in series with a nonlinear elastic tendon (SE). The
pennation angle α denotes the angle between the muscle fibers and the tendon
[19]. Superscripts MT, M, and T indicate musculotendon, muscle fiber, and
tendon, respectively.

If the distance between the aponeuroses of the origin and the insertion of the
muscle remains constant during the contraction of the muscle, it follows that

w = lM0 sinα0 = lM sinα = const (2.9)

where lM0 is the optimal muscle fiber length and α0 is the pennation angle cor-
responding to lM0 . From Eq. (2.8) and Eq. (2.9), a velocity relationship can be
obtained

vMT =

(
vM

cosα

)
+ vT . (2.10)

2.3.2 Activation dynamics

Activation dynamics is described by an first-order ordinary differential equa-
tion [58] that contains the relationship among the muscle activation a = a(t), its
derivative ȧ = ȧ(t), and the neural excitation u = u(t) as

ȧ = (u− a)
u

τact
+ [u− (a− amin)− (u− a)u]

1

τdeact
(2.11)

where τact is the time constant for buildup of activation when the muscle is fully
excited, i.e., u(t) = 1, and τdeact is the time constant for relaxation of activation when
the muscle is deactivated, i.e., u(t) = 0; amin is a lower bound imposed on the muscle
activation to deal with the problem associated with inverting the force-velocity curve
of the muscle (mathematically expressed in Eq. (2.30)) at low activation levels. The
ratio of τact to τdeact is constant and ranges from 0 to 1 [19]. Regardless of the
difference between slow and fast fibers, all muscles are assumed to have the same

17



2. Human models, multibody formulation and data collection

activation dynamics. In this work, the activation and deactivation time constants
τact and τdeact are set to 15 ms and 50 ms, respectively [59] [60]; and amin is set
to 0.001. Figure 2.7 shows the time response of the muscle activation a(t) to an
excitation u(t) which is switched on to u(t) = 1 for the time period 0.1s ≤ t ≤ 0.2s
and is zero otherwise. When the muscle is fully excited, the activation goes up
asymptotically from the initial value amin to the maximum value 1. When the
muscle is deactivated, the activation falls gradually to amin.

Figure 2.7 – Excitation (thin line) and its response (thick line).

The activation dynamics in Eq. (2.11) can be expressed as

ȧ(t) = f(a(t), u(t)). (2.12)

2.3.3 Musculotendon contraction dynamics

A muscle and its tendons work together as an actuator. The contraction dy-
namics of the musculotendon actuator is a first-order process which follows another
first-order process (activation dynamics) [19]. Due to the interaction between the
contraction dynamics of musculotendon and the dynamics of body segments, the
musculotendon contraction dynamics is more complex than the activation dynam-
ics. The following describes contraction dynamics for the Hill’s muscle model. For
simplification, all muscle elements are assumed massless and friction is neglected.
The force equilibrium equation for a muscle can be written as

FMT = (FM
CE + FM

PE) cosα. (2.13)

where FM
CE and FM

PE are the active and passive forces exerted by CE and PE, re-
spectively, and FMT is the tendon force which is also referred to as the force of the
muscle and tendon complex. The force produced by the contractile element depends
on the muscle fiber length and velocity and the activation level. It is expressed as

FM
CE = FM

0 · a · fl(l̃M) · fv(ṽM) (2.14)

where FM
0 is the maximum isometric muscle force, l̃M is the normalized muscle fiber

length, ṽM is the normalized muscle fiber velocity, and fl and fv are dimensionless
force-length and force-velocity relationships, respectively. The normalized muscle
fiber length l̃M is defined as
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2.3 Musculotendon actuator dynamics

l̃M =
lM

lM0
(2.15)

The normalized muscle fiber velocity is defined as

ṽM =
vM

vmax
(2.16)

where vM is the muscle fiber velocity and vmax is the maximum contraction velocity
defined as vmax = lM/τc. τc is called the time-scaling parameter. For simplification, a
standard value of τc = 0.1s is used for all muscle types [57]. The force of the parallel
passive element FM

PE and the tendon force FMT can be formulated, respectively, as

FM
PE = FM

0 · fPE(l̃M) (2.17)

and
FMT = FM

0 · fT (εT ) (2.18)

where fPE and fT are the dimensionless force-length relationship and the dimen-
sionless force-strain relationship, respectively; εT is the tendon strain defined as the
amount of the tendon stretch relative to the tendon slack length lTS , i.e.,

εT =
lT − lTS
lT

(2.19)

The rate of change of tendon force with respect to time, i.e., ḞMT = dFMT/dt,
is proportional to the tendon velocity vT and is given by

ḞMT = kTvT (2.20)

where kT is the tendon stiffness which is defined as

kT =
dFMT

dlT
(2.21)

If the tendon force FMT , the normalized muscle fiber length l̃M , and the activa-
tion a are given, the normalized muscle velocity ṽM can be derived from Eq. (2.13),
Eq. (2.14) and Eq. (2.17), and expressed as

ṽM = f−1v

(
FMT/ cosα− FM

0 · fPE(lM)

FM
0 · a · fl(lM)

)
(2.22)

where fv
−1 denotes the inverse of the force-velocity relationship. From Eq. (2.10),

Eq. (2.16), and Eq. (2.22), the tendon velocity vT can be obtained as

vT = vMT − vmax
cosα

f−1v

(
FMT/ cosα− FM

0 · fPE(lM)

FM
0 · a · fl(lM)

)
. (2.23)

Substituting Eq. (2.23) into Eq. (2.20) yields

ḞMT = kT
[
vMT − vmax

cosα
f−1v

(
FMT/ cosα− FM

0 · fPE(lM)

FM
0 · a · fl(lM)

)]
. (2.24)
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The normalized muscle fiber length l̃M in Eq. (2.24) is unknown and can be
derived from Eq. (2.8), Eq. (2.9), and Eq. (2.15) as

l̃M =
1

lM0

√
(lMT − lT )2 + w2 (2.25)

Furthermore, the tendon length lT can be obtained from Eq. (2.18) and Eq. (2.19)
as follows:

lT = lTS

[
1 + fT

−1
(
FMT

FM
0

)]
(2.26)

where fT
−1 denotes the inverse of the force-strain relationship of the tendon. In

summary, the differential Eq. (2.24) describes the contraction dynamics of the mus-
culotendon. Its time function can be abbreviated as

ḞMT (t) = f
(
FMT (t), lMT (t), vMT (t), a(t)

)
(2.27)

If the musculotendon length lMT , the musculotendon velocity vMT , and the ac-
tivation a are input to the musculotendon actuator, then a tendon force FMT is
produced via the contraction dynamics. The musculotendon length lMT and veloc-
ity vMT depend on the position and velocity of the body segments and, in turn, the
generated tendon force FMT affects the motion of the body segments. Thus, there
exists interaction between muscles and body segments. The complete musculoten-
don dynamics can be represented by a block diagram, as depicted in Figure 2.8.

vMT (t)lMT (t)

ȧ(t) = f(a(t), u(t)) ḞMT (t) = f(FMT (t), lMT (t), vMT (t), a(t))
u(t) a(t) FMT (t)

Figure 2.8 – Dynamics of the musculotendon actuator [19]

2.3.4 Muscle and tendon properties

Force-length curve

The force-length relationship of the active contractile element of a muscle can
be given by [61]

fl(l̃
M) = e−[(l̃

M−1)/γ]2 (2.28)

where γ is a parameter that denotes the half-width of the curve at fl = 1/e (see
Figure 2.9). A value of 0.45 is selected for γ2 to approximate the force-length
relationship of individual sarcomeres [59].
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2.3 Musculotendon actuator dynamics

The force-length relationship of the passive elastic element of a muscle can be
written as

fPE(l̃M) =
ekPE(l̃M−1)/εM0 − 1

ekPE − 1
(2.29)

where kPE is an exponential shape factor, and εM0 is the passive muscle strain if
FMT = FM

0 . kPE is set equal to 5.0, while εM0 is different for young and old adults
and thus is set equal to 0.6 (for young adults). fl(l̃

M) and fPE(l̃M) are illustrated
together in Figure 2.9.

0

γ γ

1.5

1.0

0.5
1/e

fPE

l̃M

fl

0.5 1.0 1.5

Figure 2.9 – Isometric force-length curves fl(l
M ) and fPE(lM ) of the active

contractile (CE) and passive elastic (PE) elements of the muscle.

Force-velocity curve

The force-velocity relationship is different when the muscle is shortening (i.e.,
ṽM ≤ 0) or lengthening (i.e., ṽM > 0) (see Figure 2.10), and it is given by

fmaxv1.5

1.0

0.5

−1.0 −0.5 0 0.5 1.0 ṽM
shortening lengthening

fv

Figure 2.10 – Force-velocity curve fv(ṽM ) of the active contractile element
(CE) of the muscle.
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fv(ṽ
M) =



0 if ṽM ≤ −1,

1 + ṽM

1− ṽM/kCE1

if −1 < ṽM ≤ 0,

1 + ṽMfmaxv /kCE2

1 + ṽM/kCE2

if ṽM ≥ 0

(2.30)

where kCE1 and kCE2 are the force-velocity shape factors [62]. kCE1 indicates how
fast the force converges to zero when the muscle is shortening; kCE2 indicates how
fast the force converges to the maximum force when the muscle is lengthening. fmax
is the maximum normalized achievable muscle force when the muscle is lengthening,
i.e.,

fmaxv = lim
ṽM→+∞

fv(ṽ
M). (2.31)

In Eq. (2.30), kCE1 is set to 0.25 and fmaxv is set to 1.4 for young adults [59].
Under isometric conditions, the slop of the force-velocity curve during lengthening
is about two times that during shortening [63], i.e,

dfv
dṽM

∣∣∣
ṽM=0+

= 2
dfv
dṽM

∣∣∣
ṽM=0−

. (2.32)

From Eq. (2.30) and Eq. (2.32) , kCE2 can be obtained as follows:

kCE2 =
fmaxv − 1

2

kCE1

1 + kCE1

. (2.33)

Force-strain curve

The normalized force-strain relationship of tendon (Figure 2.9) is represented
by an exponential function during an initial nonlinear toe region and by a linear
function thereafter, and it is given by [64]

fT (εT ) =

 0.10377(e91ε
T−1) for 0 ≤ εT < 0.01516,

37.526εT − 0.26029 for 0.01516 ≤ εT < 0.1
(2.34)

The linear region begins at strain εT = 0.01516 and fails at εT = 0.1 [19]. The
strain in the tendon is termed εT 0 for FMT = FM

0 , and thus εT0 = 0.0336 can be
found. From Eq. (2.19) and Eq. (2.21), it follows that

kT =
dFMT

dfT

dfT
dεT

dεT

dlTS
=
FM
0

lTS

dfT
dεT

(2.35)

Substituting Eq. (2.34) into Eq. (2.35) yields

kT =


9.44307

FM
0

lTS
e91ε

T
for 0 ≤ εT < 0.01516,

37.526
FM
0

lTS
for 0.01516 ≤ εT < 0.1

(2.36)
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fT

1.0

0 εTεT0εTtoe

Figure 2.11 – Force-strain curve fT (εT ) of the tendon.

2.4 Multibody dynamics (MBD)

Several options can be used for the motion description of multibody systems but,
in general, a set of dependent coordinates is needed to write the dynamic equations of
complex systems. Classical parameterizations in multibody dynamics are reference
point coordinates [65], natural coordinates [66], or relative (joint) coordinates [67,
68, 69]. In this work, mixed coordinates (natural and relative) were used.

Matrix-R formulation was applied to set the equations of motion, and employed
both in inverse- and forward-dynamics approaches. This formulation was imple-
mented in the in-house-developed library MBSLIM [70], programmed in FORTRAN
language.

2.4.1 Kinematics

The multibody approach to kinematic problems is introduced in this section. A
more detailed discussion can be seen in [66]. The first step is solving the position
problem. That is, obtaining the value of all the coordinates (q) which fulfill the
constraint equations once the values of the degrees of freedom (z) are known. To do
that, the constraint equations are written as follows:

Φ = 0 (2.37)

where Φ is the vector of the constraint equations. The constraint equations are, in
general, nonlinear equations, hence an iterative method is used to solve the prob-
lem. Usually, the Newton-Raphson method, which is based on a linearization, is
employed:

Φ(q, t) ≈ Φ(q0, t) + Φq(q0, t)(q− q0) = 0 (2.38)

where Φq is the Jacobian matrix of the constraints with respect to the coordinates.
Rearranging the terms of this equation, the next iterative expression is obtained:

Φq(qi, t)(qi+1 − qi) = −Φ(qi, t) (2.39)
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where the values corresponding to the degrees of freedom are not modified. This
system must be solved until the position problem converges to the desired accuracy.

The next kinematic problem to be solved is the velocity problem. Similarly to
the position problem, the velocity problem consist in finding the vector of dependent
velocities q̇ which fulfill the velocity constraints, given a position q of the system,
and the velocity of the degrees of freedom, ż. The velocity constraints Φ̇ can be
expressed as follows:

Φ̇ = Φqq̇ + Φt = 0 ⇒ Φqq̇ = −Φt (2.40)

where Φt is the partial derivative of Φ with respect to time t. This problem is
linear, so the unknown values of q̇ are obtained in one step. Again, the values of
the degrees of freedom are known, so they are not modified.

The last problem in kinematics is the acceleration problem: provided a position
vector q and a velocity vector q̇ which fulfill the constraints at position and velocity
respectively, and given the acceleration z̈ of the degrees of freedom of the mechanism,
the vector of dependent accelerations q̈ which fulfill the acceleration constraints is
obtained. The constraints at acceleration level can be written as:

Φ̈ = Φ̇qq̇ + Φqq̈ + Φ̇t = 0 ⇒ Φqq̈ = −Φt − Φ̇qq̇ (2.41)

Again, this problem is linear, so the unknown values of q̈ are obtained from the
previous equation by solving the linear system.

2.4.2 Matrix-R formulation

The equations of a multibody system in their most general form can be expressed
as a system of index-3 differential-algebraic equations (DAE):

Mq̈ + Φq
>λ = Q (2.42a)

Φ = 0 (2.42b)

where M is the mass matrix, λ is the vector of Lagrange multipliers, and Q is the
vector of external forces. The term −Φq

>λ represents the reaction forces. To solve
this system of equation, a method based on a projection matrix, called matrix R,
and described in [66] is used.

First, a constant matrix projection matrix D is considered. The independent
velocities ż are given by the projection of the dependent velocities q̇ over the rows
of this matrix:

ż = Dq̇ (2.43)

Writing Eqs. (2.40) and (2.43) together in matrix form yields:[
Φq

D

]
q̇ =

[
−Φt

ż

]
(2.44)

The rows of the D matrix are linearly independent from the rows of the Jacobian
matrix of the constraints Φq. Hence, the matrix on the left-hand side (LHS) of the
equation can be inverted, leading to:

q̇ =

[
Φq

D

]−1 [−Φt

ż

]
≡
[
S R

] [−Φt

ż

]
= −SΦt + Rż (2.45)
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where the term Rż represents the general solutions of the homogeneous velocity
equation, and the term −SΦt represents a particular solution of the complete equa-
tion.

