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Abstract 
One of the main challenges in nanotechnology is the development of complex and smart 

materials, whose properties can be modulated by application of external stimuli such as 

changes on pH or red/ox potential. Among all biomolecules, peptides are versatile and 

biocompatible platforms that constitute ideal starting points for the development of materials 

with biomedical applications. In this context, the aim of this project is the design and 

development of coiled coil peptide conjugates functionalized with pseudoviologen units. These 

conjugates are expected to form supramolecular nanostructures upon the addition of 

cucurbit[8]uril, which can be controlled by modifying the pH of the medium. 

For this purpose, an activated pseudoviologen and two peptides, which are known to form a 

parallel heterodimeric coiled coil structure, were prepared. Both peptides were coupled with 

the pseudoviologen moiety following a solid phase Zincke reaction protocol. NMR and 

HPLC-MS were used to follow the reactions and characterize the products. The final 

conjugates were purified by reversed-phase semipreparative HPLC. 

The formation of coiled coil heterodimers was confirmed by CD, and the self-assembly of the 

coiled coil oligomers upon addition of CB[8] was studied by UV spectroscopy, TEM and DLS. 

These techniques show good preliminary results that indicate the formation of nanometric 

fibrils. 

Keywords: coiled coils, peptides, viologens, CB[8], supramolecular complexes, 
nanostructures. 
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Resumo 
Un dos principais retos en nanotecnoloxía é o desenvolvemento de materiais complexos e 

intelixentes cuxas propiedades poidan ser modificadas mediante a aplicación de estímulos 

externos como cambios de pH ou de potencial red/ox. Entre todas as biomoléculas, os péptidos 

son plataformas versátiles e biocompatibles que constitúen puntos de partida ideais para o 

desenvolvemento de materiais con aplicacións biomédicas. Neste contexto, o obxectivo deste 

proxecto é o deseño e desenvolvemento de conxugados peptídicos con estrutura “coiled coil” 

funcionalizados con unidades pseudoviolóxeno. Espérase que estes conxugados formen 

nanoestruturas supramoleculares tras a adición de cucurbit[8]urilo, as cales poden ser 

controladas modificando o pH do medio. 

Para este propósito, preparáronse un pseudoviolóxeno activado e dous péptidos coñecidos por 

formar unha estrutura de “coiled coil” paralela e heterodimérica. Ambos péptidos acopláronse 

coa fracción pseudoviolóxeno seguindo un novo protocolo de reacción de Zincke en fase 

sólida. Empregáronse técnicas de RMN e HPLC-MS para seguir as reaccións e caracterizar os 

produtos. Os conxugados finais foron purificados mediante HPLC semipreparativo en fase 

reversa. 

A formación dos heterodímeros “coiled coil” confirmouse por DC. Finalmente, estudiouse a 

autoensamblaxe dos oligómeros “coiled coil” tras a adición de CB[8] mediante espectroscopía 

UV, TEM e DLS. Estas técnicas mostran bos resultados preliminares que indican a formación 

de fibras nanométricas. 

Palabras chave: “coiled coils”, péptidos, violóxenos, CB[8], complexos supramoleculares, 

nanoestruturas. 
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Resumen 
Uno de los principales retos en nanotecnología es el desarrollo de materiales complejos e 

inteligentes cuyas propiedades se puedan modificar mediante la aplicación de estímulos 

externos como cambios de pH o de potencial red/ox. Entre todas las biomoléculas, los péptidos 

son plataformas versátiles y biocompatibles que constituyen puntos de partida ideales para el 

desarrollo de materiales con aplicaciones biomédicas. En este contexto, el objetivo de este 

proyecto es el diseño y desarrollo de conjugados peptídicos “coiled coil” funcionalizados con 

unidades pseudoviológeno. Se espera que estos conjugados formen nanoestructuras 

supramoleculares tras la adición de cucurbit[8]urilo, las cuales pueden ser modificadas 

modificando el pH del medio. 

Para este propósito, se prepararon un pseudoviológeno activado y dos péptidos conocidos por 

formar estructuras “coiled coil” paralelas y heterodiméricas. Ambos péptidos se acoplaron con 

la fracción pseudoviológeno siguiendo un mecanismo de reacción de Zincke en fase sólida. Se 

emplearon técnicas de RMN y HPLC-MS para seguir las reacciones y caracterizar los 

productos. Los conjugados finales fueron purificados por HPLC semipreparativo en fase 

reversa. 

La formación de heterodímeros “coiled coil” se confirmó por DC. Finalmente, se estudió el 

ensamblaje de los oligómeros “coiled coil” tras la adición de CB[8] mediante espectroscopía 

UV, TEM y DLS. Estas técnicas muestran buenos resultados preliminares que indican la 

formación de fibrillas nanométricas. 

Palabras clave: “coiled coils”, péptidos, viológenos, CB[8], complejos supramoleculares, 

nanoestructuras. 

 



Introduction 

6 
 

1. Introduction 
Nanotechnology, as one of the most promising and challenging fields of innovation and 

research, has a wide range of potential applications in many areas as new materials, industry 

and medicine. Particularly, nanotechnology has the potential to be applied to the field of 

nanomedicine, whose research topics range from diagnostic and therapeutic tools to 

regenerative medicine, ultimately improving people’s quality of life.  

Biocompatible and bioactive molecules, capable of self-assembling into nanostructures that 

degrade over time in vivo after fulfilling their function, constitute ideal building blocks for 

developing systems for biomedical applications. Among biomolecules, peptides offer the 

greatest functional and structural versatility, combined with synthetic simplicity, intrinsic 

biocompatibility and high biodegradability. Most commonly, self-assembled peptide 

nanostructures arise from stackable motifs, typically β-sheet-like hydrogen bonding units, that 

form filamentous assemblies which are able to induce complex cellular processes.1 

However, despite these advances on the development of peptide-based nanomaterials, one of 

the key challenges of nanotechnology is the development of smart materials whose properties 

may be modulated upon the application of external stimuli such as light, pH or red/ox changes. 

In this context cucurbit[n]uril-based host:guest chemistry offers great opportunities for the 

development of stimuli responsive assemblies based on organic molecular switches like 

viologens.2 

In this work, we propose the development of responsive high aspect ratio nanostructures whose 

constitution can be controlled on demand, from a bottom-up approach using simple 

components. To this end, we intend to use coiled coil peptides (a well-known supersecondary 

structure found in proteins that shows a remarkable richness both in structure and function) in 

combination with viologen-cucurbituril host:guest complexes. 

