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ABSTRACT. In this paper we study, from the numerical point of view, a dy-
namic problem which models a suspension bridge system. This problem is
written as a nonlinear system of hyperbolic partial differential equations in
terms of the displacements of the bridge and of the cable. By using the respec-
tive velocities, its variational formulation leads to a coupled system of parabolic
nonlinear variational equations. An existence and uniqueness result, and an
exponential energy decay property, are recalled. Then, fully discrete approx-
imations are introduced by using the classical finite element method and the
implicit Euler scheme. A discrete stability property is shown and a priori error
estimates are proved, from which the linear convergence of the algorithm is de-
duced under suitable additional regularity conditions. Finally, some numerical
results are shown to demonstrate the accuracy of the approximation and the
behaviour of the solution.

1. Introduction. During the last decades the study of the so-called suspension
bridges has received a large attention because this kind of bridges is a common type
of civil engineering structure. It is well-known that these bridges may display certain
oscillations under external aerodynamic forces like, for instance, it occurred in the
famous Tacoma’s bridge (see [2, 5]), in which a strong wind caused the collapse of
a narrow and very flexible suspension bridge.
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Since the pioneering works by Lazer and McKenna (see, e.g., [14] or [18]), where
mathematical models based on nonlinear partial differential equations were intro-
duced to describe oscillations in suspension bridges including connection cables, a
large number of papers have been published (see, for instance, [1, 3, 10, 11, 12, 13,
16, 19, 20, 21, 22, 23, 24, 25] and the numerous references cited therein). Most
of the above works deal with mathematical aspects as the application of analytical
methods to scrutinize stationary solutions, periodic oscillations, longtime global dy-
namics, existence and uniqueness of solutions and so on. Moreover, we want to point
out that in the literature other types of suspension bridges were studied, where the
associated dynamic system was written in the vertical and torsional displacements
of a cross-section of the bridge (see, e.g., [4, 15]). However, to our knowledge the
numerical analyses of the proposed models have not been performed yet.

In this paper, we revisit the problem considered in [7], where a model taking
into account the coupling between the road bed and the suspension main cable was
studied from the mathematical point of view, proving the existence and unique-
ness of weak solutions by using the Faedo-Galerkin approximation procedure and
Gronwall’s lemma, and the exponential decay of the system energy. Moreover, the
existence of a regular global attractor was also shown by using the semigroup the-
ory and defining an adequate Lyapunov functional. Here, we aim to provide the
numerical analysis of this dynamic problem, introducing fully discrete approxima-
tions, proving a discrete stability result and a priori error estimates, and performing
numerical simulations which demonstrate the accuracy of the algorithm and the be-
haviour of the solution.

The paper is outlined as follows. The mathematical model is described in Section
2 following [7], deriving its variational formulation. An existence and uniqueness
result, and an energy decay property, proved in [7] are also stated. Then, in Sec-
tion 3 a numerical scheme is introduced, based on the finite element method to
approximate the spatial domain and the forward Euler scheme to discretize the
time derivatives. A discrete stability property is proved and a priori error estimates
are deduced for the approximative solutions from which, under suitable regularity
assumptions, the linear convergence of the algorithm is obtained. Finally, some
numerical simulations are presented in Section 4.

2. The model and its variational formulation. In this section, we present
briefly the model, the required assumptions and the variational formulation of the
mechanical problem, and we state an existence and uniqueness result. We refer the
reader to [7] for details.

Let [0,4], £ > 0, be the one-dimensional beam (bridge) or rod (cable) of length
¢ and denote by [0,T], T > 0, the time interval of interest. Moreover, let x € [0, ¢]
and ¢ € [0,T] be the spatial and time variables, respectively. In order to simplify
the writing, we do not indicate the dependence of the functions on = and ¢, and a
subscript under a variable represents its derivative with respect to the prescribed
variable.