Differentiating Eq. (2.44) with respect to time, and rearranging the terms yields:[
Φq

D

]
q̈ =

[
−Φ̇t − Φ̇qq̇

z̈

]
(2.46)

Solving for q̈ and introducing the matrices S and R defined in Eq. (2.45),

q̈ =

[
Φq

D

]−1 [−Φ̇t − Φ̇qq̇
z̈

]
= S

(
−Φ̇t − Φ̇qq̇

)
+ Rz̈ (2.47)

Substituting Eq. (2.47) in Eq. (2.42a), and premultiplying by R>,

R>
{

M
[
S
(
−Φ̇t − Φ̇qq̇

)
+ Rz̈

]
+ Φq

>λ
}

= R>Q (2.48)

Rearranging, and keeping in mind that the matrix R is the orthogonal complement
of the Jacobian of the constraints Φq, hence ΦqR = 0:

R>MRz̈ = R>MS
(
Φ̇t + Φ̇qq̇

)
+ R>Q (2.49)

R>MRz̈ = R>
[
Q + MS

(
Φ̇t + Φ̇qq̇

)]
(2.50)

For scleronomous systems, Φt = 0, thus some simplifications can be introduced:

q̇ = Rż (2.51)

q̈ = Ṙż + Rz̈ (2.52)

leading to the following equation of motion:

R>MRz̈ = R>
[
Q−MṘż

]
(2.53)

Matrix R can be calculated symbolically in some simple cases, but it is usually
calculated numerically at every time step from a velocity analysis: the ith column
of R is the vector of dependent velocities when the ith degree of freedom has a unit
velocity and all the others null velocity.

The term −S
(
Φ̇t + Φ̇qq̇

)
, which becomes Ṙż in scleronomous systems, rep-

resents the vector of velocity-dependent accelerations, hence it can be calculated
numerically by doing an acceleration analysis in which all the degrees of freedom
have a null acceleration.

Therefore, the equations of motion Eq. (2.53) can be written in a compact form
as,

M̄z̈ = Q̄ (2.54)

with and the mass matrix and vector of generalized forces referred to z, respectively.
The number of equations in Eq. (2.54) is 57, as many as the number of degrees of
freedom of the model.

For the forward-dynamics analysis, the equations of motion (Eq. (2.54)) were nu-
merically integrated in time by means of the single step, fixed time step, trapezoidal
rule.
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2.4.3 Inverse dynamics

The inverse-dynamics analysis (IDA) of the experimentally measured motion al-
lows to obtain the net joint torques and ground reactions. The histories of positions,
velocities and accelerations of the independent coordinates, and of the dependent
coordinates, are already known from the processing of the motion capture data.
Then, writing the equations of motion Eq. (2.54) as,

M̄z̈ = Qm + Qc (2.55)

where Qm is the vector of generalized motor forces and Qc is the vector grouping
all the remaining generalized forces (centrifugal and Coriolis forces), the unknown
vector can be obtained as,

Qm = M̄z̈−Qc (2.56)

which provides the net joint torques and the ground reactions that produced the
acquired motion, taking the pelvis as the base body.

2.4.4 Forward dynamics: Computed Torque Control

Forward-dynamics analysis (FDA) of the acquired gait motion consists of using
trajectory tracking controllers associated to all the system degrees of freedom. This
implies assuming that there exist actuators not only at joint level, which is indeed
the case, but also for the six degrees of freedom of the base body, which does not
obviously correspond to reality.

The equations of motion Eq. (2.54) are written again as,

M̄z̈ = Qu + Qc (2.57)

where Qu is the vector of the inputs provided by the controllers and Qc is the vector
of the remaining generalized forces with the pelvis as the base body.

The actuation provided by the so-called computed torque control (CTC) is used
as input of the FDA [71]. Then, the inputs provided by the controllers are,

Qu = M̄ [z̈ref + KD(żref − ż) + KP (zref − z)]−Qc (2.58)

where zref is the vector containing the reference signals of the controllers, which are
the measured values of the independent coordinates, and z is the vector contain-
ing the actual values of the independent coordinates. The gains of the controllers
are gathered in the diagonal matrices KD and KP , whose values, kDi and kPi are
associated to each independent coordinate.

As explained in [71], the error dynamics of this control method is represented by
a system of second order differential equations, having KD and KP as coefficients
of the proportional and first derivative terms, respectively. Therefore, imposing the
relation,

kDi = 2
√
kPi (2.59)

between the gains associated to a certain coordinate, critical damping is achieved,
so that only one gain value should be tuned by coordinate.
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2.4 Multibody dynamics (MBD)

2.4.5 Splitting of the equations of motion

Figure 2.12 – Degrees of freedom considered as actuated by muscles at the leg.

It has been said when describing the human model that spherical kinematic pairs
have been considered for all the joints. This means that three joint drive torques
are obtained at each joint from the dynamic analysis. However, the motion of all
the degrees of freedom is not due to muscle actuation. For example, it is clear
that the abduction/adduction torque at the knee is not provided by muscles, but
rather by other joint structures as condyles and ligaments, being more a reaction
moment than a drive torque. Therefore, the following joint drive torques have
been selected in this work: the three torque components at the trunk and the hip,
the flexion/extension torque at the knee, and the plantarflexion/dorsiflexion and
external/internal rotation torques at the ankle (Figure 2.12). A discussion on how
the modeling of the joints and the torques considered in the optimization affect to
the results can be found in [72]. Starting from the general multibody formulation,
Eq. (2.56), muscle driven (md) joints were separated from the other guided degrees
of freedom (gui) to solve the muscle force sharing problem as follows:[

Qm
gui

Qm
md

]
=

[
M̄11 M̄12

M̄21 M̄22

] [
z̈gui
z̈md

]
−
[
Qc

gui

Qc
md

]
(2.60)

From equation Eq. (2.60), the equation of motion with respect to the muscle
driven degrees of freedom can be obtained as follows:

Qm
md = M̄22z̈md + M̄21z̈gui −Qc

md (2.61)
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2. Human models, multibody formulation and data collection

and simplified as:

Qm
md = M̄22z̈md +H(z, ż, z̈). (2.62)

2.4.6 Multiple support

The obtained ground reactions and net joint torques either with IDA or FDA
correspond to the ones considering the pelvis as the base body. However, joint
torques produced by muscles correspond to the internal torques T when the feet are
considered as the base body, since the external reactions act on the feet, not on the
pelvis.

Fortunately, the torques obtained with the pelvis as the base body can easily
be transformed to their counterparts when the supporting foot is considered as the
base body, thus yielding the proper values of external reactions and net joint torques.
However, when the two feet are contacting the ground, the external reactions must
be distributed between them. In this work, this was done in the same proportion
shown by the reactions measured by the force plate (FPL), following the approach
presented in [73].

As long as there is only one foot in contact with the ground, as it happens in
normal gait during the swing phase, the joint torques can be obtained without the
aid of FPL measurements, since the actual ground reaction has six components.
However, it is common to have more than one contact with the ground, especially in
the case of an SCI subject walking with the assistance of a pair of crutches. When
more than one ground contact exists, the ID provides the resultant of all the external
reaction forces, but there is no information on how it is shared among the contacting
elements. It is possible to calculate an estimate during normal gait if the double
support phase is short, but complex gait patterns such as those of SCI subjects will
always require ground reaction measurements to solve the indeterminacy, since the
net external reaction can be the resultant of up to 18 ground reaction components,
namely three force and three moment components at each foot, and three force
components at each crutch.

If all the ground reactions are measured, the problem becomes overdetermined,
since the net ground reaction can be obtained by following two independent paths:
it can be derived from the ID, or obtained as the resultant of the ground reaction
measurements.

A simple and fast optimization was proposed to obtain a set of forces and mo-
ments T which were fully consistent with the captured motion, while keeping the
ground reactions as close as possible to the measured ones. In order to maintain
the forces and moments in T consistent with the measured motion, their virtual
power W∗ for any set of generalized virtual velocities ż∗ must be equal to that of
the generalized forces, which is directly obtained as

W∗ = ż∗>Qm (2.63)

T is composed by three types of magnitudes: Fext the external forces, Mext

the external moments and the internal torques T expressed in the local axes of the
proximal body of the corresponding joint. In order to calculate the virtual power of
T, a vector of Cartesian velocities ẏ∗ is defined such that
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2.4 Multibody dynamics (MBD)

W∗ = ẏ∗>T (2.64)

The vector ẏ∗ is composed of the corresponding velocities of the points where
ground forces Fext are applied, the absolute angular velocities of the segments at
which the external moments Mext are acting, and the relative angular velocities at
the joints (in local coordinates of the proximal segment, in order to be consistent
with the joint torques). The relationship between the independent velocities ż and
the velocities used to calculate the virtual power of the ground reactions and joint
torques ẏ can be expressed by obtaining a position-dependent velocity transforma-
tion matrix B such that

ẏ = Bż (2.65)

Analogously to what happens to matrix R, the jth column of matrix B contains
the ẏ velocities obtained when the jth generalized coordinate is given a unit velocity
while the rest of them remain static. Since the velocities can be easily derived from q
and q̇, and the latter are already contained within the columns of R, the B matrix is
calculated at a very small computational cost. The relationship between dependent
and independent velocities shown in Eq. (2.65) can be introduced into Eq. (2.64)
which, in turn, is combined with Eq. (2.63) to yield

ż∗>Qm = ż∗>B>T (2.66)

which means that the following condition can be established for the Cartesian forces
T to be equivalent to Qm

B>T = Qm. (2.67)

Any given set of forces and moments T that fulfils this condition will produce
the same virtual power as Qm, regardless of the virtual velocities chosen, thus guar-
anteeing that is fully consistent with the captured motion.

In order to have a unique solution for Eq. (2.67), the number of unknowns in T
must be equal to the number of degrees of freedom. Since the net external reaction
has six components, and T can contain up to 18 external reactions, the ID problem
without ground reaction measurements is underdetermined.

As explained above, since there may be up to 12 unknowns in excess, directly
introducing the 18 measured reactions Tj as known values would render the system
overdetermined, with no solution unless the measurements were fully consistent with
the ID. A unique solution can be obtained if a minimization problem is stated, in
order to find, among the infinite sets of forces and torques T which fulfil the virtual
power constraint, the solution with the minimum deviation with respect to the
external reactions measured by the instrumented crutches and FPLs

minimize
T

g(T) =
1

2

18∑
j=1

wj(Tj −T∗j)
2 (2.68)

where wj are the weights assigned to each deviation in the cost function g(T). Since
this is a minimization problem with a quadratic cost function and linear constraints,
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it can be efficiently solved in one single step by means of the Lagrange multipliers
method. (

W B
B> 0

){
T
σ

}
=

{
WT∗

Qm

}
(2.69)

In this way, the value of internal torques T can be obtained in T from Qm.
In the other hand, with the FDA, T has to be revert in net joint torques cor-

respond to considering the pelvis as the base body. The conversion can be easily
obtained using Eq. (2.67).

This method requires to know, at each instant, the ground reactions in the
various contacts so as to share the external reactions between them. So, to study
a complete gait cycle, at least three force plates should be required. The gait lab
used was equipped with only two force plates but, anyway, the complete gait cycle
has been studied using this strategy: when a foot has not ground contact, all the
external reactions are considered acting on the other foot. Without the third force
plate, it is needed to use an additional information (obtained from kinematics) when
a foot leaves the ground contact. In such a situation, the shared external reactions
are considered acting on one foot only. Due to some residuals error, discontinuities
are obtained during this change. The discontinuity period is replaced using a spline
method to reconstruct the data. In that way, the data of a third force plate could
be estimated and used to study a complete gait cycle.

2.5 Data collection

The experimental method is applied by measuring the kinematics of the body
segments, the ground reactions, and the EMG signals of the muscles. As shown in
Figure 2.13, the gait laboratory used is equipped with an optical camera tracking
system composed of 12 infrared cameras (Natural Point, OptiTrack FLEX:V100
sampling at 100 Hz) that compute the position of 37 optical markers plus 3 for
each crutch (Figure 5.3), 2 force plates (AMTI, AccuGait, sampling at 100 Hz) and
an EMG telemetry system (BTS FREEEMG, this counts up to 16 wireless sensors
sampling at 1 kHz) which are synchronized together. EMG signals were rectified,
filtered by SSA with a window length of 250 (equivalent to the common forward and
reverse low-pass 5th order Butterworth filter with a cut-off frequency of 15 Hz) and
then normalized with respect to its maximal value [74]. To analyze crutch-assisted
gait, a couple of crutches instrumented for ground contact force measurement were
used too. For the experimental measurements of energy consumption, which require
that the subject maintains a constant activity during at least 5 min, so a running
track and a portable gas analyzer (Cortex MetaMax 3B) were used.
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2.5 Data collection

Figure 2.13 – Gait laboratory.

31



2. Human models, multibody formulation and data collection

32



Chapter 3

The muscle force-sharing problem

The fundamental problem is that there are more muscles serving each degree of
freedom of the system than those strictly necessary from the mechanical point of
view, which implies that, in principle, an infinite number of recruitment patterns
are acceptable. This problem is often referred to as the redundancy problem of the
muscle recruitment [29] or the force-sharing problem [30]. Experimental studies [31]
and EMG collections [32] suggest that a specific strategy of muscle coordination is
chosen by the CNS to perform a given motor task. A popular mathematical approach
for solving the muscle recruitment problem is the optimization method, which can
be associated to inverse or forward dynamics [33]. These methods minimize or
maximize some criterion (objective function or cost function) which reflects the
mechanism used by the CNS to recruit muscles for the movement considered. The
proper cost function is not known a priori, so the adequacy of the chosen function
must be validated according to the obtained results [34]. Many criteria have been
proposed in the literature to predict muscle forces.

3.1 Inverse-dynamics based optimization

As illustrated in Figure 3.1, the histories of positions, velocities and accelerations
of the dependent coordinates and ground reactions are already known from the
processing of the motion capture data and provide the dynamic information by
using formulations presented in Section 2.4. Then, an optimization is needed to
estimate the muscles forces which correspond to the calculated joint torques.