1.1. Peptides and proteins: structure and bonding 
Peptides and proteins are natural biopolymers with a wide variety of functions and structures, 

made of monomeric units called amino acids. There are 20 standard amino acids with a 

common structure, formed by an α-carbon bonded to an amine group, a carboxylic group, a 

hydrogen atom and a side chain R, which is specific to each amino acid (Figure 1). Due to this 

disposition of the amine and the carboxylic groups, standard amino acids are also called 

α-amino acids. Moreover, they all share the same stereochemistry and belong to the L series. 
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Figure 1. Standard amino acid structure. 

All amino acids are named depending on their side chain and can be also identified by a three- 

or one-letter code. They are classified based on the nature of the functional groups at their side 

chains, being non-polar (G, A, V, L, I, M, F, P, W), polar (S, T, N, Q, Y, C), acid (D, E) or 

basic (K, R, H) standard amino acids. 

 

Figure 2. Structure and classification of amino acids.3 

The amine and the carboxylic groups of amino acids imply that all of them are defined by at 

least two pKas, whereas some of them present a third pKa corresponding to a functional group 

of the side chain that may be ionized. The pH value where a certain amino acid presents net 

charge equal to zero is described as the isoelectric point (pI). 
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Figure 3. pKa and pI chart of standard amino acids.4 

Amino acids form the primary structure of peptides and proteins by successively bonding to 

each other through amide bonds, also called peptide bonds. Each amide bond is planar and 

presents restricted rotation, due to a certain double bond character at the Ccarbonyl-N link. 

However, Cα-N and Cα-Ccarbonyl bonds rotate freely. Two angles are defined by these rotations, 

ψ and ϕ, which take values between -180º and +180º. 

 

Figure 4. Peptide bond rotation.5 

The folding of the primary polypeptide chains by angles ψ and ϕ constitutes the secondary 

structure of peptides and proteins. Hydrogen bonds and other intermolecular interactions allow 

different secondary structures, as α-helixes, β-sheets, twists or random coils. The first two were 

predicted by Linus Pauling and Robert Corey based on hydrogen bonding (HB) and 

cooperativity criteria.6,7 
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Figure 5. α-helix (left) and β-sheet (right) secondary structures schematic representation.8 

α-helixes present a right-handed helicoidal shape with 3.6 residues per turn. These structures 

are stabilized by HBs between NH and C=O groups of consecutive turns and by Van der Waals 

interactions. HBs are parallel to the main axis of the helix, while side chains of all amino acids 

are disposed perpendicularly and facing outwards. β-sheets, on the other hand, are known for 

presenting HBs between adjacent chains and forming slightly wrinkled plates. Those bonds are 

in this case perpendicular to the axis of the sheets. Both chains can be oriented in a parallel or 

an antiparallel way, and may be joined and belong to the same sequence or not. 

Proteins also present a tertiary structure, which consists on the spatial and geometrical 

distribution of the secondary structure. This may form new HBs, electrostatic, hydrophobic or 

Van der Waals interactions, establishing stable tridimensional conformations called protein 

domains. Protein domains are often enough to perform functions by themselves. However, 

some proteins are formed by more than one domain, which attach each other via non-covalent 

interactions and constitute the quaternary structure of proteins. 

1.2. Coiled coils 
As a combination of adjacent secondary elements, a very common supersecondary structure of 

peptides and proteins is the coiled coil structure, which is present in many natural proteins as 

transcription factors9,10 or filaments11. These structures show great variety in function and 

properties, depending on their sequence, and are formed by from two to seven α-helixes 

oligomerized together, building a left-handed superhelix. 
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Figure 6. X-ray crystal structures of coiled coils, from a dimer to a heptamer.12 

The general sequence of coiled coils is constituted by a periodic repetition of seven amino acid, 

also called heptad (-a-b-c-d-e-f-g-). The oligomerization is mediated by hydrophobic 

interactions between residues at the first (a) and fourth (d) positions of the heptad, which are 

typically isoleucine (Ile) and leucine (Leu) residues. Those side chains pack in the interhelical 

space in a knobs-into-holes manner. On the other hand, residues at e and g positions usually 

present charged side chains, as they face each other in opposite helixes and may stabilize the 

oligomerization via electrostatic interactions. Glutamic acid (Glu) and aspartic acid (Asp) are 

the typical negatively charged residues, whereas the usual positively charged amino acids are 

arginine (Arg) or lysine (Lys). Finally, the resting positions of the heptad (b, c and f) are facing 

outwards the superhelix. Therefore, residues at those positions play an important role in 

solubility and can have recognition functions. 

 

Figure 7. Sequences of a coiled coil heterodimer (a), schematic diagram showing the disposition of the amino 
acids of the heptads (b) and model structure of the coiled coil (c).  

The most common coiled coil structures, which are dimers, vary from parallel to antiparallel, 

and from homo- to heterodimers. The coiled coil formation and the disposition of an artificial 

peptide can be programmed by following the above-mentioned criteria for the sequence design. 

In order to achieve a stable oligomerization, the sequence must be formed by three to five 

heptads.13,14 

The programmability, stability and specificity of these coiled coil units make them a very 

powerful tool for the design of well-defined systems with tailored properties. For example, 

several systems have been developed in the recent years using coiled coils, as polyhedral 



Introduction 

11 
 

cages,15 metal-modified oligomers16, “sticky-ended” dimers that form fibers or 

nanotubes,12,17,18 hexamers with mutable channels19 or tridimensional crystals with 

incorporated guests.20 However, despite these developments, the functionalization of these 

coiled coil based structures to produce stimuli-responsive materials has not yet been explored.  

1.3. Solid Phase Peptide Synthesis (SPPS) 
First developed by Merrifield in 1951,21,22 solid phase peptide synthesis is the most widely used 

method for the preparation of peptides. SPPS consists in the addition of successive amino acids, 

which have been adequately modified, to a polymeric support. Residues are added following 

the order of the desired sequence from the C-terminus to the N-terminus, as the resin is bonded 

to the C-terminal amino acid, using a linker. 

