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Abstract: Carbon mitigation is a major aim of the power-generation regulation. Renewable energy
sources for electricity are essential to design a future low-carbon mix. In this work, financial Modern
Portfolio Theory (MPT) is implemented to optimize the power-generation technologies portfolio.
We include technological and environmental restrictions in the model. The optimization is carried
out in two stages. Firstly, we minimize the cost and risk of the generation portfolio, and afterwards,
we minimize its emission factor and risk. By combining these two results, we are able to draw an
area which can be considered analogous to the Capital Market Line (CML) used by the Capital Asset
Pricing model (CAPM). This area delimits the set of long-term power-generation portfolios that can
be selected to achieve a progressive decarbonisation of the mix. This work confirms the relevant role
of small hydro, offshore wind, and large hydro as preferential technologies in efficient portfolios. It
is necessary to include all available renewable technologies in order to reduce the cost and the risk
of the portfolio, benefiting from the diversification effect. Additionally, carbon capture and storage
technologies must be available and deployed if fossil fuel technologies remain in the portfolio in a
low-carbon approach.

Keywords: energy planning; Modern Portfolio Theory (MPT); Capital Asset Pricing Model (CAPM);
low-carbon economy; renewable energy deployment; environmental efficiency

1. Introduction

Energy planning fosters decision-making from the political, social, and environmental
dimensions [1]. In addition to these dimensions, physical and technical variables complete a picture
characterized by the uncertainties, risks, and complexities around them [2–4]. In the core of this
problem, we find some questions such as how to satisfy the demand, how to minimize the generation
cost, and how to meet the emission objectives [5]. Decision-making inside energy planning is, thus, a
strategic process as it conditions the economic, social, and climate future through the selected energy
transition approach [6,7], so much so that the errors in energy planning can result in the overcapacity
either of the total power-generation system or of some technology; in higher tariffs for the households;
in higher costs for the support schemes; or in energy policy actions driving to situations of legal
uncertainty for technological investors [8].

Energy planning uses several techniques to solve a territory or country energy problem. The model
that we put forward in this work employs quadratic programming as it is based on the Financial
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Portfolio Theory to design efficient power-generation real asset portfolios [9–22]. This proposal is in
the line with other well-known optimisation models such as multi-period linear programming [1,5],
interval linear programming [3,23,24], or stochastic programming [2,25–27].

Energy planning can be seen as a long-term investment selection problem. The aim is to design the
composition of the generation mix by complying with the economic, social, and environmental criteria
set for a territory or region [10,14–17]. This approach is similar to that of the Energy Trilemma from
Stempien and Chan (2017) [28], which encompasses energy security, energy sustainability, and energy
equity. The proposal includes both the traditional energy planning approach about the minimisation
of cost of the future power-generation portfolio that satisfies the power demand [2,4,11,29] and the
current trends observed in the literature about the need of considering the risk and the uncertainty of
the energy and climate context [2–4].

We employ the Modern Portfolio Theory (MPT) methodology. It allows us to include some
fundamental matters in the analysis, like energy security [30–32]—through the study of the portfolio
diversification—and its positive effects on the power supply disruption [12–14,17,33]. Energy security
is a key element in the agenda of the energy-resource-importing countries [34]. Setting and managing
their energy policy objectives are essential for these countries to reduce the energy risk arisen from
importing resources [7,35]. Increasing the renewable energy sources (RES), improving the energy
efficiency, and reducing CO2 emissions [34] are objectives that empower the environmental aspect as
well as improve the level of energy security. The aim is to adjust the available resource consumption and
to give priority to indigenous technologies (renewable technologies) in power generation. This leads to
reducing the dependence on imported fossil combustibles, to decreasing the pollutant gas emission—as
these technologies are non-pollutant—and to using natural resources that are not constrained by a
future depletion of reserves [5,36,37]. Thus, we can conclude that energy planning and environmental
protection are two sides of the same coin [38,39].

Our approach falls within the research line aiming at including sustainable development principles
inside long-term environmental and energy planning [40–42]. Examples of this environmental
commitment are establishing objectives for the reduction of pollutant gases emission [14,17,31–33], for
including the externalities derived from power generation [10,41–45], or for taking into account the
CO2 emission costs [10,18,29,46–48] by establishing markets like the EU Emissions Trading System
(EU-ETS) [49–52]. Such a set of measures helps policy makers fix the “market failure” [44] and assign
resources in a way that is optimal and efficient [41,45]. In this context, renewable technologies appear
as a part of the solution due to their multiple positive features: they do not emit pollutant gases,
they do not depend on fossil fuels, and thus they are not subject to geopolitical risks; as they have an
autonomous character, they reduce the energy dependency [16,33,53–55].

Our proposal may improve the previous approach of Martinez et al. (2018) [56], employing and
developing the initial financial concept of the Capital Market Line to a realistic power portfolio case.
The process starts by characterizing the power-generation-emitting technologies according to their
emission and risk. The objective is to minimize the power-generation emission level. In other words,
we opted to minimize the emission amount (kg-CO2/MWh) instead of minimizing its monetary value.
This allows us to achieve a result that equalises the imbalance caused by the minimization of emission
costs [57]. The model solution results in the power-generation mix that minimizes CO2 emissions.
The model consists of a multi-stage MPT model of quadratic optimization.