3.1.1 Static optimization

In order to determine the muscle forces at each time-point, the inverse optimiza-
tion problem can be formulated in general form as:

minimize or maximize C (3.1)

subject to T MT = J>FMT (3.2)

FMT
i,min < FMT < FMT

i,max i = 1, ...,m (3.3)
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Inverse
dynamicsOptimization

z

ż

z̈

J>

T MT

QGR Ground
reactions

FMT

wGR

Figure 3.1 – Block diagram illustrating the inverse problem.

where C is an objective function associated with decision variables, FMT
i,min and FMT

i,max

are the instantaneous minimum and maximum allowed forces in muscle i, respec-
tively. For static optimization (SO), the values of the limits of the system are the
following: FMT

i,min = 0 and FMT
i,max = FM

i,0 .
Expression of the objective function C depends of the muscle recruitment criteria

used. In the literature, several muscle recruitment criterion have been suggested to
represent the CNS behavior. In this work, four of them have been considered for
static optimization.

Nonlinear polynomial criterion

The polynomial criterion can be written as

minimize
m∑
i=1

(
FMT
i

κi

)p
(3.4)

where κi denotes a positive weighting factor and p the power of the polynomial.
According to Crowninshield and Brand [75], the muscle force prediction by mini-
mizing the sum of muscle stresses raised to a power p coincides with maximizing
the endurance of activity. Furthermore, experimental studies demonstrated that
the power p varies between individual subjects and individual muscles due to fiber
types, fiber orientations, etc., and has a range from 1.4 to 5.1.

In this study, we choose to compare three polynomial criteria which are most
used in literature and took p = 2:

Criterion I - minimization of the sum of the squares of muscle forces

minimize
m∑
i=1

(FMT
i )2; (3.5)

Criterion II - minimization of the sum of the squares of relative muscle forces
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3.1 Inverse-dynamics based optimization

minimize
m∑
i=1

(
FMT
i

FM
i,0

)2

; (3.6)

Criterion III - minimization of the sum of the squares of muscle stresses

minimize
m∑
i=1

(
FMT
i

PCSAi

)2

; (3.7)

(PCSA: physiological cross sectional area).

Min/max criterion

The min/max criterion is based on the idea that the duration for a given loading
task, or the sustainable endurance depends more on the endurance of each indi-
vidual participating muscle. Therefore, the largest endurance for a task means the
maximum relative muscle force [76] or the maximum muscle stress [77] is as small
as possible. The min/max criterion takes such form

minimize max

{
FMT
i

κi

}
, i = 1, ...,m. (3.8)

Dealing with the min/max optimization criterion (Eq. (3.8)) in a direct way is
quite difficult. By introducing an artificial variable β, the performance criterion in
Eq. (3.8) is equivalent to a criterion which has the following form

minimize β (3.9)

FMT
i

κi
< β i = 1, ...,m. (3.10)

Both equations, Eq. (3.9) and Eq. (3.10), are linear, and the linear programming
algorithm can be used to obtain unique solutions. For this study, the following
criterion is used:

Criterion IV - minimization of the largest relative muscle force

minimize max

(
FMT
i

FM
i,0

)
, i = 1, ...,m. (3.11)

3.1.2 Physiological approach

At physiological level, musculotendon dynamics introduces muscle force con-
straints to the system. Whereas the static optimization approach disregards this
constraints in order to simplify the problem, the so-called physiological approach
[78] takes it into consideration. This approach applies optimization techniques at
each time-point, and prescribes minimal and maximal constraints for the forces by
extrapolating the force values from the previous time-point using feasible muscle
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3. The muscle force-sharing problem

activation values. In this way, a fast optimization as well as feasible time histories
of the muscle forces are achieved.

Using the Hill’s muscle model, the state variables of the ith muscle are denoted
by the vector

xi(t) =

[
ai(t)

FMT
i (t)

]
. (3.12)

Thus, the first derivation of the state variables has the form

ẋi(t) =

[
ȧi(t)

ḞMT
i (t)

]
=

[
f(ai(t), ui(t))

f(ai(t), F
MT
i (t), lMT

i (t), vMT
i (t))

]
. (3.13)

Eq. (3.13) can be written as

ẋi(t) = f(xi(t), ui(t), l
MT
i (t), vMT

i (t)). (3.14)

The time interval T is discretized into N equidistant intervals of width ∆t, i.e.,

∆t =
T

N
, (3.15)

and the excitation of muscle i within an interval ∆t is assumed to be constant (see
Figure 3.2)

ui(tk−1 ≤ t ≤ tk) = ui(tk−1) = ui,k−1 (3.16)

ui(t)

t0 t1 t2 tk−1 tk

ui,k−1

ui,1ui,0

ui,k
ui,N−2

ui,N−1

tk+1 tN−2 tN−1 tN = Tt

Figure 3.2 – Discretization of the neural control of the ith muscle.

where

tk−1 = (k − 1)∆t and tk = k∆t. (3.17)

If the state variables of the ith muscle force at time tk−1, xi(tk−1), are given, the
minimum and maximum state variables that could be achieved by the ith muscle at
the next time tk, xi,min(tk) and xi,max(tk), can be computed by setting the neural
input ui,k−1 to 0 and 1, respectively, i.e.,

xi,min(tk) = xi(tk−1) +

∫ tk

tk−1

f(xi(t), ui,k−1(t) = 0, lMT
i (t), vMT

i (t)) dt, (3.18)
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xi,max(tk) = xi(tk−1) +

∫ tk

tk−1

f(xi(t), ui,k−1(t) = 1, lMT
i (t), vMT

i (t)) dt. (3.19)

In this work, all the time integrations of muscle equations have been carried out
using the ode23t integrator, which contains the implicit trapezoidal rule. The histo-
ries of musculotendon length and velocity corresponding to the set of the sampling
time-points for each muscle are precomputed from the measured kinematics and
stored in memory arrays. The musculotendon length and velocity at time instant
t within two adjacent sampling time points (e.g., tk−1 < t < tk) are calculated by
using linear interpolation i.e.,

lMT (tk−1 < t < tk) = lMT (k − 1) +
lMT (k)− lMT (k − 1)

∆t
(t− tk−1), (3.20)

vMT (tk−1 < t < tk) = vMT (k − 1) +
vMT (k)− vMT (k − 1)

∆t
(t− tk−1) (3.21)

where lMT (k−1), lMT (k) and vMT (k−1), vMT (k) denote the musculotendon length
and velocity at time tk−1 and tk, respectively.

To determine the individual muscle forces at time-point tk, the sum of the squares
of muscle forces is minimized. In order to obtain a feasible muscle force prediction,
the force of muscle i at time tk is constrained by FMT

i,min(tk) and FMT
i,max(tk) (see

Figure 3.3). Thus, applying the physiological approach, the muscle recruitment
problem is formulated as

minimize
m∑
i=1

FMT
i (tk)

2
(3.22)

subject to J>(tk)F
MT (tk) = T MT (tk) (3.23)

FMT
i,min(tk) < FMT (tk) < FMT

i,max(tk) i = 1, ...,m. (3.24)

Once the individual muscle forces FMT (tk)(i = 1, ...,m) are determined, an iter-
ation process is run for each muscle to solve the corresponding excitation ui,k−1(i =
1, ...,m) so that the muscle force satisfies the following equation:

xi(tk−1) +

∫ tk

tk−1

f(xi(t), ui,k−1(t), l
MT
i (t), vMT

i (t)) dt− xi(tk) = 0. (3.25)

The block diagram in Figure 3.4 makes it easier to understand the procedure
using the physiological approach to determine individual muscle forces and neural
excitation.

Using the physiological approach, the initial activations and muscles forces are
need. The determination of initial activations and muscles forces is based on a
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t

Previous time Current time Previous time Current time
(a) (b)

FMT
i (t) FMT

i (t)

FMT,corrected
i

FMT
i,max(tk)

FMT
i,min(tk) FMT

i,min(tk)

FMT
i,max(tk)

FMT,predicted
i

FMT
i (tk−1)

tk−1

FMT,predicted
i

FMT
i (tk−1)

tk tk−1 tk
t

Figure 3.3 – Feasible prediction for the ith muscle force. (a) physiologically
feasible case; (b) physiologically infeasible case

static condition in which the initial fiber velocity of each muscle vM is set to zero,
i.e, fv(ṽ

M = 0) = 1. To determine the initial muscle forces, the muscle recruitment
problem given by Eq. (3.22) - Eq. (3.24) is solved. However, for this case, each
muscle force is constrained by FMT

min and FMT
max corresponding to a = 0 and a = 1,

respectively. Substituting Eq. (2.14), Eq. (2.17) and Eq. (2.18) into Eq. (2.13) and
then rearranging, one obtains

(a · fl(l̃M) + fPE(l̃M)) cosα− fT (εT ) = 0. (3.26)

For a given activation level a, Eq. (3.26) can be expressed as a function of lM .
Solving lT from Eq. (2.8) and substituting it in into Eq. (2.19) yields

εT =
lMT − lM cosα− lTS

lTS
. (3.27)

Thus, Eq. (3.26) can be rewritten as

(
a · fl

(
lM

lM0

)
+ fPE

(
lM

lM0

))
cosα− fT

(
lMT − lM cosα− lTS

lTS

)
= 0. (3.28)

Eq. (3.28) is nonlinear and can be iteratively solved to find the solution of lM .
FMT
i,min and FMT

i,max can then be determined from the corresponding lM .
After the initial muscle forces have been solved by optimization, the correspond-

ing initial activation for each muscle can be derived from Eq. (3.26).

a =
fPE(l̃M) cosα− fT (εT )

fl(l̃M)
. (3.29)
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Inverse
dynamics

Optimization
z(tk)
ż(tk)
z̈(tk)

J>(tk)

T MT (tk)

QGR(tk)Ground
reactions

FMT (tk)

wGR(tk)

Musculotendon
dynamics

FMT
min (tk)

FMT
max(tk)

Iterative
process

uk−1,min = 0
uk−1,max = 1

lMT (tk−1 < t < tk) vMT (tk−1 < t < tk)

uk−1

Figure 3.4 – Procedure using physiological approach to determine individual
muscle forces at time instant tk and neural excitations within the time interval
[tk−1, tk].

where the normalized muscle fiber length l̃M can be computed from Eq. (2.25) and
Eq. (2.26).

Physiological approach with rigid tendon

Optimization and integration are both heavy and slow calculation processes.
Moreover, the high tendon stiffness makes really difficult to use this approach.
Therefore, in order to simplify the problem while keeping some physiological char-
acteristics, most authors prefer to use a Hill type musculotendon model with a rigid
tendon [27] [79].

In this way, the tendon length is constant, lT = lTS , and the muscle fiber length
lM can be easily deduced by the following relation:

lM =
√

(lMT − lTS )2 + w2 (3.30)

Consequently, deriving Eq. (2.8) and knowing that

cosα =

√
1−

( w
lM

)2
, (3.31)

it is obtained :

vM = vMT cosα (3.32)

and the musculotendon force can be derived from Eq. (2.13).
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Activation dynamics simplifications

Use of the rigid tendon model avoids the two integrations needed to calculate
the limits of the muscle force at each instant, FMT

min (u = 0) and FMT
max (u = 1).

Then, in order to further reduce the computational burden, the first-order ordinary
differential equation (Eq. (2.11)) used to estimate the muscular activation, a, can
be simplified as follows:

Time response ignored (Phys. 2) - direct relation
Usually, authors who consider the tendon as a rigid element choose to ignore the

muscular time response and assume that:

a(tk) = uk. (3.33)

Consequently:

FMT
min = FM

PE · cosα (3.34)

FMT
max = (FM

0 · fl(l̃M) · fv(ṽM) + FM
PE) · cosα. (3.35)

Time response considered (Phys. 3) - differential equation
In order to keep the muscular time response relation given by Eq. (2.11), the

first-order ordinary differential equation can be converted into:

a(tk) =


uk + (a(tk−1)− uk) · e(−dt/τact) if a(tk−1) < uk

uk + (a(tk−1)− uk) · e(−dt/τdeact) if a(tk−1) ≥ uk

(3.36)

Therefore, the minimum and maximum muscle activations, amin (u = 0) and
amax (u = 1) can be obtained, and the muscle force limits become:

FMT
min = (FM

0 · amin · fl(l̃M) · fv(ṽM) + FM
PE) · cosα (3.37)

FMT
max = (FM

0 · amax · fl(l̃M) · fv(ṽM) + FM
PE) · cosα. (3.38)

Results and experimental validation

The different approaches presented in this section have been compared with EMG
measurements for the five healthy subjects described in 2.1.1. Normalized muscle
activations during a gait cycle of one healthy subject estimated using all the previous
approaches are plotted in Figure 3.5 along with the corresponding normalized EMG
measurements.

In order to compare the correlation with experimental values and, as there is
no clear relationship between EMG amplitude and muscle force [80], the correlation
coefficient R (corrcoeff of Matlab) has been calculated to focus on the variations.
Mean values R of the five healthy subjects for each muscle and approach are given
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in Table 3.1. Surprisingly, the best values are obtained with SO and criterion I, the
simplest method. Results show that there are no substantial differences between
the six approaches studied. Obtained correlations are acceptable, with values going
from 59% to 77%. The physiological criterion, in addition to clearly be the slowest
approach, shows the lowest correlations.

Figure 3.5 – Normalized muscular forces obtained with static optimization
(criteria I-IV) vs. normalized EMG for a healthy subject.

3.1.3 Synergy optimization

Muscular synergies

While activity patterns appear to be different for each muscle, although certain
features are common to many muscles. In fact, there is analytical evidence that
many muscles may share certain activity patterns. First, this was investigated in
studies that applied principal component analysis (PCA) to determine whether the
main features of the EMG patterns could be described by a few underlying compo-
nents [35], [36] and [37]. Later, other mathematical methods have been proposed to
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Figure 3.6 – Normalized muscular forces obtained with physiological optimiza-
tion (original approach and their two simpler alternatives) vs. normalized EMG
for a healthy subject (Phys.: Physiological approach, Phys. 2: Physiological
approach with rigid tendon and activation’s time response ignored and Phys.
3: Physiological approach with rigid tendon and activation’s time response
considered).

examine the issue of common underlying patterns. For example, Ivanenko [38] ap-
plied the factor analysis (FA) to the set of EMG records, and Shourijeh [39] applied
the non-negative matrix factorization (NMF). They demonstrated that the CNS use
muscle synergies in order to simplify the muscular control.

All of these approaches propose to reduce the m muscles activations obtained
for the n time steps ā[n× s], into s synergy activations Āsyn[n× s], using constant
synergy vectors V̄syn[s×m].