There are different polymeric supports available, which play a role on the efficiency of the 

coupling. A chosen resin must present the ability to swell and solvate appropriately with the 

coupling solvent, as most of the reactions occur inside the pellets of the resin and all reagents 

should have easy access. Besides, the linker must remain unbroken until the very end of the 

peptide synthesis, and it defines which functional group (carboxylic acid, amide, etc.) will 

remain at the C-terminus, once the peptide is cleaved from the resin. 

To assure that they attach to the previously added residue and to avoid unwanted reactions, all 

added amino acids must have their amine group protected. Those protective groups are 

removed afterwards in order to perform the next amino acid coupling.23 Functional groups of 

the side chains must also be protected. However, those protective groups must remain 

untouched until the final cleavage of the peptide synthesis, resisting both the coupling and the 

deprotection conditions for the other temporary protective groups. 

 

Figure 8. General amino acid coupling scheme for SPPS. 

Keeping this in mind, there are two basic strategies for SPPS, using two different sets of 

orthogonal protective groups: Boc/Bzl and Fmoc/t-Bu.24 The first strategy utilizes Boc 

protective groups for the α-amino groups, which can be deprotected by mild acidic conditions 
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(TFA). Bzl groups are reserved to the side chain functional groups, and can be removed at the 

final cleavage step under strong acidic conditions (HF). This method may be not very 

convenient, as the HF is very hazardous and the continuous use of TFA may cause trouble with 

some sensitive side chains.25 

On the other hand, the second, more convenient, strategy protects the α-amino groups with 

Fmoc, which can be easily deprotected with basic media (piperidine). The functional groups of 

the side chains are protected with t-Bu or other similar functional groups like Trt, that can be 

removed by acidic media (TFA), along with the cleavage of the peptide from the resin. 

   

Figure 9. Boc/Bzl (left) and Fmoc/t-Bu (right) strategies for amino acid protection. 

Additionally, carboxylic groups of the added residues must be activated so that the coupling 

occurs. There are four main ways of activation: carbodiimides, acid anhydrides, activated esters 

and activated esters generated in situ. 

Although carbodiimides are widely used, they may dehydrate Asn and Gln residues. This 

problem can be avoided by the addition of HOBt to the reaction mixture. Acid anhydrides are 

a less efficient method, as they are usually generated in situ using two equivalents of amino 

acids. Activated esters are also very used and they are usually generated in situ, as it is a simpler 

method. Their biggest drawback is that they decompose when dissolved with DIEA, which is 

the most commonly used base for SPPS. Therefore, the activation is performed just before the 

amino acid coupling.26 
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Figure 10. Most commonly used coupling agents for the generation of activated esters in situ. 

1.4. Supramolecular chemistry and viologens 
Viologens are N,N’-disubstituted organic salts derived from 4,4’-bypyridine.27 

Monosubstituted derivatives are sometimes called pseudoviologens. These compounds can be 

prepared by nucleophilic substitution or by the Zincke reaction with primary amines.28 

 

Figure 11. Structure of viologens and pseudoviologens. 

Viologens and pseudoviologens have been widely used on the fields of materials and 

supramolecular chemistry,29–31 as they show interesting properties like a rich red/ox activity 

and a π-deficient electronic behavior. In particular, these molecules can be encapsulated as 

guests inside cucurbituril units via supramolecular interactions, thanks to their hydrophobic 

inner part and their positive charges at the extremes. 

Cucurbit[n]urils (CB[n]) are pumpkin-shaped cyclic oligomers generated from the reaction of 

n glycoluril units with formaldehyde.32 These molecules interact with a variety of inorganic 

and organic molecules, and can act as hosts in inclusion complexes. 
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Figure 12. Preparation and schematic representations of cucurbit[n]urils.32 

CB[n]s present so called portal areas of great electronic density, the carbonylated rims, that 

may bind via ion dipole interactions to positively charged molecules like viologens themselves. 

On the other hand, the hydrophobic part of the guest would remain inside the CB[n] cavity, 

displacing the water molecules that were encapsulated inside the host and enhancing the 

aggregation via hydrophobic effect. 

In particular, CB[8] is a very interesting host, as it is the smallest member of the cucurbit[n]uril 

family that is capable of accepting two appropriate guests. In that way, it can predictably form 

binary 1:1 and homoternary 2:1 complexes with molecules like monocationic pseudoviologens. 

 

Figure 13. Schematic representations of binary and homoternary complexes between CB[8] and 
amphiphilic guests. 
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Those host:guest complexes may act as supramolecular switches, as they can respond to 

external stimuli. For example, the homoternary complex between CB[8] and two monocationic 

pseudoviologen units can be broken and reversibly turned into a binary 1:1 complex by 

changing the pH. Acidic conditions protonate the pseudoviologens converting them into 

dications, which cannot remain inside the host together, due to the repulsion between the 

positive charges. For the same reason, two viologen units do not fit inside one CB[8] molecule. 

However, the reversible reduction of these compounds turns them into radical cations, which 

assemble into homoternary 2:1 complexes.33 

 

Figure 14. Schematic representation of stimuli responstive supramolecular switches based on 
CB[8]:(pseudo)viologen host:guest complexes. 

Additionally, thanks to its previously mentioned characteristics, the hydrophobic yet polar 

cavity of CB[8] is capable to stabilize charge-transfer interactions. Therefore, heteroternary 

1:1:1 can be formed by the inclusion of an electron-acceptor compound such as viologens and 

another electron-donor species that could not be encapsulated otherwise.34 The charge-transfer 

interaction can be optimized by modulating the character of the donor/acceptor pair. 

 

Figure 15. Schematic representation of charge-transfer stabilization via heteroternary complex formation.35 
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1.5. Peptide conjugates and other cucurbit[8]uril 

supramolecular systems 
The synthesis of viologen-peptide conjugates was previously described by Reczek et al.34,36 

Their strategy consisted in the preparation of an aminoalkyl viologen and a Glu-containing 

peptide with those residues orthogonally protected. After the acetylation of the N-terminus and 

the selective deprotection of the Glu side chains, the carboxylic groups would be activated and 

the viologen units would be coupled in solid phase, forming amide bonds. 