Among the criticism of employing the MPT to implement power-generation optimization, we find
the original MPT being applied to fungible and almost infinitely divisible financial assets. As a matter
of fact, power-generation plants are neither fungible nor divisible assets. We commented that the MPT,
when applied to power generation, should be understood as a tool for decision-making in the medium-
and long-term and for a relatively vast territory (a country or region). Under these assumptions,
power-generation plants can be considered fungible and divisible assets. This study could be presented
as a case of the European Union, due to the definition of technological limitations in the proposed MPT
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model. However, data on technological costs and emission factors belong to international institutions
(IEA), which could allow us to talk about a general case and not only a European one.

It is important to highlight that the application of the MPT to power generation entails a supply
approach. An optimal energy mix is clearly dependent on the demand level, and that level is the one to
which the energy supply is matched. Nevertheless, the MPT approach does not deal with demand-side
issues and focuses uniquely on the optimization of the power-generation mix.

Two fundamental elements are in the basis of the contribution of our work. First, this
approach focuses on the environmental dimension of the power-generation portfolio. We modify
the objective function, which becomes an emission-minimization function instead of a cost—or cost
risk—minimization function. Hence, the model solution shows the minimum possible emission level
instead of the accomplishment of the emission reduction objectives [14,17,20,32]. The second element
is that the Capital Asset Pricing Model (CAPM) is employed coming from the financial field of yield
optimization. The following section is dedicated to briefly explaining the MPT and the CAPM.

2. Materials and Methods

2.1. The Modern Portfolio Theory and the Capital Asset Pricing Model

According to finance theory, given a portfolio of financial assets, it is assumed that their expected
yield and risk can be calculated. In the original model [57], the average of historical yields of every
asset is used as an estimator of the expected yield of that asset, while the variance of those historical
yields is used to assess the risk of every asset. The overall yield of a portfolio is a weighted average
of the yields of its components. Likewise, the risk of the portfolio can be calculated as a quadratic
weighted function of the risk of its components. MPT aims to calculate the asset participation shares
that minimize the risk of the portfolio subject to certain constraints: the participation shares must sum
up to one and, eventually, they must be positive, indicating that short positions are not allowed.

By solving the previous problem, we obtain the so-called efficient frontier. That is the line, in a
risk-return coordinate axis, on which every efficient portfolio lies. An efficient portfolio is a portfolio
that shows the minimum risk for a given return or the maximum return for a given level of risk.
The efficient frontier is concave, and it represents the upper-left limit of the feasible set: the part of the
plane on which every combination of risk and return lies.

MPT has not given the “best” portfolio among the efficient portfolios yet. If now we assume that
there is a riskless asset, an investor can spend part of their budget in this riskless asset and the other
part in an efficient portfolio [58]. The set of possible linear combinations define a line that connects
the point corresponding to the riskless asset yield (in the ordinate axis as its risk is zero) and the
efficient frontier. As the efficient frontier is concave, this line will be tangent to it. The tangency point
is known as the tangent portfolio or the market portfolio and represents the efficient portfolio that best
summarizes the market behaviour.

This tangent line is called the “Capital Market Line” or CML, and every investor should choose a
point on that line as it shows higher yields for any level of risk. In fact, this line can be drawn further
from the tangency point, indicating that the investor is borrowing money. The CML is a relevant
concept of the Capital Asset Pricing Model or CAPM [59]. Another important issue of the CAPM
focuses on a single asset in order to calculate its “Security Market Line” or SML. The slope of this
SML, on a market risk–return coordinate axis, defines how the asset behaves in relation to the market.
The slope of the SML is known as the beta of an asset. If the beta is less than one, the asset is less
volatile (less risky) than the market. If it is higher than one, the asset is more volatile (riskier) than
the market.

2.2. Applying MPT and CAPM Beyond Finance

The portfolio optimization approach can be classified inside risk-control management [60] and
focuses on minimizing the portfolio risk by its diversification [16,19,60,61]. A significant number of
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works in the literature support the conclusion that it is a proven methodology for its application to
energy planning [16,17] and for optimizing the operation of demand response resources [62]. The MPT
approach allows the joint inclusion of both cost and cost-risk of the different available technologies.
This duality allows that the objective function can be expressed both as a power-generation portfolio cost
minimization function and as a power-generation portfolio risk minimization function. By introducing
the binomial cost-risk in the energy planning optimization model, the approach (traditionally based on
the cost minimization [11,13,29]) is improved.