āsyn = Āsyn × V̄syn. (3.39)

The objective of this method is to obtain the solution which is closest āsyn clos-
est to the original values of ā. The results is generally considered good when the
correlation is greater than 95%.
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3.1 Inverse-dynamics based optimization

Mean correlation coefficient R values across subjects
EMG vs. muscle activations

I II III IV Phys. Phys. 2 Phys. 3

R. Tibialis Anterior 0,70 0,73 0,63 0,41 0,61 0,71 0,59
R. Vastus Medialis 0,69 0,67 0,83 0,45 0,69 0,69 0,69
R. Vastus Lateralis 0,73 0,71 0,87 0,53 0,71 0,73 0,71
R. Gastrocnemius Medial 0,80 0,65 0,77 0,75 0,80 0,61 0,82
R. Gastrocnemius Lateral 0,73 0,63 0,71 0,65 0,73 0,59 0,74
R. Semitendinosus 0,85 0,85 0,61 0,75 0,76 0,67 0,78
R. Biceps Femoris Long Head 0,81 0,85 0,75 0,72 0,69 0,74 0,74
R. Gluteus Maximus Middle 0,91 0,90 0,92 0,87 0,91 0,91 0,90
R. Gluteus Medius Middle 0,75 0,60 0,57 0,59 0,71 0,49 0,71

Mean 0,77 0,73 0,74 0,64 0,74 0,68 0,74

Computational time (sec) 2,2 49,3 26,5 31,9 351,4 2,0 2,6

Table 3.1 – R correlations of EMG with inverse-dynamics based optimization
(R < 0.50 in red)(Phys.: Physiological approach, Phys. 2: Physiological ap-
proach with rigid tendon and activation’s time response ignored and Phys. 3:
Physiological approach with rigid tendon and activation’s time response con-
sidered).

Authors diverged on the minimum number of synergies required to reproduce
the EMG records of the gait of a healthy subject. While Olree [37] concluded
that three synergies were enough, Davis [36] and Ivanenko [38] found respectively
that four and five patterns could be necessary. As explained in [81], variations in
methodological choices, as unilateral or bilateral analysis, selected muscles, EMG
treatment or computational method may lead to these discrepancies.

Synergy parameters have often been used to determine the particular character-
istics of gait pattern in specific diseases or specific population groups. Nevertheless,
use of muscular synergies is increasing in several applications, as post-stroke rehabil-
itation through functional electrical stimulation (FES) [82] [83], or computational
prediction of subject-specific walking [27]. But, in all these cases, synergies were
obtained by statistical analysis from surface EMG measurements. Although this is
the most popular approach, it does not consider all the actuating muscles, but only
some surface muscles, ignoring deeper ones.

Synergy optimization

The fact that synergies take a high dimensional control space and reduce it to a
low dimensional space is potentially useful for reducing the amount of indeterminacy
when estimating muscle forces via optimization. For this reason, some authors
started to investigate how to include it to solve the muscle force-sharing problem
[84].

Recently, Shourijeh and Fregly proposed a computational approach [85], called
synergy optimization (SynO), for using muscle synergies to reduce indeterminacy
when estimating leg muscle forces during walking. SynO approach is a modified
SO approach (developed in Matlab) to estimate leg muscle forces during walking
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3. The muscle force-sharing problem

using synergy-constructed muscle activations. For standard SO, muscle activations
are independent between time frames, allowing the optimization to be performed
one time frame at a time. In contrast, for the proposed modified SO, muscle acti-
vations are coupled via synergies across time frames, requiring the optimization to
be performed over all time frames simultaneously.

Muscle synergy quantities were used as the design variables for modified SO.
Each muscle activation synergy was composed of a single time-varying synergy ac-
tivation defined by p = (n/5) (nearest integer, n = number of frames) B-spline
nodal points along with a corresponding time-invariant synergy vector defined by
m (number of muscles) weights specifying inter-muscle activation coupling. Thus,
for s synergies (s = 2 through 6), the number of design variables was s ∗ (p + m).
Each optimization problem was theoretically over-determined. However, in prac-
tice, the problems remained under-determined since neighboring time frames were
not independent from one another.

Using these design variables, modified SO problems were formulated as follows.
The cost function Eq. (3.40) minimized the sum of squares of relative inverse-
dynamics joint moment errors plus the sum of squares of muscle activations over all
the time frames simultaneously. Scale factors β = 100 and γ = 1 were used to give
more importance to minimization of the joint moment errors.

minimize β
c∑
i=1

n∑
j=1

[
ekj,TMT

max(|T MT
i|)

]2
+ γ

m∑
k=1

n∑
j=1

a2kj,syn (3.40)

subject to
s∑
j=1

Vij,syn = 1 i = 1, ...,m (3.41)

0 < Nbj,syn b = 1, ..., p and j = 1, ..., s (3.42)

0 < Vij,syn i = 1, ...,m and j = 1, ..., s (3.43)

Linear equality constraints, Eq. (3.41), made the sum of weights within each
synergy vector equal to one, which made the synergy construction unique, while
lower bound constraints, Eq. (3.42) and Eq. (3.43), made the synergy activation
B-spline nodes N and synergy vector weights greater than zero.

A Hill type muscle-tendon model with a rigid tendon was used for calculating
muscle forces given synergy-constructed activations. Modified SO problems were
solved using Matlab’s fmincon nonlinear constrained optimization algorithm but
the objective function was programmed in a mex file (FORTRAN) to reduce the
computational time (16 times faster than the original Matlab function).

Extraction of synergies from static optimization

In addition of predicting muscle activations, SynO generates the corresponding
muscle synergies for all the considered muscles. Due to the increasing interest in
using synergies various applications, this work explored the possibility of extracting
muscles synergies through NMF (with two to six synergies) from the estimated
activations with SO, instead of extracting the synergies from EMG measurements.
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3.1 Inverse-dynamics based optimization

The 43 muscular activations of the right leg estimated by SO (minimizing the
sum of squares of muscle activations) were decomposed using NMF into weighted
muscle synergies according to Eq. (3.39).

To compare this approach with SynO, the sum of weights within each synergy
vector was also made equal to one. Then, using the same Hill-type rigid-tendon mus-
cle model, the reconstructed muscular forces F̄MT

SO and corresponding intersegmental
joint moments T̄ MT

SO were derived from āSO (Figure 3.7).

SynO

SO NMF

Rigid-tendon

muscle

Hill model

T MT ,J ,lMT ,vMT

T̄ MT
SynO,FMT

SynO,aSynO,ASynO,VSynO

āSO,ASO,VSOFMT
SO ,aSO F̄MT

SO ,T̄ MT
SO

Figure 3.7 – Block diagram of SynO and SO-NMF approaches.

Results and experimental validation

The mean correlation coefficients R2 obtained for the five healthy subjects be-
tween the joint moments calculated through inverse dynamics and the joint moments
from SynO are shown in Table 3.2. The worst correlations were observed using only 2
synergies, with a corresponding mean value of 90%. Because its equality constraints,
SO reproduced exactly the inverse-dynamics joint moments. However, after applying
NMF, the reconstructed intersegmental moments T̄ MT

SO matched poorly the reference
values, with R2 mean values varying between 62% and 90%.

Estimated muscle activations varied significantly from 2 to 6 synergies (Fig-
ure 3.8). A reduced number of synergies tends to introduce more co-activations and
consequently higher joint stiffness. However, coefficient correlations R calculated be-
tween EMG and muscle activations for the five healthy subjects (Table 3.3) do not
show significant discrepancies between the different synergy cases (s = 2 through 6).
Mean values were between 60% (with 4 synergies) and 65% (for 3 and 6 synergies).
By increasing the number of design variables imply by the number of synergies, the
computational time increased significantly. The SynO approach is much slower than
SO: applying NMF increased only 2 s the computational time.
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3. The muscle force-sharing problem

Mean R2 values across subjects for joint moment matching

2 synergies 3 synergies 4 synergies 5 synergies 6 synergies
SO

SynO SO-NMF SynO SO-NMF SynO SO-NMF SynO SO-NMF SynO SO-NMF

Hip Abd/Add 0,93 0,76 0,97 0,85 0,99 0,94 0,99 0,97 1,00 0,97 1,00
Hip Flex/Ext 0,94 0,82 0,98 0,95 0,99 0,96 1,00 0,98 1,00 0,98 1,00
Hip Int/Ext rot. 0,94 0,32 0,98 0,37 0,99 0,40 1,00 0,56 1,00 0,54 1,00
Knee Flex/Ext 0,93 0,37 0,97 0,57 0,98 0,87 0,99 0,94 1,00 0,94 1,00
Ankle Int/Ext rot. 0,76 0,55 0,92 0,57 0,98 0,74 1,00 0,83 1,00 0,85 1,00
Ankle Flex/Ext 0,92 0,78 0,96 0,83 0,98 0,87 0,99 0,89 1,00 0,92 1,00

Mean 0,90 0,60 0,96 0,69 0,99 0,80 1,00 0,86 1,00 0,87 1,00

Table 3.2 – Mean correlation coefficient R2 values across subjects between
moments calculated by inverse dynamics and: i) joint moments from SynO; ii)
joint moments from SO with NMF, for n synergies (n = 2 through 6) for the
5 subjects. (R2 < 0.95 in red).

Coeff. corr. R mean values EMG vs. Muscle activations

2 Synergies 3 Synergies 4 Synergies 5 Synergies 6 Synergies
SynO SO-NMF SynO SO-NMF SynO SO-NMF SynO SO-NMF SynO SO-NMF

SO

R. Tibialis Anterior 0,58 0,52 0,59 0,75 0,56 0,75 0,56 0,74 0,69 0,76 0,69
R. Vastus Medialis 0,84 0,74 0,61 0,84 0,68 0,74 0,68 0,75 0,73 0,76 0,71
R. Vastus Lateralis 0,72 0,74 0,75 0,82 0,65 0,80 0,54 0,78 0,73 0,79 0,74
R. Adductor Magnus Middle 0,48 0,54 0,43 0,71 0,52 0,51 0,57 0,56 0,57 0,56 0,52
R. Gastrocnemius Medial 0,72 0,80 0,87 0,71 0,77 0,67 0,70 0,69 0,75 0,67 0,60
R. Gastrocnemius Lateral 0,57 0,72 0,76 0,77 0,67 0,66 0,70 0,70 0,64 0,71 0,57
R. Semitendinosus 0,36 0,73 0,58 0,89 0,53 0,66 0,66 0,67 0,50 0,60 0,57
R. Biceps Femoris Long Head 0,72 0,69 0,57 0,85 0,51 0,79 0,50 0,80 0,54 0,86 0,84
R. Gluteus Maximus Middle 0,74 0,71 0,71 0,86 0,71 0,90 0,84 0,92 0,87 0,92 0,91
R. Gluteus Medius Middle 0,25 0,39 0,45 0,41 0,36 0,40 0,48 0,42 0,38 0,43 0,44

Mean 0,60 0,66 0,63 0,76 0,60 0,69 0,62 0,70 0,64 0,71 0,66

Computational time (sec) 80 4 115 4 196 4 317 4 587 4 2

Table 3.3 – R correlations between EMG measurements and muscle activation
obtained from SynO and SO-NMF (R < 0.50 in red).
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3.1 Inverse-dynamics based optimization

Figure 3.8 – Normalized muscular activations obtained for one subject from
SynO and n synergies (n = 2 through 6) vs normalized EMG.
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3. The muscle force-sharing problem

3.2 Forward-dynamics based optimization

Because the equations of motion give the relation between motion and forces,
they can be used in two directions: solving the forces from the motion (inverse-
dynamics) or solving the motion from the forces (forward or direct dynamics). While
inverse dynamics is mainly used for analysis of a recorded activity, in some instances
it may be practical to use forward dynamics as in the case of model-based control
or motion prediction.

A forward-dynamics based approach is proposed in this work, a co-simulation al-
gorithm that allows the separate integration of the multibody and muscular dynamic
equations, and the different alternatives for the muscular force-sharing problem that
were compared in the previous Section for inverse-dynamics based approaches, are
compared here within the proposed co-simulation algorithm. First of all, the new
proposed algorithm is compared in a simple case, a simple pendulum actuated by a
couple of muscles, with the popular CMC algorithm, as a way of validation. Then,
the different alternatives for the muscular force-sharing problem are compared for
healthy gait, using the proposed co-simulation algorithm.

3.2.1 Computed muscle control

The CMC was first introduced by Thelen et al. in 2003 [59], and an updated
version of the algorithm was presented later in 2006 [86]. The method follows a
similar procedure to the physiological approach. The muscle excitations are calcu-
lated at discrete intervals and, then, the whole system of equations is integrated
one step forward, in a unified scheme, using the previously obtained excitations as
inputs (Figure 3.9). However, the calculation of the required joint torques T MT

differs from the physiological approach because the forward integration requires a
feedback controller for stabilization. On the other hand, in forward dynamics the
positions and velocities at the next time step are unknown, so their values are esti-
mated using information from the desired motion. For obtaining the joint torques,
a set of controller accelerations is first calculated:

z̈mdCMC(tk+1) = z̈mdd (tk+1) + kvε̇k + kpεk (3.44)

where εk and ε̇k represent the position and velocity errors at tk, kp and kv are their
corresponding feedback gains, and subindex d denotes magnitudes related to the
desired (i.e. tracked) motion. The position and velocity errors are defined as:

εk = zmdd (tk)− zmd(tk) (3.45)

ε̇k = żmdd (tk)− żmd(tk) (3.46)

If the velocity gain kv is set as 2
√
kp and the accelerations z̈mdCMC are assumed to

be reached, the position error would converge to zero in a critically-damped manner
[86].

At the next step, the joint torques producing the z̈CMC accelerations can be
derived from Eq. (2.62) as:
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3.2 Forward-dynamics based optimization

Qmd
m (tk+1) = M̄22z̈

md
CMC(tk+1) +H(z(tk+1), ż(tk+1), z̈(tk+1)). (3.47)

The obtained joint torques Qmd
m correspond to the ones considering the pelvis

as the base body. However, joint torques produced by muscles correspond to the
internal torques T when the feet are considered as the base bodies. Consequently,
the procedure described before in Sub-section 2.4.6 was applied to obtain T MT

CMC .
Then, the optimal excitations are calculated using the same procedure than in

the physiological approach but, as noted above, the desired positions and velocities
are used whenever data from the next time step is required.

Finally, the estimated excitations are used as inputs to integrate together the
whole system of differential equations (multibody and musculotendon dynamic equa-
tions) from tk to tk+1 at a smaller time step.

Forward

dynamics
Optimization

zmd(tk)

żmd(tk)

z̈md(tk)

a(tk)

FMT (tk)

zmd
d (tk+1)

żmd
d (tk+1)

z̈md
d (tk+1)

J>(tk+1)

T MT
CMC(tk+1)

Ground
reactions

FMT (tk+1)

wGR

QGR

Musculotendon
dynamics

FMT
min (tk+1)

FMT
max(tk+1)

uk,min = 0
uk,max = 1

uk

Iterative
process

Unified

integration

a(tk+1)

FMT (tk+1)

zmd(tk+1)

żmd(tk+1)

z̈md(tk+1)

Figure 3.9 – CMC algorithm flowchart.