Let u denote the downward deflection of the deck midline (of unitary length) in
the vertical plane with respect to his reference configuration (that is, it represents
the bending displacement of the road bed), and let w be the vertical displacement
of the vibrating spring standing for the main cable. Thus, the mechanical problem
which simulates the coupled system of a vibrating suspension bridge and a cable is
written in the following form (see [7]).
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Problem P. Find the bending displacement w : [0,€] x [0,T] — R and the vertical
displacement w : [0,¢] x [0,T] — R such that

Utt + Ugzanw + Ut + (P — [[ualF2(0,0) e + K2 (w—w)t = f (1)

in (0,€) x (0,7T), (2)
Wit = We +wy — K2 (u—w)" =g in (0,€) x (0,7), (3)
w(0,) = w(l,t) = up(0,6) = up(6,8) =0 for ace. ¢ € (0,T), (4)
w0, 1) = w(t,t) =0 for ace. te(0,T), (5)
(@, 0) = ug(x), (3,0 = vo(x) for a.e. @ € (0,0), (6)
w(z,0) = wo(x), wi(z,0) = eo(x) for ace. @€ (0,0). (7)

Here, the notation (F)* stands for the positive part of a function F, i.e. (F)* =
max{0, F'}. Moreover, the term —k2(u — w)™ models a restoring force due to the
cables, f is the given vertical dead load distribution on the deck, the constant p
represents the axial force acting at the ends of the road bed in the reference configu-
ration (being negative when the bridge is stretched and positive when compressed),
and g denotes an external source applied in the cable. Finally, following [7] we as-
sumed that all the constants in the model were equal to 1 for the sake of simplicity
in the writing. However, in order to simplify the calculations in this work we note
that we have modified slightly the boundary conditions employed in [7], where the
ends of the vibrating beam were considered pinned, assuming instead that they are
rigidly fixed now. The analysis performed there could be adapted with some minor
changes.

In order to obtain the variational formulation of Problem P, let Y = L2(0,/)
and denote by (-, -) the scalar product in this space, with corresponding norm || - ||.
Moreover, let us define the variational spaces V and E as follows,

V ={ve H*0,0); v(0) = v(¢) = 0 and v,(0) = v, (¢) = 0},
E={cc H(0.0): e(0) = e(t) = 0},
with scalar product (-,-)y (resp. (-,-)g) and norm | - ||y (resp. |- ||g) defined in V
(resp. E).
By using the integration by parts and the Dirichlet boundary conditions at x =

0, ¢, we write the variational formulation of Problem P in terms of the bending
velocity v = u; and the vertical velocity e = w;.

Problem VP. Find the bending velocity v : [0,T] — V and the vertical velocity
e:[0,T] — E such that v(0) = v, €(0) = eg and, for a.e. t € (0,T),

(0e(), &) + (U (t), §az) + (v(2),6) + ||ux(t)‘|2(ux(t)v§x) + p(Uge(t), §)

HEX((ult) —w(t)*,€) = (f(1).) VE€V, (8)
(ee(t), ¥) + (wa (1), ) + (e(t), ¥) — kI ((ult) — w(t)) ™, )
=(9(t),y) VY e€E, (9)

where the bending displacement and the vertical displacement are then recovered
from the relations:

u(t):/o v(s) ds + ug, w(t):/o e(s) ds + wo. (10)
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The following theorem has been proved in [7], providing the existence of a unique
solution to Problem VP as well as an energy decay property.

Theorem 2.1. Let f, g € C([0,T];Y) and assume that the initial data have the
reqularity
U0€H2(0,€)7 weY, wyeE, e €Y.

Then, there exists a unique solution to Problem VP with the following reqularity:

we O([0,T]; H2(0,0)), ve C([0,T]:Y),
we ([0, T]; H'(0,0)), ee C0,T];Y).

Moreover, this solution is continuously dependent on the given data.

In addition, if we assume that f = g =0 (i.e. there are not volume forces) and
that the axial force p is small enough, denoting by E(t) the energy of the system
given by

E(t) = u@®)I} + lv@)I + [w®)llE + le®)]?,
then it decays exponentially; i.e. there exist two positive constants Q@ and w such
that

Et)< Qe ™ t>0.