MPT applications are extensive in the literature. Particularly, it has been helpful to analyse different
environmental elements. Among the last works published about MPT applied to biodiversity, the one
from Yemshanov et al. (2014) [63] stands out. Their work deals with the pest surveillance problem
from a diversification point of view, and they study the optimal allocation of surveillance resources by
employing MPT. Later, Akter et al. (2015) [40] applies MPT analysis to asset-based biosecurity decision
support. These works underline the value of MPT as a valid and relevant tool against the uncertainty
derived from the lack of knowledge about species invasion dynamics. These authors’ approach is the
opposite of the one maintained by others like those of References [31,64–66], who point out that, in
contexts characterized by ignorance and uncertainty about the analysed assets, using historical data
as the only source to develop the MPT model can drive to non-robust results. To solve this pitfall,
Hickey et al. [31] employed, complementarily to MPT, other tools like diversification indexes or an
approach based in real options.

Regarding CAPM, recent studies applied it to the energy field. It is worth highlighting some of
these studies. Inside the power retailer portfolios management, Charwand et al. (2017) [67] studied
the maximization under uncertainty of the total expected rate of return of an electricity retailer. They
broadened the work of Karandikar et al. (2007) [68] who used CAPM to determine the retail electricity
price for end users. In this line, Rohlfs and Madlener (2013) [69] applied CAPM to calculate every
technology rate of return inside a stochastic NPV approach—they proposed a cost effectiveness model
to analyse different clean-coal technology pathways from the value of capture-readiness. Other
authors [70–72] confirmed the suitability of using discount models as assessment tools when valuing
investment projects under conditions of risk and uncertainty. In these models, one of the key variables
is the discount rate and the CAPM arises as an optimal tool for its estimation. Recently, Zhang and Du
(2017) [73] referred to the work of Broadstock et al. (2014) [74] as an example of CAPM application—in
this case, to investigate the possible relationship between the international oil prices and the energy
stock quotes in China. In a similar line, Schaeffer et al. (2012) [75] used CAPM to study the evolution of
different oil companies’ stock prices and to estimate their beta, which allows to foresee the behaviour
of every company in the face of changes in the market portfolio. Additionally, Mo et al. (2012) [76] put
forward a multifactor market model based on the CAPM theory to study the impact of the EU-ETS on
the corporate value of EU electricity firms.

2.3. Developing the Multi-Stage Model

Throughout this subsection, we are going to explain how to develop our model. This part is
divided in three main steps. In the first one, we will explain how to devise the instrumental model,
which considers all the power-generation technologies in order to draw a reference efficient frontier.
In the second step, we deal with non-pollutant power-generation technologies—nuclear, onshore wind,
offshore wind, hydro, small hydro and photovoltaic (PV)— to build a non-pollutant efficient frontier.
These two first steps constitute the first stage of our model.

Finally, in the third step, we will put forward the emission-risk model based on the CO2 emissions
of the pollutant technologies and in the risk or variability of the CO2 emission cost. This will give
us a pollutant-technology-efficient frontier which corresponds to the efficient-pollutant-generation
portfolios—those that offer the lowest emission level to a given level of risk or vice versa—that are to be
combined with the efficient non-pollutant generation portfolios obtained in the first stage of the model.
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2.3.1. The Cost-Risk Instrumental Model

Based on MPT, we devise a model to find the efficient frontier or the set of portfolio cost-risk pairs
that offers the lowest cost for a given level of risk or the lowest risk for a given level of cost. We will
work with twelve technologies: Six of them are non-pollutant—nuclear, onshore and offshore wind,
large and small hydro, and large photovoltaic (PV)—and the other six are pollutant—coal, coal with
carbon capture and storage (CCS), natural gas, natural gas with CCS, oil, and biomass.

In MPT, the cost risk of a specific technology is measured by its cost standard deviation. Table 1
shows the expected costs, the cost standard deviation, the expected emission factor, and the emission
cost standard deviation for every technology in our model. We used some information available in
the literature about the different categories of costs in a power-generation plant (capital expenditures
and operational expenditures, such as operation and maintenance costs, fuel costs, emission costs, and
dismantling costs) to calculate the average generation costs by technology, their standard deviation,
and the correlation among them. We also use the emission cost standard deviation as a proxy of
the real emission standard deviation, as we have no real emission data. It is important to underline
that we consider the nuclear generation technology as non-pollutant, even though it involves other
important environmental risks not related with carbon emission. Moreover, we decided to include
biomass generation in the pollutant set of technologies as it has carbon emissions, although it could be
considered testimonial. In fact, this decision (considering the biomass as a pollutant technology) will have
some effects on our results that will be conveniently explained. Another point to take into account is the
fact that the current emission factor can vary along time, but we do not consider this concern in this work.

Table 1. Cost, emission, and standard deviations by technology. Source: Authors’ own work, based on
data collected from DeLlano et al. (2014, 2015) [14,77].