3.2.2 Co-simulation algorithm

As explained before, the CMC method integrates, in a unified form, the multi-
body and muscular dynamic equations. Here, a co-integration scheme is presented
which allows to generate and integrate the multibody equations by an already exist-
ing code, while the muscular dynamics are integrated within a different framework.

An implicit integrator, in a predictor-corrector scheme, was used to integrate
the multibody equations. Therefore, the state estimates at step k+ 1 improve after
every iteration, and can be used within the corrector loop for performing new muscle
optimizations. The required joint torques for the muscle optimizations are calculated
at every iteration using a CTC control algorithm:

z̈mdCTC(tk+1) = z̈mdd (tk+1) + kvε̇k+1 + kpεk+1 (3.48)
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3. The muscle force-sharing problem

Qmd
CTC(tk+1) = M̄22z̈

md
CTC(tk+1) +H(z(tk+1), ż(tk+1), z̈(tk+1)). (3.49)

After a muscle optimization has converged, the torques J>FMT produced by the
optimal forces are introduced in the multibody equations, at the corrector stage.
When the corrector loop converges, an iterative process is used as before to obtain
the excitations. This method is computationally more expensive than CMC, since
several muscle optimizations will potentially be carried out at every time step. How-
ever, results are not so different if the optimization is performed only once at the
first iteration, using the predictor estimate. This defines a simplified version of the
algorithm. Figure 3.10 shows the flowchart, where the rightmost block represents
the choice between performing optimization at every iteration or not.

Because the optimization method in this approach does not require to be physio-
logical, all the criteria studied before for inverse dynamics can be used and compared.

Results and experimental validation

Simple pendulum

As explained before, the proposed co-simulation algorithm is compared with the
popular CMC as a way of validation. The simple pendulum actuated by two muscles
and shown in Figure 3.11 was used for this purpose. The pendulum has a massless
bar with a tip mass, and its position is defined by the angle θ with respect to the
vertical, which is zero when the pendulum is in equilibrium.

To play the role of the experimentally acquired motion in biomechanical exam-
ples, a predefined history of the angle was imposed. The pendulum starts from an
inverted position (pointing upwards), i.e. θ = π, and performs a one-second-long
movement described by a continuous quintic spline through the values shown in
Table 3.4.

t(s) θ (o)

0 180
1/3 180-60
2/3 180+60
1 180

Table 3.4 – Pendulum trajectory.

The prescribed motion has zero velocity and acceleration at both t = 0 and
t = 1. The motion is performed with the pendulum in an inverted position, in or-
der to better test the robustness of the controllers. The tests were all programmed
in Matlab. In order to accelerate the simulations, the muscle equations and their
derivatives were implemented in a vectorized mex file. The physiological criterion
was used for both approaches: CMC and co-simulation. All the time integrations of
muscle equations related to the optimization were carried out using the ode23t in-
tegrator, which contains the implicit trapezoidal rule. In the co-simulation method,
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Figure 3.10 – Co-simulation algorithm flowchart.

51



3. The muscle force-sharing problem

Figure 3.11 – Simple pendulum actuated by two muscles.

the multibody system was integrated with a time step of 10 ms, using an implicit
trapezoidal rule with Newton-Raphson iteration.

The CMC method also used the trapezoidal rule, although integrating the multi-
body and muscle dynamics equations together, and using a time step of 1 ms. The
optimization process was repeated every 10 ms.

Method CPU time (s) RMS error (deg)

CMC 8.25 0.0025
CSS 23.66 0.0186
CSA 7.85 0.1146

Table 3.5 – Simulation results.

Table 3.5 shows the CPU-time and tracking accuracy obtained for the three
methods: CMC, co-simulation standard (CSS), and co-simulation approximated
(CSA).

The computational effort to solve the muscle force-sharing problem by optimiza-
tion every 10 ms is similar for all the methods. However, the simple model analyzed
is not totally conclusive, since the multibody equations (in this case a single equa-
tion) are too simple and have almost no impact in the computational load. CMC
achieved the best accuracy due to the smaller integration time step. Co-simulation
can reach even better accuracy at 1 ms, but at the cost of a much higher CPU-time
due to the large number of optimizations.

The top plot of Figure 3.12 shows the tracking errors, and the bottom plot
compares the excitations obtained with CMC and CSS. CMC excitations are stepped
because the integration is performed at 1 ms, but the excitations are calculated every
10 ms. It can be seen that the results at coinciding time steps are very close. If
the muscles can always deliver the required torques from Eq. (3.49), all the methods
yield very similar excitations (Figure 3.12).

In case the motion is more violent and the muscles cannot follow it accurately,
discrepancies between methods increase, due to the different estimations they use for
future positions and velocities. This should never happen when analyzing a recorded
motion: if the motion actually happened, muscles were capable of producing it.
However, this problem can appear in motion prediction.
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3.2 Forward-dynamics based optimization

Figure 3.12 – Results comparison between CMC and CS.

Gait analysis

In order to complete the comparison of different ways to estimate muscular forces
in healthy gait, the criteria tested with the inverse-dynamics based optimization are
compared now using forward dynamics and the co-simulation standard algorithm.

Figure 3.13 illustrates the discrepancies between the muscular activations pro-
vided by different criteria and with respect to the EMG measurements too.

Mean values R of the five healthy subjects for each muscle and approach are
given in Table 3.6. Once again, the best values are obtained with the first criterion,
with a mean correlation of 75%. However, there was no clear differences between the
six criterion used. Obtained correlations were acceptable, with values going from
66% to 75%.

No significant differences were observed with respect to the results obtained
through the inverse-dynamics approach because the obtained joint moments were
similar as the same recorded motions were studied. Therefore, the use of forward dy-
namics did not improve the results, and the iterative process made the computation
slower.
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3. The muscle force-sharing problem

Mean correlation coefficient R values across subjects
EMG vs. muscle activations

I II III IV Phys. Phys. 3

R. Tibialis Anterior 0,74 0,73 0,72 0,51 0,69 0,62
R. Vastus Lateralis 0,73 0,74 0,88 0,56 0,85 0,65
R. Adductor Magnus Middle 0,58 0,48 0,39 0,55 0,65 0,61
R. Gastrocnemius Medial 0,80 0,66 0,76 0,75 0,64 0,66
R. Gastrocnemius Lateral 0,72 0,62 0,62 0,67 0,65 0,59
R. Semitendinosus 0,76 0,79 0,79 0,75 0,64 0,67
R. Biceps Femoris Long Head 0,77 0,81 0,84 0,70 0,21 0,56
R. Gluteus Maximus Middle 0,92 0,91 0,93 0,88 0,93 0,93
R. Gluteus Medius Middle 0,75 0,58 0,61 0,59 0,63 0,72

Mean 0,75 0,70 0,73 0,66 0,66 0,67

Computational time (sec) 16,35 360,07 175,77 247,75 1828,71 27,32

Table 3.6 – R correlations in forward-dynamics analysis (R < 0.50 in red).
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3.2 Forward-dynamics based optimization

Figure 3.13 – Normalized muscular activations obtained with different criteria
in forward-dynamics vs. normalized EMG for a healthy subject.
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Chapter 4

Muscle energy expenditure

In the literature, various Hill-based methods to calculate the human muscle
energy expenditure can be found [46], [45], [87], [47]. R.H. Miller proposed a com-
parison of these methods for simulating human walking in [48]. According to his
recommendations, the methods of Umberger and Bhargava have been implemented
in this work to calculate the energetic cost of healthy subjects in normal gait and
of SCI subjects in crutch gait.

Both muscle energy expenditure methods considered, based on the Hill muscle
model, need to know some muscular parameters to be used. After obtaining the
muscular activity by physiological static optimization method, the activation, the
length, the velocity and the muscular force are used as input to the two methods
for the estimation of energy expenditure. Both models are based on the first law
of thermodynamics. According to this law, the total rate of energy consumption at
each instant, Ė, is equal to the rate at which heat is liberated, Ḣ, plus the rate at
which work is done, Ẇ :

Ė = Ḣ + Ẇ (4.1)

4.1 Umberger

The muscle energy expenditure method of Umberger [46] considers the activation
heat rate (ḣA), the maintenance heat rate (ḣM), the shortening/lengthening heat
rate (ḣSL), and the mechanical work rate of the contractile element of the muscle
(ẇCE), to determine the total rate of muscle energy expenditure (Ė). The relation
is given by the sum of this four terms expressed in Eq. (4.2), calculated for each
muscle in W.kg−1.

Ė = ḣA + ḣM + ḣSL + ẇCE (4.2)

Activation and maintenance heat rate

A combined expression of the activation and maintenance heat rate is used for
this first term,
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4. Muscle energy expenditure

ḣA + ḣM = ḣAM = 1.28×%FT + 25 (4.3)

where represents the percentage of fast twitch which can be found in [88].

Shortening and lengthening heat rate

During CE shortening, the rate of heat production is modeled as the product of
a coefficient αS and vM , the velocity of the muscular contractile element:

ḣSL =


αS(ST )ṽ

M(1−%FT/100)− αS(FT )ṽM(%FT/100) if vM ≤ 0,

αLṽ
M if vM > 0,

(4.4)

with the constant terms:
αS(ST ) = (4× 25)/ṽM (MAX−ST ),
αS(FT ) = 153/(ṽM (MAX−FT )),
αL = 4αS(ST ),
ṽM (MAX−FT ) = vMMAX/l

M
0 ,

ṽM (MAX−ST ) = ṽM (MAX−FT )/2.5
and ṽM (MAX−ST ) = lM0 /0.1.

Mechanical work rate

The specific mechanical work rate is given by:

ẇCE = −(FM
CEv

M)/m (4.5)

where m is the muscle mass (kg) related to the physiological cross sectional area
(PCSA) by:

m = PCSAρml
M
0 (4.6)

with ρm = 1059.7 kg.m−3, the mammalian muscle density [89].

Total energy expenditure scaled

Eq. (4.2) provides the energy expenditure of the muscle for the case of full ac-
tivation and optimal muscular length lM0 of the contractile element. Scaling factors
are needed to account for the length and activation dependence of ḣAM and ḣSL, and
the dependence of the total heat rate on the metabolic working conditions (S = 1
for primarily anaerobic conditions, and S = 1.5 for primarily aerobic conditions),

Ė =


ḣAMAAMS + ḣSLASLS + ẇCE if lM ≤ lM0 ,

(0.4× ḣAM + 0.6× ḣSLFM
0 )AAMS + ASLS + ẇCE if lM > lM0 ,

(4.7)

with AAM = A0.6, ASL = A2, and
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4.2 Bhargava

A =


u(t) if u(t) ≤ a(t),

(u(t) + a(t))/2 if u(t) > a(t)
(4.8)

where u and a represent the excitation and activation of the muscle respectively.

4.2 Bhargava

Bhargava’s method presents some similarities with the previous one, since both
start from equation Eq. (4.2), but details in the terms equations are different.

Activation heat rate

ḣA = φfFT ȦFTuFT (t) + φfST ȦSTuST (t) (4.9)

with

φ = 0.06 + exp(−tstimu(t)/τφ), (4.10)

where τφ is the decay time constant (i.e., 45 ms) and tstim is the amount of time the
muscle has been excited above 10%.

uFT (t) = 1− cos(
π

2
u(t)) and uST (t) = sin(

π

2
u(t)), (4.11)

and the constant terms: fFT = %FT/100, fST = 1 − %FT/100, ȦFT = 133 and
ȦST = 40.

Maintenance heat rate

ḣM = L(l̃M)fFTṀFTuFT (t) + L(l̃M)fSTṀSTuST (t) (4.12)

where L(l̃M) is a function that models the dependence on muscle length:

L(l̃M) =



0.5 if l̃M ≤ 0.5,

l̃M if 0.5 < l̃M ≤ 1

−2(l̃M) + 3 if 1 < l̃M ≤ 1.5

0 if l̃M > 1.5

(4.13)

and the maintenance heat rate constants: ṀFT = 111 and ṀST = 74.
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Shortening and lengthening heat rate

During CE shortening, in this method, the rate of heat production is also modeled
as the product of a coefficient αS and vM ,

ḣSL = −αSvM (4.14)

αS =


0.16FM

0 + 0.18FM
CE if vM ≤ 0,

0.157FM
CE if vM > 0,

(4.15)

Mechanical work rate

Both authors consider the same expression for the mechanical work rate:

ẇCE = −(FM
CEv

M)/m (4.16)

Total energy expenditure

Ė = ḣA + ḣM + ḣSL + ẇCE + ḣB (4.17)

Unlike the first method, the terms are already scaled here, but Bhargava’s
method proposes in addition a basal metabolic rate ḣB calculated from a frog skeletal
muscle at 0oC and given by:

ḣB = 0.0225. (4.18)

4.3 Total energy expenditure during a gait cycle

The total energy expenditure calculated before is for each muscle and each time
point. The total energy expenditure during a gait cycle, Emet, is obtained as follows:

Emet =

(
n∑
i=1

(∫ tend

t=0
Ėi(t)×mi dt

∆tcycle

)
+ kb ×mresidual

)
/msubject, (4.19)

with ∆tcycle the time of a complete gait cycle (∆tcycle = tend − t0), n the number of
muscles, and

mresidual = msubject −
n∑
i=1

mmuscle,i. (4.20)

To account for whole body metabolism, the proportion of total body mass not
represented by the modeled muscles was assigned an energy rate kb = 1.2W.kg−1,
which is the average energy rate for standing [40]. Later, we will see that this
constant can be used for model calibration.
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4.4 Results and experimental validation

In order to validate the implementation of the two methods presented above, 21
complete gait cycles of a healthy subject (subject 1 in 2.1.1) were recorded at seven
different speeds (between his free selected speed and fast speed) for energetic cost
estimation. Experimental measurements were obtained by means of a portable gas
analyzer during two 5-minute tests at free selected speed and fast speed (Figure 4.1).
The obtained linear relation between gait speed and energy expenditure estimations
showed a good correlation with experimental measurements and literature [40] (Fig-
ure 4.2). However, it’s important to highlight that a constant discrepancy of the
results was observed with respect to the measured energy values (y-intercept), so
the model was calibrated with such a constant (0.12W.kg−1 for Umberger’s method
and 1.9W.kg−1 for Bhargava’s method). This calibration can be considered as an
adjustment of the whole-body basal metabolic rate kb, introduced in Section 4.3.

Figure 4.1 – Energy consumption for a healthy subject: a) motion-force-EMG
capture; b) 5-minute test with portable gas analyzer.

Figure 4.2 – Energy expenditure for a healthy subject.
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Chapter 5

Applications to SCI subjects

As explained in the Introduction, the objective of this work is to evaluate the
effect of orthotic devices in SCI subjects by means of some indicators which may
provide the likeliness of actual use of the device by the subject. Moreover, such
indicators will allow the comparison of different orthotic devices.