3. Numerical analysis: Fully discrete approximations and a priori error
estimates. In this section we consider a fully discrete approximation of Problem
VP. This is done in two steps. First, we assume that the interval [0, ¢] is divided into
M subintervals ag =0 < a1 < ... < ap = £ of length h = a;1; — a; = {/M and so,
to approximate the variational spaces V and F, we construct the finite dimensional
spaces V" C V and E" C E given by

Vi ={¢" e C'(0,0); 5\? | € Ps(laj,a;41]) i=0,...,M —1,

£"(0) = €"(£) = 0 and £;(0) = £;(¢) = 0}, (11)
E" = {yh e C([0,1)) ; wlh[ai,ap,l] € Pi([aj,a;41]) i=0,...,M —1,

¥™(0) = v"(0) = 0}, (12)

where P, ([a;,a;11]) represents the space of polynomials of degree less or equal to r in
the subinterval [a;, a;y1]; i.e. V" is composed of C! and piecewise cubic functions
and E" is composed of continuous and piecewise affine functions. Here, h > 0
denotes the spatial discretization parameter. Moreover, we assume that the discrete
initial conditions, denoted by u2, vf, wf and ef, are given by

h h h h h h h h
uy = Piug, vy = Prvo, wy =Prwg, ey =Psep. (13)

Pl and P} being the classical finite element interpolation operators over V" and
E", respectively (see [9]).

Secondly, we consider a partition of the time interval [0,7], denoted by 0 =
to < t;1 < --- < ty = T. In this case, we use a uniform partition with step
size k = T/N and nodes t,, = nk for n = 0,1,..., N. For a continuous function
z(t), we use the notation z, = 2(¢,) and, for a sequence {w,}Y_,, we denote by
owy, = (w, — wp—1)/k its divided differences.

Therefore, using the implicit Euler scheme, assuming that f, g € C([0,T];Y) the
fully discrete approximation of Problem VP is as follows.
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Problem VP"*. Find the discrete bending velocity v"* = {vhk}g o C V" and the
discrete vertical velocity e"® = {e"*}N . E" such that vh* = v, ehk = el and,
form=1,... N,

(5v2’“,€h)+((UZ’“)m,£§z) ( n" €)1 upP)a 1 (n®)a, €8) + ()2, €°)

AR (uph —wiF) ) = (fo,6") VeV, (14)
(Gen®, ") + (wiF)e, ) + (e?f, ") = K ((up® —wi®)F, ")
= (gn, ") V" € B, (15)

where the discrete bending displacement and the discrete vertical displacement are
then recovered from the relations:

n n
k:ka?kJrug, wzk:kZe?kerg. (16)
j=1 j=1

The existence of a unique solution to Problem VP* can be obtained procee-
ding as in the continuous case, applying a standard Faedo-Galerkin approximation
procedure (see, for instance, [6, 17]).

The aim of this section is to obtain some a priori error estimates on the numerical
errors u, — ul* v, — vM* w, —wh* and e, — eM*.

Now, we have the followmg discrete stability property.

Lemma 3.1. Let the assumptions of Theorem 2.1 hold. Then, the numerical se-
quences {ul® vhk whk ehkY - generated by Problem V P | satisfy the stability esti-
mate:

oRP 11+ [l 11 + 11 Cun®)al* + llen®]* + lwp® 1% < C,
where C' is a positive constant which is independent of the discretization parameters
h and k.

Proof. In order to simplify the writing of this proof, we remove the superscripts h
and k in all the variables and we assume that f = g = 0.
Taking as a test function £ = v,, in equation (14) we have

(6vn, vn) + ((Un)aas (Vn)zz) + (Vn, vn) + ”(un)zHQ((un)ra (n)z) + Pp((Un)was vn)
+k2((up, — wn) T, v,) = 0.