Technology and Abbreviation
Used Cost (€/MWh) Cost Variance Emission

(kg-CO2/MWh)
Emission Cost

Variance

Nuclear (N) 30.04 8.07 - -
Wind (W) 60.69 41.69 - -

Offshore Wind (OW) 73.81 52.04 - -
Hydro (H) 38.62 105.79 - -

Small Hydro (SH) 42.95 12.92 - -
PV 212.03 110.27 - -

Biomass (B) 96.62 162.84 1.84 0.01
Coal (C) 52.23 31.51 734.09 4.77

Coal with CCS (C CCS) 78.44 46.27 101.00 0.66
Natural Gas (NG) 38.79 12.33 356.07 2.31

Natural Gas with CCS (NG CCS) 63.60 44.45 48.67 0.32
Oil (O) 93.17 155.83 546.46 3.55

A power-generation portfolio is a specific set of participation shares or weights of every technology
in the model. For technology i, with i = {1, 2, . . . , 12}, its participation share will be denoted
by wi. w ∈ R12×1 represents the vector with twelve participation shares of a specific portfolio.
These participation shares are the unknown variables of which the values are to be determined.

With c ∈ R12×1, the vector containing the expected cost associated to every generation technology,
the cost of a portfolio P can be calculated by Equation (1), where the supraindex t indicates the
transposition operation.

cP = wt
× c (1)

Now denote by V ∈ R12×12 the variance-covariance matrix of the twelve technologies in the model.
Thus, the portfolio risk, the standard deviation of the portfolio cost, will be as shown in Equation (2).
Table 2 contains the cost variances-covariances used in the model.

σP = (wt
×V ×w)

1
2 (2)



Energies 2019, 12, 3599 6 of 20

Table 2. Cost variance-covariance matrix. Source: Authors’ own work, based on data collected from
DeLlano et al. (2014, 2015) [14].

Technology N C C
CCS NG NG

CCS O W H SH OW B PV

N 8.07 3.84 5.07 3.54 4.26 15.32 −0.07 −0.42 −0.46 −0.10 −6.40 0.20

C 3.84 31.51 7.04 4.02 4.81 20.82 −0.21 0.03 0.03 −0.31 −14.1 -0.21

C CCS 5.07 7.04 46.27 5.43 6.60 27.16 −0.45 0.06 0.07 −0.68 −18.5 -0.46

NG 3.54 4.02 5.43 12.33 6.55 15.44 0.00 −0.08 −0.08 0.00 −3.16 0.05

CCS NG 4.26 4.81 6.60 6.55 44.45 18.33 0.00 −0.16 −0.17 0.00 −3.38 0.11

O 15.32 20.82 27.16 15.44 18.33 155.8 −4.02 −1.95 −2.11 −6.07 −86.4 -0.16

W −0.07 −0.21 −0.45 0.00 0.00 −4.02 41.69 0.94 1.01 4.68 −0.31 0.09

H −0.42 0.03 0.06 −0.08 −0.16 −1.95 0.94 105.8 3.64 1.41 −0.33 0.56

SH −0.46 0.03 0.07 −0.08 −0.17 −2.11 1.01 3.64 12.92 1.53 −0.36 0.60

OW −0.10 −0.31 −0.68 0.00 0.00 −6.07 4.68 1.41 1.53 52.04 −0.48 0.13

B −6.40 −14.1 −18.5 −3.16 −3.38 −86.4 −0.31 −0.33 −0.36 −0.48 162.8 0.25

PV 0.20 −0.21 −0.46 0.05 0.11 −0.16 0.09 0.56 0.60 0.13 0.25 110.3

The problem of minimising the risk can be expressed in terms of a constrained quadratic
optimization problem: minσP, subject to a set of constraints that are described hereunder.

When applying MPT to power-generation planning, there are some technical constraints to keep in
mind. First, the total sum of every participation share wi must be equal to one. Also, every participation
share wi must be 0 or positive, and from the first constraint, it must also comply with wi ≤ 1.

The use of technologies for power generation is usually limited for the sake of the necessary power
supply security, one of the main objectives of a country or territory power policy. Diversification of
power-generation technologies leads inarguably to a more secure power supply. Moreover, another
aim of a country or territory power policy is to preserve the environment and this can be reached by
imposing stricter limits to the most pollutant technologies. Hence, our model has a set of technological
and environmental constraints, imposing an upper limit on those weights wi. These limits come from
some diverse institutional forecasts (IEA, EU-IPTS, and the European Union Commission) and should
be taken as reference limits as they can be adapted to specific country demands and as they are subject
to changes over time. Table 3 details these limits.

Table 3. Limits by generation technology. Source: Authors’ own work, based on data collected from
DeLlano et al. (2015) [14].

Technology Maximum Participation

Nuclear 29.80%
Wind 20.30%

Offshore Wind 2.00%
Hydro 10.80%

Small Hydro 1.50%
PV 5.5%

Biomass 8.50%
Coal with and without CCS 23.40%

Natural Gas with and without CCS 27.60%
Oil 0.80%

CCS technologies as a whole 18% of the non-CCS coal and
natural gas, and oil participations

Just by using the aforementioned constraints—technical, technological, and environmental
constraints—we are able to obtain a unique portfolio called the global minimum variance portfolio or
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GMV portfolio. This portfolio shows the least risk level of every possible portfolio. As we want to
obtain not only the GMV portfolio but also the set of efficient portfolios or efficient frontier, we must
add an additional constraint to our model: the cost constraint. As a matter of fact, the GMV portfolio
is the portfolio with the least risk but it is also an efficient portfolio with the highest cost. On the
opposite end of the efficient frontier, we will find a portfolio with the lowest cost of all the efficient
portfolios—but also with the highest risk of all the efficient portfolios. We can easily find this global
minimum cost (GMC) portfolio by solving a linear programming problem of which the objective is
to minimise the portfolio cost, mincP = minwt

× c, subject to the same constraints described above,
except the cost constraint. This constraint is added to the quadratic model as cP = c∗, with c∗ as an
objective cost for the portfolio. Iterating the quadratic model by changing this objective cost between
the GMV cost and the GMC cost, we are able to draw the efficient frontier.