The mentioned indicators are the joint reactions and the energetic cost. The
estimation of both of them requires the previous solution of the muscular problem.
Therefore, the methods presented before for healthy gait are applied here to the
crutch-assisted gait of SCI subjects.

This thesis was part of an Spanish investigation project with objective to design
a research prototype of a low-cost active orthosis for the gait of SCI subjects [7].
The existing methods for gait analysis presented and evaluated before with healthy
subjects have been adapted to SCI subjects during crutch-assisted gait. These
analyzes allow to compare the efficiency of gait-assistive devices.

5.1 The active KAFO

In this Section, the active KAFO that has been compared with the conventional
passive orthosis is described. Starting from a conventional passive KAFO, an electric
motor plus Harmonic gearbox are placed at knee level, substituing the external
original joint, and an inertial measurement unit (IMU) is placed at shank level in
the external upright. The orthoses are complemented by a backpack, carried by the
subject, which contains an embedded computer board, the motor drivers and the
battery (Figure 5.1).

During gait, when motion intention is detected by the IMU, a swing cycle is
launch in order to avoid foot-collision with the ground. With the conventional
passive device, the patient needs to perform extra pelvis movements to complete
the swing cycle without foot-collision.

The active KAFO also includes an Android application for smartphone that
allows to switch on/off the system, enable/disable the gait cycle, and setting the
controller parameters.
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Figure 5.1 – The low-cost active KAFO.

5.2 The adaptation process

As said before, subjects selected to use the orthotic devices showed partial hip
actuation and were able to walk with the conventional passive KAFO and crutches.
Gait analysis was carried out with each subject in the gait laboratory (Figure 5.5)
to obtain their gait characteristics and estimate the controller parameters of the
prototype.

These parameters were adjusted during the training sessions. Subjects needed
to get used to the new device, so, initially, they walked with the help of parallel
bars for the sake of safety and the swing cycle was progressively introduced in the
devices as the patient gained confidence. When the subject was ready, the process
was repeated using crutches instead of parallel bars.

To quantify the progress achieved by the patient along the training sessions, some
gait cycles were recorded periodically by a portable motion capture system composed
by six infrared cameras (Natural Point, OptiTrack FLEX:V100 sampling at 100
Hz). Then, a computer-based application (in-house developed code programmed in
Matlab) was used for the subsequent post-processing (Figure 5.2).

Finally, when the subject was able to walk with the aid of the active KAFO and
the crutches, a gait analysis was carried out in the lab to obtain motion-force-EMG
captures to run and validate musculoskeletal analyses.
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Figure 5.2 – Portable motion capture system and post-processing application.

5.3 Crutch-assisted gait analysis

5.3.1 Skeletal model

The 3D human model for SCI subjects (Figure 5.3) has been modeled in the same
way as the healthy skeletal model defined in 2.1.2. The crutches are rigidly connected
to the hands and the orthoses are embedded in the corresponding body links (thighs,
shanks and feet). The geometric and inertial parameters of the model are the same
as those of the healthy subjects previously described. Assistive devices were taken
into account by altering the inertia properties of hands (crutches) and thighs, calves
and feet (orthoses). Inverse-dynamics analysis was applied to obtain the ground
reactions and joint drive torques along the motion [90]. Measurements from the
force plates and instrumented crutches were just used to overcome the indeterminacy
in the distribution of ground reactions during the multiple-support phases, and to
confirm the results from the inverse-dynamics analysis [73]. Therefore, the obtained
joint drive torques and external reactions were consistent with the corresponding
motion.

5.3.2 Musculoskeletal model

People with SCI have lost some motor functions due to the injury. The SCI
subjects participating in this study required crutches and passive orthoses to walk
due to the lost of muscular functions in the lower limbs. In such a gait, both
lower and upper limbs are solicited so a full body musculoskeletal model is needed.
However, as each SCI subject is different, the musculoskeletal model has to be
personalized. Therefore, a first step was to carry out local motion tests, designed
and supervised by a doctor specialized in sport and exercise, during which surface
EMG was measured in muscles of uncertain activity. The subject was asked to
perform several hip exercises with the help of parallel bars for stability, as seen in
Figure 5.4, to detect active muscles based on EMG results and on how the different
motions were performed. Only muscles with detected activity were included in the
model.

The whole musculoskeletal model is composed by: 43 muscles in each leg (28 at
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Figure 5.3 – Human multibody model.

Figure 5.4 – Motor test with surface EMG to assess muscle activity.

hip, 5 at knee and 10 at ankle), 6 at the trunk and 26 in each arm (15 at the shoulder
and 11 at the elbow). The model is adapted to the subject (eliminating the inactive
muscles as explained before) and to the aim of the study (if the gait is symmetric,
only one side can be considered). Geometries and properties of the muscles have
been taken from OpenSim, which are defined for the OpenSim reference model in
[26] for the lower limb and in [55] for the upper limb.

Muscular parameters have been scaled to subjects in the same way as the for
healthy subjects.
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Figure 5.5 – Gait of SCI subject assisted by passive orthoses and crutches: a)
acquired motion; b) computational model.

5.4 Results and experimental validations

As commented in 1.2.5, the uniqueness of spinal cord injuries limits the inter-
subjects repeatability. Two voluntary SCI subjects have participated in this study.

5.4.1 Case 1: Bilateral SCI subject

Subject

The first subject (Figure 5.5) was an adult female of age 45, mass 65 kg and height
1.52 m, with spinal cord injury at T11 (Figure 1.3). Her injury allowed her a normal
motion of the upper extremities and trunk, while partially limiting the actuation
at the hips due to partial or no muscular innervation. Her corresponding LEMS is
10/50 (Figure 5.6). Therefore, in order to walk, she required the assistance of a pair
of passive KAFO and two crutches. In daily life she mainly used a wheelchair to
move and resorted to the mentioned assisted gait only occasionally and during short
periods of time.

Figure 5.6 – LEMS bilateral SCI subject.
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Personalized musculoskeletal model

This subject presented a symmetrical gait pattern, so, only muscles of the right
side have been considered. After muscular activity assessment by means of EMG
measurements (as explained in Sub-section 5.3.2), inactive muscles at hip level have
been removed. The musculoskeletal model (Figure 5.7) was then composed of 53
muscles: 21 muscles at the right hip (only muscles for which EMG activity was
detected in the local motion tests), 6 at the trunk, 15 at the right shoulder and 11
at the right elbow.

Figure 5.7 – Musculoskeletal model of the bilateral SCI subject.

Estimation of muscle forces during crutch gait

Muscular activation of the 53 muscles were estimated by the physiological inverse-
dynamics approach with rigid tendon and the closed-form solution of the activation
dynamics (Phys. 3). Results were compared with EMG measurements for 8 muscles
and they are represented in Figure 5.8. The corresponding coefficient correlations R
between estimations and experimental measurements show acceptable results with
a mean correlation of 70% (Figure 5.1).

Walking with crutches produces important joint loads at the upper extremities.
Estimated joint reaction forces at the right shoulder show a maximum pick value of
140% of the bodyweight (Figure 5.9). Maximum loads of up to 170% were measured
by Westheroff [91] during in-vivo measurements. This explains why 51% of people
with spinal-cord injury have shoulder problems [52].
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Figure 5.8 – Normalized muscular activations obtained for the bilateral SCI
subject vs normalized EMG.

Figure 5.9 – Right shoulder joint reaction force of the bilateral SCI subject
during crutch gait.
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Correlation coefficient R
EMG vs. muscle activations

R. Gluteus Maximus Posterior 0,68
R. External Obliques 0,89
L. External Obliques 0,76
R. Infraspinatus 0,63
R. Middle Deltoid 0,57
R. Pectoralis Major Sternal 0,75
R. Biceps Long 0,50
R. Triceps Long 0,86

Mean 0,70

Table 5.1 – R correlations obtained for the first SCI subject.

Evolution using active orthoses

After some training sessions, the patient was adapted to the use of the active
orthoses (Figure 5.10). Gait cycles using the new devices were recorded by the
portable motion capture system (Figure 5.2) and gait parameters are compared in
Figure 5.11. Significant improvements were noticed thanks to motor actuation in
both knees. She was able to walk faster by using a longer stride and a higher cadence.
Her gait pattern changed significantly, with reduced pelvis movements which led to
a lower lateral displacement of the center of mass (COM).

Unfortunately, the subject couldn’t continue to use the active orthoses due to
cervical arthritis (resulting of sedentarism and the important use of wheelchair).
Motion capture in the gait laboratory for a complete analysis couldn’t be done, so
comparison of the devices has been limited to the kinematic part for this subject.

Figure 5.10 – Patient using the active orthoses with crutches.
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Figure 5.11 – Gait comparisons: passive vs. active orthoses.

5.4.2 Case 2: Unilateral SCI subject

Subject

The second SCI subject was an adult male of mass 82 kg and height 1.85 m,
with injury corresponding to LEMS of 13/50 (Figure 5.12). Like the first subject,
his injury affects only his lower extremities. However, in this case limitations at the
lower limbs are non symmetrical, since the injury allows knee actuation at the right
leg in addition to hip actuation. He required the assistance of a passive KAFO at
the left leg, a passive ankle-foot orthosis at the right leg, and two crutches. Despite
possessing higher capacity than the first subject, he also used mainly a wheelchair
to move and resorted to the mentioned assisted gait during short periods of time.

Figure 5.12 – LEMS bilateral SCI subject.

Personalized musculoskeletal model

The second subject presented non symmetrical limitations at the lower limbs,
so a bilateral analysis was required. The musculoskeletal model of the full body
was customized to the SCI subject according to his muscle activity (previously
measured through EMG, as explained in Sub-section 5.3.2). The musculoskeletal
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model (Figure 5.13) was composed of 112 muscles for the whole body: 28 at the
right hip, 5 at the right knee, 21 at the left hip, 6 at the trunk, 15 at each shoulder
and 11 at each elbow.

Figure 5.13 – Gait of SCI subject assisted by passive orthoses and crutches:
a) acquired motion; b) musculoskeletal model.

Estimation of muscle forces during crutch gait

Muscle forces were estimated by the physiological inverse-dynamics approach
with rigid tendon and the closed-form solution of the activation dynamics (Phys3).
Results were validated with EMG measurements for 10 muscles, and are represented
in Figure 5.14. A mean coefficient correlation R of 56% between experimental mea-
surements and muscle activations was obtained, which is considered acceptable.

Comparison of gait-assistive devices

After some few training sessions, the SCI subject was able to walk with confidence
wearing the active KAFO. So three gait cycles were compared for the SCI subject:
i) passive orthosis owned by the subject; ii) active orthosis with motor locking the
knee; iii) active orthosis with motor moving the knee.

While the walking speed was the same in the three cases, some kinematic differ-
ences could be observed (Table 5.2). First, the step length, of 45 cm and 66 cm for
the right and left legs respectively using the original KAFO, changed to 58 cm for
both sides when using the active KAFO with motor moving the knee. The initial
circumduction of the left foot (KAFO’s leg) of 11.5 cm with the original KAFO
was reduced to 7.25 cm thanks to the actuated knee flexion. Pelvic maximum rota-
tions were reduced from -27.6o and 44.8o to -22.5o and 35.3o in the transverse plane,
and from 19.18o to 15.23o in the frontal plane. Finally, the mediolateral COM dis-
placement was significantly reduced from 13.48 cm to 11.54 cm, while the vertical
displacement was almost the same in the three cases.

Instrumented crutch measurements did not show significant differences between
devices. A mean load of 20% of the bodyweight was observed during the gait cycle,
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Figure 5.14 – Normalized muscle activations obtained for the unilateral SCI
subject (black) vs normalized EMG (red).

with peaks of 55% (left crutch) and 40% (right crutch) at swing start. Estimated
joint reaction forces at shoulder were similar too, with peaks between 190% and
225% (left shoulder) of the bodyweight.

The energy cost obtained with the original KAFO was 3.49 W.kg−1 for Um-
berger’s model, and 3.11 W.kg−1 for Bhargava’s. Wearing the active KAFO with
motor locking the knee, it was 3.56 W.kg−1 and 3.13 W.kg−1. Finally, wearing the
active KAFO with motor moving the knee, the energy cost was 3.28 W.kg−1 and
3.02 W.kg−1.
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passive KAFO active KAFO (locked knee) active KAFO (moving knee)

Gait velocity (m/min) 33 33 33

Vertical COM displacement (cm) 3.47 3.79 4.11

Mediolateral COM displacement (cm) 13.48 13.42 11.54

Step length (cm)
Right 0.45 0.52 0.58
Left 0.66 0.62 0.58

Left circumduction (cm) 11.52 9.10 7.25

Range pelvic rotations in
frontal plane (o)

[-4.81; 19.18] [-4.56; 16.93] [-4.86; 15.23]

Range pelvic rotations in
transverse plane (o)

[-28.74; 42.87] [-28.32; 37.93] [-24.36; 31.83]

Energy cost(W/kg)
Umberger 3.49 3.56 3.28
Bhargava 3.11 3.13 3.02

Table 5.2 – Comparison of the three gait-assistive devices.

Discussion

The self-selected gait velocity achieved by the SCI subject with the three devices
was of 33 m/min, which is higher than the velocity corresponding to his LEMS (20.2
m/min) according to [40]. This discrepancy can be explained by the moderately
strong linear relationship (R = 0.64) between walking speed and LEMS, and by the
fact that the subject was tall and athletic.

The SCI subject carried out few training sessions with the active KAFO, and
probably needed more experience to show a significant evolution with respect to
the passive device, as observed in [92]. However, some improvements of the gait
pattern thanks to the knee actuation provided by the KAFO were already detected,
as symmetry in the step lengths, reduced circumduction and reduced pelvic rotation.
COM displacements are generally used as indicators of balance control to reflect the
whole body motion during gait. While the vertical displacement was almost the
same for the three cases and was close to that of healthy subjects (3.61 cm at 1 m/s
[93]), the mediolateral displacement reflected differences in gait pattern and with
respect to healthy subjects (5.96 cm at 1 m/s [93]).

Ground force reactions measured by the instrumented crutches did not highlight
any differences between the devices used, likely because of the short training period
with the new device. However, the obtained values showed the demanding use of
the upper extremities, which are primarily not prepared to walk and to put up with
such loads.

Same observations can be done regarding the joint reaction force at shoulders,
with estimated peaks greater than 220% of the bodyweight. Westerhoff [91] re-
ported maximum loads of up to 170% during in vivo measurement of shoulder loads
during crutch-assisted walking, but subjects were not suffering from any lower limb
disability. The highest peaks at the left shoulder were observed during the left-leg
swing (leg wearing the KAFO), likely because the subject needed to compensate the
instability of the left foot and the lack of force in the right leg, and to avoid the foot
contact with the ground.