 

Figure 16. Solid phase viologen-peptide conjugate synthesis via amide bond formation.36 

This method was used for the preparation of peptide scaffolds with viologen units at certain 

positions. This building block can be reversibly attached to another peptide scaffold containing 

Trp residues, via the formation of heterotrimeric 1:1:1 complexes with CB[8] where the Trp 

acts as the electron-donor.34 

 

Figure 17. Self-assembly of peptide scaffolds via inclusion heterocomplexes with CB[8] (Q8).34 
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Other cucurbit[n]uril-peptide systems have been described, in which CB[8] recognizes a 

peptide with a N-terminal aromatic amino acid or a N-terminal Met, forming a complex with 

those residues and the immediate neighbors.37 The inclusion of two side chains of two 

contiguous peptides, instead of one single chain, can yield to the formation of reversible 

dimeric systems, as described by Wu et al.38 Additionally, Clarke et al. described the formation 

of conductive nanofibers from viologen-peptide conjugates via β-sheet self-assembly.39 

Finally, some supramolecular polymers and frameworks which present viologen-

cucurbit[8]uril complexes as binding units have been described. These systems may be 

generated via charge-transfer complexation40 or by the homoternary complex formation with 

pseudoviologen rod-like monomers.41 
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2. Objectives 
As part of a larger research project, which aims to build up smart modulable peptide-based 

materials whose properties may vary upon the application of external stimuli, this work is 

focused on the development of two viologen-peptide conjugates that will form coiled coil 

heterodimers and would reversibly assemble into high aspect ratio nanostructures after the 

complexation with CB[8]. 

In this context, the main goals of the present project are: 

1. Synthesis of two peptides that are known to form parallel heterodimeric coiled coil 

structures using solid phase peptide synthesis protocols. Those peptides will present an 

orthogonally protected Lys residue at the N- and C-terminus, respectively, that will be 

used for pseudoviologen conjugation. 

 

2. Synthesis of pseudoviologen-peptide conjugates from the previously synthesized 

peptides and an appropriately activated pseudoviologen salt. The coupling will be 

performed by following a solid phase Zincke reaction mechanism. 

N

N

O2N

NO2
Peptide 1/2 Conjugate 2Conjugate 1Ac Ac Ac

N4 N 4H2N 4

NH2 NH2
Solid phase

Zincke reaction

and

NN  

Figure 18. General scheme of the pseudoviologen-peptide couplings through solid phase Zincke reaction. 

3. Study of coiled coil heterodimer formation and evaluation of their complexation and 

assembly upon the addition of CB[8]. 

 

Figure 19. Representation of the coiled coil assembly into high aspect ratio nanostructures.
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3. Results and discussion 
3.1. Synthesis of the N-activated 4,4’-bipyridine 

derivative as precursor for the Zincke reaction 
The conjugation of the pseudoviologen to the peptides was planned to be performed through a 

Zincke reaction adapted to a SPPS procedure. In order to achieve that, the first step of the 

synthesis was the activation of 4,4’-bipyridine as an N-arylated derivative. This salt would act 

as precursor for the Zincke reaction, which follows an ANROC (Addition of the Nucleophile, 

Ring Opening and Ring Closure) mechanism:42 

 

Figure 20. ANROC mechanism for the Zincke reaction.42 

In this regard, compound 1 was appropriately synthesized by nucleophilic aromatic substitution 

of 1-chloro-2,4-dinitrobenzene with 4,4’-bipyridine in EtOH at reflux. After 24 h, the product 

was precipitated from the reaction mixture by the addition of Et2O and washed with AcOEt. A 

brown crystalline solid was obtained with a yield of 83%. The product was considered virtually 

pure after its characterization by 1H-NMR spectroscopy. 
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Figure 21. Synthesis of compound 1. 

3.2. Peptide design and synthesis 
As previously commented, this work aims to develop self-assembled materials based on 

modified coiled coil units. Therefore, dimeric coiled coil peptide sequences must be designed. 

Since the pseudoviologen units would be placed in opposite extremes of the oligomers, there 

are two potential options for the coiled coil design. On one hand, the dimers can be formed by 

a single sequence (homodimers), with both peptides arranged in an antiparallel manner. On the 

other hand, dimers can be constituted by two different sequences (heterodimers), where both 

peptides can be disposed in a parallel or antiparallel fashion. Due to a lack of references dealing 

with antiparallel homodimeric coiled coils, we designed the conjugates starting with peptide 

sequences known to form stable heterodimers.14 

Consequently, the two sequences were slightly modified by adding one Lys residue at their N- 

and C-terminus, respectively. The side chains of those residues would act as appropriate amine 

groups for the subsequent coupling with the pseudoviologen units. The final designed 

sequences are the following: 

Fmoc-KGKIAALKQKIAALKYKNAALKKKIAALKQG-NH2 

Fmoc-GEIAALEQEIAALEKENAALEWEIAALEQGK-NH2 

Figure 22. Peptide sequences14 modified with a Lys residue (K, labelled in red) at the N-terminus (up, P1) and C-

terminus (down, P2). 

The peptides were planned to be synthesized using the Fmoc/t-Bu strategy. Therefore, α-amino 

groups of all amino acids were temporarily protected with Fmoc groups, whilst the functional 

groups at the side chains were protected with TFA-labile moieties: Glu (E) and Tyr (Y) residues 

with t-Bu, Gln (Q) and Asn (N) with Trt, and Lys (K) and Trp (W) with Boc groups. 

In addition, in order to perform the pseudoviologen coupling selectively at the terminal Lys 

residue side chains, those residues must be orthogonally protected. The Alloc group was chosen 

for this purpose, which can be selectively deprotected with Pd catalyst. 
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Figure 23. Deprotection mechanisms of Fmoc (up) and Alloc (down) protecting groups. 

Moreover, one Lys residue of each chain was protected with Mtt, which can be selectively 

deprotected with diluted TFA. Those amino acids would occupy the f position of each coiled 

coil heptad, the most external one, and would serve as functionalization positions in future 

works. 

The desired peptide sequences were successfully synthesized by following the standard 

procedure for solid phase synthesis, which will be further discussed at the experimental section. 

Both peptides were prepared at a 0.2 mmol scale and, after completing the full sequence, they 

were characterized by HPLC-MS, observing one main peak for each reaction crude that 

corresponds to the desired products P1 (tR = 14.2 min) and P2 (tR = 18.0 min) (Figure 24). 