The model can then be expressed as in Equation (3).

minσP = min(w×V×wt)
1
2 , subject to :

wi ≥ 0, ∀i, i = {1, 2, . . . , 12}
12∑

i=1

wi = 1

Technological and environmental constraints
[cP = wt

× c = c∗]

(3)

Solving this model, we obtain the efficient frontier shown in Figure 1, where we also draw the
extreme points of this frontier—the GMV portfolio and the GMC portfolio—along with their cost and
risk values. In the graph, we also represent the cost-risk points corresponding to those technologies
that fit into the graph’s limits—nuclear, natural gas, and small hydro.
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Figure 2 represents the participation shares of the different technologies in the efficient frontier
portfolios of the instrumental model. As we can see, the GMV portfolio, the one on the left side of the
figure, shows a higher diversification—its Herfindahl–Hirschman index is 18.40%, less than the GMC
portfolio with a Herfindahl–Hirschman index of 23.64%, which is considered good for energy security.
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Moreover, the nuclear, the small hydro, as well as the offshore wind technologies participate in
the GMV portfolio at their maxima. On the other hand, in the GMC portfolio, the nuclear, the coal, the
natural gas, the hydro, the small hydro, and the offshore wind technologies play a part at their maxima.
Therefore, nuclear, small hydro, and offshore wind are regarded as highly efficient technologies in
terms of cost and risk by the model.

The next step will be to classify the different generation technologies into two different subsets:
one for the pollutant technologies—coal, coal with CCS, natural gas, natural gas with CCS, oil,
and biomass—and another one for the non-pollutant technologies—nuclear, wind, offshore wind,
hydro, small hydro, and PV. For the first subset, we are going to set out a model quite similar to the
instrumental one just exposed. For the second subset, we will consider an emission-risk model instead
of a cost-risk model.

2.3.2. The Non-Pollutant Technology Efficient Frontier

Using the same data shown in Tables 1 and 2 but considering only those non-pollutant technologies,
we will adapt the technological and environmental constraints of the instrumental model to obtain
the constraints pertinent to this non-pollutant technologies model. To adapt the technological and
environmental constraints of the instrumental model to the non-pollutant technologies, we decided
to work on the basis of the non-pollutant technology’s participation shares in the efficient frontier
calculated in the previous section. Briefly, we raised the participation share of every non-pollutant
technology relative to the total non-pollutant technologies participation shares in every efficient
portfolio and took the maximum by technology, resulting in the limits presented in Table 4, where
the column “Maximum Weight” refers to the maximum weight reached in the efficient frontier of the
previous model and the column “Maximum Participation” refers to this maximum weight considering
only the non-pollutant technologies.
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Table 4. Non-pollutant technological and environmental limits. Source: Authors’ own work, based on
data collected from DeLlano et al. (2015) [14].

Technology Maximum Weight Maximum Participation

Nuclear 29.80% 60.82%

Wind 12.66% 23.86%

Offshore Wind 2.00% 3.92%

Hydro 10.80% 22.04%

Small Hydro 1.50% 3.06%
PV 4.16% 7.86%

Thus, the non-pollutant model is presented in Equation (4); keep in mind that the cost restriction
is used to calculate the efficient frontier as described in the previous section.

minσP = min(w×V×wt)
1
2 , subject to :

wi ≥ 0, ∀i, i = {1, 2, . . . , 6}∑6
i=1 wi = 1

wNuclear ≤ 60.82%
wWind ≤ 23.86%
wOffshore Wind ≤ 3.92%
wHydro ≤ 22.04%
wSmall Hydro ≤ 3.06%
wPV ≤ 7.86%
[cP = wt

× c = c∗]

(4)

Solving this model, we obtain the efficient frontier shown in Figure 3. Note that the dashed grey
line shown is the instrumental model efficient frontier from the previous section. Comparing both
efficient frontiers, the one from the instrumental model and the one from the non-pollutant technology
model, we can observe that the instrumental model shows higher costs but lower risks—as its efficient
frontier is displaced upward and toward the left.
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Analysing the weights in the GMV and GMC portfolios, we see that nuclear and small hydro
participate again at their maxima in both portfolios. In particular, in the GMV portfolio, the offshore
wind also participates at its maximum, while in the GMC portfolio, it is the hydro technology that also
enters at its maximum.

Not surprisingly, the Herfindahl–Hirschman index is worse than in the instrumental model,
the non-pollutant technology model has fewer technologies, and again, the GMV portfolio is more
diversified than the GMC portfolio.