Now, keeping in mind that
(3, ) 2 5 {llvall® = -1}
kf((un —wy) T, v,) < k2(||1“n||2 + ”wn”2 + ”UnHZ)a
H(un)r||2((un)mv (n)z) = ”(un) || ((un)zs (Un — un—1)z)
SR {||| ‘un Jall* = 1 (un—1)2[*},
P((Un)az, vn) < g (I (u n)rzHQ + ”vnHz)v
((un)zzs (Vn)zz) > % {H(un)mu2 - ||(un—1)xaf|‘2} )

where we used Cauchy-Schwarz and Young inequalities, it follows that
1 1
o7 Ulonll® = lonall*} 4 2 {lln)al® = 1 (wn1)all}

1 17
o ()l = [n-1)e ) {an
< C(llunll? + wall? + ol + | (n)acl?).
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Now, taking ¥ = e,, as a test function in equation (15) we find that

(6ensen) + (Wn)z,s (€n)z) + (nsen) — kf((un - wn)+v en) =0,

and so, taking into account that

1
(6€naen) > 5% {Hen||2 - ||en71H2}7
1
(wn)e, (en)z) > % {”(wn)zH2 - ”(wn—l)rHQ} )
kf((un - w7z)+7€n) < kf(Hun'P + HwnH2 + ||enH2)’
we have
1 1
o {leall® = e} + 5 (@)l — wnor)el?} "
< O(llunll® + llwal? + llenl?).

Combining now (17) and (18) we can conclude that

1
% {lloall* — ||vn P+ 4 {II wn )|t = [ (un—1)al"}
1
+ﬁ {”(un)szQ - ||(un—1 ww” } + % {”enH2 - ||en—1||2}
1
+tor {l(wn)al® = (wn-1)al1?}
< Cllunll? + llwall® + lvall* + lenll + [[(wn) s 1?)-
Thus, by induction and using Poincare’s inequality we find that
a1 + II(Un)mIIfL +lunll} + lleal® + lwall%
< Ck Y (luslly + o 17 + llws 1% + lles 1)
j=1
+C([[voll* + [luo 3 + lleoll* + [lwol%),
and, applying a discrete version of Gronwall’s inequality (see, for instance, [8]) we

find the desired stability estimates. O

Remark 1. We note that we could modify Problem VP"* by using a semi-implicit
scheme in the following form:

Find the discrete bending velocity v* = {vhk N, C Vh and the discrete vertical
velocity e"* = {ef*}N_ . E™ such that v}* = Ug, ehk = el and, forn=1,... N,

(6vp®, €7) 4 ((u®)as €) + (R, €") (1 (ur 1 )al* ((un)e, €2) + p((uy; )mwih)
R (s —wnt )™, ) ( n,5h> 3 evh,
(e, ")+ ((w®)as ) + (er® ") — K2 ((upty — w9
= (g 0") V" € B,
where the discrete bending displacement and the discrete vertical displacement are
again recovered from relations (16).
This new problem is now uncoupled and linear and so, the numerical resolution

is easier. However, Lemma 3.1 should be modified and the resulting estimates will
vary accordingly.

Now, we are able to prove the following a priori error estimates result.
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Theorem 3.2. Let the assumptions of Theorem 2.1 still hold and denote by (v, e)
and (V" e"*) the solutions to problems VP and V P"% | respectively. Assume that
the following additional regularity is satisfied:

ve CH[0,TLY)NC(0,T];V), eeCH(0,T}:Y)NC([0,T]; E).
Then we have the following a priori error estimates, for all €" = {§h Vo C V" and
P = {Y i, C B,

g Lfon = oI+ flew = e IP 4 flun = + o —wi [}

N
< OkS () — 5051 + llog — €413+ 1) — w513+ le0); — b P
j=1

lles = Wil + Il (we); - dwjl3) +c(||vo — |2 + fleo — b

h h
o — bl + lwo — whlE) + 2 vaj — (i1 — €I

N—
e
- Z lej = ¥} = (esen = W)l + € masx flon — €412
+C' max_[len —vn*. (19)

