
proceedings

Proceedings

Quasi-Regression Monte-Carlo Method for Semi-Linear
PDEs and BSDEs †

Emmanuel Gobet 1, José Germán López Salas 2,* and Carlos Vázquez 2

1 Centre de Mathématiques Appliquées, École Polytechnique and CNRS, route de Saclay,
91128 Palaiseau CEDEX, France

2 Department of Mathematics, Faculty of Informatics, Universidade da Coruña, Campus de Elviña s/n,
15071 A Coruña, Spain

* Correspondence: jose.lsalas@udc.es
† Presented at the 2nd XoveTIC Conference, A Coruña, Spain, 5–6 September 2019.

Published: 6 August 2019
����������
�������

Abstract: In this work we design a novel and efficient quasi-regression Monte Carlo algorithm in order
to approximate the solution of discrete time backward stochastic differential equations (BSDEs), and
we analyze the convergence of the proposed method. With the challenge of tackling problems in high
dimensions we propose suitable projections of the solution and efficient parallelizations of the algorithm
taking advantage of powerful many core processors such as graphics processing units (GPUs).

Keywords: BSDEs; semi-linear PDEs; parallel computing; GPUs; CUDA

1. Introduction

In this work we are interested in numerically approximating the solution (X, Y, Z) of a decoupled
forward-backward stochastic differential equation

Yt = g(XT) +
∫ T

t
f (s, Xs, Ys)ds−

∫ T

t
ZsdWs, (1)

Xt = x +
∫ t

0
b(s, Xs)ds +

∫ t

0
σ(s, Xs)dWs. (2)

The terminal time T > 0 is fixed. These equations are considered in a filtered probability space
(Ω,F ,P, (Ft)0≤t≤T) supporting a q ≥ 1 dimensional Brownian motion W. In this representation, X is
a d-dimensional adapted continuous process (called the forward component), Y is a scalar adapted
continuous process and Z is a q-dimensional progressively measurable process. Regarding terminology,
g(XT) is called terminal condition and f the driver.

2. Results

Our aim is to solve

Yi = E
[

g(XN) +
N−1

∑
j=i

f j(Xj, Yj+1)∆ | Fti

]
for i ∈ {N − 1, . . . , 0}, (3)

Proceedings 2019, 21, 44; doi:10.3390/proceedings2019021044 www.mdpi.com/journal/proceedings

http://www.mdpi.com/journal/proceedings
http://www.mdpi.com/journal/proceedings
http://www.mdpi.com
https://orcid.org/0000-0002-4533-0754
http://www.mdpi.com/2504-3900/21/1/44?type=check_update&version=1
http://dx.doi.org/10.3390/proceedings2019021044
http://www.mdpi.com/journal/proceedings

Proceedings 2019, 21, 44 2 of 4

where f j(x, y) := f (tj, x, y), f being the driver in (1). In other words, our subsequent scheme will
approximate the solutions to

Xt = x +
∫ t

0
b(s, Xs)ds +

∫ t

0
σ(s, Xs)dWs, Yt = E

[
g(XT) +

∫ T

t
f (s, Xs, Ys)ds | Ft

]
, (4)

and
∂tu(t, x) +Au(t, x) + f (t, x, u(t, x)) = 0 for t < T and u(T, .) = g(.). (5)

One important observation is that, due to the Markov property of the Euler scheme, for every i, there
exist measurable deterministic functions yi : Rd → R, such that Yi = yi(Xi), almost surely. A second
crucial observation is that the value functions yi(·) are independent of how we initialize the forward
component. Our subsequent algorithm takes advantage of this observation. For instance, let Xi

i be a
random variable in Rd with some distribution ν and let Xi

j be the Euler scheme evolution of Xj starting
from Xi; it writes

Xi
j+1 = Xi

j + b(tj, Xi
j)∆ + σ(tj, Xi

j)(Wtj+1 −Wtj), j ≥ i. (6)

This flexibility property w.r.t. the initialization then writes

yi(Xi
i) := E

[
g(Xi

N) +
N−1

∑
j=i

f j

(
Xi

j, yj+1(Xi
j+1)

)
∆ | Xi

i

]
. (7)

Approximating the solution to (3) is actually achieved by approximating the functions yi(·). In this
way, we are directly approximating the solution to the semi-linear PDE (5). In order to control better

the truncation error we define a weighted modification of yi by y(q)i (x) =
yi(x)

(1 + |x|2)q/2 for a damping

exponent q ≥ 0. For q = 0, y(q)i and yi coincide. The previous DPE (7) becomes

y(q)i (Xi
i) := E

[
g(Xi

N)

(1 + |Xi
i |2)q/2 +

N−1

∑
j=i

f j

(
Xi

j, y(q)j+1(Xi
j+1)(1 + |Xi

j+1|2)q/2
)

(1 + |Xi
i |2)q/2 ∆ | Xi

i

]
. (8)

The introduction of the polynomial factor (1 + |Xi
i |2)q/2 gives higher flexibility in the error analysis,

it ensures that y(q)i decreases faster at infinity, which will provide nicer estimates on the approximation
error when dealing with Fourier-basis.