2.3.3. The Emission-Risk Pollutant Technology Efficient Frontier

We will replace our cost-risk orientation with an emission-risk orientation in this second stage
of the model presented in this work. As stated, we have no emission data, apart from the emission
average shown in Table 1, and hence, we use the CO2 cost standard deviation as a proxy for the
emission standard deviation. According to this information, we simulated 100,000 normal distributed
values to calculate the variance-covariance matrix shown in Table 5.

Table 5. Emission variance-covariance matrix.

Technology Coal Coal with
CCS

Natural
Gas

Natural Gas
with CCS Oil Biomass

Coal 22.846215 −0.014355 −0.020952 −0.003395 −0.004446 0.000102

Coal with CCS −0.014355 0.436912 0.004161 0.000500 0.007233 0.000058

Natural Gas −0.020952 0.004161 5.298606 −0.001473 0.002642 −0.000033

Natural Gas
with CCS −0.003395 0.000500 −0.001473 0.102033 0.002162 −0.000014

Oil −0.004446 0.007233 0.002642 0.002162 12.594664 0.000114

Biomass 0.000102 0.000058 −0.000033 −0.000014 0.000114 0.000100

The pollutant technology emission-risk model presented in this section is highly similar to the
instrumental model except for the following two aspects. Firstly, we are not using costs in the
current model but emission factors for the six pollutant technologies—coal, coal with CCS, natural
gas, natural gas with CCS, oil, and biomass. Secondly, we will show five different adaptations
of the current model, four of them without constraints other than the model technical constraints.
In the other model adaptation, we include technological constraints for the pollutant technologies.
The limits of these constraints were built in a quite similar manner as that for the non-pollutant
technology model presented in Section 2.3.2., i.e., raising every pollutant technology participation in
the instrumental model efficient frontier portfolios relative to the total pollutant technologies in those
portfolios and getting the maximum participation as the limit. A problem arises as the oil technology
is not participating in any of the calculated portfolios. To fix it, its technological and environmental
limits in the instrumental model are relatively raised to the limits set for the pollutant technologies.

2.3.4. Model Adaptation with All the Non-Pollutant Technologies

For the six pollutant technologies, we solved the model presented in Equation (5), in which eP ∈ R
is the emission factor of the portfolio and e ∈ R6×1 is the emission vector of which the elements can be
found in Table 1:

minσP = min(w×V×wt)
1
2 , subject to :

wi ≥ 0, ∀i, i = {1, 2, . . . , 6}∑6
i=1 wi = 1

[eP = wt
× e = e∗]

(5)
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In this model we substituted the cost constraint for an emission constraint as we are working with
emission-risk pairs instead of cost-risk pairs.

The results of this model are trivial because, in the GMV portfolio, 99.88% of the power generation
is assigned to biomass and, in the global minimum emission portfolio (GME), biomass captures 100%
of the power generation. The efficient frontier is hence insignificant and practically indistinguishable
from a portfolio with 100% biomass generation. These results were expected as biomass shows a very
low level of CO2 emission as compared to the rest of pollutant technologies and a negligible level of
risk. In fact, this result is completely in line with the optimization features of the model.

A single-technology generation portfolio, or a generation portfolio in which one single technology
is responsible for such a big part of the power generation, is quite far from being an acceptable solution
from the point of view of energy planning. Next, we develop some model adaptations to deal with
this circumstance.

2.3.5. Model Adaptations without CCS Technologies and without Biomass Technology

The first adaptation is similar to the previous one, but CCS technologies, both coal and natural gas,
are removed to prevent the possibility of these technologies not being able to reach a feasible commercial
availability. The results are therefore similar: biomass hoards 99.99% of the generation in the GMV
portfolio and 100% of the generation in the GME portfolio because of the reasons exposed above.

In the second model adaptation, biomass technology is removed from the model. The results offer
a bit more information than in the previous models. Figure 4 shows the weights of the five considered
technologies from the GMV portfolio—first column on the left—to the GME portfolio—last column.
The GMV portfolio allows entry of every technology to the generation mix although natural gas with
CCS takes the lion’s share—the Herfindahl–Hirschman index is 65.96% for this portfolio. As we move
from the GMV portfolio to the GME portfolio, it is clear that natural gas with CCS is increasing its
participation share until it reaches 100% in the GME portfolio.
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The third model adaptation shows what happens if neither CCS technologies nor biomass are
available to generate power. Again, natural gas, in this case without CCS, is the dominant generation
technology. Surprisingly, oil takes the second place. This is due to the correlations between oil and
the other two technologies in this model adaptation. Figure 5 shows the weights of the considered
technologies in the efficient frontier portfolios—from the GMV portfolio on the left to the GME portfolio
on the right.
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2.3.6. Model Adaptation with Technological Constraints

In this model adaptation, the problem to solve will be the one presented in Equation (6).

minσP = min(w×V×wt)
1
2 , subject to :

wi ≥ 0, ∀i, i = {1, 2, . . . , 6}
6∑

i=1

wi = 1

wCoal + wCoal with with CCS ≤ 54.84%
wNatural gas + wNatural gas with CCS ≤ 66.40%
wOil ≤ 1.33%
wBiomass ≤ 12.56%
[eP = wt

× e = e∗]

(6)

As stated, the limits were taken from the instrumental model efficient frontier participation shares
of the pollutant technologies, except for the oil technology limit that was taken from the instrumental
model technological limits of the pollutant technologies.