Proof. Taking as a test function £ = " € V* C V in equation (8) at time t = t,,
and subtracting it to equation (14) we have

((ve)n — 5Uﬁk7§h) + ((un — U?L Jazs (fh>m) + (v — U gh)
+ (| (un)el* (un)e — | (un®)z H ( ") (€M) ) +p((un = upF)ae, €")
+kf((un - ’U.)n)+ (un wn ) ’gh) = 07
and therefore,
((v¢)n — 0VIF v, — vhF) —|— (= ul®) s (Vg — V%) 00) + (v, — VIE 0, — 0IF)
(H(“n) ” (un)w - H( )w| 2( Z ) (Un - k)w) ((un - u?ﬁ)%a”ﬂ - Ur}ik)
+k2((un —wy) T — (uh Zk)+a Un — Uﬁk)
= ((v¢)n — 5“2k fh) + ((un — UZ’“)M, (vn — fh)xr) + (vn — vﬁ’“,vn - fh)
(H(un)zHQ(un)x - H( Up, )x”Q(qu)xa (Un — gh)w) +p((un — U?Lk)xaﬂyvn - §h)
‘H‘;g((un - wn)+ - (uﬁk - wﬁk)er Un — gh) v§h evh
Taking into account that

(6vn — 83", v — v )>*{Ilvn—vhkll2 lvon—1 = vpf4 %},

((up — U’:Lk)m (Un — Zk)m) = ((un — uﬁ’“)m, ((ue)n — 6Un)az)

+((un, — ul®) s (Suy — ul®)0)
> ((u uzk)m’ (( ) 5un)ww)
+a5 Ul(un hk)am:”2 ~ [[(un—1 = w1 )ea |}

(H(un)zllz( n)aa ||( ) || (e )azs w) = (((un)al* = [(@)al?) (wn) s, w)
(II(un) 12 (un*U e, w)

() |12 (un = ul®) e, )| < C(|[(un — up)aal|® + w]?),
where we used Lemma 3.1 and the notation du,, = (u,, —un,—1)/k, and the following
estimates

| ((un)2l® = (™Yo l*) (un)ow, w) | < [l un)al® = 1(un®)e 1] 11 (un)az lwl]
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< Cllwl? + € ((un)a | = 1(l)al|?)’

¢
w)ol? = 1) 12 = [ (u)2 — (u*)2 da
[[(n)zl J(n)” /0( )z — (uy")z d
:/(un+uh) (un, — ul®), dzx

0
< [un + up®)a [ (un = up)ell < Cll(un = ug®)a|l,
where the regularity v € C([0,T]; V) and Cauchy’s inequality

1
ab§6a2+4—b2, a,b,e e R, e >0,
€

have been used, we find that
1
o7 {llvn = vthQ [on—1 = o, [P}
{H Uy, I$||2_||(un 1_U' :E:v” }
C(”(Ut)n - 5'Un||2 + ||vn — thQ +[[(vn — gh)mw‘|2 + [[((ue)n — 5un)ww”2
Hllon = 0RFI1P 4 lun = ul®|1? + [lwn — wpPl? + || (n — uf®)e ||
|t — k) |2+ (900 — 001 v, — €7))  vER € V. (20)

Now, taking as a test function ¢ = " € E* C E in equation (9) at time t = ¢,
and subtracting it from equation (15) we have

((et)n — 56% Qph) ((wn - wﬁk)z,wi’) - ki((un —wy) " — (ugk - wfik)*»i/}h)
—|—(en — ek yhy =0 Wyl € B,

and so, we obtain, for all ¥ € E”,

((et)n — 56% ) €n — ehk) + ((wn — whk) s (en — egk)x) + (en — ezkaen - eZk)
_k*((un — wn)+ (u Zk Wy )+7en - 62"“)
= ((et)n — SGZIC» €n — 7!}}1) + ((wn — wﬁk)m (en — wh)m) + (en — 62’“7 €n — wh)

