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Abstract: There exist many different methods to choose the bandwidth in kernel regression. If,
however, the target is regression based prediction for samples or populations with potentially
different distributions, then the existing methods can easily be suboptimal. This situation occurs
for example in impact evaluation, data matching, or scenario simulations. We propose a bootstrap
method to select a global bandwidth for nonparametric out-of-sample prediction. The asymptotic
theory is developed, and simulation studies show the successful operation of our method. The method
is used to predict nonparametrically the salary of Spanish women if they were paid along the same
wage equation as men, given their own characteristics.
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1. Introduction

While there exist a considerable literature on bandwidth selection for kernel based nonparametric
density and regression estimation, the problem of nonparametric prediction has largely been ignored.
To our knowledge, such selection method does not exist albeit the relevance and frequency of such
prediction problems in practise. They include for example any situation for which you want to predict
counterfactuals like in impact evaluation (also known as treatment effect estimation). Other examples
are statistical matching or data matching (see [1-3], and references therein), the imputation of missings
(see e.g., [4-6], and references therein), or the simulation of scenarios. Note that we are not thinking of
extrapolation far outside of the support of the observed covariates, a problem that would go beyond
the here described ones, see [7]. We do not refer to bandwidth selection in stationary time series. In this
context, various bandwidth and other model selection methods have been developed, see e.g. the
review of Antoniadis, [8] or [9].

In all these situations have the following three features in common: you can think of a regression
model with Y being the left-hand, and X the observed right-hand variables. You have one sample,
denoted as ‘source’, in which both are given such that you can conduct a nonparametric regression.
At the same time you have or simulate another sample or population, denoted as "target’, for which the
same (as for ‘source’) potential response Y is not obtained. The basic assumption is that the dependence
structure between, or in our case the conditional expectation of Y given X, m(x) := E[Y|X = x| is
the same in both populations. In data matching, and similarly when imputing missings, the Y were
not sampled for the target sample; in scenarios the X of the target refer to an artificial, maybe future
population, for which we just cannot observe any Y; in counterfactual exercises you typically have
Y observed for the target sample, but under a different situation, called "treatment’. Then you use
the source sample to impute the potential Y of the target group for the situation ‘without treatment’.
The difference between the observed Y (under treatment) and the imputed (without treatment) gives
the so-called "treatment effect for the treated’.
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Our proposal relies on the so-called smooth bootstrap approach, see [10]. That is, you aim to draw
bootstrap samples from a nonparametric pre-estimate of the joint distribution of (X, Y). For the original
source sample, and for each bootstrap sample you estimate m(x). These allow us to approximate the
mean squared error of 71(x) for any x inside the support of X. Finally you average these over the x;
observed in the target sample. We said "you aim’ because it can be shown that there exists a closed
analytical form for the resulting MASE estimate. This simplifies the procedure drastically making it
quite attractive in practise. One may argue that the exactness of this MASE approximation hinges a lot
upon the pre-estimate. Yet, for finding the optimal bandwidth (or model) it suffices that our MASE
approximations take their minimum at the same bandwidth as the true but unknown MASE. Our
simulation studies show that this is actually the case. This work is collected in [11].

2. The Bandwidth Selection Method

Suppose we are provided with a complete sample {(x?, ) :’il from the source population with
X0 ~ fOand m(x) := Ey[Y?|X? = x]. For the target population we only are provided with observations
{x}}", from density f! which is potentially different from f°. We are interested in predicting the
expected {y} }"1, assuming that m(x) = E;[Y!|X! = x], or to estimate E [Y'] = E [m(X')]. Moreover,
if some "outcomes’ y; are observed for the target population, their conditional expectation is supposed
to differ from m(-); recall our example of outcome under treatment vs without, or see our application
were m(x) is the expected wage given x if you were a man.

For the prediction we have to estimate m(-) by a Nadaraya-Watson estimator T?I}Il\[ W with
bandwidth h. Let us suppress for a moment the hyper-indices thinking for now always in the
source sample with Y observed. The challenge is to find a bandwidth & which is MASE optimal
for our predicting problem. The point-wise MSE, and afterwards the MASE are approximated by
their bootstrap versions obtained as follows: Imagine (Xi‘ , Yl*) s, (X5, Y,) are bootstrap samples

drawn from the kernel density fo(x,y) = n~" .f;l Kq(x — X;)K¢(y — Y;) with bandwidth g. Then, for
=

" (x) f(x) = fiux) i (x) we get

iV (x) — g™ (x) = - i Ky (x = X7) (Y7 =g ™ (x)), @
”fg(x> i=1

where X* has bootstrap marginal density fg, and E [Y*| X* =x] = n%é\] W(x). Clearly, this is the
bootstrap analogue to

A () —mx) = YKy (- X)) (Y — m(x)). ®
) &

In order to compute the MASE we need to carefully distinguish between source and target sample,
and have therefore to use the hyper-indices again. For finding a globally optimal bandwidth & we
would like to minimise

MASE s sa () = nll]zll {Eo[(mgwm})_m(x}))z”, 3)

where E refers to the expectation in the source population. We have in the bootstrap world
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A bootstrap bandwidth selector for prediction is defined as

NW _ _ . *
A

Note that the computation of h}}/.. does not require the use of Monte Carlo approximation nor

the nonparametric estimation of the density f! of the target population.
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