Solving this model adaptation, the results shown in Figure 6 are achieved. As expected, in light
of the precedent results, biomass is participating at its maximum in every efficient frontier portfolio.
When they participate in the less risky portfolios, coal, natural gas, and oil have participation shares
around 1%. In the GME portfolio, natural gas with CCS participates at the maximum set for natural
gas with and without CCS. The little variation in participation shares due to the imposed constraints
will give us a short efficient frontier.
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3. Results

In this section, we present our main results related to cross-drawing the instrumental model and
the pollutant-technology model. Additionally, we will discuss how this model can help policy makers
make their decisions.

3.1. Cross-Drawing the Cost-Risk and Emission-Risk Models and Selecting an Adequate Combination of
Non-Pollutant and Pollutant Technologies

So far, we have one instrumental model that includes all the technologies and constraints, a
non-pollutant efficient frontier that shows higher risk but lower cost than the instrumental efficient
frontier, and a set of several adaptations of a model with pollutant-technologies. Figure 7 represents
some of the efficient frontiers calculated in an emission-risk coordinate axis. Specifically, we depict the
instrumental model numbered with 0 and with a dot-dash line, the model adaptations without biomass
numbered as 2.c, those without biomass and CSS technologies numbered as 2.d, and those with all the
pollutant technologies and with technological constraints numbered as 2.e. It is important to note that
the first two adaptations were practically 100% biomass participated, and for this reason, we are not
showing them in the graph—they would be located practically where the biomass technology is drawn.
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Regarding the pollutant models, the traditional pollutant technologies—coal, natural gas, and
oil—show higher levels of emission and risk; model 2.d efficient frontier appears on the top right side
of the figure. If CCS technologies are included, both the emission and the risk levels are drastically
reduced; see model 2.c in the figure. In fact, models 2.a and 2.b would be represented over the biomass
point in Figure 6. Moreover, the technological constraints are able to lower even more the risk, keeping
a similar level of emission—model 2.e.

By representing in the same emission-risk plane our instrumental model, model 0, it is worth
comparing it with the pollutant models—the non-pollutant model would be drawn on the coordinate
origin. The instrumental model shows a higher level of emission and risk, in terms of emission, than
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those models allowing biomass and CCS technologies because coal and natural gas participate largely
in it, as shown in Figure 2. When approaching the GMC portfolio, these technologies reach their
technological limit and, actually, they participate at their maxima in the GMC portfolio.

The efficient frontier of our models is drawn in a cost-risk coordinate axis in Figure 8. Both the
instrumental model, model 0, and the pollutant models, models 2.e and 2.d, present smaller levels of
risk with similar or lower levels of cost. As stated, pollutant models with biomass, models 2.a and 2.b,
would be drawn on the point corresponding to biomass technology that is far out of the graph’s limits
with a cost variance of 162.84 (standard deviation: 12.76 €/MWh) and with a cost of 96.62 €/MWh.
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3.2. The CML-Analogous Area

So far, we have a pollutant-technology efficient frontier from an emission-risk perspective and a
point of the emission-risk coordinate axis origin representing all the non-pollutant efficient portfolios.
A policy maker could compile a portfolio from the pollutant-technology efficient frontier with the point
in the origin to determine a power-generation portfolio with the whole set of technologies. Therefore,
it is possible to set the best portfolio given a desired emission factor or a risk limit.

The limits of the pollutant-technology efficient frontier are the GMV and the GME portfolios.
The efficient frontier itself connects them together. Combinations of either the GMV or the GME
portfolio with any of the non-pollutant efficient portfolios in the origin will fall inside an area delimited
by these three portfolios: the GMV portfolio, the GME portfolio, and the non-pollutant efficient portfolio
chosen. In Figure 9, this area is the shaded area below and to the left of the pollutant-technology
efficient frontier.

Being under the efficient frontier reflects that any point inside that area shows a lower emission
factor than the point on the frontier with the same level of risk. This was expected as we are combining
a pollutant portfolio with a non-pollutant one. On the other hand, the fact of being to the left of the
pollutant efficient frontier indicates that the risk is lower for any emission factor considered. A portfolio
inside the CML-analogous area (CML-A) is then more efficient than a portfolio in the efficient frontier
with the same emission factor or level of risk.
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Focusing on the CML-A, the problem is to determine the best portfolio for a given emission factor
or for a given level of risk. It is easy to conclude that the answer must be found on the CML-A borders.
Indeed, when determining the best portfolio in the CML-A for a given level of risk, the solution must
be that one located on the segment joining the coordinate axis origin and the GME portfolio that
shows that level of risk. Likewise, if we want to determine the best portfolio in the CML-A for a given
emission factor, we must find it on the intersection of the segment joining the GMV portfolio with the
coordinate axis origin and the line representing the desired emission factor. In the next section, we
present a brief example of these ideas.