Then we define some proper basis functions φk which satisfy orthogonality properties in Rd and
which span some L2 space. It turns out that the choice of measure for defining the L2 space has to coincide
with the sampling measure of Xi

i ∼ ν. Our strategy for defining such basis functions is to start from
trigonometric basis on [0, 1]d and then to apply appropriate changes of variable: later, this transform will
allow to easily quantify the approximation error when truncating the basis. Using the notation

S(q)
i (xi

i:N) :=
g(xi

N)

(1 + |xi
i |2)q/2 +

N−1

∑
j=i

f j

(
xi

j, y(q)j+1(xi
j+1)(1 + |xi

j+1|2)q/2
)

(1 + |xi
i |2)q/2 ∆,

we can rewrite the exact solution as y(q)i (x) = E
[
S(q)

i
(
Xi

i:N
)
|Xi

i = x
]

, x ∈ Rd. Under mild conditions

on f , g and ν, S(q)
i (Xi

i:N) is square-integrable, and therefore y(q)i is in L2
ν(Rd), thus y(q)i (x) =

∑k∈Nd α
(q)
i,k φk(x), for some coefficients (α(q)i,k : k ∈ Nd). Using the orthonormality property of the

Proceedings 2019, 21, 44 3 of 4

basis functions φk’s, α
(q)
i,k = (y(q)i , φk)L2

ν(Rd) = E
[
y(q)i (Xi

i)φk(Xi
i)
]
= E

[
E
[
S(q)

i
(
Xi

i:N
)
|Xi

i

]
φk(Xi

i)
]
=

E
[
S(q)

i
(
Xi

i:N
)

φk(Xi
i)
]

, thus allowing us to the use of Monte Carlo simulation in order to compute the
Fourier coefficients. The resulting Algorithm 1 is shown below.

Algorithm 1. Global Quasi-Regression Multistep-forward Dynamical Programming (GQRMDP) algorithm

Initialization. Set ȳ(q,M)
N (xN) := g(xN)

(1+|xN |2)q/2 .
Backward iteration for i = N − 1 to i = 0,

ȳ(q,M)
i (·) := ∑

k∈Γ
ᾱ
(q,M)
i,k φk(·), (9)

where for all k ∈ Γ,

ᾱ
(q,M)
i,k :=

1
M

M

∑
m=1

S(q,M)
i (Xi,m

i:N)φk(Xi,m
i), (10)

and

S(q,M)
i (xi

i:N) :=
g(xi

N)

(1 + |xi
i |2)q/2

N−1

∑
j=i

f j

(
xi

j, TL?

(
ȳ(q,M)

j+1 (xi
j+1)(1 + |xi

j+1|2)q/2
))

(1 + |xi
i |2)q/2 ∆.

3. Discussion

A implementation on GPUs of the GQRMDP algorithm is proposed. It includes two kernels, one
simulates the paths of the forward process and computes the associated responses, the other one computes
the regression coefficients (α(q)i,k , k ∈ Γ). In the first kernel the initial value of each simulated path of the
forward process is stored in a device vector in global memory, it will be read later in the second kernel.
In order to minimize the number of memory transactions and therefore maximize performance, all accesses
to global memory have been implemented in a coalesced way. The random numbers needed for the
path generation of the forward process were generated on the fly (inline generation) taking advantage of
the NVIDIA cuRAND library [1] and the generator MRG32k3a proposed by L’Ecuyer in [2]. Therefore,
inside this kernel the random number generator is called as needed. Another approach would be the
pre-generation of the random numbers in a separate previous kernel, storing them in GPU global memory
and reading them back from this device memory in the next kernel. Both alternatives have advantages and
drawbacks. In this work we have chosen inline generation having in mind that this option is faster and
saves global memory. Besides, register swapping was not observed on the implementation and the quality
of the obtained solutions is similar to the accuracy of pure sequential traditional CPU solutions achieved
employing more complex random number generators. In the second kernel, in order to compute the
regression coefficients, a parallelization not only over the multi-indices k ∈ Γ but also over the simulations
1 ≤ m ≤ M was proposed. Thus, blocks of threads parallelize the outer for loop ∀k ∈ Γ, whilst the
threads inside each block carry out in parallel the inner loop traversing the vectors of the responses and
the simulations.

Conflicts of Interest: The authors declare no conflict of interest.

Proceedings 2019, 21, 44 4 of 4

References

1. NVIDIA cuRAND Web Page. Available online: https://developer.nvidia.com/curand (accessed on 5 October
2018).

2. L’Ecuyer, P. Good parameters and implementations for combined multiple recursive random number generators.
Oper. Res. 1999, 47, 159–164.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution (CC
BY) license (http://creativecommons.org/licenses/by/4.0/).

https://developer.nvidia.com/curand
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Results
	Discussion
	References