 

Figure 24. HPLC chromatograms for peptides P1 (left) and P2 (right). 
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3.3. Pseudoviologen-peptide conjugation 
In order to avoid potential side reactions, the N-terminal Fmoc groups must be substituted, as 

they can be deprotected due to the basic character of the bipyridine derivatives. Therefore, the 

Fmoc groups were removed with an excess of 20% 4-methylpiperidine in DMF and both 

peptides P1 and P2 were acetylated with Ac2O and DIEA in DMF. 

Afterwards, Alloc groups were removed by reaction with Pd catalyst overnight., giving 

peptides P5 and P6. Finally, the conjugation was performed by adding three equivalents of 

compound 1 and one equivalent of DIEA to the resin, and stirring the mixture for 90 min. 

Peptide 1/2

FmocHN

AllocHN 4

iii) Pd(OAc) 2, PPh3,
NMM, PhSiH3,

   CH2Cl2, rt, overnight

i) 4-methylpiperidine,
DMF, rt, 15 min

ii) Ac2O, DIEA,
  DMF, rt, 30 min Peptide 5/6

AcHN

H2N 4

iv) compound 1

    DMF, DIEA,
    rt, 90 min

Conjugate 1/2

AcHN

N 4

N  

Figure 25. Synthetic scheme for the acetylation and pseudoviologen-peptide conjugation. 

Both conjugates C1 and C2 were synthesized at a scale of 0.05 mmol. After the coupling step 

both resins were treated with the cleavage cocktail (2.5% TIS, 2.5% H2O, 95% TFA), and the 

resulting reaction crudes were analyzed by HPLC-MS. 

 

Figure 26. HPLC chromatograms for the reaction crudes corresponding to conjugates C1 (left) and C2 (right). 

Both chromatograms (Figure 26) show major peaks that correspond to the desired products, at 

tR = 12.3 min for C1 and at tR = 14.7 min for C2. The MS spectra (Figure 27) of both HPLC 

peaks confirm the identity of the conjugates: 
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C1: 1745.10 [MH]2+, 1163.74 [MH2]3+, 873.05 [MH3]4+, 698.64 [MH4]5+. 

C2: 1760.40 [MH]2+, 1173.94 [MH2]3+. 

 

 
Figure 27. MS spectra of the HPLC peaks at tR = 12.3 min for C1 (up) and tR = 14.7 min for C2 (down). 

Both peptide conjugates were purified by reverse-phase semipreparative HPLC and the 

collected fractions were lyophilized, obtaining fluffy white solids. 

In order to calculate the concentration of conjugate C1 and C2 solutions, the molar extinction 

coefficient (ε) of the bipyridine moiety was calculated by UV spectroscopy. Therefore, the UV 

spectra of different solutions of methylpseudoviologen with known concentrations were 

recorded. After plotting the obtained absorbance values at 259 nm versus the concentration of 
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the solutions, and fitting the data using the Beer-Lambert law, the estimated ε was 

approximately 21243 M-1ꞏcm-1. 

C1 and C2 conjugates were dissolved in PBS, and their concentrations were calculated with 

the estimated ε, that takes into account the coefficients of the aromatic residues Tyr (ε = 21909 

M-1ꞏcm-1 at 261 nm for C1) and Trp (ε = 26027 M-1ꞏcm-1 at 266 nm for C2).43 

3.4. Assembly studies 

Circular dichroism 
First, in order to demonstrate that the pseudoviologen unit does not affect the formation of the 

coiled coil heterodimer, Circular Dichroism (CD) experiments were performed, since this 

technique allows the determination of the folding degree and secondary structure of peptides 

and proteins. From the intensity of the bands at 220 and 208 nm and their ratio, one can 

determine the helical content (100% if the molar ellipticity is below  

−32.000 ºꞏcm2ꞏdmol-1ꞏres-1), and if they are as isolated helixes or as coiled coils (a ratio > 1 

indicates well-defined coiled coils while a ratio < 1 indicate a single helix).44,45 

Using a 2 mm pathlength cuvette and solutions for each peptide with a concentration of 25 µM, 

the following spectra were obtained: 
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Figure 28. CD spectra of a 25 M solution of C1 in PBS (10 mM. sodium phosphate, 137 mM NaCl, pH = 7.4), a 
15 M solution of C2 in PBS (10 mM sodium phosphate, 137 mM NaCl, pH = 7.4), and for the equimolar mixture 
of both conjugates C1 and C2 (25 M for each peptide) in PBS (10 mM sodium phosphate, 137 mM NaCl, pH = 

7.4) labelled as CC. 

As it can be inferred from the negative bands at approximately  = 208 and 220 nm, both 

conjugates C1 and C2 present certain α-helix contribution, but they appear as mainly disorder. 
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However, when both conjugates are together in solution, the α-helix contribution increases 

significantly, achieving an MRE value in the order of -40000 ºꞏcm2ꞏdmol-1ꞏres-1 at those 

wavelengths, with a ratio between both bands (220/208) > 1. Hence, it can be assumed that the 

coiled coil structures (CC) are fully formed in these conditions. The positive increment at 200 

nm also indicates the presence of α-helixes, in contraposition with random coils, which would 

give in turn negative values around that wavelength value. 

UV titration 
In order to characterize the interaction of the coiled coils prepared with CB[8], a UV titration 

was performed. Absorbance measurements were registered upon the addition of small 

quantities of CB[8], while the concentration of coiled coil was kept constant at 15 µM. The 

absorbance data was taken at λ = 264 nm, the maximum of absorbance of the coiled coil units 

before the addition of CB[8]. 

As shown in Figure 29, the addition of CB[8] decreases the absorbance of the coiled coil 

heterodimer, as the inclusion of the bipyridyl units within the cucurbit[8]uril cavity 

substantially decreases the absorption. After the addition of a certain quantity of host, the 

absorbance stabilizes and does not decrease any further, meaning that full complexation of the 

pseudoviologen moieties has been achieved. 
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Figure 29. Absorbance at 264 for a 15 µM solution of CC in PBS (10 mM sodium phosphate, 137 mM NaCl,  
pH = 7.4), with increasing concentrations of CB[8]. 