4. Discussion

In this section, there is a brief explanation of how a policy maker could employ this model to
design power-generation portfolios. In Figure 9, we draw one of our pollutant efficient frontiers,
specifically model 2.e, with all the pollutant technologies and with technological constraints in an
emission-risk coordinate axis. In this graph, the non-pollutant model portfolios will be all of them on
the coordinate origin; they have no emission and, consequently, no emission risk.

A policy maker can choose any combination: any linear combination between any portfolio on
the pollutant efficient frontier and on the non-pollutant efficient frontier which, from an emission point
of view, lays on the coordinate origin. In Figure 9, the shaded area delimited by the coordinate origin
and the pollutant efficient frontier of model 2.e represents these combinations. We can see that the area
allows the policy maker to lower the risk for a given level of emission or the emission for a given level
of risk. For instance, given the emission and risk values for GMV and GME portfolios of model 2.e
shown in Table 6, it is easy to calculate the portfolio proportions needed to reach an emission risk of
0.10 kg/MWh. Obviously, the policy maker will prefer the lowest emission possible for that level of
risk and so they will choose the pollutant GME portfolio for the combination, resulting in point A in
Figure 9. Point A can be reached by combining the pollutant GME portfolio and the non-pollutant
portfolio in a proportion of 39.39–60.61%. Also, the policy maker could want to set the emission of
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the resultant portfolio, say, at 30 kg/MWh. In this case, they would like to reach a minimum risk
combination for that level of emission. For this reason, they will want to combine the pollutant GMV
portfolio with the non-pollutant portfolio, resulting in point B, which corresponds to a 47.44–52.56%
proportion of pollutant GMV and non-pollutant portfolios.

Table 6. Emission and risk of the global minimum variance (GMV) and global minimum emission
(GME) portfolios of model 2.e.

Portfolio Emission (kg-CO2/MWh) Risk (kg-CO2/MWh)

GMV2.e 63.24 0.2502
GME2.e 53.79 0.2539

In the last example, it is easy to see that the combination B’ with a 46.75% GME portfolio and a
53.25% non-pollutant portfolio has the same risk value as combination B but with a lower emission
of 25.15 kg/MWh. It does not seem reasonable to lose the opportunity to lower emissions without
increasing the risk. This is why the lower segment of the shaded area is more efficient in the sense used
in this work than the rest of the points in the area when the aim is to adapt the generation portfolio
to a predetermined risk. This insight is similar to the financial CML, but in our case and due to the
convexity of the efficient frontier, instead of having a tangency or market portfolio, we propose to use
the corresponding GME portfolio instead.

5. Conclusions

Throughout the present work, we proved that it is possible to separate the generation technologies
into two different sets and to proceed to a double optimization of the generation mix. When we
compare the non-pollutant-technology efficient frontier with the efficient frontier of the instrumental
model, we are able to generate at a lower cost but at a higher risk using only non-pollutant technologies
(nuclear, wind, offshore wind, hydro, small hydro, and PV).

When analysing the sharing weights in the non-pollutant efficient frontier, nuclear energy,
defending its position as a base-load generation technology, and small hydro participate at their
maxima in both the minimum-risk GMV and the minimum-cost GMC portfolios:

• Nuclear and small hydro are preferential technologies that act as if it intends to obtain the
minimum cost or to get the minimum risk of the portfolio.

• In a complementary way, offshore wind technology participates at its maximum share if the
minimum risk is searched, while large hydro technology is the third technology to enter its
maximum in the minimum cost portfolio.

Replacing the cost-risk perspective with emission-risk perspective pollutant technologies allows to
highlight the important role of biomass and CCS technologies in an efficient portfolio. Their commercial
development is crucial in order to achieve low-carbon emission portfolios.

Oil generation is not included in the power-generation mix in the instrumental model, highlighting
its excessive cost and risk. In the emission-risk models, it is only considered when we take out the
biomass or when we set upper limits to the participation shares of the technologies. These limits cause
the preferred technologies to participate at their maxima in almost every efficient portfolio.

Solar PV generation takes part only in the efficient portfolios close to the GMV portfolio. Its
participation is needed in order to achieve a highly diversified and lower risk portfolio.

The cross-drawing approach proposed between the pollutant and non-pollutant efficient frontiers
calculated in both cost-risk and emission-risk coordinate axes leads to relevant conclusions:

• A pollutant-only generation mix shows a higher cost than a complete generation technology
portfolio and even in relation to the non-pollutant-only efficient frontier.

• A highly diversified portfolio makes it possible to achieve the lowest risk (instrumental model).
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• Renewable energy sources are needed to reduce portfolio cost and risk.
• Pollutant-generation-efficient frontiers show a higher risk mainly because of the fuel cost risk.

Finally, drawing an analogy with the CML from CAPM, we presented the CML-A area that could
helpful a policy maker design the long-term generation mix in a decarbonisation scenario.
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