Correlations observed between EMG measurements and muscle activations for
the SCI subject were acceptable and allow trusting in the input used to calculate
the energy cost.
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Regarding the energetic cost, 5-minute tests are too demanding for SCI subjects
and simpler experimental tests are not accurate. Therefore, the obtained results
were compared with results from bibliography. First of all, to have a reference, Wa-
ters [40] showed that a healthy subject should consume 2.385W.kg−1 at the speed
developed by the SCI subject (33 m/min). Continuing with Waters’ references for
SCI subjects, for a LEMS of 13, the subject should consume 149.8% more than a
healthy subject at the same speed. This would correspond to an energy consump-
tion of 3.57W.kg−1, which is close to the values obtained with Umberger for the
two first cases (3.49W.kg−1 and 3.56W.kg−1). In the third case, the motor actu-
ation produces the knee flexion/extension, so that the LEMS could be increased
to 14. Then, the corresponding energy consumption increase should be of 145.5%
with respect to a healthy subject, thus leading to a consumption of 3.47W.kg−1,
versus the 3.28W.kg−1 obtained with Umberger. However, as shown in Section 4.4,
results obtained for a healthy subject needed calibration to estimate the correct
basal consumption. For the SCI subject, while results obtained without calibration
are closer to the mentioned references for Umberger’s method, slopes (energy cost
vs. LEMS) are closer (gradient of -0.1) using Bhargava’s method (gradient of -0.11)
than Umberger’s (gradient of -0.28).
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Chapter 6

Conclusions and future work

6.1 Conclusions

This thesis had the objective of evaluating the effect of orthotic devices on SCI
subjects along with the likeliness of its long-term use, through the estimation of
some indicators as joint reactions and energetic cost, which in turn require the
estimation of muscular activations and forces. Therefore, from the academic point
of view, the thesis was focused on the analysis of human gait by computer modeling
at musculoskeletal level. The work can be divided into two main parts. In the first
part, methods were applied, validated and compared for healthy subjects. In the
second part, methods selected in the first part were applied to two clearly different
SCI subjects walking with crutches and two types of orthotic devices which were
compared.

In the first part, several optimization methods for estimating muscle forces were
applied and compared for five healthy subjects. Four static and three physiological
inverse-dynamics based optimization approaches were compared first, and showed
similar results. However, it must be pointed out that higher complexity of the
method does not guarantee better results, as the best correlations with experimental
values were obtained with the simplest and most common criterion. The physiolog-
ical inverse-dynamics approach was hard to implement and presented the longest
computational time among all the compared inverse-dynamics based approaches,
while its simplified form ran more than 100 times faster and showed almost the
same results.

Same conclusions can be drawn for the synergy optimization approach studied in
this thesis. The consideration of synergy effects to solve the muscular force-sharing
problem complicated the programming and led to slower algorithms. However, the
obtained correlations did not show any improvement with respect to non-synergy-
based approaches. The positive aspect was that the SynO approach can extract
muscular synergies and offer a reasonable prediction of muscular activations and
matching of the joint torques for the full leg. However, the proposed combination
of SO with NMF showed poor results regarding the joint torques matching. There-
fore, the SynO approach could result useful for application to functional electrical
stimulation, motion control and prediction, as it reduces the dimensional control
space.
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Another practical approach for motion control or prediction is forward based. In
this work, forward-dynamics based methods were used for recorded motions in order
to compare them with the previously inverse-dynamics based approaches. A new
method, based on CTC was proposed. It consists of a co-simulation algorithm where
the multibody equations and the muscular dynamics are simulated within a different
framework, allowing to use existing multibody codes. Two versions of the algorithm
were suggested: (i) the standard approach (CSS), which required the solution of the
muscular force-sharing problem at each iteration; (ii) the approximated approach
(CSA), which limited the solution of the muscular force-sharing problem to the first
iteration. These algorithms were compared with a reference method, the popular
Computed Muscle Control (CMC), for the case of a simple pendulum actuated by
two muscles. The CSS was the slowest approach due to its numerous optimizations
and integrations. However, CSA showed better computational performance than
CMC but its accuracy was affected. A compromised could be find by optimizing
the CPU time and the accuracy. Then, the co-simulation standard algorithm was
applied to the gait analysis of the five healthy subjects and several optimization
criteria were compared. The obtained results presented the same conclusions as
the inverse-dynamics analysis: the simplest criterion was the most efficient and the
physiological one was much slower and did not improve the correlations.

However, despite of its disadvantages, the inverse-dynamics based physiological
approach resulted useful to implement the two Hill-based energy expenditure meth-
ods because it is the only approach which provides the required muscular variables
as inputs. If the simplified form with rigid tendon is used, the mechanical work
rate gives almost zero due to the small length variations of the muscle’s contractile
part. Results obtained with the two energy expenditure methods were validated for
one healthy subject during various gait cycles at different speeds. Good correlations
were obtained with both approaches, but results showed that a subject-calibration of
whole-body basal metabolic rate is necessary. Nevertheless, the slopes (energy cost
vs. gait speed) obtained with both methods were coincident and agreed with those
from literature, which is the essential point to compare two activities performed by
the same subject and using the same method.

Afterwards, the same methodology used for the healthy subject was applied to
study the crutch-assisted gait of two SCI subjects in order to evaluate the efficiency
of an active orthosis with respect to the classical passive one. For each subject, a
personalized musculoskeletal model was used due to the uniqueness of each injury.

The first subject showed significant improvements thanks to the motor actua-
tion in both knees: she was able to walk faster by using a longer stride and a higher
cadence. Her gait pattern changed significantly, with reduced pelvis movements
yielding a lower lateral displacement of the center of mass (COM). Reasonable es-
timation of muscular activations were obtained for this subject, which supports the
methodology used.

Motion-force-EMG captures were carried out with the second subject using ei-
ther the passive as the active orthosis, allowing a more complete comparison of the
devices. Acceptable matching between EMG measurements and estimated muscle
activations validated the inputs provided to the energetic cost calculations. Im-
proved gait pattern and reduced energy consumption were the results of using the
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actuated gait-assistive device, while no significant reduction was found in the reac-
tion forces at shoulders.

Therefore, it was shown that computer modeling and analysis can provide valu-
able indicators, as joint reactions and energy consumption, to assess the effect of
assistive devices in patients without the need for long and tiring experimental tests.

6.2 Future work

The research done in this thesis leaves some unexplored topics which can become
future research lines.

The first one is to make a comparison between the results obtained from the
motion-force-EMG capture of the five healthy subjects by the in-house developed
methods and the reference software OpenSim. Although, in this thesis, the OpenSim
muscle geometry was used, models and methods are different. Comparison should
be performed for the kinematics, joint torques and estimated muscular activations.

Then, it was noticed that energy expenditure could be estimated using the rigid
tendon model. It will be interesting to validate this observation and try other
optimization methods to estimate the whole body consumption, as for example the
SynO approach.

Regarding the studies with SCI subjects, some limitations were suffered in this
work. The first limitation was that only two SCI subjects were studied due to
the difficulties experimented in finding valid candidates, and the expensive and
time-consuming process required for building the customized devices. The second
limitation was that the SCI subjects performed few training sessions with the active
orthotic device; it would had been desirable to continue the study for a longer period
and see the evolution of the joint reactions and the energetic cost as users became
more acquainted with the new devices. Future works could go in the direction
of overcoming these limitations. Repeating the study for more SCI subjects and
spanning longer periods.

Finally, the acquired knowledge and the developed software could be applied to
different activities and/or subjects suffering from other limitations.
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Appendix A

Muscle parameters

a. data taken from Delp [26].
b. data taken from Brand [94].
c. data taken from Johnson [88].
d. data taken from Holzbaur [55].
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A. Muscle parameters

Muscles FM
0

a [N] lM0
a [m] lTS

a [m] α0
a [o] Ab [cm2] ST c [%]

Gluteus Medius Anterior 546 0,054 0,078 8 25 50
Gluteus Medius Middle 382 0,085 0,053 0 16,21 50
Gluteus Medius Posterior 435 0,065 0,053 19 21,21 50
Gluteus Minimus Anterior 180 0,068 0,016 10 6,76 50
Gluteus Minimus Middle 190 0,056 0,026 0 8,2 50
Gluteus Minimus Posterior 215 0,056 0,026 21 11,98 50
Gluteus Maximus Anterior 382 0,142 0,125 5 20,2 52,4
Gluteus Maximus Middle 546 0,147 0,127 0 19,59 52,4
Gluteus Maximus Posterior 368 0,144 0,145 5 20 52,4
Adductor Longus 418 0,138 0,110 6 22,73 50
Adductor Brevis 286 0,133 0,020 0 16,86 50
Adductor Magnus Superior 346 0,087 0,060 5 25,52 58,4
Adductor Magnus Middle 312 0,121 0,130 3 18,35 58,4
Adductor Magnus Inferior 444 0,131 0,260 5 16,95 58,4
Tensor Fasciae Latae 155 0,095 0,425 3 8 50
Pectineus 177 0,133 0,001 0 9,03 50
Iliacus 429 0,100 0,090 7 23,33 50
Psoas 371 0,104 0,130 8 25,7 50
Quadratus femoris 254 0,054 0,024 0 21 50
Gemellus 109 0,024 0,039 0 6,46 50
Piriformis 296 0,026 0,115 10 20,54 50
Semitendinosus 328 0,201 0,262 5 13,05 50
Semimembranosus 1030 0,080 0,359 15 46,33 50
Biceps Femoris Long Head 717 0,109 0,341 0 27,34 66,9
Biceps Femoris Short Head 402 0,173 0,100 23 8,14 66,9
Sartorius 104 0,579 0,040 0 2,9 49,6
Gracilis 108 0,352 0,140 3 3,74 50
Rectus Femoris 779 0,084 0,346 5 42,96 38,1
Vastus Medialis 1294 0,089 0,126 5 66,87 47
Vastus Intermedius 1365 0,087 0,136 3 82 50
Vastus Lateralis 1871 0,084 0,157 5 64,41 48
Gastrocnemius Medial 1113 0,045 0,408 17 50,6 48,2
Gastrocnemius Lateral 1113 0,064 0,385 8 14,3 48,2
Soleus 4234 0,030 0,268 25 186,69 75
Tibialis Posterior 1516 0,031 0,310 12 26,27 73
Tibialis Anterior 603 0,098 0,223 5 16,88 50
Flexor Digitorum Longus 310 0,034 0,400 7 6,4 50
Flexor Hallucis Longus 322 0,043 0,380 10 18,52 50
Extensor Digitorum Longus 341 0,102 0,345 8 7,46 47,3
Extensor Hallucis Longus 108 0,111 0,305 6 6,49 50
Peroneus Brevis 348 0,050 0,161 5 19,61 62,5
Peroneus Longus 754 0,049 0,345 7 24,65 62,5
Peroneus Tertius 90 0,079 0,100 13 4,14 35
External Obliques 864 0,125 0,211 13 4,14 50
Internal Obliques 712 0,125 0,165 13 4,14 0
Erector Spinae 2974 0,120 0,030 13 4,14 58,4

Table A.1 – Muscles parameters of lower extremity used in the models of this
work.
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Muscles FM
0

d [N] lM0
d [m] lTS

d [m] α0
d [o] Ab [cm2] ST c [%]

Coracobrachialis 242,46 0,093 0,097 0 4,14 50

Deltoďd Ant. 1142,6 0,098 0,093 22 8,2 35

Deltoďd Mid. 1142,6 0,108 0,11 15 8,2 35

Deltoďd Post. 259,9 0,137 0,038 18 1,9 35
Infraspinatus 1210,8 0,076 0,031 19 8,6 35
Lat. Thoracic 389,1 0,254 0,12 25 2,8 35
Lat. Lumbar 389,1 0,254 0,12 19 2,8 35
Lat. Iliac 281,7 0,279 0,14 21 2 35
Pec. Maj. Clav. 364,4 0,144 0,003 17 2,6 35
Pec. Maj. Ster. 515,4 0,138 0,089 25 3,7 35
Pec. Maj. Ribs. 390,5 0,138 0,132 25 2,8 35
Subscapularis 1377,8 0,087 0,033 20 9,8 35
Supraspinatus 487,8 0,068 0,04 20 7 35
Teres Maj. 425,4 0,162 0,02 16 3 35
Teres Min. 354,3 0,074 0,071 24 2,5 35
Anconeus 350 0,027 0,018 1 2,5 35
Biceps long 624,3 0,116 0,272 2 4,5 35
Biceps short 435,6 0,132 0,192 3 3,1 35
Brachialis 987,3 0,086 0,054 4 7,1 35
Brachioradialis 261,3 0,173 0,133 5 1,9 35
Ext. Carpi. Rad. Long. 304,9 0,081 0,224 6 2,2 35
Pronator Teres 566,2 0,049 0,098 10 4 35
Triceps Lat. 624,3 0,114 0,098 9 4,5 35
Triceps Med. 624,3 0,114 0,091 9 4,5 35
Triceps long 798,5 0,134 0,143 9 5,7 35
Supinator 476 0,033 0,028 11 3,4 35

Table A.2 – Muscles parameters of upper extremity used in the models of this
work.
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F. Michaud, F. Mouzo, U. Lugŕıs, J. Cuadrado. Energy expenditure estimation
during crutch-orthosis-assisted gait of a spinal-cord-injured subject. Frontiers in
Neurorobotics, vol. 13, article 55, 11 pages, 2019.

Submitted journal papers (under review)

F. Michaud, U. Lugris, J. Cuadrado and A. Kecskemethy. A procedure to define
customized musculoskeletal models for the analysis of the crutch-orthosis-assisted
gait of SCI subjects. J. of Biomechanical Engineering.

F. Michaud, M. S. Shourijeh, B.J. Fregly, and J. Cuadrado. Do muscle synergies
improve optimization prediction of muscle activations during gait?. Frontiers In
Computational Neuroscience.

F. Mouzo, F. Michaud, U. Lugris and J. Cuadrado. Leg-orthosis contact force
estimation from gait analysis. Mechanism and Machine Theory.

95



B. Works derived from this thesis

Journal papers in preparation

F. Michaud, F. Mouzo, U. Lugris, J. Cuadrado, Estimating physiologically feasi-
ble muscle forces in human motion through co-simulation of muscular and skeletal
dynamics, J. of Biomechanical Engineering.

Conference communications

U. Lugris, J. Carlin, F. Michaud, J. Cuadrado Joint Efforts Calculation in the
Gait of Incomplete Spinal Cord Injured Subjects. 2nd Joint Int. Conference on
Multibody System Dynamics (IMSD). Stuttgart, Germany, 2012-05.

D. Dopico, A. Luaces, F. Michaud, J. Cuadrado. Simulation of the Anchor Lift-
ing Maneuver of a Ship Using Contact Detection Techniques and Continuous Force
Models. The Sixth Asian Conference on Multibody Dynamics ACMD2012. Shang-
hai, China, 2012-08.