In order to check whether CB[8] interferes with the formed coiled coil structure, circular 

dichroism experiments were repeated, this time comparing the coiled coil response in absence 
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and presence of CB[8]. As shown in Figure 30, there is no significant difference between both 

solutions, meaning that the host does not affect the coiled coil heterodimer. 

200 220 240 260 280
-50000

-40000

-30000

-20000

-10000

0

10000

20000

 

 

M
R

E
 (

de
gꞏ

cm
2 ꞏd

m
o
l-1

ꞏr
e
s-1

)

Wavelength (nm)

 CC (15 M)
 CC (15 M) + CB[8]

 
Figure 30. CD spectra for the equimolar mixture of both conjugates C1 and C2 (15 M for each peptide) in PBS 

(10 mM sodium phosphate, 137 mM NaCl, pH = 7.4) labelled as CC without and after the addition of a final CB[8] 
concentration of 68 M. 

Microscopy 
The resulting mixtures obtained after the UV titration (CC 15 µM, CB[8] 68 µM) were also 

characterized by TEM. The samples were deposited on Formvar coated Ni grids and stained 

with uranyl acetate. TEM images show the formation of small fibrils with a length between 40-

70 nm and a diameter of 2-3 nm (Figure 31). 

 

Figure 31. TEM images of the nanofibrils formed by the assembly of CC with CB[8]. 
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DLS 
Additionally, in order to corroborate an increase of the particle size due to aggregation, 

solutions of CC and CC plus CB[8] were analyzed by DLS experiments. 

Results of the DLS analysis show a significant difference in size between CC with and without 

the addition of CB[8]. Hence, these experiments support the results obtained by UV titration 

and TEM. 
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Figure 32. DLS measurements for the equimolar mixture of both conjugates C1 and C2 (1.5 M for each 
peptide) in PB (10 mM sodium phosphate, pH = 7)) labelled as CC without and after the addition of a final CB[8] 

concentration of 1.8 M in PB (10 mM sodium phosphate, pH = 7). 
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4. Experimental procedures 
4.1. General information 
All solvents used were synthesis grade, except for DMF, DIEA and TFA, which were peptide 

synthesis grade. Water was purified using a Milli-Q system (Millipore). 

The reaction for the synthesis of the pseudoviologen (compound 1) was followed by TLC. As 

the product is very polar and positively charged, the chosen eluent was a mixture of MeCN 

(600 mL), MeOH (150 mL), H2O (150 mL) and NaCl (5 g). Compounds were identified with 

ultraviolet light at 254 nm and 360 nm. 

Moreover, the identity and purity of compound 1 was checked by 1H-NMR and 13C-NMR 

spectroscopy, using a Bruker Avance 300 (300 MHz) spectrometer. Samples were prepared 

with deuterated water (D2O). Additionally, the signals were fully assigned by 1H-NMR, 
13C-NMR, COSY, HSQC and HMBC using a Bruker Avance III HD (400 MHz) spectrometer. 

Amino acid derivatives and coupling agents were purchased from Iris Biotech GmbH. Amino 

acids were purchased as protected Fmoc amino acids with the standard side chain protecting 

scheme. 

Reversed-phase HPLC-MS was performed using a Thermo Scientific UltiMate 3000 connected 

to a Photo-Diode Array (PDA) detector and a single quadrupole mass spectrometer Thermo 

Scientific MSQ Plus, or a UHPLC Thermo Scientific Accela connected to a PDA detector and 

a linear trap quadrupole mass spectrometer Thermo Scientific Orbitrap Discovery. An Aeris 

analytical column from Phenomenex (peptide XB-C18 stationary phase, 3.6 µm, 100 Å pore 

size, 150 × 2.1 mm) was used. HPLC-MS quality solvents were used to prepare the eluents, A: 

0.04% TFA, H2O and B: 0.04%TFA, MeCN. The standard method used for analytical HPLC 

was 5% B over 2 min followed by the gradient 5→95% B over 23 min.  

The purification of the peptides was performed using an Agilent Technologies 1200, on an 

Aeris semipreparative column from Phenomenex (peptide XB-C18 stationary phase, 5 µm, 100 

Å pore size, 250 × 10 mm). Peptide P1 was purified with the same eluents as in the analytical 

method, whereas peptide P2 was purified using eluents A: 20 mM NH4Ac, pH = 7.8, H2O and 

B: 1% buffer A, MeCN. 

UV/Vis spectra were recorded on a Jasco V-650 spectrometer, using a Hellma 114-10-40 QS 

semi-micro cuvette. 
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CD spectra were recorded on a CD-ORD Jasco J-185 spectropolarimeter, coupled to a 
thermostatic water bath, using a Hellma 110-2-40 QS macro cuvette (2 mm pathlength)  

TEM images were obtained on a JEOL JEM 1010 100 kV transmission microscope. Samples 

were prepared by depositing the solutions on Formvar coated Ni grids and stained with uranyl 

acetate.  

DLS experiments were performed in particle size analyzer Brookhaven NanoBrook Plus Zeta. 

4.2. Synthesis 

N-(2,4-dinitrobenzil)bipyridinium chloride (1) 

 

Figure 33. Synthetic scheme for compound 1. 

4,4-bipyridine (2 g, 12.8 mmol) and 1-chloro-2,4-dinitrobenzene (2.6 g, 12.8 mmol) were 

dissolved in EtOH (25 mL) and the mixture was refluxed and stirred for 24 h. The reaction was 

followed by TLC and quenched by cooling. After addition of Et2O (185 mL) to the reaction 

crude, a yellowish precipitate was obtained. This solid was washed twice with AcOEt, 

dissolved in MeOH, and concentrated to dryness to give a brown solid (3.79 g, 83%). 

1H-NMR (D2O, 400 MHz) δ = 9.41 (d, 1H, J = 2.5 Hz, CH-c), 9.26 (d, 2H, J = 6.9 Hz, CH-d), 

8.95 (dd, 1H, J1 = 2.5 Hz, J2 = 8.7 Hz, CH-b), 8.86 (d, 2H, J = 6.3 Hz, CH-g), 8.70 (d, 2H, J 

= 6.9 Hz, CH-e), 8.28 (d, 1H, J = 8.6 Hz, CH-a), 8.05 (d, 2H, J = 6.3 Hz, CH-f). 