*kf((un - wn)+ - (U'Zk - ’WZ’“)*’ €n — 1/1h)

Keeping in mind that

(6ep — dept en — k) > % {Hen —en" 12 = llen—1 — enty | }

((wn - wzk)wa (en - eﬁik z) = ((wn - wﬁk)w, ((wt)n - 5wn)w)

> ((wn = w")a, (We)n — Own)a) + o7 Ul(wn = wn®)all? = [[(wn—1 = wiy)al*}

where dw,, = (w, — wp_1)/k, using several times the above Cauchy’s inequality it
follows that

h’“HQ len—1 — ent 4%}

{|| Mell? = [(wn—1 —wi* )e 1}
< C(H(et n— 5€n||2 + llen — elF 1P + lwn — wiF|® + [lun — ut®(|?
Hllen =" 12+ ll(en = ©™)all® + 1((we)n — Swn)e|?
(Sep — Sel® e, — ¢h)) vyl € BN, (21)

1
% {”en
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Combining estimates (20) and (21) we have, for all ¢&" € V* and ¢" € E",

1
%{an—hkn?—nvm—v 2+ o {||en—e2k||2—||en1—e 12}
hk
%{n T O L
o U = w2 = w1 — w212}
sO(Hwt)nf&vnnu||vnf§h||2+||<v e+ (w0 ~ i)

(
Hllvn = vRF|? + un — wpFl? + [lwn — w1+ (| (un = upF).|?
+l(un — uhk>zx|‘2 + (6vp, — (5v2k,vn - fh) + |[(e)n — 5671”2
Fllen — enFI1” +llen — ™12 + l(en — ¥")a 1 + [[((we)n — dwp)s
+(be, — 6el* e, — wh)>.

I

Thus, by induction we obtain, for all £ = {§h|| Vo C VP and ¢l = {whH V., C EM,
lvn = on® 12+ llen — en™ 12 4+ | (= un®)aal® + [[(wn — wi)e|?
n

<Cky (Il(vt)j = 0ui|1® + llv; = €717 + 11(vj = & )aal® + 1 ((ue)j = 817)oll?

Jj=1

+||vj—v’*’“H2+H2u —uhkll2+h]|€|w —wg’“H?HI( u?";)mll2
+||(UJ _ulg )a:wH (51]] _5U § )+||(et)] 56]”

+le; — e H2+H6j*¢?||2+||(€] ) 12+ 11((we)j = dw;)e|?

+0es — et e — ) + C (oo — oI+ feo — ef|?
|0 = a2 + (200 — w)al?).

Finally, taking into account that

kZ(évj — 6v?k,vj - §jh)

fZ — (vj1 — UFy) v — €l

(W ok v EZH(?}S*vo,vﬁi?)
n—1
+) (v — ol v — & = (v — E0)),
=1

k:Z((SeJ - (5ehk P — 1/1?)

n
= (e; - G?k —(ej1—€*)), e, — )
=1
= Een - 6 wh) (60 — €0,€1 — T/J?)
+ Z(ej — el ey — Yl — (ejp1 —¥)),
=1
applying a discrete version of Gronwall’s inequality (see again [8]) and Poincare’s
inequality, we conclude estimates (19). O

We note that estimates (19) can be used to perform an error analysis. Thus, as
an example, assume the following additional regularity on the continuous solution:
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we HY(0,T,Y) N C ([0, T} HY(0,6)) N H2(0,T; V),
w e H30,T;Y) N CH([0,T); H2(0,0)) N H2(0,T; E).
We note that with this regularity we immediately find that (see [9]):
llvo — w5 11* + lleo — €5 I* + lluo — ug |} + llwo — wgl|E < Ch2.
Therefore, we have the following.