J. Cuadrado, U. Lugris, F. Michaud, F. Mouzo. Role of Multibody Dynam-
ics Based Simulation in Human, Robotic and Hybrid Locomotion Benchmarking.
Workshop on Benchmarking Bipedal Locomotion, 2014 IEEE-RAS Int. Conference
on Humanoid Robots. Madrid, Spain, 2014-11.

F. Michaud, U. Lugris, Y. Ou, J. Cuadrado, A. Kecskemethy. Influence of Muscle
Recruitment Criteria on Joint Reaction Forces During Human Gait. ECCOMAS
Thematic Conference on Multibody Dynamics 2015. Barcelona, Spain, 2015-06.

F. Michaud, U. Lugris, Y. Ou, J. Cuadrado, A. Kecskemethy. Comparison of
Forward-dynamics Approaches to Estimate Muscular Forces in Human Gait. 4th
Joint Int. Conference on Multibody System Dynamics (IMSD 2016). Montreal,
Canada, 2016-05.

F. Michaud, U. Lugris, J. Cuadrado. A Co-integration Approach for the Forward-
dynamics Based Solution of the Muscle Recruitment Problem (Premio al mejor
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Appendix C

Resumen extendido

Introducción

Los avances en el cuidado de los lesionados medulares han resultado en una ma-
yor esperanza de vida entre esta población [1]. Levantarse y caminar regularmente
tiene enormes beneficios para el estado general de salud de estas personas, ya que
reduce las consecuencias negativas del sedentarismo. Un ejemplo es la osteoporosis
[2], es decir, la pérdida ósea debida a la descarga mecánica esquelética. Mientras
que la plasticidad muscular o la estimulación eléctrica muscular atenúan la atrofia
muscular, ninguno de ellos conserva la masa ósea [3]. Por lo tanto, la adherencia a
la marcha asistida es importante, pero existe un riesgo de abandono debido a va-
rios problemas, como dolor, fatiga o muy baja velocidad, lo que puede hacer que
el sujeto vuelva a usar únicamente la silla de ruedas. Los lesionados medulares con
alguna capacidad de actuación en cadera pero con poca o nula capacidad de actua-
ción en rodilla y tobillo, pueden en muchos casos caminar con la ayuda de órtesis
de rodilla-tobillo-pie y muletas [4] [5]. Sin embargo, dado que las rodillas se man-
tienen extendidas en todo momento, incluso durante la fase de balanceo, la marcha
resulta muy incómoda, pues la cadera debe levantarse para permitir el balanceo
de la pierna, lo que conlleva un alto coste energético que hace aparecer la fatiga
rápidamente. Además, el uso de muletas produce cargas elevadas en algunas articu-
laciones, especialmente en los hombros, lo que puede generar lesiones a largo plazo.
El resultado es que muchos pacientes prefieren usar la silla de ruedas [6], perdiendo
aśı los beneficios de caminar para su rehabilitación y para su estado de salud ge-
neral. Para paliar estos problemas, se han propuesto órtesis activas que detectan la
intención de dar el paso y lanzan un ciclo de flexión-extensión de rodilla [7], aproxi-
mando aśı la marcha normal, lo que puede hacer la marcha más cómoda y aumentar
las posibilidades reales de caminar para los usuarios. Algunas magnitudes, como las
reacciones en las articulaciones o el coste energético, pueden servir como indicadores
para evaluar el efecto de los dispositivos de asistencia en un usuario espećıfico y, por
lo tanto, la probabilidad de su uso real a largo plazo. El uso combinado de la captura
de movimiento-fuerza-EMG y los modelos neuromusculoesqueléticos personalizados
permite estimar las magnitudes mencionadas, sin la necesidad de largas y agotado-
ras pruebas experimentales que dif́ıcilmente podŕıan afrontar estos pacientes. Por lo
tanto, el presente trabajo está dedicado, por un lado, a revisar, seleccionar, adaptar,
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C. Resumen extendido

mejorar y/o desarrollar, y validar, todos los métodos y herramientas necesarios que
se requieren para este propósito: (i) modelos músculoesqueléticos personalizados;
(ii) métodos de análisis a nivel esquelético y musculoesquelético; (iii) métodos de
estimación de coste energético. Y, por otro lado, a aplicarlos a dos lesionados medu-
lares, bilateral y unilateral, respectivamente, y a comparar una nueva órtesis activa
con una pasiva convencional.

Objetivos

El objetivo de este trabajo es evaluar el efecto de los dispositivos ortésicos en
lesionados medulares y la probabilidad de su uso a largo plazo, mediante la estima-
ción de algunos indicadores como fuerzas de reacción y coste energético, que a su
vez requieren la estimación de las activaciones y fuerzas musculares. Para ello, se
establecen algunos objetivos parciales:

— Selección de un modelo neuromusculoesquelético para sujetos sanos y adap-
tación a lesionados medulares.

— Comparación, en términos de precisión y eficiencia, de varios métodos para
la solución del problema de reclutamiento muscular, y propuesta de criterios
de uso según la aplicación.

— Validación de dos métodos para estimar el coste energético en la marcha
normal.

— Aplicación de los modelos y métodos previamente seleccionados a la marcha
asistida por órtesis y muletas de lesionados medulares y comparación entre
un dispositivo ortésico pasivo y otro activo.

Estructura de la tesis

El cuerpo principal de esta tesis se organiza de la siguiente manera:

Caṕıtulo 2 presenta el modelo musculoesquelético, el modelo muscular y la for-
mulación de la dinámica de sistemas multicuerpo utilizados en esta tesis.

Caṕıtulo 3 compara varios métodos de optimización para estimar las fuerzas mus-
culares en la marcha humana utilizando enfoques de dinámica inversa y directa.

Caṕıtulo 4 presenta dos métodos de la literatura para estimar el gasto energético
muscular: los métodos de Umberger y Bhargava.

Caṕıtulo 5 muestra la aplicación de los métodos propuestos en caṕıtulos anterio-
res a dos lesionados medulares que caminan con dos tipos de dispositivos ortésicos
y compara su efecto en la marcha de los sujetos.

Caṕıtulo 6 extrae las conclusiones de la tesis e indica futuras ĺıneas de investiga-
ción.
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Metodoloǵıa

El objetivo de esta tesis era evaluar el efecto de distintos dispositivos ortésicos
en lesionados medulares, junto con la probabilidad de su uso a largo plazo, a través
de la estimación de algunos indicadores como fuerzas de reacción y coste energético,
que a su vez requieren la estimación de las activaciones y fuerzas musculares. Por lo
tanto, desde el punto de vista académico, la tesis se centró en el análisis de la marcha
humana mediante métodos computacionales a nivel musculoesquelético. El trabajo
se puede dividir en dos partes principales. En la primera parte, se aplicaron, vali-
daron y compararon métodos para sujetos sanos. En la segunda parte, los métodos
seleccionados en la primera parte se aplicaron a dos lesionados medulares, clara-
mente diferentes, que caminaban con muletas y utilizaban dos tipos de dispositivos
ortésicos, que fueron objeto de comparación.

Experimentos y resultados

En la primera parte, se aplicaron varios métodos de optimización para estimar las
fuerzas musculares y se compararon para cinco sujetos sanos. Primero se compararon
distintos enfoques de optimización basados en dinámica inversa, cuatro estáticos y
tres fisiológicos, y mostraron resultados similares. Se comprobó que una mayor com-
plejidad del método no garantiza mejores resultados, ya que las mejores correlaciones
con los valores experimentales se obtuvieron con el criterio más simple y común. El
enfoque fisiológico fue dif́ıcil de implementar, y presentó el tiempo de cálculo más
largo entre todos los enfoques comparados basados en dinámica inversa, mientras
que su forma simplificada se ejecutó más de 100 veces más rápido y mostró casi los
mismos resultados.

Se pueden sacar las mismas conclusiones para el enfoque de optimización con si-
nergias estudiado en esta tesis. La consideración de los efectos de las sinergias para
resolver el problema de reparto de las fuerzas musculares complicó la programación
y condujo a algoritmos más lentos. Sin embargo, las correlaciones obtenidas no mos-
traron ninguna mejora con respecto a los enfoques que no consideran las sinergias.
El aspecto positivo fue que el enfoque SynO puede extraer las sinergias musculares
y, a su vez, ofrecer una predicción razonable de las activaciones musculares repro-
duciendo bien los pares articulares de la pierna entera. Sin embargo, la combinación
propuesta de SO con NMF mostró resultados pobres con respecto a los pares arti-
culares. Por lo tanto, el enfoque SynO podŕıa resultar útil para la aplicación a la
estimulación eléctrica funcional, el control de movimiento y la predicción, ya que
reduce el espacio dimesional de control.

Otro enfoque práctico para el control de movimiento o la predicción se basa en
la dinámica directa. En este trabajo, se utilizaron métodos basados en dinámica
directa para movimientos registrados con el fin de compararlos con los métodos
anteriores, basados en dinámica inversa. Se propuso un nuevo método, basado en
el Computed Torque Control (CTC). Consiste en un algoritmo de co-simulación
donde las ecuaciones multicuerpo y de dinámica muscular se simulan por separado,
lo que permite utilizar los códigos multicuerpo existentes. Se sugirieron dos versiones
del algoritmo: (i) el enfoque estándar (CSS), que requiere la solución del reparto de
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fuerzas musculares en cada iteración; (ii) el enfoque aproximado (CSA), que limita
la solución del reparto de fuerzas musculares a la primera iteración. Estos algoritmos
se compararon con un método de referencia, el popular Computed Muscle Control
(CMC), para el caso de un péndulo simple accionado por dos músculos. El CSS
fue el enfoque más lento debido a sus numerosas optimizaciones e integraciones. Sin
embargo, el CSA mostró un mejor rendimiento computacional que el CMC aunque
a costa de una menor precisión. Se podŕıa encontrar un compromiso, optimizando el
tiempo de CPU y la precisión. Luego, se aplicó el algoritmo estándar de co-simulación
al análisis de la marcha de los cinco sujetos sanos y se compararon varios criterios
de optimización. Los resultados obtenidos presentaron las mismas conclusiones que
el análisis basado en dinámica inversa: el criterio más simple fue el más eficiente,
y el fisiológico fue mucho más lento y no mejoró las correlaciones con medidas de
electromiograf́ıa (EMG).

Sin embargo, a pesar de sus desventajas, el enfoque fisiológico basado en dinámi-
ca inversa resultó útil para implementar los dos métodos de gasto de enerǵıa basados
en el modelo de músculo de Hill, ya que es el único enfoque que proporciona las va-
riables musculares requeridas como entradas. Si se usa la forma simplificada con
tendón ŕıgido, la tasa de trabajo mecánico resulta casi nula, debido a las pequeñas
variaciones de longitud de la parte contráctil del músculo. Los resultados obtenidos
con los dos métodos de gasto energético se validaron experimentalmente para un
sujeto sano durante varios ciclos de marcha a diferentes velocidades. Se obtuvieron
buenas correlaciones con ambos enfoques, pero los resultados mostraron que es ne-
cesaria una calibración por sujeto de la tasa metabólica basal de todo el cuerpo. Sin
embargo, las pendientes (coste energético frente a velocidad de la marcha) obtenidas
con ambos métodos fueron coincidentes, y fueron coincidentes con las de la literatu-
ra, siendo la pendiente el punto esencial para comparar dos actividades realizadas
por el mismo sujeto y utilizando el mismo método.

Posteriormente, se aplicó la misma metodoloǵıa utilizada para el sujeto sano
para estudiar la marcha de dos lesionados medulares y evaluar la eficacia de una
órtesis activa con respecto a la clásica pasiva. Para cada sujeto, se utilizó un modelo
musculoesquelético personalizado debido a la singularidad de las lesiones.

El primer sujeto, bilateral, mostró mejoras significativas gracias a la actuación
motora en ambas rodillas: pudo caminar más rápido usando un paso más largo y una
cadencia más alta. Su patrón de marcha cambió significativamente, con reducción
del movimiento de la pelvis que produjo un menor desplazamiento lateral del centro
de masas. Se obtuvo una estimación razonable de las activaciones musculares para
este caso, lo que respalda la metodoloǵıa utilizada.

Con el segundo sujeto, unilateral, se llevaron a cabo capturas de movimiento-
fuerza-EMG utilizando tanto la órtesis pasiva como la activa, lo que permitió una
comparación más completa de los dispositivos. La aceptable correlación entre las
mediciones de EMG y las activaciones musculares estimadas, sirvió para validar las
entradas proporcionadas para los cálculos de coste energéticos. Un mejor patrón de
marcha y un menor consumo de enerǵıa fueron los resultados del uso del dispositivo
activo de asistencia mientras que no se encontró una reducción significativa en las
fuerzas de reacción en los hombros.
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Conclusiones y trabajo futuro

Se demostró que los modelos y análisis computacionales pueden proporcionar
indicadores valiosos, como reacciones articulares y consumo enegético, para evaluar
el efecto de los dispositivos asistivos en pacientes, sin necesidad de acudir a pruebas
experimentales largas y agotadoras.

La investigación realizada en esta tesis deja algunos temas sin explorar que pue-
den convertirse en futuras ĺıneas de investigación.

El primero es hacer una comparación entre los resultados obtenidos de la captura
de movimiento-fuerza-EMG de los cinco sujetos sanos por los métodos desarrollados
internamente y el software de referencia OpenSim. Aunque, en esta tesis, se uti-
lizó la geometŕıa muscular de OpenSim, los modelos y métodos son diferentes. Se
debe realizar una comparación para la cinemática, pares articulares y activaciones
musculares estimadas.

Luego, se observó que el gasto energético pod́ıa estimarse utilizando el modelo de
tendón ŕıgido. Seŕıa interesante validar esta observación y probar otros métodos de
optimización para estimar el consumo de todo el cuerpo, como por ejemplo enfoque
de sinergias (SynO).

En cuanto a los estudios con lesionados medulares, padecieron algunas limita-
ciones en este trabajo. La primera limitación fue que sólo se estudiaron dos lesiona-
dos medulares debido a las dificultades experimentadas para encontrar candidatos
válidos, y al costoso y lento proceso requerido para construir los dispositivos perso-
nalizados. La segunda limitación fue que los lesionados medulares realizaron pocas
sesiones de entrenamiento con el dispositivo ortésico activo. Hubiera sido deseable
continuar el estudio durante un peŕıodo más largo y ver la evolución de las reaccio-
nes articulares y el coste energético a medida que los usuarios se familiarizaban más
con los nuevos dispositivos. Los trabajos futuros podŕıan ir en la dirección de supe-
rar estas limitaciones. Repetir el estudio para más lesionados medulares y abarcar
peŕıodos más largos.

Finalmente, el conocimiento adquirido y el software desarrollado podŕıan apli-
carse a diferentes actividades y/o a sujetos que sufran de otras limitaciones.
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