13C-NMR (D2O, 100 MHz): δ = 157.1 (C-i), 150.0 (C-l), 149.6 (C-a), 145.8 (C-g), 142.9 (C-

e), 142.3 (C-j), 138.4 (C-f), 131.1 (C-c), 130.6 (C-b), 126.2 (C-h), 122.8 (C-k), 122.7 (C-d). 

MS (ESI): m/z = 323.08 [M]+. 

HRMS (ESI): m/z [M]+ calcd for C16H11N4O4: 323.0775; found: 323.0792. 
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Peptide synthesis 

 

Figure 34. Chemical structures of peptides P1 and P2. 

- Resin: H-Rink amide ChemMatrix® resin (0.47 mmol/g) 

- Coupling agent: HBTU/HOBt 0.2 M 

- Base: DIEA 0.195 M 

- TNBS test for checking the coupling/deprotection of the amino acids: 1 % TNBS/DMF 

+ 10% DIEA/DMF 
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- Fmoc deprotecting agent: 20% 4-methylpiperidine in DMF 

- Sequences:  

P1: Fmoc-KGKIAALKQKIAALKYKNAALKKKIAALKQG-NH2 

P2: Fmoc-GEIAALEQEIAALEKENAALEWEIAALEQGK-NH2 

For the synthesis of P1, the resin (425.5 mg, 0.2 mmol) was placed in a plastic column and 

washed 3 times with DMF under N2 bubbling (Figure 34A). The amine group was checked to 

be deprotected with the TNBS test (positive result). The protected amino acid Fmoc-Gly-OH 

(in excess, 4 eq) was dissolved in the coupling agent solution (4 eq, 4 mL) and then the DIEA 

solution (6 eq, 6 mL) was added. After 2 min of activation, the resulting solution was added to 

the resin and mixed under N2 bubbling for 30 min. After solvent removal by filtration (Figure 

34B), the resin was washed with DMF (2 × 10 mL × 2 min), and the amino acid coupling was 

corroborated by doing a TNBS test (no free amine, negative result). Then, the Fmoc protecting 

group was removed by treatment with an excess of 20% 4-methylpiperidine in DMF (10 mL) 

during 15 min. The resin was washed with DMF (3 × 10 mL × 2 min), and then a TNBS test 

was carried out to show a positive result. This procedure was repeated for each amino acid of 

the peptide sequence (from the C- to the N-terminus). The same method was followed for the 

synthesis of P2. 

 

Figure 35. General assembly for SPPS. 
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Acetylation of the N-terminal amine 

 

Figure 36. Synthetic scheme for the acetylation of peptides P1 and P2. 

After the final Fmoc deprotection step using standard conditions (20% 

4-methylpiperidine/DMF), portions of each peptide (0.05 mmol) were acetylated by treatment 

with a mixture of Ac2O (48 μL, 0.51 mmol) and DIEA/DMF (0.195 M, 3 mL, 0.59 mmol) for 

30 min. After filtration, the resin was washed with DMF (3 × 5 mL × 3 min). A TNBS test was 

performed, giving a negative result. 

Deprotection of the Alloc group 

 

Figure 37. Synthetic scheme for the deprotection of the Alloc group. 

Both resins P3 and P4 (0.05 mmol) were treated with a mixture of Pd(OAc)2 (3.9 mg, 0.017 

mmol), PPh3 (20.8 mg, 0.079 mmol), PhSiH3 (62 µL, 0.5 mmol) and NMM (55 µL, 0.5 mmol) 

in CH2Cl2 (2.5 mL) and the resulting mixture was stirred mechanically until the following day. 

The resin was then filtered and washed with: CH2Cl2 (2 × 2.5 mL × 5 min), DMF (2 × 2.5 mL 

× 5 min), sodium diethyldithiocarbamate (DEDTC, 25 mg/5 mL DMF × 15 min), DMF (2 × 

2.5 mL × 5 min), and CH2Cl2 (2 × 2.5 mL × 5 min). 

3-4 mg of the resin were treated with 150 µL of the cleaving cocktail (2.5% TIS 

(triisopropylsilane), 2.5% H2O and 95% TFA) for 90 min. The resin was then filtered, the TFA 

filtrate was added to ice-cold ether (1.2 mL) and the precipitate centrifugated for 10 min. The 

solid residue was dissolved in 400 µL of H2O and analyzed by reversed-phase HPLC-MS. 

Coupling with compound 1 

 

Figure 38. Synthetic scheme for the conjugate formation. 
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The resins P5 and P6 (0.05 mmol) were resuspended in DMF (2.5 mL) and compound 1 (55.4 

mg, 0.15 mmol) was added to each mixture. The resin instantly turned brown-black and the 

resin suspensions were shaken for 90 min. After filtration, the resin was washed DMF (2 × 2.5 

mL × 5 min) and CH2Cl2 (2 × 2.5 mL × 5 min). 

Half of both resulting resins (0.025 mmol) were treated with 7 mL of the cleaving cocktail 

(2.5% TIS, 2.5% H2O and 95% TFA) for 3.5 h. The resins were then filtered, the TFA filtrates 

were added to ice-cold ether (70 mL) and the precipitates centrifugated at 4 ºC for 15 min. The 

solid residues were dissolved in approximately 2 mL of MeCN:H2O (1:1) each, filtered and 

purified by semipreparative reversed-phase HPLC. The resulting fractions were lyophilized, 

giving white fluffy solids (4% for C1 and 3% for C2). 

Conjugates C1 and C2 were dissolved in 1 mL and 1.3 mL of PBS (8.2 mM Na2HPO4, 1.8 mM 

NaH2PO4, 137 mM NaCl, pH = 7.4), respectively. For the obtention of their concentrations, 

small portions of the solutions were successively added to a UV cuvette with 750 mL of PBS 

and the absorbance at the maximum wavelength (261 nm for C1 and 266 nm for C2) was 

measured. The calculation of the concentration was performed using the molar extinction 

coefficient values of methylpseudoviologen (Annex) and the ones described for the residues 

Tyr and Trp43 (ε = 21909 M-1cm-1 for C1 and ε = 26027 M-1cm-1 for C2). Obtained values for 

the concentrations are 1.91 mM for C1 and 1.17 mM for C2. 