Corollary 1. Let the assumptions of Theorem 5.2 and the additional regularity
(22) hold. Then, the linear convergence of the algorithm is deduced; i.e. there exists
a positive constant C, independent of the discretization parameters h and k, such
that

max {llvn = Vi) + lew = el + un = wh v + wa = wh | } < Ch+ k).
0<n<N

The proof of the above result is done in several steps. First, we have the following
property of approximation by finite elements (see, e.g., [9]):

k (mfv M2 4+ inf e h)—i—ma mf vy — EMIP
Z ey = 1%+ ik ey —0fI) + mas it fon €]

<Neghev

+ max, wgreleh llen — |1 < Ch? (||U||201([0,T];H3(0,e)) + ”wH%'l([O,T];H?(O,Z))) :

Moreover, using again regularity conditions (22), we have

N
B o) = dul + 1 (we); = dwsll + l(ve); = 00312 + ll(ex); = e ]
j=1

< Ckz(”“”%—ﬂ(O,T;V) + HUH%IE‘(O,T;Y) + ”w”%{?(O,T;E) + ”wH%I?’(O,T;Y))'

Finally, the remaining terms in estimates (19) can be bounded as follows (see [8]
for details)

N— 1N
||”J UJ+1 53}‘14-1 H2 - ||61 6]+1 j+1)||2
k

< Ch? (”uH}QLI?(O,T;V) + ”w”H?(O,T;E)) )

Combining all these estimates, the linear convergence is deduced.

w\H

4. Numerical results. In order to verify the behaviour of the numerical method
described in the previous section, some numerical experiments have been performed.
Moreover, for the sake of generality in the simulations, we have included coefficients
in the definition of the mechanical problem P.

4.1. Numerical scheme. Given the solution u* ; v¥, wh*  and el* | at time

t,_1, the discrete bending velocity is obtained from the discrete nonhnear variational
equation

P, €M)+ B2 ar (0F%) s €,) + R ca (V¥ 67)
AR e[| ) P () + k0)*)., )
—k2 p(VpF)as (€M) + kK2 ((upF — wlF)T, €)= pr (ot 1, €") + k(fn, )
—kay (Ul )ea, €0) + R p((uh 1), (€)2)-

Later, we get the vertical displacement from the discrete nonlinear variational equa-
tion
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pa(en®, ") + k2 az(( W) )+ 2 k(en®, ") — kR ((up® —wik)t, o)
:p2( n 17¢h)+k(gm¢ )_ka2((wzﬁl)$7¢2)7

where the discrete bending displacement and the discrete vertical displacement are
then recovered from the relations

n n
ult =k E v;’k—&—ug, wh =k E e?k—i—wg.
=1 =1

We note that both numerical problems consist of nonlinear symmetric systems,
and so a fixed point method was applied for their solution.

4.2. A first example: Numerical convergence. Our aim with this first example
is to verify the numerical convergence of the numerical scheme. In this sense, the
following problem is considered.

Problem P1. Find a bending velocity field v : [0,1] x [0,1] — R and a vertical
velocity e : [0,1] x [0,1] = R such that

Prust + 1Usaze + c1us + (p — r1llual|T2 0,0 tlae + K (u —w)t = f
in (0,1) x (0,1),

P2Wit — A2Wgyy + CoWy — kf(u - w)Jr =g n (Ov 1) X (Ov 1)’

w(0,t) = u(1,t) = ux(0,8) = uy(1,¢t) =0 for a.e. te€(0,1),

w(0,t) =w(l,t) =0 fora.e te(0,1),
u(z,0) = up(x), wu(z,0) =v9(z) forae ze€(0,1),
w(z,0) = wo(x), wi(z,0)=-eg(x) forae xe(0,1).

where

512
f(z,t) = €' (—162" + 322° — 122% — 4o — 384) + 16> —

105 (122° — 122+ 2),

g(z,t) = e (162 — 322° + 282% — 127 — 8),
which corresponds with Problem P with the following data:
=1 T=1s, pp=1=ps, a1=1=as, cg=1=cy, m=1 p=0,
E2=1, wp(z)=—-162*(1 —z)> =vo(z) forall z € (0,1),
wo(z) = —4z(1 — ) = ep(x) for all = € (0,1).
The exact solution to Problem P1 is the following one.
u(z,t) = —162%(1 — x)%e’,  w(z,t) = —4x(1 — z)e', for (x,t) € [0,1] x [0, 1].
The numerical errors given by

B = max {flon b + llen — bl + fun = wh v + - wh £},
and obtained for different discretization parameters nd and k, are depicted in Table
1 (being nd the number of finite elements of the discretization and h = m the
spatial discretization parameter). Moreover, the evolution of the error depending
on h + k is plotted in Fig. 1. We observe that the linear convergence stated in
Corollary 1 is achieved.
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ndl k— 1071 1072 1073 1074
10 0.1435116 0.0868544 0.0923330 0.0940042
102 0.1639226 0.0174114 0.0070235 0.0069553
108 0.1641941 0.0161108 0.0017435 0.0007232
10* 0.1646557 0.0163375 0.0015935 0.0001722

TABLE 1. Example 1: Numerical errors for some discretization parameters.

Asymptotic behaviour

Ehk

1 1 1 1 1 1 1
0 002 004 006 008 01 012 014 016 08 02

h+k

FIGURE 1. Example 1: Asymptotic behaviour of the numerical scheme

4.3. A second example: The effect of the axial force. As a second test several
simulations with different values of the axial force p have been performed. With
this example we try to show the effect of the axial force on a vibrating situation.
Taking a similar forced deformed initial configuration as in the previous example,
both forces, over the bridge and the cable, are released at instant ¢ = 0, and the
evolution of the bending displacements is studied.

The following data have been used in this example.

l:]-a T:].S, p1:1:p27 a1:1:a27 01:102627
T1:17 klea f:g:07
up(z) = —162%(1 — 2)® = wo(z), wo(x) =0 =eo(x), forall z € (0,1).

Using the discretization parameters k = h = 1073, in Fig. 2 the evolution in
time of the vertical displacement of the bridge center is shown for several values
of the axial force p. As can be observed, the increment in the compression forces
makes the oscillating response to be softer when the bridge is released.

4.4. A third example: The coupling term. As a final test we analyze the
dependence of the model with respect to the parameter k2. Taking both the bridge
and the cable in their reference configuration as initial conditions, a positive linearly
increasing force acts over the bridge for one second.
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Bending displacement evolution in time

0 — :
——p=0

w0.5.H

FI1GURE 2. Example 2: Oscillations of the bridge for different val-
ues of p.

The following data have been used in the simulations:
=1 T=1s, pp=1=ps, a1=1=as, cg=10=co, 71 =1,
p=10, f(x,t)=10t, g(z,t)=0, for (x,t) €[0,1] x [0,1]
uo(z) =0, wo(z) =0, wo(x)=0, eo(x)=0 forall ze(0,1).
Taking the discretization parameters k = h = 103, running several simulations
for different values of k2 the effect of the coupling term is easily noticed: when this
value raises, the cable restricts the deformation of the bridge and so the displacement

decreases, while at the same time the cable deformation increases, as can be seen
in Fig. 3.

Bridge deformed configurations Cable deformed configurations
T . : . . . : T . 0 : . . . . -
A Y //
0005 1 nonsp b, 7
i 7
hs 4
» - 2
0.0 4 001 N , 4
X, 7y
NN ¥
o1 4 0015 AN //// J
Uy b
N s
002 4 002 Tk 7 B
i, A
~
" o ] 2.
0.026 Bl -0.028 k' S i k=1 H
N K¥=10
N 4 o
0.03 Bl 0.03 S — T Tk=100
— —-K*=1000
-0.038 -0.038 3
a1 02 03 04 08 08 07 08 08 1 o1 02 03 04 0& 08 07 0s 08 1
X X

F1GUurRE 3. Example 3: Bridge and cable deformed configurations
at final time for different values of k2.
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