4.3. Self-assembly studies 

Circular dichroism 
CD spectra were recorded with a 2.00 mm pathlength cuvette, at 20 ºC and with 4 

accumulations for each measurement. First, a PBS blank was recorded. Then, two solutions of 

C1 and C2 25 µM were prepared, and an additional mixture solution of heterodimer at 25 µM 

(total peptide concentration = 50 µM) was prepared. All three solutions were measured, and 

the spectrum of the mixture solution was recorded again after waiting 5 min, finding no 

difference. 

For the second CD experiment, a 15 µM solution of heterodimer (CC) was prepared and 

measured, along with another 15 µM solution of CC that had been previously titrated with 

CB[8] ([CB[8]] = 68 µM). 
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UV titration 
UV spectra were recorded with a 1 cm pathlength cuvette and at room temperature. First, a 

PBS blank was recorded. Then, a 15 µM CC solution was prepared and used as first point. The 

titration was continued by adding small volumes of a 15 µM CC and 150 µM CB[8] solution 

in PB (8.2 mM Na2HPO4, 1.8 mM NaH2PO4, pH = 7). In this way, the concentration of CC 

was kept constant during the whole titration. The absorbance was registered at λ = 264 nm, 

which is the maximum absorbance wavelength for the CC. 

DLS measurements 
A 15 µM CC stock solution in PB was prepared, and diluted 10-fold three times into 1.5 µM, 

150 nM and 15 nM CC solutions, respectively. The four solutions were analyzed by DLS. This 

procedure was repeated for a 15 µM CC and 18 µM CB[8] solution.
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Conclusions 
Regarding the work done in this project, the following conclusions can be drawn: 

 A pseudoviologen derivative, N-(2,4-dinitrobenzyl)bipyridinium chloride (compound 

1), was successfully synthesized as a precursor for the later Zincke reaction. 

 

 Two peptides P1 and P2, which are known to form parallel heterodimeric coiled coil 

structures, were synthesized following standard Fmoc solid phase peptide synthesis 

protocols. Both peptides presented orthogonally protected Lys residues at the N- and 

C-terminus respectively, as chosen amine moieties for the Zincke couplings. 

 

 Both peptides were efficiently coupled to the pseudoviologen compound via solid phase 

Zincke reactions. Conjugated products C1 and C2 were purified by reversed-phase 

semipreparative HPLC. 

 

 The formation of coiled coil heterodimers from the synthesized conjugates C1 and C2 

was confirmed by CD.  

 

 UV spectroscopy, TEM and DLS preliminary results indicate the self-assembly of the 

coiled coil oligomers into nanometric fibrils in presence of CB[8]. 
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Conclusións 
A partir do traballo realizado neste proxecto pódense extraer as seguintes conclusións: 

 Preparouse con éxito un derivado pseudoviolóxeno, cloruro de N-(2,4-

dinitrobenzil)bipiridinio (composto 1), como precursor para a conseguinte reacción de 

Zincke. 

 

 Sintetizáronse dous péptidos P1 e P2 coñecidos por formar estruturas de “coiled coil” 

paralelas e heterodiméricas mediante protocolos estándar de síntese de péptidos en fase 

sólida e seguindo a estratexia Fmoc. Ambos péptidos presentaban residuos de Lys 

protexidos ortogonalmente no N- e no C-terminal respectivamente, que constitúen os 

grupos amina escollidos para os acoplamentos de Zincke. 

 

 Ambos péptidos foron acoplados eficientemente ao composto pseudoviolóxeno a través 

de reaccións de Zincke en fase sólida. Os produtos conxugados C1 e C2 purificáronse 

por HPLC semipreparativo en fase reversa. 

 

 Confirmouse a formación de heterodímeros “coiled coil” a partir dos conxugados 

sintetizados C1 e C2 mediante DC. 

 

 Os resultados preliminares de espectroscopía UV, TEM e DLS indican a ensamblaxe 

dos oligómeros “coiled coil” en presenza de CB[8] para formar fibras nanométricas. 
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Conclusiones 
A partir del trabajo realizado en este proyecto se pueden extraer las siguientes conclusiones: 

 Se preparó con éxito un derivado pseudoviológeno, cloruro de N-(2,4-

dinitrobenzil)bipiridinio (compuesto 1), como precursor para la consiguiente reacción 

de Zincke. 

 

 Se sintetizaron dos péptidos P1 y P2 conocidos por formar estructuras “coiled coil” 

paralelas y heterodiméricas mediante protocolos estándar de síntesis de péptidos en fase 

sólida y siguiendo la estrategia Fmoc. Ambos péptidos presentaban residuos de Lys 

protegidos ortogonalmente en el N- y C-terminal respectivamente, que constituyen los 

grupos amina escogidos para los acoplamientos de Zincke. 

 

 Ambos péptidos fueron acoplados eficientemente al compuesto pseudoviológeno a 

través de reacciones de Zincke en fase sólida. Los productos conjugados C1 y C2 

fueron purificados mediante HPLC semipreparativo en fase reversa. 

 

 Se confirmó la formación de heterodímeros “coiled coil” a partir de los conjugados 

sintetizados C1 y C2 mediante DC. 

 

 Los resultados preliminares de espectroscopía UV, TEM y DLS indican el ensamblaje 

de los oligómeros “coiled coil” en presencia de CB[8] para formar fibrillas 

nanométricas. 
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Annex 
N-(2,4-dinitrobenzene)-bypiridinium chloride (1) 

 
1H-NMR spectrum (D2O, 400 MHz) for compound 1.  

DEPT and 13C-NMR (D2O, 100 MHz) for compound 1. 
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COSY spectrum for compound 1. 

 
HSQC spectrum for compound 1. 
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HMBC spectrum for compound 1. 

Conjugate C1 

 
HPLC chromatogram (220 nm) for conjugate C1. 
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ESI-MS of the HPLC chromatogram peak at tR = 11.8 min, corresponding to conjugate C1. 

Conjugate C2 

 
HPLC chromatogram (220 nm) for conjugate C2. 
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ESI-MS of the HPLC chromatogram peak at tR = 15.6 min, corresponding to conjugate C2. 

Calculation of the molar extinction coefficient (ε) of pseudoviologen moieties 

 
Representation of the UV absorbance at 259 nm vs methylpseudoviologen concentration, for the calculation of the 
molar extinction coefficient (ε) of pseudoviologen moieties. 


